
What do the rest of those lines do? The second line creates a figure to hold the
histogram, the third plots the histogram, but it isn’t displayed until you can plt.show().

This should remind you of the first histogram you did with Dan in the distant past before
you were a data scientist. Anyway, it looks horrible, for the same reasons that it did in R,
because all of the data us bunched up at the left edge of the graph, and the way to sort it
out is the same: log transform the data. Let’s do that with the numpy module. Change
the hist line to be

plt.hist(np.log10(protein_data[“gene.expression.RPKM”]))

Then run it again. Did it crash with lots of error messages in the IPython console? Mine
did. If you remember back to doing this before it all worked perfectly, and you get a new
plot. So, what happened. If you look through the messages, you might see the text “-
inf”, somewhere in there, and this is the clue. It must the the transformation of the data
using the np.log10 that is the problem, since it worked before. You might remember
that log10(0) is actually -infinity and that’s what has happened here. Some of those
“gene.expression.RPKM” values are zero or missing, and Python (well matplotlib) is telling
us it doesn’t want to plot them.

So, why does it work in R? Because R is designed to make life simple and will handle
cases like this and not even let you know it has done it. With Python we need to explicitly
handle this case. How do we do that? We just select again on the protein_data data
frame like this:

protein_data = protein_data[protein_data[‘gene.expression.RPKM’] != 0]

before the plt.hist command, and if you run it again, it should now produce this:

�

Now at least it didn’t crash, but it doesn’t have any of the annotation that R provides by
default. Again, this is because Python expects you to be explicit about what you want.
Fortunately, it’s easy to do. Add these lines, to add a title, and x- and y-axis labels.

plt.title("Histogram of RPKM values")
plt.xlabel("log(RPKM)")
plt.ylabel("Frequency")

just before the plt.show().

