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SUMMARY

Data on absolute molecule numbers will empower
the modeling, understanding, and comparison of
cellular functions and biological systems. We quanti-
fied transcriptomes and proteomes in fission yeast
during cellular proliferation and quiescence. This
rich resource provides the first comprehensive refer-
ence for all RNA andmost protein concentrations in a
eukaryote under two key physiological conditions.
The integrated data set supports quantitative biology
and affords unique insights into cell regulation.
Although mRNAs are typically expressed in a narrow
range above 1 copy/cell, most long, noncoding
RNAs, except for a distinct subset, are tightly
repressed below 1 copy/cell. Cell-cycle-regulated
transcription tunes mRNA numbers to phase-
specific requirements but can also bring about
more switch-like expression. Proteins greatly exceed
mRNAs in abundance and dynamic range, and
concentrations are regulated to functional demands.
Upon transition to quiescence, the proteome
changes substantially, but, in stark contrast to
mRNAs, proteins do not uniformly decrease but
scale with cell volume.

INTRODUCTION

Gene regulation is crucial to implement genomic information
and to shape properties of cells and organisms. Transcriptomes
and proteomes are dynamically tuned to the requirements of
cell volume, physiology and external factors. Although tran-
scriptomic and proteomic approaches have provided ample
data on relative expression changes between different condi-
tions, little is known about actual numbers of RNAs and proteins
within cells and how gene regulation affects these numbers.
More generally, most data in biology are qualitative or relatively

quantitative, but ultimately many biological processes will only
be understood if investigated with absolute quantitative data
to support mathematical modeling. Other areas of science
have long appreciated the limits of relative, or compositional,
data and potential pitfalls of their naive analysis (Lovell et al.,
2011).
Insights into numbers and cell-to-cell variability of selected

mRNAs and proteins have been provided by single-cell studies
(Larson et al., 2009), but these approaches require genetic
manipulation and are not well suited for genome-scale anal-
yses. Relating mRNA to protein abundance in single cells
is challenging, with only one such study available for a
prokaryote (Taniguchi et al., 2010). Global mRNA abundance
for yeast populations have been estimated (Holstege et al.,
1998; Miura et al., 2008). There are no comparisons for cellular
concentrations of mRNAs and the emerging diversity of non-
coding RNAs.
RNA-seq now allows actual counting of RNA numbers,

offering unbiased genome-wide information on average cellular
RNA concentrations in cell populations (Ozsolak and Milos,
2011). Moreover, the global quantification of proteins has
recently become possible owing to advances in mass spectrom-
etry, giving valuable insight into the protein content of different
cells (Beck et al., 2011; Cox and Mann, 2011; Maier et al.,
2011; Nagaraj et al., 2011; Vogel and Marcotte, 2012).
Here, we combine quantitative RNA-seq and mass spec-

trometry to analyze at unprecedented detail and scale how
changes in cell physiology and volume are reflected in the
cellular concentrations of all coding and noncoding RNAs and
most proteins. We analyze two fundamental physiological
states in fission yeast: (1) proliferating cells that need to con-
stantly replenish their RNAs and proteins, and (2) postmitotic
cells that do not grow or divide owing to nitrogen limitation
and reversibly arrest in a quiescent state (Yanagida, 2009).
Although quiescent states are common, both for yeast and
for cells in the human body, most research has focused on
proliferating cells. The ability to alternate between proliferation
and quiescence is central to tissue homeostasis and renewal,
pathophysiology, and the response to life-threatening chal-
lenges (Coller, 2011). For example, quiescent lymphocytes
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SUMMARY

Data on absolute molecule numbers will empower
the modeling, understanding, and comparison of
cellular functions and biological systems. We quanti-
fied transcriptomes and proteomes in fission yeast
during cellular proliferation and quiescence. This
rich resource provides the first comprehensive refer-
ence for all RNA andmost protein concentrations in a
eukaryote under two key physiological conditions.
The integrated data set supports quantitative biology
and affords unique insights into cell regulation.
Although mRNAs are typically expressed in a narrow
range above 1 copy/cell, most long, noncoding
RNAs, except for a distinct subset, are tightly
repressed below 1 copy/cell. Cell-cycle-regulated
transcription tunes mRNA numbers to phase-
specific requirements but can also bring about
more switch-like expression. Proteins greatly exceed
mRNAs in abundance and dynamic range, and
concentrations are regulated to functional demands.
Upon transition to quiescence, the proteome
changes substantially, but, in stark contrast to
mRNAs, proteins do not uniformly decrease but
scale with cell volume.

INTRODUCTION

Gene regulation is crucial to implement genomic information
and to shape properties of cells and organisms. Transcriptomes
and proteomes are dynamically tuned to the requirements of
cell volume, physiology and external factors. Although tran-
scriptomic and proteomic approaches have provided ample
data on relative expression changes between different condi-
tions, little is known about actual numbers of RNAs and proteins
within cells and how gene regulation affects these numbers.
More generally, most data in biology are qualitative or relatively

quantitative, but ultimately many biological processes will only
be understood if investigated with absolute quantitative data
to support mathematical modeling. Other areas of science
have long appreciated the limits of relative, or compositional,
data and potential pitfalls of their naive analysis (Lovell et al.,
2011).
Insights into numbers and cell-to-cell variability of selected

mRNAs and proteins have been provided by single-cell studies
(Larson et al., 2009), but these approaches require genetic
manipulation and are not well suited for genome-scale anal-
yses. Relating mRNA to protein abundance in single cells
is challenging, with only one such study available for a
prokaryote (Taniguchi et al., 2010). Global mRNA abundance
for yeast populations have been estimated (Holstege et al.,
1998; Miura et al., 2008). There are no comparisons for cellular
concentrations of mRNAs and the emerging diversity of non-
coding RNAs.
RNA-seq now allows actual counting of RNA numbers,

offering unbiased genome-wide information on average cellular
RNA concentrations in cell populations (Ozsolak and Milos,
2011). Moreover, the global quantification of proteins has
recently become possible owing to advances in mass spectrom-
etry, giving valuable insight into the protein content of different
cells (Beck et al., 2011; Cox and Mann, 2011; Maier et al.,
2011; Nagaraj et al., 2011; Vogel and Marcotte, 2012).
Here, we combine quantitative RNA-seq and mass spec-

trometry to analyze at unprecedented detail and scale how
changes in cell physiology and volume are reflected in the
cellular concentrations of all coding and noncoding RNAs and
most proteins. We analyze two fundamental physiological
states in fission yeast: (1) proliferating cells that need to con-
stantly replenish their RNAs and proteins, and (2) postmitotic
cells that do not grow or divide owing to nitrogen limitation
and reversibly arrest in a quiescent state (Yanagida, 2009).
Although quiescent states are common, both for yeast and
for cells in the human body, most research has focused on
proliferating cells. The ability to alternate between proliferation
and quiescence is central to tissue homeostasis and renewal,
pathophysiology, and the response to life-threatening chal-
lenges (Coller, 2011). For example, quiescent lymphocytes
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SUMMARY

Data on absolute molecule numbers will empower
the modeling, understanding, and comparison of
cellular functions and biological systems. We quanti-
fied transcriptomes and proteomes in fission yeast
during cellular proliferation and quiescence. This
rich resource provides the first comprehensive refer-
ence for all RNA andmost protein concentrations in a
eukaryote under two key physiological conditions.
The integrated data set supports quantitative biology
and affords unique insights into cell regulation.
Although mRNAs are typically expressed in a narrow
range above 1 copy/cell, most long, noncoding
RNAs, except for a distinct subset, are tightly
repressed below 1 copy/cell. Cell-cycle-regulated
transcription tunes mRNA numbers to phase-
specific requirements but can also bring about
more switch-like expression. Proteins greatly exceed
mRNAs in abundance and dynamic range, and
concentrations are regulated to functional demands.
Upon transition to quiescence, the proteome
changes substantially, but, in stark contrast to
mRNAs, proteins do not uniformly decrease but
scale with cell volume.

INTRODUCTION

Gene regulation is crucial to implement genomic information
and to shape properties of cells and organisms. Transcriptomes
and proteomes are dynamically tuned to the requirements of
cell volume, physiology and external factors. Although tran-
scriptomic and proteomic approaches have provided ample
data on relative expression changes between different condi-
tions, little is known about actual numbers of RNAs and proteins
within cells and how gene regulation affects these numbers.
More generally, most data in biology are qualitative or relatively

quantitative, but ultimately many biological processes will only
be understood if investigated with absolute quantitative data
to support mathematical modeling. Other areas of science
have long appreciated the limits of relative, or compositional,
data and potential pitfalls of their naive analysis (Lovell et al.,
2011).
Insights into numbers and cell-to-cell variability of selected

mRNAs and proteins have been provided by single-cell studies
(Larson et al., 2009), but these approaches require genetic
manipulation and are not well suited for genome-scale anal-
yses. Relating mRNA to protein abundance in single cells
is challenging, with only one such study available for a
prokaryote (Taniguchi et al., 2010). Global mRNA abundance
for yeast populations have been estimated (Holstege et al.,
1998; Miura et al., 2008). There are no comparisons for cellular
concentrations of mRNAs and the emerging diversity of non-
coding RNAs.
RNA-seq now allows actual counting of RNA numbers,

offering unbiased genome-wide information on average cellular
RNA concentrations in cell populations (Ozsolak and Milos,
2011). Moreover, the global quantification of proteins has
recently become possible owing to advances in mass spectrom-
etry, giving valuable insight into the protein content of different
cells (Beck et al., 2011; Cox and Mann, 2011; Maier et al.,
2011; Nagaraj et al., 2011; Vogel and Marcotte, 2012).
Here, we combine quantitative RNA-seq and mass spec-

trometry to analyze at unprecedented detail and scale how
changes in cell physiology and volume are reflected in the
cellular concentrations of all coding and noncoding RNAs and
most proteins. We analyze two fundamental physiological
states in fission yeast: (1) proliferating cells that need to con-
stantly replenish their RNAs and proteins, and (2) postmitotic
cells that do not grow or divide owing to nitrogen limitation
and reversibly arrest in a quiescent state (Yanagida, 2009).
Although quiescent states are common, both for yeast and
for cells in the human body, most research has focused on
proliferating cells. The ability to alternate between proliferation
and quiescence is central to tissue homeostasis and renewal,
pathophysiology, and the response to life-threatening chal-
lenges (Coller, 2011). For example, quiescent lymphocytes
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and dermal fibroblasts become activated to mount immune
responses or support wound healing, respectively. Adult stem
cells also alternate between proliferating and quiescent states,
and the deregulation of either state can cause complex pathol-
ogies such as cancer (Li and Clevers, 2010).

Our integrated transcriptomic and proteomic data, acquired in
parallel under highly controlled conditions in a simple model,
afford varied biological insights and reveal key principles of
RNA and protein expression in proliferating and quiescent cells
with broad relevance for other eukaryotes. This rich resource
also provides a quantitative framework toward a systems-level
understanding of genome regulation, and the common units of
the absolute data allow direct comparison of different biological
processes and organisms.

RESULTS AND DISCUSSION

Transcriptome and Proteome Quantification in Two
Conditions
We acquired quantitative expression data relative to absolutely
calibrated standards for transcriptomes and proteomes of
haploid fission yeast cells. For transcripts, genome-wide mea-
surements were obtained by calibrating RNA-seq data from
total RNA preparations with data on absolute cellular concen-
trations for 49 mRNAs, covering the dynamic expression range.
The overall measurement error was estimated to be !2-fold or
less (Figure S1; Tables S1–S4 available online). Protein quantifi-
cation was performed on the same cell samples using a mass
spectrometry (MS) approach (Schmidt et al., 2011). Selected
proteotypic peptides from 39 proteins (Table S5), covering the
dynamic expression range, were used to absolutely quantify
the corresponding proteins (Tables S6 and S7). These data
were then used to translate the MS-intensities for the other
proteins into estimates of cellular concentration (Figures S2A–
S2D and S3; and Tables S8 and S9). The mean overall measure-
ment error was estimated at 2.4- and 2.7-fold for proliferating
and quiescent cells, respectively.

We quantified transcriptomes and proteomes in two distinct
physiological conditions: (1) exponentially proliferating cells in

Figure 1. Transcriptome Quantification in
Proliferating Cells
(A) Abundance distribution of total RNA (green)

and mRNA (black). Red vertical lines indicate 1

and 10 RNA copies/cell, and red hatched lines

delimit expression zones 1 to 3. See also Figure S1

and Table S10.

(B) Abundance for all detected mRNAs (each dot

represents a gene). Green and gray dots corre-

spond to essential and non essential genes,

respectively. Expression zones are indicated at

right.

defined minimal medium, and (2) quies-
cent cells, 24 hr after nitrogen removal
(Figure S4). We first report the results
from proliferating cells, and then relate
our findings to corresponding data from

quiescent cells. Table S4 provides the cellular copy numbers
for RNAs and proteins in the two conditions.

Most mRNAs Are Expressed in Narrow Range above 1
Copy/Cell
In proliferating cells, we measured a total of !41,000 mRNA
molecules/cell on average, representing !5% of the overall
!802,000 rRNAs/cell in our samples. Protein-coding genes
produced a median of 2.4 mRNA copies/cell, ranging from
!0.01 to >810 copies (Figure 1A). Only 71 genes showed no
detectable mRNA signal, 43 of which are annotated as
‘‘dubious’’ or ‘‘orphan’’ (Wood et al., 2012). To discuss our
findings, we distinguished three somewhat arbitrary expression
zones, set relative to the one RNA copy/cell mark (Figure 1A).
Zone 1 contained low-abundance mRNAs detected at <0.5
copies/cell. Zone 2 mRNAs were expressed at !1 copy/cell
(0.5–2 copies), where fluctuations due to cell division or
stochastic expression will strongly affect the presence of
mRNAs in cells. Zone 3 mRNAs showedmore robust expression
at >2 copies/cell. Most mRNAs were expressed within a low
and narrow range: whereas >90% of all annotated mRNAs
(4,608/5,110) belonged to zones 2 or 3, 86.1% of these mRNAs
were present at <10 copies/cell (Figure 1A). Low overall
mRNA concentrations have also been reported for budding
yeast, which has comparable gene numbers and cell size, with
even lower estimates for median mRNA abundance (<1 copy/
cell) and total mRNA molecules/cell (Holstege et al., 1998; Miura
et al., 2008). Our findings are in line with a single-cell study of
budding yeast, where five mRNAs show 2.6–13.4 copies/cell,
with a total estimate of 60,000 mRNA molecules/cell (Zenklusen
et al., 2008).
We examined the mRNAs of the 1,273 genes essential for

growth (Kim et al., 2010), which are expected to be expressed
in proliferating cells. Nearly all essential mRNAs were expressed
in zones 2 or 3 (98.4%; Figure 1B). This finding raises the
possibility that !1 mRNA copy/cell defines a natural minimal
threshold for productive gene expression.
The view of !1 mRNA copy/cell as an expression threshold

is supported by recent data from metazoa, where mRNA levels

672 Cell 151, 671–683, October 26, 2012 ª2012 Elsevier Inc.
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and dermal fibroblasts become activated to mount immune
responses or support wound healing, respectively. Adult stem
cells also alternate between proliferating and quiescent states,
and the deregulation of either state can cause complex pathol-
ogies such as cancer (Li and Clevers, 2010).

Our integrated transcriptomic and proteomic data, acquired in
parallel under highly controlled conditions in a simple model,
afford varied biological insights and reveal key principles of
RNA and protein expression in proliferating and quiescent cells
with broad relevance for other eukaryotes. This rich resource
also provides a quantitative framework toward a systems-level
understanding of genome regulation, and the common units of
the absolute data allow direct comparison of different biological
processes and organisms.

RESULTS AND DISCUSSION

Transcriptome and Proteome Quantification in Two
Conditions
We acquired quantitative expression data relative to absolutely
calibrated standards for transcriptomes and proteomes of
haploid fission yeast cells. For transcripts, genome-wide mea-
surements were obtained by calibrating RNA-seq data from
total RNA preparations with data on absolute cellular concen-
trations for 49 mRNAs, covering the dynamic expression range.
The overall measurement error was estimated to be !2-fold or
less (Figure S1; Tables S1–S4 available online). Protein quantifi-
cation was performed on the same cell samples using a mass
spectrometry (MS) approach (Schmidt et al., 2011). Selected
proteotypic peptides from 39 proteins (Table S5), covering the
dynamic expression range, were used to absolutely quantify
the corresponding proteins (Tables S6 and S7). These data
were then used to translate the MS-intensities for the other
proteins into estimates of cellular concentration (Figures S2A–
S2D and S3; and Tables S8 and S9). The mean overall measure-
ment error was estimated at 2.4- and 2.7-fold for proliferating
and quiescent cells, respectively.

We quantified transcriptomes and proteomes in two distinct
physiological conditions: (1) exponentially proliferating cells in

Figure 1. Transcriptome Quantification in
Proliferating Cells
(A) Abundance distribution of total RNA (green)

and mRNA (black). Red vertical lines indicate 1

and 10 RNA copies/cell, and red hatched lines

delimit expression zones 1 to 3. See also Figure S1

and Table S10.

(B) Abundance for all detected mRNAs (each dot

represents a gene). Green and gray dots corre-

spond to essential and non essential genes,

respectively. Expression zones are indicated at

right.

defined minimal medium, and (2) quies-
cent cells, 24 hr after nitrogen removal
(Figure S4). We first report the results
from proliferating cells, and then relate
our findings to corresponding data from

quiescent cells. Table S4 provides the cellular copy numbers
for RNAs and proteins in the two conditions.

Most mRNAs Are Expressed in Narrow Range above 1
Copy/Cell
In proliferating cells, we measured a total of !41,000 mRNA
molecules/cell on average, representing !5% of the overall
!802,000 rRNAs/cell in our samples. Protein-coding genes
produced a median of 2.4 mRNA copies/cell, ranging from
!0.01 to >810 copies (Figure 1A). Only 71 genes showed no
detectable mRNA signal, 43 of which are annotated as
‘‘dubious’’ or ‘‘orphan’’ (Wood et al., 2012). To discuss our
findings, we distinguished three somewhat arbitrary expression
zones, set relative to the one RNA copy/cell mark (Figure 1A).
Zone 1 contained low-abundance mRNAs detected at <0.5
copies/cell. Zone 2 mRNAs were expressed at !1 copy/cell
(0.5–2 copies), where fluctuations due to cell division or
stochastic expression will strongly affect the presence of
mRNAs in cells. Zone 3 mRNAs showedmore robust expression
at >2 copies/cell. Most mRNAs were expressed within a low
and narrow range: whereas >90% of all annotated mRNAs
(4,608/5,110) belonged to zones 2 or 3, 86.1% of these mRNAs
were present at <10 copies/cell (Figure 1A). Low overall
mRNA concentrations have also been reported for budding
yeast, which has comparable gene numbers and cell size, with
even lower estimates for median mRNA abundance (<1 copy/
cell) and total mRNA molecules/cell (Holstege et al., 1998; Miura
et al., 2008). Our findings are in line with a single-cell study of
budding yeast, where five mRNAs show 2.6–13.4 copies/cell,
with a total estimate of 60,000 mRNA molecules/cell (Zenklusen
et al., 2008).
We examined the mRNAs of the 1,273 genes essential for

growth (Kim et al., 2010), which are expected to be expressed
in proliferating cells. Nearly all essential mRNAs were expressed
in zones 2 or 3 (98.4%; Figure 1B). This finding raises the
possibility that !1 mRNA copy/cell defines a natural minimal
threshold for productive gene expression.
The view of !1 mRNA copy/cell as an expression threshold

is supported by recent data from metazoa, where mRNA levels
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and dermal fibroblasts become activated to mount immune
responses or support wound healing, respectively. Adult stem
cells also alternate between proliferating and quiescent states,
and the deregulation of either state can cause complex pathol-
ogies such as cancer (Li and Clevers, 2010).

Our integrated transcriptomic and proteomic data, acquired in
parallel under highly controlled conditions in a simple model,
afford varied biological insights and reveal key principles of
RNA and protein expression in proliferating and quiescent cells
with broad relevance for other eukaryotes. This rich resource
also provides a quantitative framework toward a systems-level
understanding of genome regulation, and the common units of
the absolute data allow direct comparison of different biological
processes and organisms.

RESULTS AND DISCUSSION

Transcriptome and Proteome Quantification in Two
Conditions
We acquired quantitative expression data relative to absolutely
calibrated standards for transcriptomes and proteomes of
haploid fission yeast cells. For transcripts, genome-wide mea-
surements were obtained by calibrating RNA-seq data from
total RNA preparations with data on absolute cellular concen-
trations for 49 mRNAs, covering the dynamic expression range.
The overall measurement error was estimated to be !2-fold or
less (Figure S1; Tables S1–S4 available online). Protein quantifi-
cation was performed on the same cell samples using a mass
spectrometry (MS) approach (Schmidt et al., 2011). Selected
proteotypic peptides from 39 proteins (Table S5), covering the
dynamic expression range, were used to absolutely quantify
the corresponding proteins (Tables S6 and S7). These data
were then used to translate the MS-intensities for the other
proteins into estimates of cellular concentration (Figures S2A–
S2D and S3; and Tables S8 and S9). The mean overall measure-
ment error was estimated at 2.4- and 2.7-fold for proliferating
and quiescent cells, respectively.

We quantified transcriptomes and proteomes in two distinct
physiological conditions: (1) exponentially proliferating cells in

Figure 1. Transcriptome Quantification in
Proliferating Cells
(A) Abundance distribution of total RNA (green)

and mRNA (black). Red vertical lines indicate 1

and 10 RNA copies/cell, and red hatched lines

delimit expression zones 1 to 3. See also Figure S1

and Table S10.

(B) Abundance for all detected mRNAs (each dot

represents a gene). Green and gray dots corre-

spond to essential and non essential genes,

respectively. Expression zones are indicated at

right.

defined minimal medium, and (2) quies-
cent cells, 24 hr after nitrogen removal
(Figure S4). We first report the results
from proliferating cells, and then relate
our findings to corresponding data from

quiescent cells. Table S4 provides the cellular copy numbers
for RNAs and proteins in the two conditions.

Most mRNAs Are Expressed in Narrow Range above 1
Copy/Cell
In proliferating cells, we measured a total of !41,000 mRNA
molecules/cell on average, representing !5% of the overall
!802,000 rRNAs/cell in our samples. Protein-coding genes
produced a median of 2.4 mRNA copies/cell, ranging from
!0.01 to >810 copies (Figure 1A). Only 71 genes showed no
detectable mRNA signal, 43 of which are annotated as
‘‘dubious’’ or ‘‘orphan’’ (Wood et al., 2012). To discuss our
findings, we distinguished three somewhat arbitrary expression
zones, set relative to the one RNA copy/cell mark (Figure 1A).
Zone 1 contained low-abundance mRNAs detected at <0.5
copies/cell. Zone 2 mRNAs were expressed at !1 copy/cell
(0.5–2 copies), where fluctuations due to cell division or
stochastic expression will strongly affect the presence of
mRNAs in cells. Zone 3 mRNAs showedmore robust expression
at >2 copies/cell. Most mRNAs were expressed within a low
and narrow range: whereas >90% of all annotated mRNAs
(4,608/5,110) belonged to zones 2 or 3, 86.1% of these mRNAs
were present at <10 copies/cell (Figure 1A). Low overall
mRNA concentrations have also been reported for budding
yeast, which has comparable gene numbers and cell size, with
even lower estimates for median mRNA abundance (<1 copy/
cell) and total mRNA molecules/cell (Holstege et al., 1998; Miura
et al., 2008). Our findings are in line with a single-cell study of
budding yeast, where five mRNAs show 2.6–13.4 copies/cell,
with a total estimate of 60,000 mRNA molecules/cell (Zenklusen
et al., 2008).
We examined the mRNAs of the 1,273 genes essential for

growth (Kim et al., 2010), which are expected to be expressed
in proliferating cells. Nearly all essential mRNAs were expressed
in zones 2 or 3 (98.4%; Figure 1B). This finding raises the
possibility that !1 mRNA copy/cell defines a natural minimal
threshold for productive gene expression.
The view of !1 mRNA copy/cell as an expression threshold

is supported by recent data from metazoa, where mRNA levels
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and dermal fibroblasts become activated to mount immune
responses or support wound healing, respectively. Adult stem
cells also alternate between proliferating and quiescent states,
and the deregulation of either state can cause complex pathol-
ogies such as cancer (Li and Clevers, 2010).

Our integrated transcriptomic and proteomic data, acquired in
parallel under highly controlled conditions in a simple model,
afford varied biological insights and reveal key principles of
RNA and protein expression in proliferating and quiescent cells
with broad relevance for other eukaryotes. This rich resource
also provides a quantitative framework toward a systems-level
understanding of genome regulation, and the common units of
the absolute data allow direct comparison of different biological
processes and organisms.

RESULTS AND DISCUSSION

Transcriptome and Proteome Quantification in Two
Conditions
We acquired quantitative expression data relative to absolutely
calibrated standards for transcriptomes and proteomes of
haploid fission yeast cells. For transcripts, genome-wide mea-
surements were obtained by calibrating RNA-seq data from
total RNA preparations with data on absolute cellular concen-
trations for 49 mRNAs, covering the dynamic expression range.
The overall measurement error was estimated to be !2-fold or
less (Figure S1; Tables S1–S4 available online). Protein quantifi-
cation was performed on the same cell samples using a mass
spectrometry (MS) approach (Schmidt et al., 2011). Selected
proteotypic peptides from 39 proteins (Table S5), covering the
dynamic expression range, were used to absolutely quantify
the corresponding proteins (Tables S6 and S7). These data
were then used to translate the MS-intensities for the other
proteins into estimates of cellular concentration (Figures S2A–
S2D and S3; and Tables S8 and S9). The mean overall measure-
ment error was estimated at 2.4- and 2.7-fold for proliferating
and quiescent cells, respectively.

We quantified transcriptomes and proteomes in two distinct
physiological conditions: (1) exponentially proliferating cells in

Figure 1. Transcriptome Quantification in
Proliferating Cells
(A) Abundance distribution of total RNA (green)

and mRNA (black). Red vertical lines indicate 1

and 10 RNA copies/cell, and red hatched lines

delimit expression zones 1 to 3. See also Figure S1

and Table S10.

(B) Abundance for all detected mRNAs (each dot

represents a gene). Green and gray dots corre-

spond to essential and non essential genes,

respectively. Expression zones are indicated at

right.

defined minimal medium, and (2) quies-
cent cells, 24 hr after nitrogen removal
(Figure S4). We first report the results
from proliferating cells, and then relate
our findings to corresponding data from

quiescent cells. Table S4 provides the cellular copy numbers
for RNAs and proteins in the two conditions.

Most mRNAs Are Expressed in Narrow Range above 1
Copy/Cell
In proliferating cells, we measured a total of !41,000 mRNA
molecules/cell on average, representing !5% of the overall
!802,000 rRNAs/cell in our samples. Protein-coding genes
produced a median of 2.4 mRNA copies/cell, ranging from
!0.01 to >810 copies (Figure 1A). Only 71 genes showed no
detectable mRNA signal, 43 of which are annotated as
‘‘dubious’’ or ‘‘orphan’’ (Wood et al., 2012). To discuss our
findings, we distinguished three somewhat arbitrary expression
zones, set relative to the one RNA copy/cell mark (Figure 1A).
Zone 1 contained low-abundance mRNAs detected at <0.5
copies/cell. Zone 2 mRNAs were expressed at !1 copy/cell
(0.5–2 copies), where fluctuations due to cell division or
stochastic expression will strongly affect the presence of
mRNAs in cells. Zone 3 mRNAs showedmore robust expression
at >2 copies/cell. Most mRNAs were expressed within a low
and narrow range: whereas >90% of all annotated mRNAs
(4,608/5,110) belonged to zones 2 or 3, 86.1% of these mRNAs
were present at <10 copies/cell (Figure 1A). Low overall
mRNA concentrations have also been reported for budding
yeast, which has comparable gene numbers and cell size, with
even lower estimates for median mRNA abundance (<1 copy/
cell) and total mRNA molecules/cell (Holstege et al., 1998; Miura
et al., 2008). Our findings are in line with a single-cell study of
budding yeast, where five mRNAs show 2.6–13.4 copies/cell,
with a total estimate of 60,000 mRNA molecules/cell (Zenklusen
et al., 2008).
We examined the mRNAs of the 1,273 genes essential for

growth (Kim et al., 2010), which are expected to be expressed
in proliferating cells. Nearly all essential mRNAs were expressed
in zones 2 or 3 (98.4%; Figure 1B). This finding raises the
possibility that !1 mRNA copy/cell defines a natural minimal
threshold for productive gene expression.
The view of !1 mRNA copy/cell as an expression threshold

is supported by recent data from metazoa, where mRNA levels
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expression. Zone 2 genes were functionally enriched for chro-
mosome segregation, nitrogen starvation, and core environ-
mental stress response (Figures 2A and 2D). The latter genes
are rapidly induced in multiple stresses (Chen et al., 2003) and
show highly variable expression across different experimental
conditions (Pancaldi et al., 2010). This enrichment suggests
that !1 mRNA copy/cell corresponds to the basal expression
typical of many stress response genes (Chen et al., 2003). Unlike
the tight repression of meiotic genes, the basal expression of
stress genes could enable a rapid response to sudden environ-
mental challenges. Zone 2 was transitional between zones 1
and 3 also with respect to protein detection (Figure 2B). We
propose that low basal mRNA expression might not always
lead to robust protein expression but might maintain a respon-
sive chromatin environment, e.g., for genes that require rapid
upregulation during stress. Moreover, such low average expres-
sion could reflect a ‘‘bet-hedging’’ strategy to diversify cellular
phenotypes and promote population survival to unexpected
environmental challenges (López-Maury et al., 2008).

Zone 3 contained 2,944 genes (57.6% of all genes), which
were enriched for several functional categories (Figure 2A). For
example, genes involved in translation and protein folding

tended to be highly expressed (Figure 2E). Proteins were de-
tected for 2,486 (84.4%) of the zone 3 genes, indicating that
robust mRNA expression typically results in robust protein
expression.
Together, these data show that mRNAs of different functional

categories are typically expressed in distinct abundance ranges.
The data further support the notion that an expression of !1
mRNA copy/cell defines a minimal threshold for productive
gene expression. We conclude that the three mRNA expression
zones reflect characteristic gene groups with respect to regu-
lation, cellular functions, and protein production.

Effect of Cell-Cycle-Regulated Gene Expression
on mRNA Numbers
Global studies have revealed hundreds of fission yeast genes
that are periodically expressed during the cell cycle (Marguerat
et al., 2006). The corresponding mRNA copy numbers will
therefore fluctuate, and our quantitative data from asynchronous
cell cultures reflect time-averaged mRNA counts. The effects
of cell-cycle-regulated gene expression on absolute mRNA
abundance are not known. Two scenarios are plausible: periodic
gene expression might boost mRNA numbers for proteins
required at higher levels during certain cell-cycle phases, or it
might act in a switch-like manner to tightly restrict expression
to a specific phase.
To distinguish between these two hypotheses, we applied

simple modeling to extrapolate absolute changes in mRNA
abundance of cell-cycle-regulated genes from our data in asyn-
chronous cultures. The model assumes that periodic genes
peak in expression during a defined cell-cycle phase and
show basal expression during the other phases. We derived
phase-specific mRNA copy numbers for 241 periodic genes
with expression peaking in M, G1, or S phase (Figure 3).
Most of these genes (96.3%) showed variations in mRNA
expression that remained within zones 2 and 3 throughout
the cell cycle. For example, the mRNAs for 10 histone genes
were abundant throughout the cell cycle, with their numbers
peaking during DNA replication (Figure 3). This pattern is
consistent with the idea that periodic gene expression boosts
mRNA numbers to accommodate an increased demand for
histones during S phase, with a high basal requirement in
other phases.
Only nine genes showed a more switch-like pattern of tran-

scription: they belonged to zones 2 or 3 during peak expres-
sion, but dropped to zone 1 during basal expression, thus
crossing the !1 mRNA copy/cell threshold (Figure 3). We
propose that expression of these genes is restricted to a
specific cell-cycle phase, and repressed when they may be
harmful. For example, the mik1 gene encodes an inhibitor of
mitosis with a tightly restricted expression window at both
mRNA and protein levels (Ng et al., 2001). Another example
was mei2, encoding a protein that promotes untimely meiosis
when activated at the wrong time (Harigaya and Yamamoto,
2007). We conclude that periodic gene expression generally
tunes mRNA numbers to specific requirements in different
cell-cycle phases but also, in special cases, reflects regulatory
switches restricting the expression of critical regulators to
specific phases.

Figure 3. mRNA Copy Number Changes during Cell Cycle
Peak (blue) and basal (green) mRNA abundance of cell-cycle-regulated genes

extrapolated from average data in asynchronous cultures, with 10% of cell-

cycle assumed as duration for peak expression. Data for six cell-cycle time

course experiments are indicated by clustered dots (Rustici et al., 2004). Left:

ten histone mRNAs peaking during S phase; right: mik1, mde6, and mei2

mRNAs peaking during M and G1 phases.

See also Figure S5 and Table S12.

674 Cell 151, 671–683, October 26, 2012 ª2012 Elsevier Inc.

First look at this figure without the 
figure legend.

Do you get the main conclusion?

Is this plot clear?
Why?



Big data biology: report writing Slide 10

Letter2: Miller 2016

RESEARCH ARTICLE Open Access

Elucidation of the genetic basis of variation
for stem strength characteristics in bread
wheat by Associative Transcriptomics
Charlotte N. Miller1†, Andrea L. Harper1,4†, Martin Trick1, Peter Werner2, Keith Waldron3 and Ian Bancroft1,4*

Abstract

Background: The current approach to reducing the tendency for wheat grown under high fertilizer conditions to
collapse (lodge) under the weight of its grain is based on reducing stem height via the introduction of Rht genes.
However, these reduce the yield of straw (itself an important commodity) and introduce other undesirable
characteristics. Identification of alternative height-control loci is therefore of key interest. In addition, the
improvement of stem mechanical strength provides a further way through which lodging can be reduced.

Results: To investigate the prospects for genetic alternatives to Rht, we assessed variation for plant height and
stem strength properties in a training genetic diversity panel of 100 wheat accessions fixed for Rht. Using mRNAseq
data derived from RNA purified from leaves, functional genotypes were developed for the panel comprising 42,066
Single Nucleotide Polymorphism (SNP) markers and 94,060 Gene Expression Markers (GEMs). In the first application
in wheat of the recently-developed method of Associative Transcriptomics, we identified associations between trait
variation and both SNPs and GEMs. Analysis of marker-trait associations revealed candidates for the causative genes
underlying the trait variation, implicating xylan acetylation and the COP9 signalosome as contributing to stem
strength and auxin in the control of the observed variation for plant height. Predictive capabilities of key markers
for stem strength were validated using a test genetic diversity panel of 30 further wheat accessions.

Conclusions: This work illustrates the power of Associative Transcriptomics for the exploration of complex traits of
high agronomic importance in wheat. The careful selection of genotypes included in the analysis, allowed for high
resolution mapping of novel trait-controlling loci in this staple crop. The use of Gene Expression markers coupled
with the more traditional sequence-based markers, provides the power required to understand the biological
context of the marker-trait associations observed. This not only adds to the wealth of knowledge that we strive to
accumulate regarding gene function and plant adaptation, but also provides breeders with the information
required to make more informed decisions regarding the potential consequences of incorporating the use of
particular markers into future breeding programmes.

Keywords: Modulus of Rupture, lodging, Associative Transcriptomics, Xylan acetylation, COP9 signalosome, Auxin

Background
Lodging is defined as the permanent displacement of a
crop from its usually vertical growth habit. This
phenomenon may be divided into two main categories:
lodging caused by anchorage failure, or root lodging;
and lodging caused by stem mechanical failure, also

known as brackling or stem lodging. Lodging is a com-
plex trait, influenced by environmental, agronomic and
genetic factors and continues to be a widespread prob-
lem in wheat grown worldwide. In years where lodging
is particularly severe, yield losses as great as 80 % can be
expected [1].
Previous efforts to reduce the occurrence of lodging in

wheat have centred on reducing the height of plants
through incorporation of semi-dwarfing alleles into ac-
cessions and the use of plant growth regulators (PGR).
The most common semi-dwarfing genes found in modern
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collapse (lodge) under the weight of its grain is based on reducing stem height via the introduction of Rht genes.
However, these reduce the yield of straw (itself an important commodity) and introduce other undesirable
characteristics. Identification of alternative height-control loci is therefore of key interest. In addition, the
improvement of stem mechanical strength provides a further way through which lodging can be reduced.
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stem strength properties in a training genetic diversity panel of 100 wheat accessions fixed for Rht. Using mRNAseq
data derived from RNA purified from leaves, functional genotypes were developed for the panel comprising 42,066
Single Nucleotide Polymorphism (SNP) markers and 94,060 Gene Expression Markers (GEMs). In the first application
in wheat of the recently-developed method of Associative Transcriptomics, we identified associations between trait
variation and both SNPs and GEMs. Analysis of marker-trait associations revealed candidates for the causative genes
underlying the trait variation, implicating xylan acetylation and the COP9 signalosome as contributing to stem
strength and auxin in the control of the observed variation for plant height. Predictive capabilities of key markers
for stem strength were validated using a test genetic diversity panel of 30 further wheat accessions.

Conclusions: This work illustrates the power of Associative Transcriptomics for the exploration of complex traits of
high agronomic importance in wheat. The careful selection of genotypes included in the analysis, allowed for high
resolution mapping of novel trait-controlling loci in this staple crop. The use of Gene Expression markers coupled
with the more traditional sequence-based markers, provides the power required to understand the biological
context of the marker-trait associations observed. This not only adds to the wealth of knowledge that we strive to
accumulate regarding gene function and plant adaptation, but also provides breeders with the information
required to make more informed decisions regarding the potential consequences of incorporating the use of
particular markers into future breeding programmes.

Keywords: Modulus of Rupture, lodging, Associative Transcriptomics, Xylan acetylation, COP9 signalosome, Auxin

Background
Lodging is defined as the permanent displacement of a
crop from its usually vertical growth habit. This
phenomenon may be divided into two main categories:
lodging caused by anchorage failure, or root lodging;
and lodging caused by stem mechanical failure, also

known as brackling or stem lodging. Lodging is a com-
plex trait, influenced by environmental, agronomic and
genetic factors and continues to be a widespread prob-
lem in wheat grown worldwide. In years where lodging
is particularly severe, yield losses as great as 80 % can be
expected [1].
Previous efforts to reduce the occurrence of lodging in

wheat have centred on reducing the height of plants
through incorporation of semi-dwarfing alleles into ac-
cessions and the use of plant growth regulators (PGR).
The most common semi-dwarfing genes found in modern

* Correspondence: ian.bancroft@york.ac.uk
†Equal contributors
1John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
4Department of Biology, University of York, York YO10 5DD, UK
Full list of author information is available at the end of the article

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Miller et al. BMC Genomics  (2016) 17:500 
DOI 10.1186/s12864-016-2775-2

Note how the abstract has 
subsections.

Can you identify these 
sections in the abstract:
1. Hypothesis or question
2. Experiment or test
3. Result(s)
4. Interpretations/conclusions



Big data biology: report writing Slide 12

Letter2: Miller 2016
abstract

RESEARCH ARTICLE Open Access

Elucidation of the genetic basis of variation
for stem strength characteristics in bread
wheat by Associative Transcriptomics
Charlotte N. Miller1†, Andrea L. Harper1,4†, Martin Trick1, Peter Werner2, Keith Waldron3 and Ian Bancroft1,4*

Abstract

Background: The current approach to reducing the tendency for wheat grown under high fertilizer conditions to
collapse (lodge) under the weight of its grain is based on reducing stem height via the introduction of Rht genes.
However, these reduce the yield of straw (itself an important commodity) and introduce other undesirable
characteristics. Identification of alternative height-control loci is therefore of key interest. In addition, the
improvement of stem mechanical strength provides a further way through which lodging can be reduced.

Results: To investigate the prospects for genetic alternatives to Rht, we assessed variation for plant height and
stem strength properties in a training genetic diversity panel of 100 wheat accessions fixed for Rht. Using mRNAseq
data derived from RNA purified from leaves, functional genotypes were developed for the panel comprising 42,066
Single Nucleotide Polymorphism (SNP) markers and 94,060 Gene Expression Markers (GEMs). In the first application
in wheat of the recently-developed method of Associative Transcriptomics, we identified associations between trait
variation and both SNPs and GEMs. Analysis of marker-trait associations revealed candidates for the causative genes
underlying the trait variation, implicating xylan acetylation and the COP9 signalosome as contributing to stem
strength and auxin in the control of the observed variation for plant height. Predictive capabilities of key markers
for stem strength were validated using a test genetic diversity panel of 30 further wheat accessions.

Conclusions: This work illustrates the power of Associative Transcriptomics for the exploration of complex traits of
high agronomic importance in wheat. The careful selection of genotypes included in the analysis, allowed for high
resolution mapping of novel trait-controlling loci in this staple crop. The use of Gene Expression markers coupled
with the more traditional sequence-based markers, provides the power required to understand the biological
context of the marker-trait associations observed. This not only adds to the wealth of knowledge that we strive to
accumulate regarding gene function and plant adaptation, but also provides breeders with the information
required to make more informed decisions regarding the potential consequences of incorporating the use of
particular markers into future breeding programmes.
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(250 u – Life Technologies Ltd (Invitrogen Division,
Paisley, UK)). Prior to sequencing, PCR reactions
were purified using the ExoSAP protocol [18]. Follow-
ing this, sequencing reactions were set up in 0.2 ml
tubes according to a revised protocol from BigDye
V3.1 terminator cycle sequencing kit [19]. All PCR
and sequencing reactions were performed using a G-
Storm GS1 thermal cycler (Somerton, UK). Capillary
sequencing was performed by GATC Biotech AG,
Germany and all sequencing trace files obtained were
analysed using Contig Express (Vector NTI advance®
11.5.2, Paisley, UK).
Following genotyping, a subset of 30 wheat accessions

(Additional file 3) showing representative variation at
the chosen marker loci, were selected for mechanical
testing. These accessions were mechanically tested as de-
scribed previously. Using a T-test (Genstat 15th edition)
the trait data and genotype data obtained were assessed
for any significant marker-trait segregation patterns.

Results
Variation for stem structural and material strength
The diversity panel of 100 wheat accessions was analysed
for a range of traits indicative of stem structural and ma-
terial strength. With the exception of second moment of
area, significant variation was present for all traits in-
cluded in the analysis (P < 0.05) (Additional file 1). The
absolute strength traits Fmax and F/V showed respective
trait ranges of 7.45–38.55 and 29.82–80.44 N/s. The
wheat accession displaying highest stem absolute
strength (for both Fmax and F/V) was Orlando. The
lowest trait values were seen in Battalion and Escorial
for F/V and Fmax respectively. For the material strength
traits, MOR and MOE, respective trait ranges of 0.70–
8.05 and 121.6–1490.3 Nmm−2 were recorded. Of the
wheat accessions screened, Gatsby exhibited the lowest
trait values for both MOE and MOR. Accessions display-
ing the highest material strength were Alba (for MOR)
and Cordiale (for MOE). A wide range of variation was
also observed for the various stem structural traits
assessed. For example, mean stem hollow area ranged
from 1.16 mm2 (for Capelle-Desprez) and 6.51 mm2 (for
Starke2). For outer cortex thickness, trait means ranging
between 0.24 mm (as seen for Hyperion) and 0.46 mm
(as seen for Alba) were recorded. For plant height, des-
pite a lack of segregation at the Rht loci, a trait range of
42.8–98.4 cm was recorded. The tallest accession in-
cluded within the panel was Steadfast whereas the short-
est stem measurements were recorded for Equinox.
A correlation analysis was performed to analyse the re-

lationships between the absolute strength and the struc-
tural and morphological traits to assess which may be
good breeding targets (Table 1). Several highly signifi-
cant (P ≤ 0.001) relationships were detected between the

absolute strength measures (Fmax and F/V) and the
structural traits, however, despite such high statistical
significance, in the majority of cases, the amount of vari-
ation in stem absolute strength explained by stem struc-
ture was found to be modest. Stem parenchyma area
(R2 = 0.27 and 0.17 for Fmax and F/V respectively) and
outer cortex thickness (R2 = 0.19 and 0.13 for Fmax and
F/V respectively) show the closest positive relationships
with absolute strength. These traits may therefore be the
most promising targets for the improvement of stem
structural strength in wheat. In contrast to the modest
contributions made by stem geometry, a much closer
correlation is seen between the absolute strength mea-
sures and stem weight (R2 = 0.42 and 0.47 for Fmax and
F/V respectively). These correlations may represent a
combined effect of several different stem structural com-
ponents (each contributing to weight) or may more spe-
cifically relate to the density of the materials that make
up the plant stem. Plant height also correlates positively
with stem absolute strength (R2 = 0.21 and 0.25 for Fmax
and F/V respectively).
The lack of strong correlations observed between stem

structure and absolute strength may suggest that stem
material properties are of high value for the improve-
ment of stem mechanical strength in wheat. Consistent
with this, the relationship between the field-based meas-
ure of stem lodging risk (utilising the pulley system illus-
trated in Fig. 1c) and the absolute and material strength
traits, showed a stronger correlation for the material
strength trait Modulus of Rupture (MOR; R2 of 0.41, P
< 0.001) in comparison to absolute strength traits such
as Fmax (R2 of 0.27, P < 0.001) (Additional file 4).

The development of functional genotypes for Associative
Transcriptomics
Illumina mRNAseq data were produced from leaf RNA
from the diversity panel of 100 wheat accessions. These
sequences were mapped to the ordered transcriptome
reference reported recently (Harper et al., [9]), with an
average number of input reads across the full panel of
29.5 million, providing an average read coverage of 5.87.
The panel was scored for SNPs and transcripts were
quantified as RPKM. In total, 42,066 SNPs were scored,
of which 12,456 were present at MAF > 0.05, so were
considered suitable for use in AT. Abundance was mea-
sured as >0.4 RPKM across the population for 94,060
transcripts, which were considered suitable for use in
AT. Full association plots for the following traits can be
found in Additional file 5: Figures S1–S9.

Associative Transcriptomics for plant height
In order to identify loci controlling plant height, AT was
conducted using the functional genotypes scored and
the plant height trait data obtained. Additional file 6
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(250 u – Life Technologies Ltd (Invitrogen Division,
Paisley, UK)). Prior to sequencing, PCR reactions
were purified using the ExoSAP protocol [18]. Follow-
ing this, sequencing reactions were set up in 0.2 ml
tubes according to a revised protocol from BigDye
V3.1 terminator cycle sequencing kit [19]. All PCR
and sequencing reactions were performed using a G-
Storm GS1 thermal cycler (Somerton, UK). Capillary
sequencing was performed by GATC Biotech AG,
Germany and all sequencing trace files obtained were
analysed using Contig Express (Vector NTI advance®
11.5.2, Paisley, UK).
Following genotyping, a subset of 30 wheat accessions

(Additional file 3) showing representative variation at
the chosen marker loci, were selected for mechanical
testing. These accessions were mechanically tested as de-
scribed previously. Using a T-test (Genstat 15th edition)
the trait data and genotype data obtained were assessed
for any significant marker-trait segregation patterns.

Results
Variation for stem structural and material strength
The diversity panel of 100 wheat accessions was analysed
for a range of traits indicative of stem structural and ma-
terial strength. With the exception of second moment of
area, significant variation was present for all traits in-
cluded in the analysis (P < 0.05) (Additional file 1). The
absolute strength traits Fmax and F/V showed respective
trait ranges of 7.45–38.55 and 29.82–80.44 N/s. The
wheat accession displaying highest stem absolute
strength (for both Fmax and F/V) was Orlando. The
lowest trait values were seen in Battalion and Escorial
for F/V and Fmax respectively. For the material strength
traits, MOR and MOE, respective trait ranges of 0.70–
8.05 and 121.6–1490.3 Nmm−2 were recorded. Of the
wheat accessions screened, Gatsby exhibited the lowest
trait values for both MOE and MOR. Accessions display-
ing the highest material strength were Alba (for MOR)
and Cordiale (for MOE). A wide range of variation was
also observed for the various stem structural traits
assessed. For example, mean stem hollow area ranged
from 1.16 mm2 (for Capelle-Desprez) and 6.51 mm2 (for
Starke2). For outer cortex thickness, trait means ranging
between 0.24 mm (as seen for Hyperion) and 0.46 mm
(as seen for Alba) were recorded. For plant height, des-
pite a lack of segregation at the Rht loci, a trait range of
42.8–98.4 cm was recorded. The tallest accession in-
cluded within the panel was Steadfast whereas the short-
est stem measurements were recorded for Equinox.
A correlation analysis was performed to analyse the re-

lationships between the absolute strength and the struc-
tural and morphological traits to assess which may be
good breeding targets (Table 1). Several highly signifi-
cant (P ≤ 0.001) relationships were detected between the

absolute strength measures (Fmax and F/V) and the
structural traits, however, despite such high statistical
significance, in the majority of cases, the amount of vari-
ation in stem absolute strength explained by stem struc-
ture was found to be modest. Stem parenchyma area
(R2 = 0.27 and 0.17 for Fmax and F/V respectively) and
outer cortex thickness (R2 = 0.19 and 0.13 for Fmax and
F/V respectively) show the closest positive relationships
with absolute strength. These traits may therefore be the
most promising targets for the improvement of stem
structural strength in wheat. In contrast to the modest
contributions made by stem geometry, a much closer
correlation is seen between the absolute strength mea-
sures and stem weight (R2 = 0.42 and 0.47 for Fmax and
F/V respectively). These correlations may represent a
combined effect of several different stem structural com-
ponents (each contributing to weight) or may more spe-
cifically relate to the density of the materials that make
up the plant stem. Plant height also correlates positively
with stem absolute strength (R2 = 0.21 and 0.25 for Fmax
and F/V respectively).
The lack of strong correlations observed between stem

structure and absolute strength may suggest that stem
material properties are of high value for the improve-
ment of stem mechanical strength in wheat. Consistent
with this, the relationship between the field-based meas-
ure of stem lodging risk (utilising the pulley system illus-
trated in Fig. 1c) and the absolute and material strength
traits, showed a stronger correlation for the material
strength trait Modulus of Rupture (MOR; R2 of 0.41, P
< 0.001) in comparison to absolute strength traits such
as Fmax (R2 of 0.27, P < 0.001) (Additional file 4).

The development of functional genotypes for Associative
Transcriptomics
Illumina mRNAseq data were produced from leaf RNA
from the diversity panel of 100 wheat accessions. These
sequences were mapped to the ordered transcriptome
reference reported recently (Harper et al., [9]), with an
average number of input reads across the full panel of
29.5 million, providing an average read coverage of 5.87.
The panel was scored for SNPs and transcripts were
quantified as RPKM. In total, 42,066 SNPs were scored,
of which 12,456 were present at MAF > 0.05, so were
considered suitable for use in AT. Abundance was mea-
sured as >0.4 RPKM across the population for 94,060
transcripts, which were considered suitable for use in
AT. Full association plots for the following traits can be
found in Additional file 5: Figures S1–S9.

Associative Transcriptomics for plant height
In order to identify loci controlling plant height, AT was
conducted using the functional genotypes scored and
the plant height trait data obtained. Additional file 6
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(250 u – Life Technologies Ltd (Invitrogen Division,
Paisley, UK)). Prior to sequencing, PCR reactions
were purified using the ExoSAP protocol [18]. Follow-
ing this, sequencing reactions were set up in 0.2 ml
tubes according to a revised protocol from BigDye
V3.1 terminator cycle sequencing kit [19]. All PCR
and sequencing reactions were performed using a G-
Storm GS1 thermal cycler (Somerton, UK). Capillary
sequencing was performed by GATC Biotech AG,
Germany and all sequencing trace files obtained were
analysed using Contig Express (Vector NTI advance®
11.5.2, Paisley, UK).
Following genotyping, a subset of 30 wheat accessions

(Additional file 3) showing representative variation at
the chosen marker loci, were selected for mechanical
testing. These accessions were mechanically tested as de-
scribed previously. Using a T-test (Genstat 15th edition)
the trait data and genotype data obtained were assessed
for any significant marker-trait segregation patterns.

Results
Variation for stem structural and material strength
The diversity panel of 100 wheat accessions was analysed
for a range of traits indicative of stem structural and ma-
terial strength. With the exception of second moment of
area, significant variation was present for all traits in-
cluded in the analysis (P < 0.05) (Additional file 1). The
absolute strength traits Fmax and F/V showed respective
trait ranges of 7.45–38.55 and 29.82–80.44 N/s. The
wheat accession displaying highest stem absolute
strength (for both Fmax and F/V) was Orlando. The
lowest trait values were seen in Battalion and Escorial
for F/V and Fmax respectively. For the material strength
traits, MOR and MOE, respective trait ranges of 0.70–
8.05 and 121.6–1490.3 Nmm−2 were recorded. Of the
wheat accessions screened, Gatsby exhibited the lowest
trait values for both MOE and MOR. Accessions display-
ing the highest material strength were Alba (for MOR)
and Cordiale (for MOE). A wide range of variation was
also observed for the various stem structural traits
assessed. For example, mean stem hollow area ranged
from 1.16 mm2 (for Capelle-Desprez) and 6.51 mm2 (for
Starke2). For outer cortex thickness, trait means ranging
between 0.24 mm (as seen for Hyperion) and 0.46 mm
(as seen for Alba) were recorded. For plant height, des-
pite a lack of segregation at the Rht loci, a trait range of
42.8–98.4 cm was recorded. The tallest accession in-
cluded within the panel was Steadfast whereas the short-
est stem measurements were recorded for Equinox.
A correlation analysis was performed to analyse the re-

lationships between the absolute strength and the struc-
tural and morphological traits to assess which may be
good breeding targets (Table 1). Several highly signifi-
cant (P ≤ 0.001) relationships were detected between the

absolute strength measures (Fmax and F/V) and the
structural traits, however, despite such high statistical
significance, in the majority of cases, the amount of vari-
ation in stem absolute strength explained by stem struc-
ture was found to be modest. Stem parenchyma area
(R2 = 0.27 and 0.17 for Fmax and F/V respectively) and
outer cortex thickness (R2 = 0.19 and 0.13 for Fmax and
F/V respectively) show the closest positive relationships
with absolute strength. These traits may therefore be the
most promising targets for the improvement of stem
structural strength in wheat. In contrast to the modest
contributions made by stem geometry, a much closer
correlation is seen between the absolute strength mea-
sures and stem weight (R2 = 0.42 and 0.47 for Fmax and
F/V respectively). These correlations may represent a
combined effect of several different stem structural com-
ponents (each contributing to weight) or may more spe-
cifically relate to the density of the materials that make
up the plant stem. Plant height also correlates positively
with stem absolute strength (R2 = 0.21 and 0.25 for Fmax
and F/V respectively).
The lack of strong correlations observed between stem

structure and absolute strength may suggest that stem
material properties are of high value for the improve-
ment of stem mechanical strength in wheat. Consistent
with this, the relationship between the field-based meas-
ure of stem lodging risk (utilising the pulley system illus-
trated in Fig. 1c) and the absolute and material strength
traits, showed a stronger correlation for the material
strength trait Modulus of Rupture (MOR; R2 of 0.41, P
< 0.001) in comparison to absolute strength traits such
as Fmax (R2 of 0.27, P < 0.001) (Additional file 4).

The development of functional genotypes for Associative
Transcriptomics
Illumina mRNAseq data were produced from leaf RNA
from the diversity panel of 100 wheat accessions. These
sequences were mapped to the ordered transcriptome
reference reported recently (Harper et al., [9]), with an
average number of input reads across the full panel of
29.5 million, providing an average read coverage of 5.87.
The panel was scored for SNPs and transcripts were
quantified as RPKM. In total, 42,066 SNPs were scored,
of which 12,456 were present at MAF > 0.05, so were
considered suitable for use in AT. Abundance was mea-
sured as >0.4 RPKM across the population for 94,060
transcripts, which were considered suitable for use in
AT. Full association plots for the following traits can be
found in Additional file 5: Figures S1–S9.

Associative Transcriptomics for plant height
In order to identify loci controlling plant height, AT was
conducted using the functional genotypes scored and
the plant height trait data obtained. Additional file 6
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summarises the results obtained. Two major association
peaks were identified: one on chromosome 6A and the
other on 5B, each exhibiting SNP and GEM associations
(Fig. 2). To identify candidates for the causative genes
for control of the trait underlying the association peaks,

the sequence similarities of unigenes to gene models in
Brachypodium, Sorghum, rice and Arabidopsis were
used as a guide to gene function. This revealed that the
gene corresponding to the highest significance GEM on
6A is an orthologue of a rice Auxin Response Factor

Fig. 2 SNP and GEM marker associations detected for plant height. Marker associations are illustrated, for both sequence-based (SNP) and gene
expression-based (GEM) markers, with significance of association (as –log10P values) plotted against position within specific chromosomes. The
inferred order of unigenes is illustrated below the scans with colour coding by sequence similarity to chromosomes of B. distachyon (blue = Bd1;
yellow = Bd2; purple = Bd3; red = Bd4 and green = Bd5). Two associating loci for height are shown, one on chromosome 6A (a, c) and one on
chromosome 5B (b, d). Both loci show associating SNP and GEM marker variation. The positions of candidate genes are indicated by arrows

Table 1 Pearson’s correlation coefficient (tested against zero) for traits measured across wheat panel
Fmax (N/s)

F/V (N/s) ***0.85

Stem width (mm) 0.01 0

Stem hollow
area (mm2)

***0.16 ***0.12 ***0.27

Second moment
of area (N/mm4)

**0.07 *0.06 ***0.33 ***0.16

Parenchyma
area (mm2)

***0.27 ***0.17 ***0.11 ***0.11 **0.09

Outer cortex
thickness (mm)

***0.19 ***0.13 0.032 0 0.02 0

Length of 2nd
internode (cm)

0.014 0.037 0 **0.09 *0.06 *0.06 0

Height minus
ear (cm)

***0.21 ***0.25 0.011 0.01 **0.09 0 **0.08 ***0.38

Threshed stem
weight (g)

***0.49 ***0.51 ***0.13 0.01 ***0.22 ***0.15 **0.09 **0.1 ***0.55

Fmax
(N/s)

F/V
(N/s)

Stem
width
(mm)

Stem hollow
area (mm2)

Second moment
of area (N/mm4)

Parenchyma
area (mm2)

Outer cortex
thickness (mm)

Length of
2nd internode
(cm)

Height
minus ear
(cm)

Threshed
stem weight
(g)

*** indicates significance at P ≤0.001 and ** indicates significance at P ≤0.01 and * indicates significance at P ≤ 0.05
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(OsARF16, Os02g41800; Panel a). The peak found on
chromosome 5B coincided with a cluster of SMALL
AUXIN UP RNA (SAUR) genes, with high significance
GEMs occurring in three of the unigenes with BLAST
identity to SAUR genes (Panel b). Although these loci
have not been implicated previously in the control of
plant height in wheat, the genes identified are excellent
candidates for controlling this trait: ARFs are transcrip-
tion factors that bind specifically to auxin response ele-
ments (AuxREs) found in the promoters of early auxin
response genes such as the large family of SAUR genes,
and mediate their response to auxin [20]. In wheat, we
found that the GEM for the ARF on 6A had a positive
correlation with stem height. These results suggest that
this Auxin Response Factor may have a developmental
role in wheat. Although the actual function of the
SAURs is not known, it has been reported that some
have an important role in control of cell expansion and
patterning [21]. On closer inspection of their sequence
similarities, the SAUR genes in the region of 5B are pu-
tative orthologues of some of the members of a cluster
of 17 SAURs found on rice chromosome 9 (OsSAUR39-
55) and an orthologous cluster can also be found on
Arabidopsis chromosome 1 (AtSAUR61-68) [22]. In rice,
OsSAUR39 has been found to negatively regulate auxin
synthesis and transport, leading to reduced growth phe-
notypes when over-expressed [23]. Our observation that
all of the highly associated SAURs in this cluster exhib-
ited gene expression that was negatively correlated with
height is concordant with this.

Associative Transcriptomics for modulus of rupture
AT for MOR identified three SNP association peaks. On
chromosome 2D, two association peaks were found. The
first of these (marked with an arrow in Fig. 3a) was
found to be in close proximity to a gene orthologous to
a rice acetyl xylan esterase (AxeA; Os04g01980). AxeA, is
thought to have hydrolase activity, specifically acting on
ester bonds in the deacetylation of xylans in the plant
cell wall [24]. The second association peak found on
chromosome 2D for MOR exhibited both SNP and
GEM associations (shown within the grey dotted lines
on Fig. 3a and b). Several genes in this region show a
consistent, positive, relationship of their expression with
variation in MOR, which may be indicative of a large-
scale rearrangement such as a deletion.
A final SNP association peak was seen on chromo-

some 1B (Fig. 3d). On closer inspection, it was revealed
that the locus with the most highly associated marker
has high sequence similarity to an Arabidopsis GDSL-
like Lipase/Acylhydrolase superfamily gene (At1g54790).
GDSL-like lipases are thought to be involved in the hy-
drolysis of ester bonds in cell wall xylans and have been
found to have xylan acetylase activity [25]. This is a very

similar function to that previously described for the can-
didate detected on chromosome 2D. Previous work in
Arabidopsis has shown that xylan acetylation is an im-
portant contributor to stem strength. For example, the
eskimo-1 mutant, which displays reduced xylan acetyl-
ation, exhibits reduced cell wall thickening and signifi-
cantly weaker stems in comparison to wild-type plants
[26].
In addition to the GEM association peak seen on

chromosome 2D, several individual GEMs were also
found to show significant association with material
strength. An example of this can be seen in Fig. 3b
(GEM marked at the foot of orange line). Transcript
abundance for this GEM correlates positively with
MOR. This marker corresponds to an orthologue of
Arabidopsis SERINE CARBOXYPEPTIDASE-LIKE 49
(At3g10410). The Tobacco orthologue of this gene,
NtSCP1, is known to be important for cell elongation
and it has been proposed that this gene may target pro-
teins involved in cell wall remodelling [27], making this
a very plausible candidate gene for stem material
strength. Another example was found on chromosome
7B with a GEM corresponding to an orthologue of Ara-
bidopsis QUASIMODO 1 (At3g25140). Mutants defect-
ive in this gene exhibit a number of defects including
reduced homogalacturonan (a cell wall pectin) content
in the cell wall and reduced cell adhesion [28]. Previous
studies have shown that variation in pectin can have a
dramatic effect of stem mechanical strength in plants
[29]. As a final example, on chromosome 6B, a marker
located within a gene orthologous to that which, in rice,
has been described as a translation initiation factor,
EIF-2B epsilon subunit (Os02g56740), shows a high asso-
ciation with MOR. In rice, this gene is thought to have a
role in the recruitment of mRNAs and the machinery re-
quired for translation. A related protein however, EIF-5A,
has been found to be involved in a signalling pathway con-
tributing to cell wall integrity and formation [30]. It is
therefore possible that EIF-2B also has a similar, additional
function.
To further analyse the individual GEM associations

detected, their respective transcript abundances (mea-
sured as RPKM) were mapped as traits against the SNP
data of the wheat accessions. Interestingly, for each of
the described GEMs, a strong SNP peak was detected on
chromosome 2D, the same region previously described
for MOR in both the SNP and GEM analyses. An ex-
ample of this can be seen in Fig. 3c for the previously
mentioned single GEM detected on chromosome 2D
(Fig. 3b). Figure 3c shows a clear SNP association on
chromosome 2D following the mapping of the transcript
abundance values for this GEM as a trait against the
SNP data. All additional GEMs found to show this rela-
tionship with the 2D locus can be seen marked with a
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(250 u – Life Technologies Ltd (Invitrogen Division,
Paisley, UK)). Prior to sequencing, PCR reactions
were purified using the ExoSAP protocol [18]. Follow-
ing this, sequencing reactions were set up in 0.2 ml
tubes according to a revised protocol from BigDye
V3.1 terminator cycle sequencing kit [19]. All PCR
and sequencing reactions were performed using a G-
Storm GS1 thermal cycler (Somerton, UK). Capillary
sequencing was performed by GATC Biotech AG,
Germany and all sequencing trace files obtained were
analysed using Contig Express (Vector NTI advance®
11.5.2, Paisley, UK).
Following genotyping, a subset of 30 wheat accessions

(Additional file 3) showing representative variation at
the chosen marker loci, were selected for mechanical
testing. These accessions were mechanically tested as de-
scribed previously. Using a T-test (Genstat 15th edition)
the trait data and genotype data obtained were assessed
for any significant marker-trait segregation patterns.

Results
Variation for stem structural and material strength
The diversity panel of 100 wheat accessions was analysed
for a range of traits indicative of stem structural and ma-
terial strength. With the exception of second moment of
area, significant variation was present for all traits in-
cluded in the analysis (P < 0.05) (Additional file 1). The
absolute strength traits Fmax and F/V showed respective
trait ranges of 7.45–38.55 and 29.82–80.44 N/s. The
wheat accession displaying highest stem absolute
strength (for both Fmax and F/V) was Orlando. The
lowest trait values were seen in Battalion and Escorial
for F/V and Fmax respectively. For the material strength
traits, MOR and MOE, respective trait ranges of 0.70–
8.05 and 121.6–1490.3 Nmm−2 were recorded. Of the
wheat accessions screened, Gatsby exhibited the lowest
trait values for both MOE and MOR. Accessions display-
ing the highest material strength were Alba (for MOR)
and Cordiale (for MOE). A wide range of variation was
also observed for the various stem structural traits
assessed. For example, mean stem hollow area ranged
from 1.16 mm2 (for Capelle-Desprez) and 6.51 mm2 (for
Starke2). For outer cortex thickness, trait means ranging
between 0.24 mm (as seen for Hyperion) and 0.46 mm
(as seen for Alba) were recorded. For plant height, des-
pite a lack of segregation at the Rht loci, a trait range of
42.8–98.4 cm was recorded. The tallest accession in-
cluded within the panel was Steadfast whereas the short-
est stem measurements were recorded for Equinox.
A correlation analysis was performed to analyse the re-

lationships between the absolute strength and the struc-
tural and morphological traits to assess which may be
good breeding targets (Table 1). Several highly signifi-
cant (P ≤ 0.001) relationships were detected between the

absolute strength measures (Fmax and F/V) and the
structural traits, however, despite such high statistical
significance, in the majority of cases, the amount of vari-
ation in stem absolute strength explained by stem struc-
ture was found to be modest. Stem parenchyma area
(R2 = 0.27 and 0.17 for Fmax and F/V respectively) and
outer cortex thickness (R2 = 0.19 and 0.13 for Fmax and
F/V respectively) show the closest positive relationships
with absolute strength. These traits may therefore be the
most promising targets for the improvement of stem
structural strength in wheat. In contrast to the modest
contributions made by stem geometry, a much closer
correlation is seen between the absolute strength mea-
sures and stem weight (R2 = 0.42 and 0.47 for Fmax and
F/V respectively). These correlations may represent a
combined effect of several different stem structural com-
ponents (each contributing to weight) or may more spe-
cifically relate to the density of the materials that make
up the plant stem. Plant height also correlates positively
with stem absolute strength (R2 = 0.21 and 0.25 for Fmax
and F/V respectively).
The lack of strong correlations observed between stem

structure and absolute strength may suggest that stem
material properties are of high value for the improve-
ment of stem mechanical strength in wheat. Consistent
with this, the relationship between the field-based meas-
ure of stem lodging risk (utilising the pulley system illus-
trated in Fig. 1c) and the absolute and material strength
traits, showed a stronger correlation for the material
strength trait Modulus of Rupture (MOR; R2 of 0.41, P
< 0.001) in comparison to absolute strength traits such
as Fmax (R2 of 0.27, P < 0.001) (Additional file 4).

The development of functional genotypes for Associative
Transcriptomics
Illumina mRNAseq data were produced from leaf RNA
from the diversity panel of 100 wheat accessions. These
sequences were mapped to the ordered transcriptome
reference reported recently (Harper et al., [9]), with an
average number of input reads across the full panel of
29.5 million, providing an average read coverage of 5.87.
The panel was scored for SNPs and transcripts were
quantified as RPKM. In total, 42,066 SNPs were scored,
of which 12,456 were present at MAF > 0.05, so were
considered suitable for use in AT. Abundance was mea-
sured as >0.4 RPKM across the population for 94,060
transcripts, which were considered suitable for use in
AT. Full association plots for the following traits can be
found in Additional file 5: Figures S1–S9.

Associative Transcriptomics for plant height
In order to identify loci controlling plant height, AT was
conducted using the functional genotypes scored and
the plant height trait data obtained. Additional file 6
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summarises the results obtained. Two major association
peaks were identified: one on chromosome 6A and the
other on 5B, each exhibiting SNP and GEM associations
(Fig. 2). To identify candidates for the causative genes
for control of the trait underlying the association peaks,

the sequence similarities of unigenes to gene models in
Brachypodium, Sorghum, rice and Arabidopsis were
used as a guide to gene function. This revealed that the
gene corresponding to the highest significance GEM on
6A is an orthologue of a rice Auxin Response Factor

Fig. 2 SNP and GEM marker associations detected for plant height. Marker associations are illustrated, for both sequence-based (SNP) and gene
expression-based (GEM) markers, with significance of association (as –log10P values) plotted against position within specific chromosomes. The
inferred order of unigenes is illustrated below the scans with colour coding by sequence similarity to chromosomes of B. distachyon (blue = Bd1;
yellow = Bd2; purple = Bd3; red = Bd4 and green = Bd5). Two associating loci for height are shown, one on chromosome 6A (a, c) and one on
chromosome 5B (b, d). Both loci show associating SNP and GEM marker variation. The positions of candidate genes are indicated by arrows

Table 1 Pearson’s correlation coefficient (tested against zero) for traits measured across wheat panel
Fmax (N/s)

F/V (N/s) ***0.85

Stem width (mm) 0.01 0

Stem hollow
area (mm2)

***0.16 ***0.12 ***0.27

Second moment
of area (N/mm4)

**0.07 *0.06 ***0.33 ***0.16

Parenchyma
area (mm2)

***0.27 ***0.17 ***0.11 ***0.11 **0.09

Outer cortex
thickness (mm)

***0.19 ***0.13 0.032 0 0.02 0

Length of 2nd
internode (cm)

0.014 0.037 0 **0.09 *0.06 *0.06 0

Height minus
ear (cm)

***0.21 ***0.25 0.011 0.01 **0.09 0 **0.08 ***0.38

Threshed stem
weight (g)

***0.49 ***0.51 ***0.13 0.01 ***0.22 ***0.15 **0.09 **0.1 ***0.55

Fmax
(N/s)

F/V
(N/s)

Stem
width
(mm)

Stem hollow
area (mm2)

Second moment
of area (N/mm4)

Parenchyma
area (mm2)

Outer cortex
thickness (mm)

Length of
2nd internode
(cm)

Height
minus ear
(cm)

Threshed
stem weight
(g)

*** indicates significance at P ≤0.001 and ** indicates significance at P ≤0.01 and * indicates significance at P ≤ 0.05
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(OsARF16, Os02g41800; Panel a). The peak found on
chromosome 5B coincided with a cluster of SMALL
AUXIN UP RNA (SAUR) genes, with high significance
GEMs occurring in three of the unigenes with BLAST
identity to SAUR genes (Panel b). Although these loci
have not been implicated previously in the control of
plant height in wheat, the genes identified are excellent
candidates for controlling this trait: ARFs are transcrip-
tion factors that bind specifically to auxin response ele-
ments (AuxREs) found in the promoters of early auxin
response genes such as the large family of SAUR genes,
and mediate their response to auxin [20]. In wheat, we
found that the GEM for the ARF on 6A had a positive
correlation with stem height. These results suggest that
this Auxin Response Factor may have a developmental
role in wheat. Although the actual function of the
SAURs is not known, it has been reported that some
have an important role in control of cell expansion and
patterning [21]. On closer inspection of their sequence
similarities, the SAUR genes in the region of 5B are pu-
tative orthologues of some of the members of a cluster
of 17 SAURs found on rice chromosome 9 (OsSAUR39-
55) and an orthologous cluster can also be found on
Arabidopsis chromosome 1 (AtSAUR61-68) [22]. In rice,
OsSAUR39 has been found to negatively regulate auxin
synthesis and transport, leading to reduced growth phe-
notypes when over-expressed [23]. Our observation that
all of the highly associated SAURs in this cluster exhib-
ited gene expression that was negatively correlated with
height is concordant with this.

Associative Transcriptomics for modulus of rupture
AT for MOR identified three SNP association peaks. On
chromosome 2D, two association peaks were found. The
first of these (marked with an arrow in Fig. 3a) was
found to be in close proximity to a gene orthologous to
a rice acetyl xylan esterase (AxeA; Os04g01980). AxeA, is
thought to have hydrolase activity, specifically acting on
ester bonds in the deacetylation of xylans in the plant
cell wall [24]. The second association peak found on
chromosome 2D for MOR exhibited both SNP and
GEM associations (shown within the grey dotted lines
on Fig. 3a and b). Several genes in this region show a
consistent, positive, relationship of their expression with
variation in MOR, which may be indicative of a large-
scale rearrangement such as a deletion.
A final SNP association peak was seen on chromo-

some 1B (Fig. 3d). On closer inspection, it was revealed
that the locus with the most highly associated marker
has high sequence similarity to an Arabidopsis GDSL-
like Lipase/Acylhydrolase superfamily gene (At1g54790).
GDSL-like lipases are thought to be involved in the hy-
drolysis of ester bonds in cell wall xylans and have been
found to have xylan acetylase activity [25]. This is a very

similar function to that previously described for the can-
didate detected on chromosome 2D. Previous work in
Arabidopsis has shown that xylan acetylation is an im-
portant contributor to stem strength. For example, the
eskimo-1 mutant, which displays reduced xylan acetyl-
ation, exhibits reduced cell wall thickening and signifi-
cantly weaker stems in comparison to wild-type plants
[26].
In addition to the GEM association peak seen on

chromosome 2D, several individual GEMs were also
found to show significant association with material
strength. An example of this can be seen in Fig. 3b
(GEM marked at the foot of orange line). Transcript
abundance for this GEM correlates positively with
MOR. This marker corresponds to an orthologue of
Arabidopsis SERINE CARBOXYPEPTIDASE-LIKE 49
(At3g10410). The Tobacco orthologue of this gene,
NtSCP1, is known to be important for cell elongation
and it has been proposed that this gene may target pro-
teins involved in cell wall remodelling [27], making this
a very plausible candidate gene for stem material
strength. Another example was found on chromosome
7B with a GEM corresponding to an orthologue of Ara-
bidopsis QUASIMODO 1 (At3g25140). Mutants defect-
ive in this gene exhibit a number of defects including
reduced homogalacturonan (a cell wall pectin) content
in the cell wall and reduced cell adhesion [28]. Previous
studies have shown that variation in pectin can have a
dramatic effect of stem mechanical strength in plants
[29]. As a final example, on chromosome 6B, a marker
located within a gene orthologous to that which, in rice,
has been described as a translation initiation factor,
EIF-2B epsilon subunit (Os02g56740), shows a high asso-
ciation with MOR. In rice, this gene is thought to have a
role in the recruitment of mRNAs and the machinery re-
quired for translation. A related protein however, EIF-5A,
has been found to be involved in a signalling pathway con-
tributing to cell wall integrity and formation [30]. It is
therefore possible that EIF-2B also has a similar, additional
function.
To further analyse the individual GEM associations

detected, their respective transcript abundances (mea-
sured as RPKM) were mapped as traits against the SNP
data of the wheat accessions. Interestingly, for each of
the described GEMs, a strong SNP peak was detected on
chromosome 2D, the same region previously described
for MOR in both the SNP and GEM analyses. An ex-
ample of this can be seen in Fig. 3c for the previously
mentioned single GEM detected on chromosome 2D
(Fig. 3b). Figure 3c shows a clear SNP association on
chromosome 2D following the mapping of the transcript
abundance values for this GEM as a trait against the
SNP data. All additional GEMs found to show this rela-
tionship with the 2D locus can be seen marked with a
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red asterisk in Additional file 6. This finding could be in-
dicative of an interaction between those genes detected
as single marker associations and one or more genes lo-
cated within the 2D region. Due to the many genes
showing associations in the 2D region detected in the
GEM analysis for MOR, it is difficult to propose a candi-
date gene. However, one gene, which corresponds to one
of the most highly associating GEM markers within this
peak, may be considered a very plausible target. This
gene corresponds to an orthologue in rice described as a
COP9 SIGNALOSOME SUBUNIT 5B (CSN5B)
(Os04g56070). The COP9 signalosome is a multi-protein
complex which is known to be involved in protein deg-
radation and has, in plants, been implicated in a number
of developmental processes including photomorphogen-
esis (light-mediated growth), cell cycle progression and
gene expression [31]. Interestingly, in Fungi, the COP9
signalosome has been implicated in cell wall remodel-
ling. Work conducted by Nahlik et al., found that in the
absence of a functional COP9 complex, Aspergillus
nidulans exhibits altered expression of genes involved in
cell wall remodelling [32]. Furthermore, one of the single
GEM associations detected for material strength, corre-
sponds to a eukaryotic translation initiation factor (EIF-
2B) gene. Previous studies have shown evidence of inter-
actions between EIF-related genes and the COP9

complex [33]. Given this, it is plausible that the genes
associated with material strength are interacting with
the COP9 (or more specifically, CSN5B) complex by
means of a pathway analogous to that seen in Aspergillus
nidilans, contributing to cell wall remodelling.

Marker validation
To test the power of Associative Transcriptomics for the
identification of predictive markers, a marker validation
study was carried out using a panel of 96 additional
wheat accessions and focusing on three SNP associations
previously described for MOR. This analysis involved
the screening of a completely independent panel of
wheat accessions (taken from the WAGTAIL panel) for
variation at the three marker loci. These accessions were
then phenotyped using the three-point bend test as be-
fore and any marker-trait segregation patterns assessed
statistically.
Although this analysis would ideally focus on segregat-

ing variation of the most significant SNP within the as-
sociation peak, the development of genome-specific
marker assays for two of the targeted loci
(B_comp6657_c0_seq1:3733 and For D_comp970_c0_-
seq1:1030) proved problematic (due to mixed traces in
sequencing reads). However, genome-specific marker as-
says were successfully developed for alternative, highly

Fig. 3 Variation at both the sequence (SNP) and gene expression (GEM) level show high association with MOR. Two SNP association peaks for
MOR were seen on chromosome 2D (a). The peak to the right of panel a was also identified in the GEM analysis (b). Several single GEM
associations were also detected for MOR (see single GEM at the foot of the orange line in panel b as an example). Mapping transcript abundance
(as RPKM) as a trait against the SNP data revealed the same 2D SNP peak for several single GEMs (see panel c for an example). A further SNP
association for MOR was detected on chromosome 1B (d). The positions of candidate genes are indicated by arrows. -Log10P values are plotted
in wheat pseudomolecule order. Unigene order is colour-coded according to sequence similarity to B. distachyon chromosomes (blue = Bd1;
yellow = Bd2; purple = Bd3; red = Bd4 and green = Bd5). Position of candidate genes are indicated by arrows
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Part 4: The figure.

Why use a figure for 
this result?

Why use arrows in 
the figure?

What is good or bad 
about the figure 
legend?



Practice at explaining results, using the 
yeast data:

Hypothesis or question:
Are the two gene expression measures 
consistent?

Test/analysis: discuss how to explain this

Result: discuss how to explain this

Interpretation: discuss how to explain this
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Explaining results: the exercise
#load the yeast data
load("fission_yeast_data.10-Feb-2020.Rda")
#or load from the previous sessions

#make a plot, using two log scales
plot(

log10(gene$mRNA_copies_per_cell),
log10(gene$gene.expression.RPKM)

)
#check the correlation
cor.test(

gene$mRNA_copies_per_cell,
gene$gene.expression.RPKM,

method=“spearman”
)
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Summary: the question(s)

Think about this before you start analysing data!

The big question: what are you trying to find out?

What organism?
What process?

What data will you use?
How will you analyse that data?
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Summary: introduction = background

The introduction sets the scene:

• Gives the broad context (eg: Brassica napus is, 
glucosinolates are).

• Explains what is known already (with references).
• Explains what you want to find out.
• May explain the method, very briefly.
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Summary: results are important!

The results are the MOST IMPORTANT PART.

Each results and discussion section should contain:

1. A hypothesis or question
2. An experiment or a test
3. A description of results: a plot can help!
4. Interpretations, if any.
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Summary: the conclusion

The conclusion should briefly reiterate the 
major findings of your study.

• It should tell us what you found.
• It should be short (don’t ramble).
• It should mention caveats or limitations.
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Summary: advice

1. Read these

2. Talk to us about your project plan.

3. Do NOT leave it to the last minute!
Finish it three days before.
Have a rest.
Re-read and correct your grammar and spelling errors.


