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Summary (same as abstract)

Data on absolute molecule numbers will empower .

the modeling, understanding, and comparison of What does this part do?
cellular functions and biological systems. We quanti-

fied transcriptomes and proteomes in fission yeast

during cellular proliferation and quiescence. This i

rich resource provides the first comprehensive refer- What does this part do?
ence for all RNA and most protein concentrations in a

eukaryote under two key physiological conditions.

The integrated data set supports quantitative biology

and affords unique insights into cell regulation.

Although mRNAs are typically expressed in a narrow

range above 1 copy/cell, most long, noncoding

RNAs, except for a distinct subset, are tightly

repressed below 1 copy/cell. Cell-cycle-regulated

transcription tunes mMRNA numbers to phase- .

specific requirements but can also bring about What does this part do?
more switch-like expression. Proteins greatly exceed

mRNAs in abundance and dynamic range, and

concentrations are regulated to functional demands.

Upon transition to quiescence, the proteome

changes substantially, but, in stark contrast to

mRNAs, proteins do not uniformly decrease but

scale with cell volume.
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SUMMARY

Data on absolute molecule numbers will empower
the modeling, understanding, and comparison of
cellular functions and biological systems. We quanti-
fied transcriptomes and proteomes in fission yeast
during cellular proliferation and quiescence. This
rich resource provides the first comprehensive refer-
ence for all RNA and most protein concentrationsin a
eukaryote under two key physiological conditions.
The integrated data set supports quantitative biology
and affords unique insights into cell regulation.
Although mRNAs are typically expressed in a narrow
range above 1 copy/cell, most long, noncoding
RNAs, except for a distinct subset, are tightly
repressed below 1 copy/cell. Cell-cycle-regulated
transcription tunes mRNA numbers to phase-
specific requirements but can also bring about
more switch-like expression. Proteins greatly exceed
mRNAs in abundance and dynamic range, and
concentrations are regulated to functional demands.
Upon transition to quiescence, the proteome
changes substantially, but, in stark contrast to
mRNAs, proteins do not uniformly decrease but
scale with cell volume.

INTRODUCTION

Gene regulation is crucial to implement genomic information
and to shape properties of cells and organisms. Transcriptomes
and proteomes are dynamically tuned to the requirements of
cell volume, physiology and external factors. Although tran-
scriptomic and proteomic approaches have provided ample
data on relative expression changes between different condi-
tions, little is known about actual numbers of RNAs and proteins
within cells and how gene regulation affects these numbers.
More generally, most data in biology are qualitative or relatively
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quantitative, but ultimately many biological processes will only
be understood if investigated with absolute quantitative data
to support mathematical modeling. Other areas of science
have long appreciated the limits of relative, or compositional,
data and potential pitfalls of their naive analysis (Lovell et al.,
2011).

Insights into numbers and cell-to-cell variability of selected
mRNAs and proteins have been provided by single-cell studies
(Larson et al., 2009), but these approaches require genetic
manipulation and are not well suited for genome-scale anal-
yses. Relating mRNA to protein abundance in single cells
is challenging, with only one such study available for a
prokaryote (Taniguchi et al., 2010). Global mRNA abundance
for yeast populations have been estimated (Holstege et al.,
1998; Miura et al., 2008). There are no comparisons for cellular
concentrations of mRNAs and the emerging diversity of non-
coding RNAs.

RNA-seq now allows actual counting of RNA numbers,
offering unbiased genome-wide information on average cellular
RNA concentrations in cell populations (Ozsolak and Milos,
2011). Moreover, the global quantification of proteins has
recently become possible owing to advances in mass spectrom-
etry, giving valuable insight into the protein content of different
cells (Beck et al., 2011; Cox and Mann, 2011; Maier et al.,
2011; Nagaraj et al., 2011; Vogel and Marcotte, 2012).

Here, we combine quantitative RNA-seq and mass spec-
trometry to analyze at unprecedented detail and scale how
changes in cell physiology and volume are reflected in the
cellular concentrations of all coding and noncoding RNAs and
most proteins. We analyze two fundamental physiological
states in fission yeast: (1) proliferating cells that need to con-
stantly replenish their RNAs and proteins, and (2) postmitotic
cells that do not grow or divide owing to nitrogen limitation
and reversibly arrest in a quiescent state (Yanagida, 2009).
Although quiescent states are common, both for yeast and
for cells in the human body, most research has focused on
proliferating cells. The ability to alternate between proliferation
and quiescence is central to tissue homeostasis and renewal,
pathophysiology, and the response to life-threatening chal-
lenges (Coller, 2011). For example, quiescent lymphocytes
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and dermal fibroblasts become activated to mount immune
responses or support wound healing, respectively. Adult stem
cells also alternate between proliferating and quiescent states,
and the deregulation of either state can cause complex pathol-
ogies such as cancer (Li and Clevers, 2010).

Our integrated transcriptomic and proteomic d
parallel under highly controlled conditi in a simple model,
afford varied biological insigh d reveal key principles of
RNA and protein expression in proliferating and quiescent cells
with broad r nce for other eukaryotes. This rich resource
ides a quantitative framework toward a systems-level
nderstanding of genome regulation, and the common units of
the absolute data allow direct comparison of different biological
processes and organisms.

Results
and
discussion

Note that they use subheadings.

RESULTS AND DISCUSSION

Transcriptome and Proteome Quantification in Two
Conditions
We acquired quantitative expression data relative to absolutely
calibrated standards for transcriptomes and proteomes of
haploid fission yeast cells. For transcripts, genome-wide mea-
surements were obtained by calibrating RNA-seq data from
total RNA preparations with data on absolute cellular concen-
trations for 49 mRNAs, covering the dynamic expression range.
The overall measurement error was estimated to be ~2-fold or
less (Figure S1; Tables S1-S4 available online). Protein quantifi-
cation was performed on the same cell samples using a mass
spectrometry (MS) approach (Schmidt et al., 2011). Selected
proteotypic peptides from 39 proteins (Table S5), covering the
dynamic expression range, were used to absolutely quantify
the corresponding proteins (Tables S6 and S7). These data
were then used to translate the MS-intensities for the other
proteins into estimates of cellular concentration (Figures S2A-
S2D and S3; and Tables S8 and S9). The mean overall measure-
ment error was estimated at 2.4- and 2.7-fold for proliferating
and quiescent cells, respectively.

We quantified transcriptomes and proteomes in two distinct
physiological conditions: (1) exponentially proliferating cells in

Note how one of them gives you the main
result in one sentence.
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quiescent cells. Table S4 provides the cellular copy numbers
for RNAs and proteins in the two conditions.

Most mRNAs Are Expressed in Narrow Range above 1
Copy/Cell

In proliferating cells, we measured a total of ~41,000 mRNA
molecules/cell on average, representing ~5% of the overall
~802,000 rRNAs/cell in our samples. Protein-coding genes
produced a median of 2.4 mRNA copies/cell, ranging from
~0.01 to >810 copies (Figure 1A). Only 71 genes showed no
detectable mRNA signal, 43 of which are annotated as
“dubious” or “orphan” (Wood et al., 2012). To discuss our
findings, we distinguished three somewhat arbitrary expression
zones, set relative to the one RNA copy/cell mark (Figure 1A).
Zone 1 contained low-abundance mRNAs detected at <0.5
copies/cell. Zone 2 mRNAs were expressed at ~1 copy/cell
(0.5-2 copies), where fluctuations due to cell division or
stochastic expression will strongly affect the presence of
mRNAs in cells. Zone 3 mRNAs showed more robust expression
at >2 copies/cell. Most mMRNAs were expressed within a low
and narrow range: whereas >90% of all annotated mRNAs
(4,608/5,110) belonged to zones 2 or 3, 86.1% of these MRNAs
were present at <10 copies/cell (Figure 1A). Low overall
mRNA concentrations have also been reported for budding
yeast, which has comparable gene numbers and cell size, with
even lower estimates for median mRNA abundance (<1 copy/
cell) and total MRNA molecules/cell (Holstege et al., 1998; Miura
et al., 2008). Our findings are in line with a single-cell study of
budding yeast, where five mRNAs show 2.6-13.4 copies/cell,
with a total estimate of 60,000 mRNA molecules/cell (Zenklusen
et al., 2008).

We examined the mRNAs of the 1,273 genes essential for
growth (Kim et al., 2010), which are expected to be expressed
in proliferating cells. Nearly all essential mMRNAs were expressed
in zones 2 or 3 (98.4%; Figure 1B). This finding raises the
possibility that ~1 mRNA copy/cell defines a natural minimal
threshold for productive gene expression.

The view of ~1 mRNA copy/cell as an expression threshold
is supported by recent data from metazoa, where mRNA levels
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Results
and
discussion

and dermal fibroblasts become activated to mount immune
responses or support wound healing, respectively. Adult stem
cells also alternate between proliferating and quiescent states,
and the deregulation of either state can cause complex pathol-
ogies such as cancer (Li and Clevers, 2010).

Our integrated transcriptomic and proteomic data, acquired in
parallel under highly controlled conditions in a simple model,
afford varied biological insights and reveal key principles of
RNA and protein expression in proliferating and quiescent cells
with broad relevance for other eukaryotes. This rich resource
also provides a quantitative framework toward a systems-level
understanding of genome regulation, and the common units of
the absolute data allow direct comparison of different biological
processes and organisms.

RESULTS AND DISCUSSION

Transcriptome and Proteome Quantification in Two
Conditions
We acquired quantitative expression data relative to absolutely
calibrated standards for transcriptomes and proteomes of
haploid fission yeast cells. For transcripts, genome-wide mea-
surements were obtained by calibrating RNA-seq data from
total RNA preparations with data on absolute cellular concen-
trations for 49 mRNAs, covering the dynamic expression range.
The overall measurement error was estimated to be ~2-fold or
less (Figure S1; Tables S1-S4 available online). Protein quantifi-
cation was performed on the same cell samples using a mass
spectrometry (MS) approach (Schmidt et al., 2011). Selected
proteotypic peptides from 39 proteins (Table S5), covering the
dynamic expression range, were used to absolutely quantify
the corresponding proteins (Tables S6 and S7). These data
were then used to translate the MS-intensities for the other
proteins into estimates of cellular concentration (Figures S2A-
S2D and S3; and Tables S8 and S9). The mean overall measure-
ment error was estimated at 2.4- and 2.7-fold for proliferating
and quiescent cells, respectively.

We quantified transcriptomes and proteomes in two distinct
physiological conditions: (1) exponentially proliferating cells in

quiescent cells. Table S4 provides the cellular copy numbers
for RNAs and proteins in the two conditions.

Most mRNAs Are Expressed in Narrow Range above 1
Copy/Cell

In proliferating cells, we measured a total of ~41,000 mRNA
molecules/cell on average, representing ~5% of the overall
~802,000 rRNAs/cell in our samples. Protein-coding genes
produced a median of 2.4 mRNA copies/cell, ranging from
~0.01 to >810 copies (Figure 1A). Only 71 genes showed no
detectable mRNA signal, 43 of which are annotated as
“dubious” or “orphan” (Wood et al., 2012). To discuss our
findings, we distinguished three somewhat arbitrary expression
zones, set relative to the one RNA copy/cell mark (Figure 1A).
Zone 1 contained low-abundance mRNAs detected at <0.5
copies/cell. Zone 2 mRNAs were expressed at ~1 copy/cell
(0.5-2 copies), where fluctuations due to cell division or
stochastic expression will strongly affect the presence of
mRNAs in cells. Zone 3 mRNAs showed more robust expression
at >2 copies/cell. Most mMRNAs were expressed within a low
and narrow range: whereas >90% of all annotated mRNAs
(4,608/5,110) belonged to zones 2 or 3, 86.1% of these MRNAs
were present at <10 copies/cell (Figure 1A). Low overall
mRNA concentrations have also been reported for budding
yeast, which has comparable gene numbers and cell size, with
even lower estimates for median mRNA abundance (<1 copy/
cell) and total MRNA molecules/cell (Holstege et al., 1998; Miura
et al., 2008). Our findings are in line with a single-cell study of
budding yeast, where five mRNAs show 2.6-13.4 copies/cell,
with a total estimate of 60,000 mRNA molecules/cell (Zenklusen
et al., 2008).

We examined the mRNAs of the 1,273 genes essential for
growth (Kim et al., 2010), which are expected to be expressed
in proliferating cells. Nearly all essential mMRNAs were expressed
in zones 2 or 3 (98.4%; Figure 1B). This finding raises the
possibility that ~1 mRNA copy/cell defines a natural minimal
threshold for productive gene expression.

The view of ~1 mRNA copy/cell as an expression threshold
is supported by recent data from metazoa, where mRNA levels
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and dermal fibroblasts become activated to mount immune
responses or support wound healing, respectively. Adult stem
cells also alternate between proliferating and quiescent states,
and the deregulation of either state can cause complex pathol-
ogies such as cancer (Li and Clevers, 2010).

Our integrated transcriptomic and proteomic data, acquired in
parallel under highly controlled conditions in a simple model,
afford varied biological insights and reveal key principles of
RNA and protein expression in proliferating and quiescent cells
with broad relevance for other eukaryotes. This rich resource
also provides a quantitative framework toward a systems-level
understanding of genome regulation, and the common units of
the absolute data allow direct comparison of different biological
processes and organisms.

RESULTS AND DISCUSSION

Transcriptome and Proteome Quantification in Two
Conditions
We acquired quantitative expression data relative to absolutely
calibrated standards for transcriptomes and proteomes of
haploid fission yeast cells. For transcripts, genome-wide mea-
surements were obtained by calibrating RNA-seq data from
total RNA preparations with data on absolute cellular concen-
trations for 49 mRNAs, covering the dynamic expression range.
The overall measurement error was estimated to be ~2-fold or
less (Figure S1; Tables S1-S4 available online). Protein quantifi-
cation was performed on the same cell samples using a mass
spectrometry (MS) approach (Schmidt et al., 2011). Selected
proteotypic peptides from 39 proteins (Table S5), covering the
dynamic expression range, were used to absolutely quantify
the corresponding proteins (Tables S6 and S7). These data
were then used to translate the MS-intensities for the other
proteins into estimates of cellular concentration (Figures S2A-
S2D and S3; and Tables S8 and S9). The mean overall measure-
ment error was estimated at 2.4- and 2.7-fold for proliferating
and quiescent cells, respectively.

We quantified transcriptomes and proteomes in two distinct
physiological conditions: (1) exponentially proliferating cells in

quiescent cells. Table S4 provides the cellular copy numbers
for RNAs and proteins in the two conditions.

Most mRNAs Are Expressed in Narrow Range above 1
Copy/Cell

In proliferating cells, we measured a total of ~41,000 mRNA
molecules/cell on average, representing ~5% of the overall
~802,000 rRNAs/cell in our samples. Protein-coding genes
produced a median of 2.4 mRNA copies/cell, ranging from
~0.01 to >810 copies (Figure 1A). Only 71 genes showed no
detectable mRNA signal, 43 of which are annotated as
“dubious” or “orphan” (Wood et al., 2012). To discuss our
findings, we distinguished three somewhat arbitrary expression
zones, set relative to the one RNA copy/cell mark (Figure 1A).
Zone 1 contained low-abundance mRNAs detected at <0.5
copies/cell. Zone 2 mRNAs were expressed at ~1 copy/cell
(0.5-2 copies), where fluctuations due to cell division or
stochastic expression will strongly affect the presence of
mRNAs in cells. Zone 3 mRNAs showed more robust expression
at >2 copies/cell. Most mMRNAs were expressed within a low
and narrow range: whereas >90% of all annotated mRNAs
(4,608/5,110) belonged to zones 2 or 3, 86.1% of these MRNAs
were present at <10 copies/cell (Figure 1A). Low overall
mRNA concentrations have also been reported for budding
yeast, which has comparable gene numbers and cell size, with
even lower estimates for median mRNA abundance (<1 copy/
cell) and total MRNA molecules/cell (Holstege et al., 1998; Miura
et al., 2008). Our findings are in line with a single-cell study of
budding yeast, where five mRNAs show 2.6-13.4 copies/cell,
with a total estimate of 60,000 mRNA molecules/cell (Zenklusen
et al., 2008).

We examined the mRNAs of the 1,273 genes essential for
growth (Kim et al., 2010), which are expected to be expressed
in proliferating cells. Nearly all essential mMRNAs were expressed
in zones 2 or 3 (98.4%; Figure 1B). This finding raises the
possibility that ~1 mRNA copy/cell defines a natural minimal
threshold for productive gene expression.

The view of ~1 mRNA copy/cell as an expression threshold
is supported by recent data from metazoa, where mRNA levels
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Figure 3. mRNA Copy Number Changes during Cell Cycle

Peak (blue) and basal (green) mRNA abundance of cell-cycle-regulated genes
extrapolated from average data in asynchronous cultures, with 10% of cell-
cycle assumed as duration for peak expression. Data for six cell-cycle time
course experiments are indicated by clustered dots (Rustici et al., 2004). Left:
ten histone mRNAs peaking during S phase; right: mik1, mde6, and mei2
mRNAs peaking during M and G1 phases.

See also Figure S5 and Table S12.
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for stem strength characteristics in bread
wheat by Associative Transcriptomics
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sections in the abstract:
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Hypothesis or question
Experiment or test
Result(s)
Interpretations/conclusions

Abstract

Background: The current approach to reducing the tendency for wheat grown under high fertilizer conditions to
collapse (lodge) under the weight of its grain is based on reducing stem height via the introduction of Rht genes.
However, these reduce the yield of straw (itself an important commodity) and introduce other undesirable
characteristics. Identification of alternative height-control loci is therefore of key interest. In addition, the
improvement of stem mechanical strength provides a further way through which lodging can be reduced.

Results: To investigate the prospects for genetic alternatives to Rht, we assessed variation for plant height and
stem strength properties in a training genetic diversity panel of 100 wheat accessions fixed for Rht. Using mRNAseq
data derived from RNA purified from leaves, functional genotypes were developed for the panel comprising 42,066
Single Nucleotide Polymorphism (SNP) markers and 94,060 Gene Expression Markers (GEMs). In the first application
in wheat of the recently-developed method of Associative Transcriptomics, we identified associations between trait
variation and both SNPs and GEMs. Analysis of marker-trait associations revealed candidates for the causative genes
underlying the trait variation, implicating xylan acetylation and the COP9 signalosome as contributing to stem
strength and auxin in the control of the observed variation for plant height. Predictive capabilities of key markers
for stem strength were validated using a test genetic diversity panel of 30 further wheat accessions.

Conclusions: This work illustrates the power of Associative Transcriptomics for the exploration of complex traits of
high agronomic importance in wheat. The careful selection of genotypes included in the analysis, allowed for high
resolution mapping of novel trait-controlling loci in this staple crop. The use of Gene Expression markers coupled
with the more traditional sequence-based markers, provides the power required to understand the biological
context of the marker-trait associations observed. This not only adds to the wealth of knowledge that we strive to
accumulate regarding gene function and plant adaptation, but also provides breeders with the information
required to make more informed decisions regarding the potential consequences of incorporating the use of
particular markers into future breeding programmes.

Keywords: Modulus of Rupture, lodging, Associative Transcriptomics, Xylan acetylation, COP9 signalosome, Auxin
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abstract

Note how the abstract has
subsections.

Can you identify these
sections in the abstract:

1. Hypothesis or question

2. Experiment or test

3. Result(s)
4. Interpretations/conclusions

Abstract

Background: The current approach to reducing the tendency for wheat grown under high fertilizer conditions to
collapse (lodge) under the weight of its grain is based on reducing stem height via the introduction of Rht genes.
However, these reduce the yield of straw (itself an important commodity) and introduce other undesirable
characteristics. Identification of alternative height-control loci is therefore of key interest. In addition, the
improvement of stem mechanical strength provides a further way through which lodging can be reduced.

Results: To investigate the prospects for genetic alternatives to Rht, we assessed variation for plant height and
stem strength properties in a training genetic diversity panel of 100 wheat accessions fixed for Rht. Using mRNAseq
data derived from RNA purified from leaves, functional genotypes were developed for the panel comprising 42,066
Single Nucleotide Polymorphism (SNP) markers and 94,060 Gene Expression Markers (GEMs). In the first application
in wheat of the recently-developed method of Associative Transcriptomics, we identified associations between trait
variation and both SNPs and GEMs. Analysis of marker-trait associations revealed candidates for the causative genes
underlying the trait variation, implicating xylan acetylation and the COP9 signalosome as contributing to stem
strength and auxin in the control of the observed variation for plant height. Predictive capabilities of key markers
for stem strength were validated using a test genetic diversity panel of 30 further wheat accessions.

Conclusions: This work illustrates the power of Associative Transcriptomics for the exploration of complex traits of
high agronomic importance in wheat. The careful selection of genotypes included in the analysis, allowed for high
resolution mapping of novel trait-controlling loci in this staple crop. The use of Gene Expression markers coupled
with the more traditional sequence-based markers, provides the power required to understand the biological
context of the marker-trait associations observed. This not only adds to the wealth of knowledge that we strive to
accumulate regarding gene function and plant adaptation, but also provides breeders with the information
required to make more informed decisions regarding the potential consequences of incorporating the use of
particular markers into future breeding programmes.

Keywords: Modulus of Rupture, lodging, Associative Transcriptomics, Xylan acetylation, COP9 signalosome, Auxin

Big data biology: report writing Slide 12




Letter2: Miller 2016

How ¢to describe results ..

Variation for stem structural and material strength

The diversity panel of 100 wheat accessions was analysed
for a range of traits indicative of stem structural and ma-
- - - terial strength. With the exception of second moment of
L] area, significant variation was present for all traits in-
Part 1 = th Is SeCtlon descrl bes' cluded in the analysis (P <0.05) (Additional file 1). The
absolute strength traits Fmax and F/V showed respective
trait ranges of 7.45-38.55 and 29.82-80.44 N/s. The
wheat accession displaying highest stem absolute
strength (for both Fmax and F/V) was Orlando. The
lowest trait values were seen in Battalion and Escorial
for F/V and Fmax respectively. For the material strength
traits, MOR and MOE, respective trait ranges of 0.70—
8.05 and 121.6-1490.3 Nmm > were recorded. Of the
wheat accessions screened, Gatsby exhibited the lowest
trait values for both MOE and MOR. Accessions display-
ing the highest material strength were Alba (for MOR)
and Cordiale (for MOE). A wide range of variation was
also observed for the various stem structural traits
assessed. For example, mean stem hollow area ranged
from 1.16 mm? (for Capelle-Desprez) and 6.51 mm? (for
Starke2). For outer cortex thickness, trait means ranging
between 0.24 mm (as seen for Hyperion) and 0.46 mm
(as seen for Alba) were recorded. For plant height, des-
pite a lack of segregation at the Rkt loci, a trait range of
42.8-98.4 cm was recorded. The tallest accession in-
cluded within the panel was Steadfast whereas the short-

est stem measurements were recorded for Equinox.
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How ¢to describe result¢s

A correlation analysis was performed to analyse the re-
lationships between the absolute strength and the struc-
tural and morphological traits to assess which may be
good breeding targets (Table 1). Several highly signifi-
cant (P <0.001) relationships were detected between the

Part 2: what does this section do?

Why did we need part 1?
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absolute strength measures (Fmax and F/V) and the
structural traits, however, despite such high statistical
significance, in the majority of cases, the amount of vari-
ation in stem absolute strength explained by stem struc-
ture was found to be modest. Stem parenchyma area
(R*=0.27 and 0.17 for Fmax and F/V respectively) and
outer cortex thickness (R*=0.19 and 0.13 for Fmax and
F/V respectively) show the closest positive relationships
with absolute strength. These traits may therefore be the
most promising targets for the improvement of stem
structural strength in wheat. In contrast to the modest
contributions made by stem geometry, a much closer
correlation is seen between the absolute strength mea-
sures and stem weight (R? = 0.42 and 0.47 for Fmax and
F/V respectively). These correlations may represent a
combined effect of several different stem structural com-
ponents (each contributing to weight) or may more spe-
cifically relate to the density of the materials that make
up the plant stem. Plant height also correlates positively
with stem absolute strength (R* = 0.21 and 0.25 for Fmax
and F/V respectively).

The lack of strong correlations observed between stem
structure and absolute strength may suggest that stem
material properties are of high value for the improve-
ment of stem mechanical strength in wheat. Consistent
with this, the relationship between the field-based meas-
ure of stem lodging risk (utilising the pulley system illus-
trated in Fig. 1c) and the absolute and material strength
traits, showed a stronger correlation for the material
strength trait Modulus of Rupture (MOR; R? of 0.41, P
<0.001) in comparison to absolute strength traits such
as Fmax (R? of 0.27, P < 0.001) (Additional file 4).
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Associative Transcriptomics for plant height

In order to identify loci controlling plant height, AT was
conducted using the functional genotypes scored and
the plant height trait data obtained. Additional file 6
summarises the results obtained. Two major association
peaks were identified: one on chromosome 6A and the
other on 5B, each exhibiting SNP and GEM associations
(Fig. 2). To identify candidates for the causative genes
for control of the trait underlying the association peaks,

Identify these parts:

1

2
3
4

Hypothesis or question
Experiment or test
Results
Interpretations, if any

the sequence similarities of unigenes to gene models in
Brachypodium, Sorghum, rice and Arabidopsis were
used as a guide to gene function. This revealed that the
gene corresponding to the highest significance GEM on
6A is an orthologue of a rice Auxin Response Factor

NB: This section runs through
this pattern twice (sort of).
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iller 2016

(OsARF16, 0s02g41800; Panel a). The peak found on
chromosome 5B coincided with a cluster of SMALL
AUXIN UP RNA (SAUR) genes, with high significance
GEMs occurring in three of the unigenes with BLAST
identity to SAUR genes (Panel b). Although these loci
have not been implicated previously in the control of
plant height in wheat, the genes identified are excellent
candidates for controlling this trait: ARFs are transcrip-
tion factors that bind specifically to auxin response ele-
ments (AuxREs) found in the promoters of early auxin
response genes such as the large family of SAUR genes,
and mediate their response to auxin [20]. In wheat, we
found that the GEM for the ARF on 6A had a positive
correlation with stem height. These results suggest that
this Auxin Response Factor may have a developmental
role in wheat. Although the actual function of the
SAURs is not known, it has been reported that some
have an important role in control of cell expansion and
patterning [21]. On closer inspection of their sequence
similarities, the SAUR genes in the region of 5B are pu-
tative orthologues of some of the members of a cluster
of 17 SAURs found on rice chromosome 9 (OsSAUR39-
55) and an orthologous cluster can also be found on
Arabidopsis chromosome 1 (AtSAUR61-68) [22]. In rice,
OsSAUR39 has been found to negatively regulate auxin
synthesis and transport, leading to reduced growth phe-
notypes when over-expressed [23]. Our observation that
all of the highly associated SAURs in this cluster exhib-
ited gene expression that was negatively correlated with
height is concordant with this.
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Associative Transcriptomics for plant height

In order to identify loci controlling plant height] AT was

conducted using the functional genotypes scored and
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other on 5B, each exhibiting SNP and GEM associations

(Fig. 2). [To identify candidates for the causative genes
for control of the trait underlying the association peaks,

Identify these parts:

1

2
3
4

Hypothesis or question
Experiment or test
Results
Interpretations, if any

the sequence similarities of unigenes to gene models in
Brachypodium, Sorghum, rice and Arabidopsis were
used as a guide to gene function. This revealed that the
gene corresponding to the highest significance GEM on
6A is an orthologue of a rice Auxin Response Factor

Big data biology: report writing

iller 2016

(OsARF16, 0s02g41800; Panel a). The peak found on
chromosome 5B coincided with a cluster of SMALL
AUXIN UP RNA (SAUR) genes, with high significance
GEMs occurring in three of the unigenes with BLAST
identity to SAUR genes (Panel b). Although these loci
have not been implicated previously in the control of
plant height in wheat, the genes identified are excellent
candidates for controlling this trait: ARFs are transcrip-
tion factors that bind specifically to auxin response ele-
ments (AuxREs) found in the promoters of early auxin
response genes such as the large family of SAUR genes,
and mediate their response to auxin [20]. In wheat, we
found that the GEM for the ARF on 6A had a positive
correlation with stem height. These results suggest that
this Auxin Response Factor may have a developmental
role in wheat. Although the actual function of the
SAURs is not known, it has been reported that some
have an important role in control of cell expansion and
patterning [21]. On closer inspection of their sequence
similarities, the SAUR genes in the region of 5B are pu-
tative orthologues of some of the members of a cluster
of 17 SAURs found on rice chromosome 9 (OsSAUR39-
55) and an orthologous cluster can also be found on
Arabidopsis chromosome 1 (AtSAUR61-68) [22]. In rice,
OsSAUR39 has been found to negatively regulate auxin
synthesis and transport, leading to reduced growth phe-
notypes when over-expressed [23]. Our observation that
all of the highly associated SAURs in this cluster exhib-
ited gene expression that was negatively correlated with
height is concordant with this.
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Letter2: Miller 2016

Part 4: The figure. e e —
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Why use a figure for
this result?

&

o - 4‘('33:::::.0. o :3.°f.;

GDSL-like Lipase/Acylhydrolase

b d 1BSNP !
Why use arrows in . i §
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the figure~ : -1 xdhobl

Wh t - d b d Fig. 3 Variation at both the sequence (SNP) and gene expression (GEM) level show high association with MOR. Two SNP association peaks for
a Is g Oo o r a MOR were seen on chromosome 2D (a). The peak to the right of panel a was also identified in the GEM analysis (b). Several single GEM
associations were also detected for MOR (see single GEM at the foot of the orange line in panel b as an example). Mapping transcript abundanc

a bo ut th e fi g u re (as RPKM) as a trait against the SNP data revealed the same 2D SNP peak for several single GEMs (see panel ¢ for an example). A further SNP

association for MOR was detected on chromosome 1B (d). The positions of candidate genes are indicated by arrows. -Log10P values are plotted
in wheat pseudomolecule order. Unigene order is colour-coded according to sequence similarity to B. distachyon chromosomes (blue =Bd1;

I eg e n d ? yellow =Bd2; purple = Bd3; red = Bd4 and green = Bd5). Position of candidate genes are indicated by arrows
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Explaining result¢s: the exercise

Practice at explaining results, using the
yeast data:

Hypothesis or question:

Are the two gene expression measures
consistent?

Test/analysis: discuss how to explain this

Result: discuss how to explain this

Interpretation: discuss how to explain this

Big data biology: report writing

#load the yeast data
load("fission yeast data.l0-Feb-2020.Rda")
#or load from the previous sessions

#make a plot, using two log scales

plot(
logl0(gene$SmRNA copies per cell),
logl0(geneS$gene.expression.RPKM)

)

#check the correlation

cor.test(
gene$SmRNA copies per cell,
gene$gene.expression.RPKM,

method="spearman”

)
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Summary: the question(s)

The big question: what are you trying to find out?

What organism?
What process?
What data will you use?
How will you analyse that data?

Think about this before you start analysing data!
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Summary: introduction = background

The introduction sets the scene:

* Gives the broad context (eg: Brassica napus is,
glucosinolates are).

« Explains what is known already (with references).

« Explains what you want to find out.

* May explain the method, very briefly.
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Summary: result¢s are important?

The results are the MOST IMPORTANT PART.
Each results and discussion section should contain:

1. A hypothesis or question

2. An experiment or a test

3. A description of results: a plot can help!
4. Interpretations, if any.
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Summary: the conclusion

The conclusion should briefly reiterate the
major findings of your study.

It should tell us what you found.
It should be short (don’t ramble).
* |t should mention caveats or limitations.
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Summary: advice

Welcome to Big Data Biology (BIO00047I)
Quick links: Module synopsis | VLE Site | List of staff NQescription of the data | Report Guide 1 L Read these

The assessement

The assessment for this module is a report describing an analysis of data (maximum 1500 words). A description of what we want to see, and how
we will mark the report is here

The assessment deadline is: Thursday 16th of April 2020 at 11am

2. Talk to us about your project plan.

3. Do NOT leave it to the last minute!

Finish it three days before.
Have a rest.

Re-read and correct your grammar and spelling errors.

Big data biology: report writing Slide 23



