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I. INTRODUCTION

The study of biological systems often results in simultaneous observation of several
processes. These may be either a continuously varying waveform, or a sequence of discrete
events. In the former case this leads to analyses based on continuous time series, whereas
in the latter case the principal quantities available for analysis are the times of occurrence
of discrete events, leading to analyses based on stochastic point processes. Examples of
such time series include recordings of physiological tremor, surface electromyogram
(EMGQ), electroencephalogram (EEG) signals, and muscle forces or movements. Examples
of point processes include the times of occurrence of extracellularly recorded action
potentials, such as times of firing of motor unit action potentials and heart action
potentials.

A previous report (Rosenberg et al, 1989) presented a set of frequency domain
measures for characterizing linear interactions between point process data. The object of
the present review is to draw on that material, and extend it to provide a framework for
characterizing linear and non-linear interactions between point processes, time series, and
hybrids of the two, using estimates of time and frequency domain parameters. The
approach adopted is that of spectral estimation procedures based on the finite Fourier
transform. Brillinger (1993) points out that spectra have both a theoretical and physical
existence, and that it is rare for a concept to have these distinct existences. In practice this
means that spectrum analysis can be approached from two very different viewpoints. The
statistician is concerned with spectra as theoretical parameters, whereas the experimen-
talist attempts to gain insight and inference from their data. A combined approach
drawing on the expertise of both disciplines is necessary to improve understanding of
biological systems, this approach will often involve a multi-disciplinary collaboration
between groups of scientists. When analysing experimental data the use of statistics is
essential to deal with error and uncertainty, and in the setting up of procedures for testing
hypotheses.

Second order (linear) frequency domain parameters are discussed in detail, with
examples, in Rosenberg et al. (1989) for point process data, and in Brillinger (1981) for
time series data. The extension of spectral methods to hybrid data was proposed in Jenkins
(1963), and the theoretical foundations are set out in Brillinger (1972, 1974). In the present
review the techniques in Rosenberg e al. (1989), and Brillinger (1981) are extended to the
case of hybrid point process/time series data. In most cases the extension to hybrid data
follows naturally as a result of the theory developed in Brillinger (1972). The large sample
distribution of the various parameter estimates is also given, and in the linear case these
follow from, and are identical to, previous results for point process data and time series
data.

Appilication of the techniques is illustrated by a detailed analysis of a single data set,
consisting of four processes, to answer specific questions posed about the processes, and
their interaction. The data set consists of simultaneously recorded finger tremor, surface
EMG and two single motor units from a normal healthy subject. The theme developed in
this review is that by using a variety of procedures, where any one technique may illustrate
only one aspect of the data, it is possible to obtain useful insight into the mechanisms
controlling the behaviour of complicated systems such as those responsible for generation
of physiological tremor. The analysis uses estimates of both time domain and frequency
domain parameters, and stresses the complementary nature of time and frequency domain
parameters which can be used to characterize different aspects of the same data. The fact
that all linear time domain parameters are estimated via the frequency domain does not, in
general, affect the interpretation of these parameters. Rosenberg et al. (1989) discuss the
complementary aspect of time and frequency domain analysis and point out that although
certain time and frequency domain parameters are mathematically equivalent, this does
not result in equivalence of representation. Thus it is necessary to use both representations
to obtain the maximum insight into and inference about the behaviour of complex
systems.
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The present framework has the added advantage in the linear case of being applicable to
both pure time series data and pure point process data. This follows from the Fourier
based estimation procedures, where all linear parameters (including time domain
parameters) are estimated via the frequency domain. An important part of the present
analysis is the use of confidence limits for all parameter estimates. The experimentalist
often fails to distinguish between a parameter and its estimate, once a parameter of interest
has been defined, an estimation procedure can be developed, which for a finite amount of
data will have some associated error. Confidence limits should form an essential part of
any statistical analysis, since they provide a guide to interpretation of estimates and allow
the significance of any interesting features in parameter estimates to be assessed.

This review is aimed at experimentalists who have suitable data to analyse. The aim is to
present the methodologies in sufficient detail to allow the interested researcher to
implement a similar analysis. The statistical presentation is kept to a minimum, with the
derivation and proofs of the various relationships omitted, these can be found in the
referenced material. The review begins in section II with a description of the experimental
data and the specific questions about the data which we will address in the present
analysis. In section III, we set down a number of definitions and assumptions about the
data, which form the basis for the mathematical framework. All linear parameters are
estimated via the frequency domain using Fourier methods, the finite Fourier transforms
of time series and point process data are discussed in section IV. The next three sections
deal with the definition of and estimation procedures for parameters to characterize linear
processes and their pairwise interactions (section V), the setting of confidence limits for
these parameters (section VI) and examples of the application and interpretation of these
parameters (section VII). Sections VIII to X deal with the extension of these parameters to
multivariate linear data, and sections XI to XIII deal with the specific case of the
identification of multivariate linear systems. The final group of sections XIV to XVI deals
with the extension to higher order analyses. The sections on the application and
interpretation of parameter estimates (VII, X, XIII and XVI) can be read independently of
the methodological sections.

The previous study by Rosenberg et al. (1989) includes a brief historical background on
point process data analysis, a history of time series analysis based on Fourier methods may
be found in Brillinger (1981), and a historical perspective on spectral estimation can be
found in Robinson (1982).

II. EXPERIMENTAL METHODS, DESCRIPTION OF DATA, AND QUESTIONS TO BE
ADDRESSED

The data set consists of simultaneous recordings of finger tremor, two motor unit spike
trains, and a surface electromyogram (EMG) from a normal healthy subject. The tremor
signal was derived from an accelerometer fixed to the distal phalanx of the unsupported
middle finger. The subject’s other fingers, wrist and forearm were all supported and
immobilized by a custom designed rigid polypropylene cast. During data collection the
subject was asked to extend and maintain the middle finger in a horizontal position. Two
single motor units were recorded from a pair of concentric needle electrodes (Medelec
DFC25) inserted into the extensor digitorum communis muscle. The surface EMG signal
was obtained from a pair of Ag/AgCl bipolar electrodes placed about 20 mm apart on
either side of the needles.

The accelerometer output was amplified to a level of 3 V/1 g acceleration, and fed to a
data collection interface for digitizing. The band-width of this signal is determined by the
characteristics of the accelerometer (Entran EGAX-5) which has a flat frequency response
from DC to about 200 Hz. The surface EMG signal was filtered (3—500 Hz), and amplified
(x1000) before digitizing. The needle electrode signals were amplified and band pass
filtered before being passed through window discrimination devices. The TTL pulses
output from these were fed to the digital input of the data collection device.

The duration of the data set is 180 sec, with motor unit spike times recorded to the
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nearest 1 msec, and acceleration and surface EMG signals sampled at 1 msec intervals.
Figure 1 shows a 5-sec segment from each of the four processes, in Fig. 1a, b the motor
unit spike trains are shown as instantaneous frequency plots, Fig. lc shows the
acceleration record and Fig. 1d the EMG record. Interval histograms for the two motor
unit discharges are shown in Fig. 2a, b, respectively, plotted up to 250 msec. The first
motor unit spike train, motor unit 0, has 2202 spikes, giving a mean rate of 12.2 spikes/sec,
with a coefficient of variation (c.0.v.) of 0.17. The corresponding figures for the second
motor unit, motor unit 1, are 1855 spikes, 10.3 spikes/sec and c.o.v. of 0.29. Amplitude
histograms are shown in Fig. 2¢, d for the complete acceleration and EMG records,
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Fig. 1. Five-second segments showing (a) instantaneous frequency of motor unit 0, (b)
instantaneous frequency of motor unit 1, (c) finger acceleration signal, and (d) raw surface EMG
signal.
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Fig. 2. (a) Interval histogram for motor unit 0 and (b) interval histogram for motor unit 1. Vertical

dashed line in (a) and (b) corresponds to the mean firing interval of each motor unit. (c) Amplitude
histogram of acceleration record, and (d) amplitude histogram of surface EMG record.

plotted for +5 standard deviations about the mean. The acceleration signal has a peak
value of around 30 cm/secz, with a standard deviation or RMS value of 6.67 cm/sec?,

Physiological tremor is a complex signal resulting from interactions between several
neural and mechanical factors (e.g., see Elble and Koller, 1990). The spectrum of
physiological tremor contains two types of component identified as distinct peaks in the
estimated tremor spectrum. The first component, due in part to the natural resonance of
the limb being studied, is sensitive to changes in inertial loading which results in a
downward shift of the frequency of the spectral peak with increased inertial loading. This
component has been termed the mechanical reflex component of physiological tremor (see
Elble and Koller, 1990). The second type of component is referred to as neurogenic, the
position of the peak in the tremor spectrum corresponding to this component is not
sensitive to changes in inertial loading (Stiles and Randall, 1967).

A frequency domain description of the coupling between discharges from pairs of single
motor units has revealed the presence of distinct frequency bands (Farmer et al., 1993),
which overlap with the range of frequencies present in finger tremor. The analysis in the
present report will concentrate on two particular questions. The first is whether frequency
components of motor unit coupling can be associated with a distinct feature of
physiological tremor. The second question to be addressed is whether a surface EMG
signal can provide information about motor unit coupling, and to what extent the
information available from an analysis using single motor unit discharges can be obtained
by using a surface EMG signal in the analysis.
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III. DEFINITIONS AND ASSUMPTIONS ABOUT THE DATA

The motor unit spike trains are assumed to be realizations of stochastic point processes.
A stochastic point process, N, may be defined formally as a random non-negative integer
valued measure (Brillinger, 1978) and in practice is represented by the ordered times of
occurrence of motor unit spikes. It is assumed that at most one event occurs in a suitably
small interval, dt, equivalent to the sampling interval. A point process which satisfies this
condition is known as orderly. This assumption is discussed in relation to neuronal spike
trains by Conway ef al. (1993).

The two point processes will be denoted by Ny for motor unit 0, and N; for motor unit
1, respectively. For process Ny, the counting variate Ny(7) counts the number of events in
the interval (0,¢]. In defining point process parameters it is convenient to introduce
differential increments. Thus for process N, the differential increment, denoted by dN,(2),
is defined as dN;(¢) =N;(¢,t + dt]. This counts the number of events in a small interval of
duration dr starting at time ¢, and in practice, since the process is assumed to be orderly,
will take on the value 0 or 1 depending on the occurrence of a motor unit spike in the
sampling interval d¢ (dz=1 msec). A similar definition is used for dN(?).

The acceleration record is assumed to be a realization of a zero mean time series,
denoted by x(f). The surface EMG signal is full wave rectified to remove waveform
artefacts from parameter estimates (see Section IV below), this signal is likewise assumed
to be a realization of a time series, denoted by y(¢). It is assumed that these time series are
real valued with sample values defined at equispaced intervals equal to the sampling
interval, d¢, denoted by x; and y, respectively.

Both point process and time series data are assumed to satisfy two further conditions,
that of stationarity, and a mixing condition. Stationarity assumes that moments of up to
finite order exist and are independent of any translation of the time arguments. For second
order (linear) analysis we assume stationarity to second order, this means, for example,
that the second order moment between rectified EMG, y(#), and tremor, x(¢), given by the
product {y(?) x(¢ +u)}, is a function of u only, and is independent of the value of 7. This is
also known as wide sense stationarity. For third order analysis we assume third order
stationarity. '

The mixing condition assumes that differential increments and/or sample values widely
spaced in time are statistically independent (Rosenblatt, 1956; see also Brillinger, 1981,
1983). This assumption results in asymptotic normality of parameter estimates, allowing
confidence limits to be constructed. In practice most signals encountered in neurophysiol-
ogy meet this requirement, any dependency within a process and between processes will
have a short span due to influences from other sources and random effects. However, if
external stimuli are being used in an analysis, deterministic or completely regular series
should be avoided since they will violate the mixing condition.

Time series and point processes are defined formally from a statistical viewpoint in
Brillinger (1978).

IV. FOUNDATIONS—THE FINITE FOURIER TRANSFORM

In the present report all second order (linear) analyses are performed using estimation
procedures where both time and frequency domain parameters are arrived at through
spectral estimation techniques. These frequency domain procedures are based on the
method of disjoint sections set out in Rosenberg et al. (1989) for point process data. The
method of disjoint sections results in simple expressions for confidence intervals for
parameter estimates. The frequency domain approach allows a wider range of linear
interactions to be considered through multivariate analysis, and in some cases multivariate
time domain parameters of interest can only be estimated via the frequency domain. This
approach also allows common estimation procedures to be used for different types of
point process and/or time series interactions.

Using the method of disjoint sections, the complete record, denoted by R, is divided into
L non-overlapping disjoint sections each of length T, where R=LT. The basic frequency
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domain statistic used in the present study is the finite Fourier transform of a segment of
length T from each of the four processes x, y, Ny and N, defined previously. Once the L
sections from each process have been transformed, spectral estimates are constructed by
algebraic combinations of these transforms.

The finite Fourier transform of the /™ segment (/=1, ..., L) from process x at
frequency A is defined as (Brillinger, 1972)

T IT-1

dy(A,D) = J x(t)e ™ dr ~ Z ey, (4.1)
(=T =(—1)T

with a similar definition for d; (4, I). For point process data the finite Fourier transform
of a segment of length T from process N; is defined as

T
df, (4,0 = J eMdN( = ) e (4.2)
(-nt (I-1)T<y<iT

where 7; are the times of occurrence of the N; events. A similar definition holds for ag,
* .

Consideration of these two basic statistics at this stage can provide a useful insight into
interpretation of estimates of parameters to be introduced in the following sections. For
time series x, the statistic (4.1) can be thought of as performing a Fourier decomposition of
the sampled waveform into constituent frequency components, which should highlight any
distinct periodic components in the data (Brillinger, 1983). The interpretation of (4.1) in
the case of the rectified EMG, process y, is more complex. A decomposition of the raw
EMG about the mean value zero would contain information about the shapes of the many
individual muscle action potentials contained in the surface EMG. In the present study it
is the timing of these potentials which is of interest, thus the sampled waveform is rectified
before being Fourier transformed. Full wave rectification is used to maximize information
about action potential timing, and no time constant or smoothing is associated with the
rectification process to preserve the accuracy of timing information. Thus, over the
frequency range of interest (<50 Hz), it can be hypothesized that the statistic (4.1) will
reflect mainly the timing of action potentials. One of the objects of the present analysis is
to determine to what extent this hypothesis is correct.

For point process N, the statistic (4.2) can be thought of as performing a correlation
between the sinusoids and co-sinusoids of the complex Fourier exponential with the times
of occurrence of the N; events. The presence or absence of particular periodicities in the
spike timings of process N will lead to increased or decreased values of correlation (at the
frequency of the periodicity) from that expected by chance alone, which should highlight
periodic components in the discharge.

The analysis of stationary processes through the use of Fourier transforms is discussed
in Brillinger (1974, 1983). A particular motivation for using this approach in a statistical
analysis is that the large sample statistical properties of the Fourier transform of a
stationary process are simpler than those of the process itself, and lead to easily managed
quantities (Brillinger, 1974, 1983).

V. PARAMETERS OF LINEAR PROCESSES AND THEIR PAIRWISE INTERACTIONS

In this section various parameters are defined, and estimation procedures described for
characterizing the processes x, y, Ny and N; and their linear pairwise interactions. The
individual processes are characterized by estimates of the power spectrum, or auto-
spectrum of each process. The pairwise relationships between the processes are
characterized in the frequency domain by estimates of coherence and phase, and in the
time domain by estimates of cumulant density functions. Section VI gives results necessary
to estimate confidence limits for all parameter estimates.

We use the term hybrid to characterize a parameter that depends on a time series and a
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point process. For example, one may define a hybrid cross-spectrum between point process
N, and time series x, suppressing the dependency on /, as

falh) = Jim == E{HA)TE D] (5.1)

where the overbar “~” indicates a complex conjugate, and E{ } denotes the averaging
operator or mathematical expectation of a random variable. A similar definition holds for
the hybrid cross-spectrum f,9(2), by replacing dy (4,) with d, (4). For point process data,
the cross-spectrum between Ny and N, denoted by fio(4) is defined in an identical manner
(Rosenberg et al., 1989) by substitution of the appropriate finite Fourier transforms, and
for time series data, £,,(1) can be similarly defined (Brillinger, 1981). A consistent estimate
of fx1(4), denoted by f,,(2), and estimated using the method of disjoint sections described
in Section IV, is given by

L
Falh) = 5= > dXNILED (52)

with similar expressions for the estimation of the other pairwise cross-spectra, Feo(A), fro(A)
and f;y(}.)

The auto-spectrum of the process x, fi.(4), is defined and estimated by replacing the
subscript N; with x in equations (5.1) and (5.2). Similar procedures hold for the other
auto-spectra foo(4), f11(4), and f;,,(1).

For large T and 1#£0, the estimated cross-spectrum f1(2) may be seen to have the same
form as a complex covariance parameter, cov{4,B} = E{(4 — E{A})(B — E{B})}, and can
be interpreted as the covariance between the components, at frequency A, of processes N;
and x. The estimated auto-spectrum, fxx(l) has the same form as a variance parameter
and can be interpreted as the variance at frequency A of the process x (providing an
alternative interpretation to that discussed in Section IV). Whereas the RMS and c.o.v.
parameters described in Section II can provide an indication of the spread of amplitudes
or intervals in the component process, the spectral estimates provide a more
comprehensive, and perhaps more useful, characterization of the individual processes by
indicating which frequency bands the variance is concentrated in.

One frequency domain measure of association which can be used to assess the linear
dependency between processes Ny and x is the coherence function, written as IRx1(A)1%, and
defined, suppressing the dependency on section number /, as

|[Ra(A)[ = Jim |corr{d}(2),d%, ()} (53)

where corr{4,B} denotes the correlation between 4 and B. Equation (5.3) can be
interpreted as the magnitude squared of the correlation between the finite Fourier
transforms of processes N, and x. The definition of correlation in variance and covariance
terms, corr{4,B} =cov{A,B}/\/var{4}var{B}, leads to an alternative definition of the
coherence as

@
Ry (4 5.4
RO =7 Dt G4)
(5.4) can be estimated by direct substitution of estimates of the appropriate spectra as
|Ra ()" = V. (5.5)
S (2)

with other coherence estimates obtained by substitution of the appropriate spectra into an
equation similar to (5.5). Coherence functions provide a bounded and normative measure
of association, taking on values between 0 and 1, with 0 in the case of independence, and 1
in the case of a perfect linear relationship (Brillinger, 1981; Rosenberg et al., 1989). The
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complex valued function R,;(1), whose modulus squared is the coherence, is defined as

. f x1 (/‘L)
Rl = e

This function is referred to as the coherency, following Wiener (1930), and can be
estimated by direct substitution of spectral estimates in the manner of (5.5). Coherency
functions are used in the construction of confidence limits for estimated coherence
functions, see Section VI below.

Coherence functions provide estimates of the strength of coupling between two
processes. Timing information can be obtained from the phase spectrum, ®@,;(4), defined
as the argument of the cross-spectrum

@, (,{) = arg{fxl (’1)} (5'6)
and can be estimated by
&1 (4) = arg{f (1)} (5.7)

with the cross-spectrum estimate provided by (5.2). Other phase spectra can be defined and
estimated in similar fashion. ®,;(1) only has a valid interpretation where significant
correlation is present between N and x. In practice |R,;(4)* can be used to indicate these
regions, where the phase can be interpreted as the difference between harmonics of N; and
x at frequency A. A useful basic model for the interpretation of phase estimates is a pure
delay, when the phase curve will be a straight line passing through the origin, with a slope
equal to the delay (Jenkins and Watts, 1968; Rosenberg ef al., 1989). The argument of the
estimated cross-spectrum, (5.7) can be obtained from the arctan function, this will result in
a phase estimate over the range [—n/2, n/2], however, the signs of the real and imaginary
parts of f;1(4) can be used to determine in which quadrant the arctangent falls, so
extending the range to [, ]. Where significant coherence is present over a wide range of
frequencies it is possible to remove the constraint on the phase and extend the phase
estimate outside the range [—=, =] to avoid discontinuities in phase estimates. This
estimate, referred to as the unconstrained phase, is useful in the case of data with time
delays between processes. See Brillinger (1981) for a discussion of the representation of
phase.

In the time domain, the linear pairwise association between two processes can be
characterized by second order cumulant density functions. The second order hybrid
cumulant density function between processes N; and x, g,i(u), is defined by the inverse
Fourier transform of the cross-spectrum f51(4) following Brillinger (1974) as

14
gx1(u) = J Fa(A)edi (5.8)
with similar definitions for the other hybrid cumulant density function g,o(x), the point
process cumulant density function g¢(«), and the time series cumulant density function
gxy(4). The above hybrid cumulant can be estimated by the following expression

Gal) =2 Y Julh)e (5.9)

[A<T/2

where A;=2nj/T. Estimation of the other cumulant densities, §xo(#), §10(x) and §y,(u) is
achieved by substitution of the appropriate cross spectra into eqn (5.9).

Cumulant densities provide a measure of statistical dependence between random
processes (Brillinger, 1972; Rosenblatt, 1983; Mendel, 1991). If any of the processes under
consideration is independent of the other processes then the value of the cumulant is 0.
Cumulant densities can assume either positive or negative values, and in the second order
hybrid case they have an interpretation similar to a spike triggered average.
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Second order cumulant density functions provide a time domain measure of association
between two processes which complements the frequency domain representation provided
by coherence functions. However, there are two main differences. Firstly, cumulant
density functions are dimensional, i.e. the estimated value depends on the units of
measurement. Secondly, cumulant densities are unbounded measures of association which
in practice means that, although in the null case of independent processes the asymptotic
value is zero, there is no upper limit indicating a perfect linear relationship. These
differences are further discussed in Rosenberg et al. (1989).

Cumulant density functions can also be defined and estimated directly in the time
domain, however estimation of §,;(x) via the frequency domain facilitates the construction
of confidence limits, see next section.

VI. CONFIDENCE LIMITS FOR ESTIMATES OF PARAMETERS OF LINEAR PROCESSES
AND THEIR PAIRWISE INTERACTIONS

In this section we will develop expressions for the variances of the estimated parameters
whose estimation procedures are given in the previous section. These will then be used to
construct confidence limits for all the parameters. The procedure for estimating such
confidence limits involves two steps, firstly the development of an expression for the
variance of a particular estimate, and secondly the construction of confidence limits for a
desired level of significance. In the present report 95% confidence limits are used. Given an
estimate Z of a parameter z, with an estimate of the asymptotic variance, var{Z}, then
under the assumption of asymptotic normality estimates of the upper and lower 95%
confidence limits can be obtained by estimating +1.96(var{z})/* about the mean or
asymptotic value. The assumption of asymptotic normality of the estimates follows from
the mixing condition set out in Section III.

For estimates of the auto-spectrum, f;(4), obtained via (25.2), it can be shown that the
variance can be approximated by var{f;x(1)} ~ L' (fx(4))", (Bloomfield, 1976), where L
is the number of disjoint sections used to estimate the spectrum. This expression contains
the value of the actual spectrum at a particular frequency and will therefore change with
changing frequency. In situations where the variance of an estimate depends on the
parameter being estimated, it is common practice to apply a variance stabilizing transform
which results in a function of the estimate whose variance is independent of the value of
the original estimate. (e.g., see Jenkins and Watts, 1968, Ch. 3). The appropriate transform
in this case is the logarithmic transform, giving the simplified expression var{In(f(4))}
~L~!. It is customary practice to plot spectra on a log; scale, giving

2 2. _
var{ logyo (fxx(2)) } = (logyo(e)) L™ (6.1)
with a resulting estimate and 95% confidence limits at frequency 4 of
logio (fxx(4)) + 0.851L7"/ (6.2)

An identical procedure holds for f,,(4).

The asymptotic value of the auto-spectrum of the point process Ny as A — oo is P;/2n
(Bartlett, 1963), in the case of a random or Poisson point process the spectrum is
identically equal to this value (Bartlett, 1963). P, is the mean intensity of the point process
N;, which can be estimated as N;(R)/R, where R is the record length. This allows an
asymptotic value and upper and lower 95% confidence limits to be estimated for the log
transform of the estimated point process spectrum f11(4) as

logo (-g—;) +0.851L"12 (6.3)

An identical procedure holds for foo(4).
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Following Brillinger (1981) and Rosenberg ez al. (1989) the variance of the hybrid
coherence estimate (5.5) can be approximated by

var{|[Ra(W)*} = 2 [Ra (D1 ~ [Ra(D]? (6.4)

This expression contains the coherence at each frequency A, the estimated value (5.5) can
be substituted into this expression allowing upper and lower 95% confidence limits about
the estimated value to be constructed. Alternatively a variance stabilizing transform can be
used, as above. The appropriate variance stabilizing transform is the arctanh transforma-
tion of the modulus of the coherency function (Jenkins and Watts, 1968; Brillinger, 1981;
Rosenberg ef al., 1989) leading to the expression

var{Tanh™'|Rx (2)|} = —Z—IE (6.5)

Thus approximate 95% confidence limits for Tank™ Y R.1(2)] at frequency A are given by
Tanh™!| R (4)] £ 1 96/+v/2L. The values in this expression can be transformed back to the
domain of |R,;(4)|* to give 95% confidence limits for | R,;(4)[* at frequency 4. This latter
method is used in the present report, and is preferred to the use of (6.4), since variance
stabilizing transforms generally produce random variates which are closer to the Normal
distribution (Jenkins and Watts, 1968). In the case of independence, |R.(3)I*=0,
expressions (6.4) and (6.5) are invalid (Bloomfield, 1976), and therefore also give poor
approximations for small values of coherence. In this case the distribution of |R1(A)]? can
be evaluated in terms of the incomplete Beta function with parameters 1 and (L—1)
(Bloomfield, 1976; Brillinger, 1981). The confidence limit at the 100¢% point is given by
1—(1—a&)™= D, Thus it is necessary to include the line

1—(0.05)/®-1 (6.6)

on a coherence plot as an estimate of the upper 95% confidence limit under the hypothesis
of independence. Estimated values of coherence lying below this line can be taken as
evidence for the lack of a linear association between the two processes, i.e. that zero
coherence is plausible at that frequency. These procedures hold for all the coherence
functions defined above.

Following Brillinger (1981) and Rosenberg et al. (1989), the variance of the phase
estimate, (i>x1(,l), can be shown to be

var{®, (1)} = T (|R 1(l)| 1) (6.7)

where L is the number of disjoint sections averaged in the cross spectral estimate (5.2). The
estimated phase (5.7) is approximately normally distributed when the coherence is not
small (Bloomfield, 1976), and in practice the estimated coherence can be substituted into
the above equation giving a resultant phase estimate and upper and lower 95% confidence

limit of
l 1 1 /2
*lax (lel(l)I 1)] ©®)

Similar procedures hold for phase spectra derived from the other cross spectra defined
above.

In the present report, the setting of confidence limits for estimates of cumulant density
functions uses the same integral procedure given in Conway e al. (1993), following Rigas
(1983). The variances of the second order point process cumulant density and second order
hybrid cumulant density function have been defined in Rigas (1983), under the assumption
of independence. The variance of the hybrid cumulant density estimate (5.9) can be
approximated by

(pxl (;') +19




248 D. M. Halliday e al.

var{gn @} ~ 2 [ fiali)fu(Adh (69)

where R is the record length, and f,.(4) and f;,(2) are the auto-spectra of the component
processes. A similar expression holds for the other second order cumulant density
functions defined above. In practice this expression can be estimated using a discrete
summation and substitution of auto-spectra based on (5.2) into equation (6.9). The
appropriate expression to estimate the variance is then

warlia@) ~ (2) (2)S 27utin (6.10)

=

where 4;= 2mj/T, R is the record length, and T is the segment length used in the estimation
of the ﬁmte Fourier transforms (4.1) and (4.2). This expression is based on the assumption
of two independent processes, the value of the cumulant in this case is zero. Under this
hypothesis the asymptotic value and upper and lower 95% confidence limits for the
estimated cumulant (5.9) are given by

01 96[(2”) (—T—) Tfl 2fxx(Aj)ﬁ1(Aj)] i (6.11)

=

Expressions (6.9) to (6.11) are valid for other cumulant densities defined above, by
substitution of the appropriate spectra. Estimated values of the cumulant lying inside these
limits can be taken as evidence for the lack of a linear association between the two
processes at a particular lag u.

VIL. EXAMPLES OF PARAMETERS OF LINEAR PROCESSES AND THEIR PAIRWISE
INTERACTIONS

All the parameters in this section have been estimated using a segment length of
T = 1024 points in the finite Fourier transforms (4.1) and (4.2). This defines the minimum
frequency which can be resolved (and thus the spectral resolution) according to the
relationship Af=1/(T dt) Hz, where dt is the sampling interval for the data set. Here
dt=1 msec, this gives a spectral resolution of Af=0.976 Hz. The data set is 180 sec in
duration, R =180000, giving the number of complete segments as L =175.

A brief description of the data set along with amplitude and interval statistics was given
in Section IL. As outlined in Section V, a more revealing analysis of the structure within
each process can be undertaken by examining estimates of the auto-spectra. Estimates of
the log spectrum of the four processes under consideration are shown in Fig. 3, based on
(5.2). With L =175, the approximate 95% confidence limits as defined in (6.2) and (6.3) are
+0.0643 dB. These are marked on the graphs in an appropriate fashion.

In Fig. 3a, b are shownwpoint p ocess spectral estimates for each of the two motor units,
foo(4) and f£1,(%), along with the asymptotic values for a random discharge with the same
mean rates and upper and lower 95% confidence limits, derived from (6.3). The dominant
feature in each spectrum is a large peak at 12 Hz for motor unit 0 and at 11 Hz for motor
unit 1, representing the mean rate of discharge of the motor units. Motor unit 0 has a more
regular discharge, as indicated by the lower c.o.v., resulting in a more clearly defined
spectral peak and more obvious harmonic components in Fig. 3a than 3b.

In Fig. 3c, d are shown time series spectral estimates of the acceleration record, fux(4),
and the rectified EMG, j;,y(l) The 95% confidence interval for the estimate, derived from
the second term in (6.2), is indicated by the solid vertical line in the top right of each graph.
These lines are 0.1286 dB in magnitude and provide a scale bar against which to assess the
significance of distinct features in each estimate. Comparison with this scale bar shows the
tremor spectrum (Fig. 3c) contains three distinct frequency bands. The dominant feature is
centred about 20 Hz, this is the mechanical reflex component of physiological tremor
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Fig. 3. Log plots of (a) estimated point process auto-spectrum of motor unit 0, im(l), and (b)

estimated point process auto-spectrum of motor unit 1, fi;(4). Dashed horizontal lines represent

the asymptotic value of each estimate, solid horizontal lines represent the upper and lower 95%

confidence limits. Log plots of (c) estimated time series auto-spectrum of tremor signal, fix(4), and

(d) estimated time series auto-spectrum of rectified surface EMG signal, f,.,(}.) Solid vertical lines
at the top right represent the 95% confidence interval for each estimate.

(Stiles and Randall, 1967). The other two components centred at 11 Hz and 28 Hz are
neurogenic components (Stiles and Randall, 1967; Amjad et al., 1994b) whose frequency
does not change with loading. The spectral estimate for the rectified EMG (Fig. 3d) has
two dominant features, with power concentrated in frequency bands at 8-12 Hz and 20~
30 Hz, indicating either (1) a significant modulation of the timing of individual motor unit
spikes, or (2) a concentration of intervals corresponding to these frequencies. Comparison
with the interspike interval histograms in Fig. 2a, b, shows that the 8-12 Hz component
could result from either mechanism, but the 20-30 Hz component is likely to be a
modulation effect, because of the almost complete absence of any intervals corresponding
to these frequencies in the two observed motor units.

The linear pairwise interactions between the signals are characterized in the frequency
domain by coherence estimates (5.5) shown in Fig. 4. Within the context of the pmsent
report there are four relevant interactions, these are the motor unit-motor unit, IR10(A)I?,
the two motor unit-tremor, |R,o(A)1* and |R.(A)%, and the surface EMG-tremor,
IR ().)I , interactions. Also shown in each coherence estimate is the upper 95% confidence
limit based on the assumption of independence, given by (6.6). For L=175 this has the
value 0.0170, and is indicated by the horizontal dashed line in each graph.
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Fig. 4. Estimated coherence between (a) motor unit 0 and motor unit 1, [R10(4)%, (b) motor unit 0

and tremor, |R:0(2))%, (c) motor unit 1 and tremor, |Ry (4)|?, and, (d) surface EMG and tremor,

|R,,(A)|2. The horizontal dashed line in each graph represents an estimate of the upper 95%
confidence limit based on the assumption of independence.

The coherence estimates show a progression of increasing magnitude with the different
types of interaction. The motor unit-motor unit coherence is the weakest and has two
distinct bands around 5 Hz and 20-30 Hz. This mirrors the findings of Farmer et al.
(1993) who studied motor unit coupling in human 1DI muscles. Both these frequency
bands represent periodicities outside the range of intervals present in the interval
histograms (Fig. 2a, b) indicating common modulation as the source of this coupling.
Farmer et al. (1993) proposed that these two frequency bands in coherence estimates were
due to separate mechanisms, with a 16-32 Hz component due in part to activity in
common descending inputs to motoneurons.

The coherence estimates between the two motor units and the tremor (Fig. 4b, c)
similarly suggest that coupling occurs in two frequency bands which are centred around
the same frequencies as in Fig. 4a, around 5 Hz and 20-30 Hz. The strength of coherence
and range of significant frequencies are larger than in Fig. 4a, indicating stronger
interactions. The estimated coherence between the surface EMG and tremor is the
strongest of the four interactions, and has a similar range of frequencies of significant
values to the motor unit-tremor coherence estimates. This would seem to indicate that the
surface EMG is a useful predictor for determining what frequency components in motor
unit discharges are coupled to finger tremor, however the relative magnitude of the
estimate in Fig. 4d perhaps does not appear to be as strong around 5 Hz in comparison to
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Fig. 4b and c. This will be discussed further when considering the multivariate parameters.
Comparison of the motor unit-tremor coherences with the autospectral estimates in Fig. 3
shows that the strongest coupling is not at the fundamental frequency of the motor units
(11-12 Hz), in fact this frequency represents the minimum coherence value between the
two maxima at 5 and 25 Hz. From this we can conclude that the frequency component
which represents the main periodicity in the individual motor units discharges makes the
smallest contribution to physiological tremor over the range 0 to about 30 Hz. This is
further explored for a range of incremental loadings in Conway et al. (1995).

In Fig. 5a, b, are re-plotted the two coherence estimates from Fig. 4a, d, respectively,
along with the estimated 95% confidence limits for each estimate, based on the inverse
transformation of (6.5). From Fig. 5a we can see that the motor unit-motor unit
coherence estimate has a peak value of 0.156+0.07 at 3.9 Hz, and 0.144+0.068 at
27.3 Hz. The EMG-tremor coherence estimate has a peak value of 0.50+0.073 at
21.5 Hz. Over the range of estimated peak coherences in Fig. 4, the confidence interval is
of reasonably constant width at about +0.07. In percentage terms, the two peaks in Fig.
5a have estimated values of around 0.15+47%. Expressed in this form it is clear that care
should be exercised in the interpretation of any apparent fine detail in these coherence
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Fig. 5. (a) Coherence estimate of Fig. 4a, | Rio(4)|, with upper and lower 95% confidence limits at

each frequency included as dotted lines. (b) Coherence estimate of Fig. 4d, |R,y().)|2, with upper

and lower 95% confidence limits at each frequency included as dotted lines. (c) Graph of estimated

coherence versus 95% confidence limits for L =175 segments (continuous lines) and L=58
segments (dotted lines).
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estimates. Fig. 5c provides a summary graph of the estimated coherence vs upper and
lower 95% confidence limit, based on the back transformation of equation (6.5), for two
values of L. The solid lines correspond to the present analysis, L =175, the two dotted
lines are for L =58 (the number of segments for a data set of 60 seconds, with dt=1 msec
and 1 Hz resolution: R=60000 and T=1024). This graph can be used to obtain
confidence limits for coherence estimates constructed using the method of disjoint sections
described above. For example an estimated coherence of 0.2 has a 95% confidence interval
of [0.129, 0.278] for L =175, while for L =758 it is [0.084, 0.337].

The four phase estimates, corresponding to the interactions in Fig. 4, are shown in Fig. 6
plotted in unconstrained form. The phase estimate between the two motor units, ®10(4) in
Fig. 6a, is dominated by the delay between the two spike trains. Closer inspection of this
phase estimate suggests that the slope of the phase may be slightly different in the two sections
where the coherence is significant, this can be further investigated by application of the
weighted least squares regression analysis outlined in Rosenberg et al. (1989, Appendix) to
estimate the slope of the phase curve and thus the delay in each of the two sections.
Application of this analysis gives a delay of 12.76 +3.09 msec for an 11-point analysis from
0.97 to 10.74 Hz, and a delay of 4.17 £0.69 msec for a 15-point analysis from 17.57 to
31.25 Hz. These estimates are for a regression analysis involving a 95% confidence interval
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Fig. 6. Estimated phase between (a) motor unit 0 and motor unit 1, dllo(}.) (b) motor unit 0 and
tremor, ®,9(4), (c) motor unit 1 and tremor, (4) and, (d) surface EMG and tremor, &,,(1).
Phase estimates are plotted in unconstrained form.
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based on the assumption of normality. At this level of confidence the null hypotheses of the
same delay is rejected, which helps to reinforce the suggestion that the frequency bands reflect
different neurophysiological processes. These two sections from the original phase estimates
are re-plotted in Fig. 7a, along with dashed lines representing the estimated delays. Also
included are the 95% confidence limits, (6.8), shown as dotted lines.

For the three phase estimates in Fig. 6b, ¢ and d, which are similar in form, estimation
of any delay over the range of significant coherence is not appropriate, since these
estimates all deviate markedly from the pure delay phase model at low frequencies. Closer
inspection of these phase estimates indicates a shift at higher frequencies towards a
straight line which passes through the origin when extrapolated back. The region from 18—
50 Hz appears to fit the model for a pure delay, and regression analysis based on a 33-
point section in this range yields delays of 16.8+0.42 msec, 12.7+0.44 msec and
9.1+0.41 msec for ®,o(4), @xl(,l) and (ﬁxy(l) respectively. This section from li)xo(}.), is re-
plotted in Fig. 7b along with the fitted regression line and 95% confidence limits for the
original phase estimate, these can be seen to narrow with increasing values of estimated
coherence. In the region 20-30 Hz the regression line lies outside these confidence limits,
thus the pure delay model may not be valid in these regions as well as at lower frequencies.
Similar comments apply to ®,,(4) and ®,,(4). The matching of only part of the phase
estimate to a pure delay may indicate different mechanisms in the coherence estimates
(Fig. 4b—d) operating in different frequency bands. An alternative interpretation of these
three phase estimates is discussed in a linear systems context in Section XIII.

The four second order cumulant density estimates are shown in Fig. 8. The point
process cumulant density estimate plotted for lag values of + 50 msec, and the hybrid and
time series cumulant density estimates are plotted for lag values of +250 msec. The
estimated point process cumulant in Fig. 8a, §io(u), illustrates short-term synchrony
between the two motor unit discharges, with a central peak of around 10 msec in width.
The latency of the peak occurs at about 4 msec, in agreement with the delay estimated
from the phase. Note that the central peak does not extend to the latency of 12 msec
obtained from the low frequency region of the phase. This suggests that the central peak
may represent in part the higher frequency band present in the coherence. Small sidebands
are present, these are taken to represent the mapping to the motoneuron discharges of
periodic structure present in the common inputs responsible for the short-term synchrony
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Fig. 7. Sections from the phase estimates in Fig. 6a, b, re-plotted where the corresponding

coherence estimates (Fig. 4) are significant, and where a regression analysis could be performed to

estimate the delay between the two processes. The fitted regression line is shown as the dashed line

through each phase section. The dotted lines in each graph represent an upper and lower 95%

confidence limit for each phase estimate at each frequency. Estimated phase between (a) motor unit

0 and motor unit 1, &0(4), with estimated delays of 12.11+3.29 msec and 4.14+0.56 msec, and,
(b) motor unit 0 and tremor ®,9(4), with an estimated delay of 16.8 +0.42 msec.
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Fig. 8. Estimated cumulant density between (a) motor unit 0 and motor unit 1, §;o(u), (b) motor

unit 0 and tremor, §,o(u), () motor unit 1 and tremor, §x1(u), and, (d) surface EMG and tremor,

Gxy(u). The horizontal lines in each graph show the asymptotic value (dashed line at zero) and
estimated upper and lower 95% confidence limits based on the assumption of independence.

(Moore et al., 1970). In this case the interval from the peak at 4 msec to each sideband is
around 35 msec, this represents a periodicity of 29 Hz, which is consistent with the
coherence estimate in Fig. 4a.

The estimated cumulants of the effects of the motor units and EMG onto the finger
acceleration illustrate a clear organization of the tremor signal before and after time zero.
In these figures the reference at time zero corresponds to motor unit or surface EMG
activity. The two hybrid cumulant densities, §.o(¥) and §,;(v), (Fig. 8b, c) have the
advantage of an interpretation similar to a spike triggered average where time zero
represents the time of occurrence of a motor unit spike. The main feature in each graph is
the large peak following each motor unit spike. This feature represents the acceleration
response to motor unit pulses and has the form of a damped oscillation. One of the main
components of this part of the response will be the representation in the acceleration
record of the mechanical reflex response to motor unit twitches.

The time series cumulant estimate in Fig. 8d, §,(4), has a similar time-course to both
the hybrid cumulant estimates, which suggests that the time series cumulant extracts the
same features from the tremor record as the hybrid cumulant estimates. This result taken
with the previous comments relating to the coherence estimates in Fig. 4 would seem to
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indicate that the surface EMG when used in this way acts as a powerful predictor of
pooled motor unit activity within the muscle.

The hybrid cumulant in Fig. 8b has eight maxima above the upper 95% confidence limit,
these are located at latencies of —232, — 151, —65, —23, +16, +80, +119 and + 160 msec.
The estimate in Fig. 8c has six maxima located at —76, —25, +12, +73, +114 and
+ 158 msec. Similarly the time series estimate in Fig. 8d has six maxima at —75, —31, +8,
+67, +110 and + 153 msec. The timing of the first peak after time zero matches the delay
estimated by regression analysis for the range 18-50 Hz from the phase plots, which indicates
that this frequency band is involved in this part of the response. Comparison with the tremor
auto-spectrum estimate in Fig. 3c shows that this is the range which encompasses both the
dominant peak in the spectrum, which was attributed to the mechanical reflex component, as
well as the higher frequency neurogenic component around 30 Hz.

Other factors contributing to the time-course of these cumulant density estimates will
include tremor—motor unit interactions occurring in different frequency bands, as well as
the mapping of periodicities in the signals to the cumulants. For example, the last three
significant peaks in the estimated cumulants in Fig. 8b—d are separated by an interval of
around 42 msec suggesting a component at 24 Hz. Further insight can be gained by
application of linear systems analysis, see Section XI. Analysis using the method of
complex demodulation to estimate the magnitude and phase of frequency components
present in these hybrid and time series cumulant estimates may also help to identify the
origin of features present in these cumulant estimates.

VIII. MULTIVARIATE LINEAR PARAMETERS

With several simultaneously recorded signals, the possibility exists to explore in more
detail the relationships between these processes. One method of further exploring the
interactions between processes is to use a multivariate linear framework to investigate the
dependency between more than two simultaneously recorded signals. Frequency domain
methods are particularly advantageous in this respect. They draw largely on regression
analysis, and the whole apparatus of multivariate analysis then becomes available for the
analysis of the interactions between several processes. This framework is extensively
developed for the time series case in Brillinger (1981), and is set out, with many examples,
for point process data in Rosenberg et al. (1989). We now extend this framework to
include hybrid data. This extension follows in a straightforward manner from the
procedures developed in Section V.

The first order partial coherence between processes N; and x taking into account the
common linear effect of process y, | Ry, /y(l)lz, can be defined, suppressing the dependencies

COl‘I‘{d x (/, f—y)dy, le G_y)dy}

Estimates of this parameter test the hypothesis that any observed coupling between N, and
x is entirely due to the common influence of process y, in which case the parameter will
have the value zero. Expression (8.1) can be seen to be the magnitude squared of the
correlation between the finite Fourier transforms of N; and x after removing any linear
contribution that process y makes to each of these processes. Expression (8.1) can be
expanded and written in terms of ordinary coherence functions as

|Rst () = Rey(WRA(A)*
1= [Ry(W)P) (1 - 1RA ()
where terms in the numerator are the coherency functions, defined previously (Section V).

The partial cross-spectrum between N and x taking into account process Y, fx1/,(4), can
be defined as

2
(8.1)

24
IRxl/yI —1!1_?30

(8.2)

|Ra1sy (W) = (

JPB 64:2/3-F
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Lo (d)
Fo® ®3)

The partial auto-spectra, fy.;,(4) and fi1,,(4), can also be defined using (8.3) by making the
appropriate change in the subscripts. These partial spectra then lead to an alternative
definition of the first order partial coherence function by analogy with (5.4) as

2 _ _M’L/y(}'_)lz_
Rty = 7 o oD

The correspondence between (8.2) and (8.4) may be verified by expanding (8.2) in terms of
auto-spectra and cross spectra. The first order partial phase may be defined as

(Dxl/y(l) = arg{fxl/y(l)} (8-5)

This function provides information about the timing relation of any residual coupling
between N; and x after the removal of the common effects of process y.

Estimation of the above quantities follows in a similar fashion to the procedures set out
in Section V by direct substitution of estimates of the appropriate spectra. For example,
the first order partial cross-spectrum, f,/(4), can be estimated by

ey (W51 (4)

fap(A) = fu(d) -

(8.4)

et sp(A) = fa () —2522007 8.6
Fayy(A) = fa(4) ) (8.6)
and similarly the first order partial auto-spectrum, fi;,(4), by

2 o @P

Supy(A) =) ——ﬁy(l) (8.7)

with f;,,,y(l) following similarly. First order partial coherence and phase functions can
then be estimated as

7 2
R?x 2 2 = - Ifxl/yg')l 3.8
e WY WY (8:5)
and
bryy(3) = arg{ (1)} (8.9)

Time domain point process partial parameters can not be directly estimated from the
data, but must be determined via the frequency domain. Time domain point process
partial parameters are discussed in Brillinger (1975a) and in Abdulaziz er al. (1992) who
defined the first order point process partial cumulant density as the inverse Fourier
transform of the partial cross-spectrum. Following this we define the first order partial
cumulant between processes N; and x after removal of process y as

Ini/y(U) = _ Sayy(A)e™da (8.10)

This function provides a measure of the time dependency between processes N, and x after
removal of any common linear influence of process y. An estimation procedure follows
from (5.9) as

N 2n A )
qxl/y(“)=T Z Sy (A)er (8.11)
1<T/2

where A;=2mnj/T. Similar procedures are applicable to the time series case.
The first order multiple coherence of the combined linear effects of processes Ny and y
onto process X, |Rx.; y().)lz, can be defined as
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|Rety (D)= [Rey D)+ Reay D [1 = [Rey(W)] (8.12)

This function provides a measure of the linear predictability of process x based on
processes N; and y, and can be estimated as

|Rety(B)|"= |Rey(D)] "+

Rapy @I [1 - [Ro @[] (8.13)

with coherence and partial coherence estimates given by (5.5) and (8.8). Multiple
coherence functions, like coherence and partial coherence functions, are bounded
measures with values between 0 and 1, where zero indicates no linear relationship
between the predictors and the output process.

The extension of these multivariate parameters to order greater than 1 follows from
the results in Brillinger (1981) and Rosenberg et al. (1989). In the present report we
will adopt a similar notation for vector valued and matrix valued processes. M(?)
represents an r-vector valued stationary interval input process, and /N(f) an s-vector
valued stationary interval output process, where interval processes, defined by Brillinger
(1972), include both point processes and time series with stationary increments. Thus
the component processes, My, ..., M, and Ny, ..., N, may be cither point processes
or time series. (This notation should not be confused with the previous sections where
Np and N; were used to represent individual point processes). Fasa(4) is then an rxr
matrix of spectral densities whose principal diagonal consists of the auto-spectra of the
components of M(f), and the off-diagonal elements the cross-spectra between these
components. A similar definition holds for the sxs spectral density matrix Fyp(4).
These matrices are formed by direct substitution of estimates, (5.2), of the appropriate
pairwise spectra at each frequency.

The elements of the matrix

Fan(®) — Fasg(A)F yiag () Faan(3) (8.14)

are defined as partial spectra between components of N(f) after removing the linear
contribution of M(z). The —1 superscript indicates a complex valued matrix inversion
operation. For r=s=1, (8.14) can be seen to reduce to the same form as (8.3). Evaluation
of (8.14) involves filling in the appropriate elements of each matrix and solving by
standard complex matrix arithmetic at each frequency. The elements of (8.14) may be
denoted as finjn(A) where i=j gives the partial auto-spectra, and i#j the partial cross-
spectra of the components N; and N; of N(7) after removing the linear contribution of
M(?). The partial coherence between the i and j** components of N(f) may then be written

in terms of partial spectra, following (8.4), as

| S ma(2) lz
Sy () fany ()

and estimation of this follows similarly to (8.8). The partial phase can also be written in
terms of the entries of (8.14) as

O ae(2) = axg{ froam(D) } (8.16)

and estimation of this partial phase follows similarly to (8.9). Following (8.10) partial
cumulant density functions can be defined in terms of the elements of (8.14) as

(8.15)

| Ry e (W)=

3
Gy e (1) = j Frinym(A)edi (8.17)
-n

with estimation following from (8.11). In (8.17) the row subscript i for N(7) should not be
confused with the i superscript on the complex exponential of the Fourier transform.

If only one output process is under consideration (s = 1), then N() reduces to a single N-
process, which may be either a point-process or a time series, and the output spectral
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density matrix reduces to a single auto-spectrum, fya{4). For this situation a multiple
coherence function, |Ry. M(l)lz, can be defined as

Faur(A)F ) (A Fyn(A
|Ru-a (D) = w2 a1 Fyn(2) (8.18)
Jun(2)
This function represents the multiple coherence at frequency 4 of the N-process with the
processes My, . . . , M,. Estimates of (8.18) provide a measure, at a given frequency 4, of

the linear predictability of the N-process based on the combined r inputs. In (8.18) Fy (1)
represents a row vector with r entries which are the cross-spectra between each of the
components of M(¢) and the N-process. Similarly, F,n(1) represents a column vector with
r entries. Estimation of multiple coherence functions can be achieved by filling in the
various matrix elements in (8.18) in the same manner as for (8.14), and evaluating to
provide an estimate.

We conclude this section by remarking that the first order partial parameters defined by
equations (8.1) to (8.13) are valid for any combination of point process and/or time series
data. This follows directly from the derivation of (8.14) to (8.18).

IX. CONFIDENCE LIMITS FOR ESTIMATES OF MULTIVARIATE PARAMETERS

The setting of confidence limits for the multivariate parameters defined in the previous
section involves steps similar to those used in Section VI. The asymptotic behaviour of
partial coherency estimates is the same as that of coherency estimates, and the covariance
structure for partial coherence estimates is the same for all values of r, s (Brillinger, 1981;
Amjad, 1989). Following this, expression (9.1) can be used to construct confidence limits
for partial coherence estimates of all orders in the manner of (6.5).

15 i
var{Tanh '|RN,N,,M(/1)|} = (9.1)

For the case of independence, IRW,,-j/M(}.)l2 = 0, the distribution of |1§N,~N,/M(A)|2 can be
evaluated in terms of the incomplete Beta function with parameters 1 and (L-r-1), the
upper 95% confidence limit for non-zero partial coherence estimates is then given at the
100¢% point by 1 — (1 —a)"/~"= where r is the number of predictors and L the number
of disjoint sections (Brillinger, 1981; Amjad, 1989). An estimate of the upper 95%
confidence limit is then provided by

1~ (0.05)/L~-D (9.2)

Values of estimated partial coherence lying below this line can be taken as evidence for the
lack of a linear association between the two processes after removal of the effects of the r
predictors.

Expressions for the variance of partial phase estimates can be found in Brillinger (1981)
for time series data, and Amjad (1989) for point process data. Following these results we
define the variance of the estimate of the partial phase (8.16) as

. 1 1
var{(DN,WM(A)} =5 (W - 1) (9.3)

where L is the number of disjoint sections. In practice an estimate of the partial coherence
can be substituted into (9.3) and estimates of upper and lower 95% confidence limits
constructed in the manner of (6.8).

At present it is not clear how to extend the integral procedure given in Section VI to the
multivariate case. However, since (6.9) is based on the assumption of independence then,
under the same assumption it can provide an estimate of the variance of partial cumulant
densities. With this reservation in mind the variance of partial cuamulant estimates based
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on (8.17), var éN,.Nj/M(u)}, can be estimated using (6.10), with the corresponding 95%
confidence limits given by (6.11).

The variance of multiple coherence estimates has been discussed for time series data by
Brillinger (1981), and for point process data by Amjad (1989). These results extend directly
to estimates of hybrid multiple coherence (8.18) as set out below. To construct confidence
limits for multiple coherencc estimates the arctanh transformation can be applied, and the
variance, var{Tanh~!|Ry.;(4)|}, can be approximated by 1/2L. A confidence 1nterval can
then be constructed in the manner of (6.5). In the case of independence, |Ry. »(4)|*=0, the
distribution of (8.18) can be approximated by a Beta distribution with parameters r and
(L —r1). From this a test for non-zero multiple coherence at the 100(1 — )% significance
level can be expressed in terms of an F distribution as

rF,
L+r(F,—1)
where F, is the 1000% point of the F distribution with 2r and 2(L —r) degrees of freedom.
This can be obtained from standard tables of the F distribution. Values of estimated

multiple coherence lying below this line can be taken as evidence for the lack of a linear
association between the inputs, M(?), and the output N-process at a given frequency A.

(9.4)

X. EXAMPLES OF MULTIVARIATE PARAMETERS

The multivariate parameters defined in Section VIII will be used to investigate further
the dependencies between the four signals. As in Section VII, all parameters in this section
have been estimated using T =1024. Turning first to the relationship between the single
motor units and the tremor, application of the multiple coherence estimate, (8.18), will
provide a measure of the linear dependence of the tremor upon the combined activity of
both motor units. An estimate of this, |R,.1o(4)% is shown in Fig. 9. Included in the graph
is an estimate of the upper 95% confidence limit based on the hypotheses of independence,
constructed from (9.4) where L=175, r=2 and (from standard tables) F4 346,005 =2.40,
giving a value of 0.027 which is shown as the dashed horizontal line in Fig. 9. This estimate
exhibits the same peaks around 5 and 26 Hz as the ordinary coherence estimates in Fig.
4b, ¢, but with an increase in magnitude. For independent predictors, the multiple
coherence is approximately equal to the sum of the individual coherences (This can be
proved by setting the off-diagonal elements in the spectral matrix of M(¢) to zero in (8.18)).
The multiple coherence estimate shown in Fig. 9 is less than the sum of the two estimates
in Fig. 4b, c. This indicates correlated predictors, as in fact illustrated by Fig. 4a. The peak
coherence is now around 0.4 in the 5 Hz and 20-30 Hz bands, with a maximum value and
95% confidence limits of 0.409+0.079 at 26.4 Hz. This indicates that the two observed
motor unit discharges can predict around 40% of the variability in the tremor signal at
these frequencies. This level of predictability from only two motor units suggests motor
unit coupling at these frequencies throughout the population of active motor units. The
maximum is close to the peak magnitude of the surface EMG-tremor coherence, iny(A)lz
in the 20-30 Hz band (Fig. 7d), providing further evidence that the 20-30 Hz band of
motor unit coupling is well represented in the surface EMG, whereas the 5 Hz band is
poorly represented. Partial parameters provide the appropriate tools for further
investigation of this observation.

Figure 10a shows an estimate of the first order partial coherence, (8.15), between motor
unit 0 and motor unit 1 using the surface EMG as the predictor, IRlo,y(/l)Iz, along with an
estimate of the upper 95% confidence limit based on the assumption of independence,
given by (9.2). For L=175 and r=1 this has the value 0.0172, and is shown as the dashed
line in Fig. 10a. The corresponding partial cumulant density estimate, §;o;,(1), is shown in
Fig. 10b, along with the expected value (dashed line) and the upper and lower 95%
confidence limits based on the assumption of independence. Comparison with the ordinary
coherence between the two motor units illustrated in Fig. 4a shows that the motor unit
coupling between 20-30 Hz can be entirely predicted using the surface EMG signal. In
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Fig. 9. Estimated multiple coherence between both motor units and the tremor |R,.10(1)]>. The
horizontal dashed line represents an estimate of the upper 95% confidence limit based on the
assumption of independence.

contrast the coupling around 5 Hz remains almost unchanged in the partial coherence.
This reduction in the partial coherence is matched by a corresponding reduction in the
height of the central peak and side bands in the partial cumulant in Fig. 10b compared
with the same features in Fig. 8a.

It was noted in Section VII that the coupling between a motor unit and the tremor signal
involved the same frequency bands as the motor unit-motor unit coupling. It can be
hypothesized that this reflects a process whereby the frequency content of the mechanism
which is responsible for the motor unit coupling is transmitted as a force or muscle length
signal to the tremor. If this were the case, and the processes involved are linear, then the
motor unit coupling in these frequency bands can be predicted from the tremor signal.
This hypothesis, that motor unit coupling can be predicted by the tremor signal, can be
tested by examining the partial coherence, If(w,,(l)lz, and cumulant, §o/x(1), estimates
between the motor unit pair using the tremor signal as the predictor. These estimates are
shown in Fig. 10c, d, respectively, with estimated confidence limits (which are the same as
Figs. 10a, b, respectively). Apart from some residual coupling below 5 Hz, the partial
coherence shows an almost complete absence of any relationship in this case, which
indicates that the above hypothesis is largely true. In the time domain the residual
coupling results in short-term synchrony with a much reduced central peak in the
cumulant, Fig. 10d. The central peak in the original cumulant estimate, §,0(4) (Fig. 8a), is
therefore the consequence of several processes, one of which is motor unit coupling in the
20-30 Hz range. Fig. 10 also shows that the tremor signal provides a better predictor of
motor unit coupling than the surface EMG signal. .

In Fig. 11 are shown second order partial coherence, IR,O,,},(A)V, and second order
partial cumulant density, §q/x,(u), estimates (based on 8.15 and 8.17) using both the
tremor signal and the surface EMG as predictors. These estimates show a slight reduction
in the magnitude of the significant features in Fig. 10, and illustrate that the frequency
content of the linear motor unit coupling in this case is almost entirely contained in the
surface EMG and finger acceleration signals. The residual coupling, which occurs below
5 Hz, can be interpreted in two ways. It may be due to some other linear coupling between
the two motor unit discharges, or it may reflect a non-linear component in the coupling
which cannot be predicted by the linear multivariate parameters.

XI. LINEAR BIVARIATE AND MULTIVARIATE SYSTEM ANALYSIS
The previous analyses have made no assumption about causality of the observed signals,
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Fig. 10. (a) Estimated first order partial coherence between motor unit 0 and motor unit 1, using the
surface EMG as predictor, |Rg ,(.{)Iz, and (b) corresponding first order partial cumulant density
estimate g0/, (u). (c) Estimated érst order partial coherence between motor unit 0 and motor unit 1,
using the tremor as predictor, {ﬁm/, (2)I?, and (d) corresponding first order partial cumulant density
estimate, 1o/ (u). The horizontal dashed lines in (a) and (c) represent an estimate of the upper 95%
confidence limit based on the assumption of independence. The horizontal lines in (b) and (d) show
the asymptotic value (dashed line at zero) and estimated upper and lower 95% confidence limits
based on the assumption of independence.

the situation referred to by Jenkins and Watts (1968) as signals which arise ““on an equal
footing”. An example of this for the present data is the two motor units, Ny and N;. In
many cases however, the signals being studied are causally related, where one signal can be
regarded as the input and the other signal as the output of a linear system.

Examples of this for the present data are the three {input, output} pairs: {Ny, x},
{N1,x} and {y, x}. In this situation, the theory of linear systems can be brought to bear on
the analysis. The assumptions underlying the analysis in this section are that the system
under study is linear and time invariant. The theory of general multivariate linear time
series systems is given by Jenkins and Watts (1968) and Brillinger (1981), the analogous
theory for multivariate point-process systems by Amjad (1989). Single input—single output
hybrid systems are discussed in Rosenberg et al. (1982) and Rigas (1983).

For input point process N; and output time series x the transfer function, 4,;(4), is
defined as (Rigas, 1983)
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Fig. 11. (a) Estimated second order partial coherence bctween motor unit 0 and motor unit 1, using

the tremor and surface EMG as predictors, |Ryo (/1)| The horizontal dashed line represents an

estimate of the upper 95% confidence limit {)ased on the assumptxon of independence. (b)

Corresponding second order partial cumulant density estimate, §10/x,(1). The horizontal lines show

the asymptotic value (dashed line at zero) and estimated upper and lower 95% confidence limits
based on the assumption of independence.

f x1 (}")
which can be estimated as
fxl (l) 11.2
xl( 11 (/1) ( . )

The transfer function is a complex valued function, and it is customary to consider gain
and phase functions separately. The gain, G,,(4), is the magnitude of the transfer function,
and may be estimated by

Ga(4) = 4, u>|-'§’l‘:$§' (11.3)

Since the denominator in (11.1) is a positive real valued function the phase of 4,,(4) is the
same as the phase of the cross-spectrum, ®,;(4), defined in (5.6), and can be estimated
from (5.7).

The time domain equivalent of the transfer function, denoted by a,;(u), is defined as the
inverse Fourier transform of A4,;(4) as (Rigas, 1983)

ax1(u) = %J A1 (R)e™d (11.4)
which can be estimated as
N 1 - "
8x1(u) = T Z A (A)e” (11.5)
|A<T/2

where 4; =2mnj/T. The function a,,(u) is the average impulse response function of the linear
system with input N, and output x. The above expressions are valid for any combination
of time series and/or point process linear systems analysis.

Extension of the above parameters to the multivariate case follows from the
multivariate parameters defined in Section VIII. In the general case we are dealing with
a system which has r inputs represented by the r-vector valued stationary interval process,
M(1), and s outputs represented by the s-vector valued stationary interval process, N(?), as



A framework for the analysis of mixed time series/point process data 263

defined in Section VIIL. In this case the transfer function, 4ya(4), and impulse response
function, ayp(u), are complex and real valued r xs matrix functions respectively. The
elements Ay, (4) and aw,a;(u) are the transfer function and impulse response function of
the i output with respect to the /* input, respectively. These can be defined and estimated
using the above equations. When r=s=1 the system under study reduces to single input—
single output.

It is also possible to define and estimate partial transfer functions and partial impulse
response functions. Thus, if we denote as M’ the (r— 1) components of M(f) omitting M;
then the partial transfer function between M; and N; after removal of the common linear

effects of M is defined as

_ Sy (4)

This is the ratio of the partial cross-spectrum of order (r—1) to the partial auto-spectrum
of order (r—1), and can be estimated by direct substitution of the appropriate partial
spectra in the manner of (11.2). From (11.6) can be derived the partial gain of order (r— 1),
Gn,my/ar(4), and partial impulse response of order (r—1), awqa(4) the definition and
estimation of these quantities follows directly from the above single input-single output
case. Also associated with Ay /s (4) is the partial phase of order (r— 1), @yag/ar(4), see
Section VIIL.

In situations where causality is known, or can be inferred, between two or more
processes, application of the techniques defined in this section can extend the range of
questions that can be investigated. In particular the two related problems of predicting the
output of a (linear) system given the input signal and determining the characteristics of the
(linear) system which converts the input signal to the output signal can be addressed. The
first problem is discussed in Jenkins and Watts (1968) for time series systems, and the latter
problem in Brillinger (1983), also for time series systems, where it is considered in the
context of the determination of an optimum linear filter. Point process system
identification techniques are discussed in Brillinger (1975b), Brillinger et al. (1976),
Rosenberg ef al. (1982) and Halliday et al. (1992).

In terms of regression analysis, the transfer function represents complex regression
coeflicients at each frequency, where the gain and phase give the amplitude and phase
by which the input series should be altered to obtain an optimum fit to the output
series. The goodness of fit is measured by the appropriate coherence or partial
coherence estimate.

XII. CONFIDENCE LIMITS FOR LINEAR SYSTEM TRANSFER FUNCTION
PARAMETER ESTIMATES

Confidence limits for the parameters in the previous section can be set using methods
similar to those used in Sections VI and IX. For multivariate time series systems
confidence limits for parameter estimates are discussed in Brillinger (1981), analogous
results for point process systems analysis are developed in Amjad (1989). The single input—
single output hybrid case is discussed in Rigas (1983). It is customary to plot gain
functions on a log scale. The variance of the natural log of the hybrid gain estimate is
(Rigas, 1983)

var{Iln(Gu(4))} = 2LL (m - 1) (12.1)

The variance can be seen to be the same as that of the estimated phase, (6.7). In practice an
estimate of the coherence function can be substituted into (12.1), and using a base 10
logarithmic transform, an upper and lower 95% confidence interval about the estimated
gain can be set as
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: (logio(e)* [ 1 7
logm(Gxx(/l))il.%[ o (len(A)lz—l)J (12.2)

The variance of impulse response functions has been calculated in Rigas (1983), under the
assumption of input/output independence, using a similar integral procedure to that for
cumulant density functions. The variance of the estimated impulse response function,
(11.5), can then be approximated by

. r["
var{ia (u)} ~ 5 J_n Fe )/ fur(R)da (12.3)
where R is the record length, and f.,(A) and f1,(4) are the auto-spectra of the component
processes. In practice this expression can be estimated using a discrete summation, and
substitution of auto-spectra based on (5.2) into equation (12.3). The appropriate
expression to estimate the variance is then

21 R
varia) ~ () () 3o 25 (124)

=

where A;=27j/T, R is the record length, and T is the segment length used in the estimation
of the finite Fourier transforms (4.1) and (4.2). This expression is based on the assumption
of two independent processes. In this case the asymptotic value and upper and lower 95%
confidence interval for the estimated impulse response function (11.5) are given by

N 71\ T2 R 172
Oﬂ:l.%[(ﬁ) (7) > 2fxx(af)/fu(l,-)] (125)
=

Expressions (12.3) to (12.5) are valid for other combinations of time series and/or point
process linear systems impulse response functions by substitution of the appropriate
spectra.

The extension to multivariate systems follows from the results presented in Brillinger
(1981) and Amjad (1989). For partial gain estimates Gug/ar(4) We have

var{ln (GNM/M(A)) } = %L- (W - 1) (12.6)

and a confidence limit can be derived in the manner of (12.2).

At present it is not clear how to extend the integral procedure expression given in (12.3)
to the multivariate case. However, since this procedure is based on the assumption of
independence, then under the same assumption it can provide an estimate of the variance
of partial impulse response functions. With this reservation in mjnd the variance of partial
cumulant estimates based on (11.5) and (11.6), var{ dy,n,/ar(u) p, can be estimated using
(12.4), with the corresponding 95% confidence limits following from (12.5).

XIII. EXAMPLES OF LINEAR SYSTEM TRANSFER FUNCTION PARAMETERS

As examples of single input-single output linear systems we will consider the three
input-output pairs {No,x}, {Ni,x} and {y,x}. Estimates of the three gain functions,
Go(4), Gx1(A) and éxy(l), are shown in Fig. 12. These estimates are plotted on a log;, scale
and include the estimated upper and lower 95% confidence limits for each estimate. A
useful model for the interpretation of these gain estimates is the log gain plot of a resonant
system (Jenkins and Watts, 1968, Ch. 2). This has a constant gain at low frequencies which
rises to a peak at the resonant frequency before tailing off. The two motor unit—tremor
gain estimates have similar envelopes with small peaks at about 5, 20 and 28 Hz (Fig. 12a,
c). The confidence limits around these frequencies indicate that these peaks are significant,
implying a resonant system with multiple periodicities. The gain estimate for the EMG-
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Fig. 12. Log plots of estimated gain between (a) motor unit 0 and tremor, G,0(4), (c) motor unit 1
and tremor, G,1(4), and, (¢) surface EMG and tremor, G,,(4). The dotted lines in (a) (c) and (¢)
represent upper and lower 95% confidence limits for each estimate at each frequency. Estimated
phase between (b) motor unit 0 and tremor, @w(}.), (d) motor unit 1 and tremor, @y (1), and, (f)
surface EMG and tremor, 6,,(1). Phase estimates are plotted in unconstrained form.

tremor system (Fig. 12¢) has a similar envelope, with a maximum at 20 Hz, but with no
clear peak around 5 Hz and a gain curve which drops off more rapidly at low frequencies.

The corresponding phase plots are those in Fig. 12b, d and f, respectively, reproduced
from Fig. 6. It was seen in Section VII that a pure time delay model was insufficient to
describe these phase curves over the range of significant coherence estimates in Fig. 4. The
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gain plots in Fig. 12 suggest a system with multiple resonances, an accurate model of these
including the biomechanics of muscle, tendon, joint and limb is likely to result in a transfer
function description of order greater than two which will have a non-constant phase curve.
A second factor which may explain the phase lead at low frequencies is the use of an
accelerometer to measure tremor. Acceleration represents a double differentiation of
displacement, the output of a differentiation circuit has a phase lead with respect to the
input (e.g., see Jenkins and Watts, 1968). A simulation study would provide the means to
test these hypotheses, as well as a guide to interpretation of gain and phase estimates.

The output signal in the three transfer functions is the same, the tremor signal x, thus we
see that the transfer function has more resonant peaks in response to individual motor unit
activity than for surface EMG activity. This is also clear from the estimated impulse
response functions, shown in Fig. 13. The two motor unit-tremor impulse response
estimates have more complex time-courses, perhaps indicating interactions between
several oscillatory components. When compared with the corresponding hybrid cumulant
density estimates in Fig. 8 there is a reduction in the oscillations prior to time zero, and is
particularly obvious for the motor unit O—tremor relation. From this it can be concluded
that the oscillation prior to time zero in the cumulant density estimates reflect periodicities
in the input signals which are not present in the transfer function estimates. These
oscillations will also map onto positive Jag values, therefore the time-course of these three
impulse response functions can be expected to provide a more accurate representation of
the acceleration response to motor unit and EMG activity. The impulse response estimates
for the two motor units (Fig. 13a, b) both exhibit a clear peak prior to time zero. This
appears to indicate that the response occurs before the stimulus, and represents a situation
where the linear transfer function model, (11.1) and (11.4), does not provide a complete
description of the input output relationship. In a study of synaptic interactions between
Aplysia neurons, Brillinger et al. (1976) attributed features prior to time zero in estimated
impulse response functions as an indication of a non-linear interaction. A similar
interpretation placed on the estimates in Fig. 13 indicates that a move to a non-linear
model may be appropriate in the present case.

We conclude the linear analysis with the second order partial parameter estimates
shown in Fig. 14. The four graphs show estimates of the second order partial coherence
between surface EMG and tremor with motor unit 0 and motor unit 1 as predictors,
|R,,y/10(ﬂ.)|2, Fig. 14a, along with the corresponding partial cumulant density, §xy10(t),
Fig. 14b, partial gain, Gy,10(4), Fig. 14c, and partial impulse response, dy,/10(x), Fig. 14d.
These parameters investigate to what extent the surface EMG to tremor correlation can be
predicted from a pair of correlated motor units. The partial coherence and partial gain
estimates (Fig. 14a, c), show a reduction in magnitude over a broad range of frequencies
when compared with the normal coherence (Fig. 4d) and gain (Fig. 12c). The time-course
of the partial cumulant and partial impulse response estimates (Fig. 14b, d) are little
changed from the normal cumulant (Fig. 8d) and impulse response estimates (Fig. 13c).
Thus, while it is possible to predict to a large extent the motor unit coupling from the
surface EMG and tremor signals (Figs. 10a, c, 11a), the reverse is not true. This suggests
that the tremor and surface EMG are richer signals than the two motor unit discharges.

XIV. HIGHER ORDER PARAMETERS

In this section we will introduce higher order hybrid parameters, which will be used to
investigate one specific question, namely, the contribution from correlated motor unit
discharges to physiological tremor that results purely from the correlation. The extension
to the hybrid case of previous results on higher order time series and higher order point
process analyses is more complicated than for the linear spectral based measures. In the
third order case a major difference between time series and point process parameters is the
non-equivalence of third order moment functions and third order cumulant density
functions. For time series, the third order moment and third order time series cumulant
density functions are equivalent (see e.g., Mendel, 1991). In the point process case the
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Fig. 13. Estimated impulse response between (a) motor unit 0 and tremor, d,p(u), (b) motor unit 1

and tremor, d;(u), and, (c) surface EMG and tremor, d,,(u). The horizontal lines in each graph

show the asymptotic value (dashed line at zero) and estimated upper and lower 95% confidence
limits based on the assumption of independence.

analogous functions to moment functions are product density functions, and third order
point process cumulant densities and third order product densities are not equivalent
(Conway et al., 1993). Higher order analyses of point process data have been discussed in
Brillinger (1975b), Amjad er al. (1989) and Conway et al. (1993). References to higher
order analyses of time series include Brillinger (1965), Rosenblatt (1983), Nikias and
Raghuveer (1987) and Mendel (1991).

The specific problem to be addressed is the contribution from correlated motor unit
discharges to physiological tremor which can be attributed to the correlation. This
contribution must be assessed separately from the contribution which each individual
motor unit makes to the tremor. Thus we are interested in the joint statistical dependence
between three random processes, which requires the use of a third order measure. The
appropriate measure is the third order hybrid cumulant density function (Amjad et al.,
1994a). We start with the direct definition and estimation of this cumulant density in the
time domain. Following standard convention (Rosenblatt, 1983) this third order cumulant
can be derived from the expression
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cum{x(t + u), dN;(t + v),dNp(t)} = gx10(u, v)dvdt
= E{x(t + u)(dN; (t + v) — Pydv) (dNo(t) — Podt)}
(14.1)

where x is a zero mean time series, No and N are two point processes, and dNy(-) and
dN,(-) are the differential increments of these point processes. Py and P, are the mean
intensities of processes Ny and N, respectively, as defined in Section VI. The two terms
(dN;(t+ v)—P;dv) and (dNy(t) — Podt) are zero mean differential increments of N; and Ny
respectively. Expansion of (14.1) leads to the definition of the third order hybrid cumulant
density function between Ny, N; and x, g,10(u,v), at lags u and v as
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gx10(u, v) = Pyio(u, v) — Py (u — v)Py — Pyo(u)Py (14.2)

Taking the individual terms on the right hand side of (14.2), P,;4(u,v) may be viewed as a
hybrid product moment which provides a measure of the contribution from a spike in
process Ny and a spike in process Ny to the tremor signal. The timing convention for this
function is the same as for g,10(u,v), namely a reference time t, corresponding to an N
spike, with an N, spike at time (t+v) and a tremor sample at time (t+u). The term
P,10(u,v) represents the contribution from both spikes in the pair to the tremor and
necessarily contains the individual contribution from each spike. These individual
contributions are subtracted out by the last two terms in the RHS of (14.2), the first term,
P,1(u—v)Py, refers to the contribution from the N; spike (u—v) time units prior to the
tremor sample, and the second term refers to the contribution from the Ny spike u time
units prior to the tremor sample. These two terms have the form of spike triggered
averages which are scaled by the mean intensities of the other spike trains, Pg and P;. The
functions P,g(-) and P,;(-) can also be called second order hybrid product moments in
line with the description of P,;¢(u,v). In the case of a zero mean time series, x, the spike
triggered average P,o(u) is equivalent to the hybrid cumulant g,o(u), (5.8) (Rosenberg et
al., 1982; Rigas, 1983).

The indirect definition of the third order hybrid cumulant density via the frequency
domain is given (cf. 5.8) by

T
gao(u,v) = j r Futo(h, 1)) i di (14.3)
- J-n

where f;10(4, 1) is the third order hybrid cross bi-spectrum.
The estimation of (14.2) involves construction of estimates of the individual terms in the
equation. The mean intensity of P; can be estimated by

N;(R)
R

where R is the record length. A similar definition holds for estimation of Py. The second
order hybrid product moment functions can be estimated as

P = (14.9)

. Ni(R)
Py (u—v) =R Z x(ti+u-v) (14.5)
i=1
and
. 1 Ne®)
Po() =5 j; x(gj +u) (14.6)
where #; give the times of the spikes in process Ny, (i =1, ..., Ny(R)), and g give the

times of the spikes in process Ny, (j =1, ..., No(R)). The third order hybrid product
moment can be estimated by

No(R)

Pro(u,v) = a Y x(g+ulv=ti—g; i=1,...,Ni(R) (14.7)
=1

The final estimate of gx10(u,v) is constructed by direct substitution of the above estimates
into (14.2). The comments about interpretation of cumulants in Section V are applicable
also to third order cumulants. The value of the above cumulant density if one of the three
processes x, N; and Ny, is independent of the other two is zero. The hybrid cumulant may
assume both positive and negative values.

In other situations involving different combinations of point-process and time series
data, it may be appropriate to use a different third order cumulant density function, these
can be defined and estimation procedures developed using the above methods.
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In the frequency domain the higher order relationship between the three processes can
be examined through the use of higher order spectra. The direct estimation in the
frequency domain of third order spectra follows from (5.1) and (5.2) by consideration of
the product of triplets of finite Fourier transforms. For example, we can define the third
order spectrum fy;,(4,4), suppressing dependency on section number, as (Brillinger, 1972)

fim, e B{ R (DR, TG+ ) (14.8)

which can be estimated using the method of disjoint sections outlined in Section V by

1 L

Sorx(Ayp) = LT ,Zr %, (A, Dd%, (u, AT + p, 1) (14.9)

with the finite Fourier transforms of Ny, N; and x defined by (4.2) and (4.1). The ordering
of the processes is different from the cumulant above, this third order spectrum provides
an estimate of the dependency between components at frequency A in process Ny, and
components at frequency p in process N, with components at frequency (4 + ) in process
x. Other third order bi-spectra can be defined and estimated in a similar manner
(Brillinger, 1972).

Various coefficients of bi-spectral estimates have been proposed to investigate higher
order interactions in relation to particular models of how different frequency components
interact (Brillinger, 1965; Godfrey, 1965; Brillinger and Rosenblatt, 1967; Subba Rao and
Gabr, 1984). One non-linear model which can be investigated using bi-spectral coefficients
is the frequency beating model. This model investigates to what extent components in one
process can be accounted for by the product of components at different frequencies in the
other two processes, resulting in frequencies which add or “beat” together. This would
occur, for example, in a non-linear system where input signals are multiplied together. The
coefficient defined in (14.10) can be used to provide a measure of the relative
appropriateness of the frequency beating model, (Brillinger, 1965).

2
N p— ) (14.10)

fOO(X)fil (I‘)fxx(i + “)

This coefficient can be estimated by direct substitution of the appropriate second and
third order spectral estimates into (14.10). It is the modulus squared of the standardized
third order bi-spectrum (Brillinger and Rosenblatt, 1967). Standardized bi-spectra have
the advantage that they should not contain features which are due to power in the second’
order spectra (Godfrey, 1965). For the present data set significant estimates of Bg;.(4, u)
at a particular (4, 4) may indicate the presence of a non-linear interaction between
components of process Ny at frequency 4, with components of process N; at frequency u
and components of process x at frequency (A + p). The coefficient (14.10), Byy,(4, u), has
been called bi-coherence by some authors, although this term has also been used for other
bi-spectral coefficients.

XV. CONFIDENCE LIMITS FOR ESTIMATES OF HIGHER ORDER PARAMETERS

Using the same integral procedures as described previously, (Rigas, 1983) the variance
of estimates of the third order hybrid cumulant, g,,o(u,v), based on (14.2) and under the
assumption of three independent processes is given by (Amjad et al., 1994a).

. 2n
var{Gao(n, )} ~ g | [ S ir el + i (15.1)
where R is the record length, and f,.(4), f11(#) and foo(A+ p) are the auto-spectra of the
component processes. (15.1) can be estimated by substitution of auto-spectral estimates
based on (5.2) into the above equation giving
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o\ /o Il I=1 . .
var{gxo(u, v)} = (’1-{") (T) ; jzzlfxx(li)ﬁl(lj)foo(lk) (15.2)
where 4;=2ni(T, A; = 2njT, 2 =2nk/(T, (k=i+j, mod T), R is the record length, and T the
segment length. The asymptotic value and upper and lower confidence limits can now be
constructed in the manner of (6.11).

The variance of the estimated third order hybrid bi-spectrum (14.9) following (Brillinger
and Rosenblatt, 1967) is

2n
(Br)’R
where By is the spectral band-width, and R the record length. For the estimate (14.9) the
spectral band-width can be estimated by (2%/T). Expression (15.3) contains values of the
second order spectra at different frequencies. The distribution of the coefficient By1,(4, ),

(14.10), has been considered by Huber ez al. (1971). In the case of a true population bi-
spectrum value of zero, the distribution is exponential with a mean value of

T
2zl
We can therefore set an upper 95% confidence limit at (3 T/2xn L), and estimated values of

(14.10) which exceed this level may indicate the presence of non-linear interactions at
approximately the 5% level of significance.

var{ for(4, p)} = Joo(A) fir()fex (A + 1) (15.3)

(15.4)

XVI. EXAMPLES OF THIRD ORDER ANALYSIS

Figure 15 shows an estimate of the third order hybrid cumulant density function
between x, Ny and Ny, g,10(u, V), plotted for values of u from 0 to 200 msec, and v from 0
to 20 msec. There is significant structure in this estimate concentrated along a line
corresponding to fixed spacing between motor unit events (constant v). The time-course of
this effect is plotted in Fig. 16a, corresponding to §,10(u, 4) for u=0 to 250 msec, the fixed
value of v=4 msec represents the maximum in the surface plot of Fig. 15. This section
includes an estimate of the expected value and upper and lower 95% confidence limits
based on the assumption of three independent processes, estimated from (15.2). For
comparative purposes the two second order hybrid cumulant density estimates §,o(u) and
gx1(w) (from Fig. 8b, c) are re-plotted in Fig. 16b, c, over the range u=0 to 250 msec.
From examination of Figs. 15 and 16 we can conclude that there is a significant third order
contribution from the two motor unit discharges to the tremor signal, which exists over
and above the linear contribution from each motor unit alone. Comparison of the
significant features in Fig. 16 outside the 95% confidence limits shows that the time-course
of this effect is similar to the time-course of the individual linear effects. As discussed in
Section VII, the responses in Fig. 16b, ¢ (for u>0) consist of the interaction between the
mechanical reflex response with other oscillatory mechanisms. The main feature in the
third order contribution, Fig. 16a, has a similar time-course, which suggests that the
correlation acts to enhance the mechanical reflex component of tremor. The section from
the third order cumulant has five maxima above the 95% confidence limit, these are
located at latencies of +16, +73, +120, +168 and + 189 msec. These are very close to
the times of the maxima in the second order cumulants listed in Section VII, therefore it
seems likely that the third order contribution from the correlation between the two motor
unit discharges reflects the same mechanisms as the second order interactions described
previously.

The main peak in the third order cumulant occurs at lag v=4 msec, corresponding to
the latency of the peak in the second order cumulant (Fig. 8a). This is further explored in
Fig. 17a, which shows the section, §,10(16, v), with lag u fixed at 16 msec, which
corresponds to a section perpendicular to the one in Fig. 16a and passing through the first
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Fig. 15. Surface plot of the estimated third order hybrid cumulant density between motor unit 0,

motor unit 1 and tremor, §x10(u, v). Plotted for u from 0 to 200 msec, and v from 0 to 20 msec, the

origin is at left extremity. The estimate, based on (14.2), is further smoothed with a 2D Hanning
type filter before plotting as a surface.

peak at 16 msec. This section shows the range of spacing between motor unit discharges
which contributes to the third order cumulant. In Fig. 17b is the second order point
process cumulant, §,0(u) (Fig. 8a), plotted over the same lag range, v= —25to +25 msec.
This illustrates the range of lags over which the two motor units are linearly coupled, and
by definition the maximum range over which the third order cumulant can have significant
values (since outside these lag ranges the two motor unit discharges are independent, and
the third order cumulant will be zero in this area). From Fig. 17 we see that the motor unit
discharges contribute to the third order cumulant at all lags over which a second order
interaction exists between the discharges.

Turning to the frequency domain, in Fig. 18 is shown an estimate of the magnitude of
the third order spectrum, | folx()., Wi, (14.9), estimated with T=1024, and plotted for
values of A, 4 up to 50 Hz. This estimate has two main ridges running parallel to the
frequency axes and centred around A, u=10.7 Hz. These two frequencies represent a
contribution from the motor unit discharges to frequency components around 21.4 Hz in
the tremor. This frequency lies within the range defined by the mechanical reflex
component (20 Hz) and the higher frequency neurogenic component (28 Hz, see Fig. 3c).
Two sections through this estimate are shown in Fig. 19, | f01x(10.7, u)| (Fig. 19a), and
[forx(4, 10.7)| (Fig. 19b), plotted up to 75 Hz. The fixed frequency of each section,
determined from the peak, is close to the frequency of the fundamental peak in the
estimated auto-spectra in Fig. 3a, b. These sections show the extent of the two ridges
running parallel to the axes, and suggest that the third order interaction between the two
motor unit discharges can contribute to a broad range of frequencies in the tremor.

Figure 20 shows an estimate of the coefficient (14.10), By;.(A, x), constructed with
T =512 (L=351), and plotted for values of 4, u up to 50 Hz. Two distinct features are
apparent in this surface plot, one at low frequencies, around 2 Hz, and a second around
25 Hz. The significance of these peaks is explored in Fig. 21 which shows two sections at
fixed frequencies of A=2 Hz, and 4=21.5 Hz. Also included is an estimate of the 95%
confidence limit based on the hypothesis of a zero-valued cross bi-spectrum, obtained from
(15.4). With T=512 and L =351 the value is 0.697. The significant features in these two
sections provide evidence to suggest the presence of a non-linear interaction between
frequency components of the two motor unit discharges which contributes to the tremor.
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Fig. 16. (a) Section through §10(u, v) at fixed lag v=4, §x10(u, 4), and plotted for u=0 to 250 msec.

Estimated hybrid cumulant density between (b) motor unit 0 and tremor, §x(u), and (c) motor unit

1 and tremor, §,; (u), plotted over the same range of u. The horizontal lines show the asymptotic

value (dashed line at zero) and estimated upper and lower 95% confidence limits based on the
assumption of independence.

XVII. CONCLUSIONS

In the present report we have set out a comprehensive framework for Fourier-based
analysis of hybrid point process/time series data, illustrating the complementary nature of
time and frequency domain parameters. This approach also provides a unified framework
within which to investigate linear interactions for pure point process data, and pure time
series data. Confidence limits for parameter estimates form an important part of the
analysis, an aspect often overlooked in this sort of data analysis.

With respect to the illustrated sample analysis and the two questions posed about
this particular data set in Section II, the main findings can be summarized as follows.
Both motor units of the pair make a similar individual contribution to the tremor. In
the frequency domain, there is the suggestion that this involves two distinct frequency
bands which overlap with the two frequency bands present in the motor unit coupling
(Fig. 4). The first order partial coherence between the motor units using the tremor
signal as predictor (Fig. 10c) demonstrates conclusively that common frequency
components are involved. Further, the contribution to tremor from the individual
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Fig. 17. (a) Section through §x(u,v) at fixed lag u=16, §y10(16,v), and plotted for v=—25 to

+25 msec. (b) Estimated point process cumulant density between motor unit 0 and motor unit 1,

g10(u), plotted over the same range of lags. The horizontal lines show the asymptotic value (dashed

line at zero) and estimated upper and lower 95% confidence limits based on the assumption of
independence.

minimal at the frequency corresponding to the mean firing rates of the two motor
units (Figs. 3, 4). In the time domain the response from individual motor units to
tremor has the form of a damped oscillation, with clear organization of the tremor
signal before and after motor unit pulses (Fig. 8). Possible interpretations of these
features were discussed. A linear systems analysis was seen to give further insight (Figs.
12, 13), and suggested simulation studies to help interpret parameter estimates. There is
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Fig. 18. Surface plot of the magnitude of the estimated third order hybrid spectrum between motor
unit 0, motor unit 1 and tremor, |  forx (4, #)|- Plotted for 4, u up to 50 Hz, origin is at left extremity.
The estimate (14.9) is further smoothed with a 2D Hanning type filter before plotting as a surface.
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Fig. 19. Sections through the estimated third order hybrid spectrum (a) at fixed frequency
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a significant higher order contribution to the tremor due to the correlated discharge of
the motor units (Fig. 15). The estimated third order hybrid cumulant density shows
this contribution to have a time-course in response to paired motor unit discharges
similar to the contribution from the individual discharges (Fig. 16). A higher order
frequency domain analysis suggested the involvement of a range of frequency
components in this process (Figs. 18-21). The surface EMG signal proved to be a
powerful predictor of motor unit activity with respect to the tremor signal, i.e.
parameter estimates showed similar features when the surface EMG was used as a
predictor instead of the motor unit discharges (Figs. 4, 6, 8, 12, 13). In the frequency
domain the 20-30 Hz region of motor unit coupling was more accurately represented
in the surface EMG record than the 0-10 Hz region, this was further illustrated by the
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Fig. 20. Surface plot of the magnitude squared of the estimated standardized third order spectral
coefficient, Boyx, (4, #). Plotted for 4, u up to 50 Hz, origin is at left extremity. The estimate, based
on (14.10), is further smoothed with a 2D Hanning type filter before plotting as a surface.
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partial coherence estimate between the two motor units using the surface EMG as
predictor (Fig. 10a).

Application of this framework to a single data set has raised some new issues relating to
the contribution from motor unit activity to tremor. This demonstrates the utility of the
framework. A preliminary analysis of a series of several hundred motor unit/EMG/tremor
recordings which incorporate altered inertial loading conditions suggest these findings are
robust within and across subjects (Amjad et al., 1994a; Conway et al., 1995).

We conclude with some remarks about the generality of these techniques and
suggestions for implementation. An early study using spectral-based regression techniques
was that of Groves and Hannan (1968) who studied the effects of sea level on weather.
This was based on 3.76 years of hourly observations of eight variables, in total 33,000
samples per variable. They concluded that ““Such linear regression studies in the frequency
domain may be of marginal worth except in cases where the series lengths are much greater
...” and “. .. the presentation of these data may have served largely to illustrate the
confidence intervals . . . and to emphasize the need of greater degrees of freedom in order
to arrive at meaningful conclusions.” The message is clear, and equally applicable to the
present analysis. Our data set consists of 180,000 observations, any useful inferences which
can be made from the parameter estimates may be due in part to the large number of
observations available. This is especially true for data with weak correlations, as Fig. 5
demonstrates, indeed, if the present data set had 33,000 samples, with T=1024 and L =32,
an estimated coherence of 0.15 would have a 95% confidence limit of [0.027, 0.33], an
interval whose width is twice the value of the parameter. Therefore long data sets are
required to reduce the variability to sufficient levels to allow reasonably secure inferences
from the data. In this respect the neurophysiologist is perhaps in a fortunate situation, by
combining data from repeat runs it may be possible to obtain data of sufficient duration to
allow weak correlations to be accurately specified. Initial results (Halliday et al., 1995)
indicate that some of the above parameter estimates can be combined in large numbers,
thus greatly reducing the statistical variability.

While the methods described in this report are largely non-parametric, and the
parameter estimates may not easily be related to the mechanisms underlying the
interactions between processes, they nevertheless provide a broad, comprehensive and
functional description of these interactions. Moreover, the Fourier-based methods
presented above are particularly suited to the study of systems that exhibit rhythmicity.
In other areas of scientific data analysis, exploratory analysis based on spectral methods,
similar to those presented above, have lead to model-based analyses using likelihood
methods (see e.g., Brillinger, 1993).
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In the present study the higher order parameters were used to answer a specific question
relating to the joint dependency between three of the variables. A prerequisite for any
meaningful third order analysis between processes is significant second order interactions
between the variables, as was the case for the present data. The third order parameter
estimates then provided the first clear demonstration of a contribution to tremor from
correlated motor unit discharges. Used in this fashion, higher order analyses are useful in
investigating specific questions relating to dependencies between processes. However, the
increased variability of higher order parameter estimates and the extra effort in
implementing these techniques should be considered before an analysis is attempted.

Perhaps the most promising aspect of the present analysis lies in the application of
partial parameters. These have allowed definite statements to be made, for example about
frequency components in motor unit coupling being transmitted to physiological tremor.
Once second order spectra have been estimated partial parameters can be constructed
quickly by algebraic combinations of these spectra. In the first order case this can be done
without recourse to matrix arithmetic. Experimental protocols designed to take advantage
of partial parameters represent one area where the above techniques may be successfully
applied to a wider range of neurophysiological problems.
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