
Submitted to:
DCM 2023

© Federico Vastarini, Detlef Plump
This work is licensed under the
Creative Commons Attribution License.

Random Graph Generation in
Context-Free Graph Languages

Federico Vastarini
University of York

York, UK
federico.vastarini@york.ac.uk

Detlef Plump
University of York

York, UK
detlef.plump@york.ac.uk

We present a method for generating random hypergraphs in context-free hypergraph languages. It is
obtained by adapting Mairson’s generation algorithm for context-free string grammars to the setting
of hyperedge replacement grammars. Our main results are that for non-ambiguous hyperedge re-
placement grammars, the method generates hypergraphs uniformly at random and in quadratic time.
We illustrate our approach by a running example of a hyperedge replacement grammar generating
term graphs.

1 Introduction

We present a novel approach to the generation of random hypergraphs in user-specified domains. Our
approach extends a method of Mairson for generating strings in context-free languages [11] to the set-
ting of context-free hypergraph languages specified by hyperedge replacement grammars. Generating
(or “sampling") graphs and hypergraphs according to a given probability distributions is a problem that
finds application in testing algorithms and programs working on graphs. Molecular biology and cryp-
tography are two fields of potential application where our methods could find a concrete use besides
the mere software testing. In [9] Kajino presents a novel approach for the representation of molecules
through hypergraphs. Specifically adapting our method to this setting would provide an instrument for
the exploration of new compounds in the field of molecular biology. The uniformity of the distribution
of our method is a fundamental requirement for the development of cryptographic protocols. In [6] and
[12] we may find some useful insights on how to model graph based algorithms in that domain. In the
setting of hyperedge replacement grammars, we believe that there is an opportunity for the development
of one-way functions.

Our generation algorithm uses as input a hyperedge replacement grammar in Chomsky normal form
[2] and a positive integer n. The former specifies the hypergraph language to sample from, the latter
the size of the hypergraph to be generated. The algorithm then chooses a hypergraph at random from
the slice of the language consisting of all members of size n. We show that if the grammar is non-
ambiguous, the generated samples are uniformly distributed. The only requirements for our method are
that the properties sought for the generated hypergraphs are representable by a hyperedge replacement
language and that, to guarantee a uniform distribution, a non-ambiguous grammar is used as input.

We also show that our method generates a random hypergraph of size n in time O(n2). This is the
same time bound established by Mairson (for the first method) in the setting of random string generation
in context-free languages.

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 Random Graph Generation in Context-Free Graph Languages

2 Hyperedge Replacement Grammars

This section gives a concise overview of the definitions needed to understand the generation process. We
also introduce our running example of a language of term graphs specified by hyperedge replacement.
For comprehensive treatments of the theory of hyperedge replacement grammars and languages, we refer
to Courcelle [3], Drewes et al. [4] and Engelfriet [5].

Let type : C→ N0 be a typing function for a fixed set of labels C, then a hypergraph over C is a
tuple H = (VH ,EH ,attH , labH ,extH) where VH is a finite set of vertices, EH is a finite set of hyperedges,
attH : EH → V ∗H is a mapping assigning a sequence of attachment nodes to each e ∈ EH , labH : EH →C
is a function that maps each hyperedge to a label such that type(labH(e)) = |attH(e)|, extH ∈ V ∗H is a
sequence of pairwise distinct external nodes (Figure 1). The class of all hypergraphs over C is denoted
by HC.

1

2 3

1

2

3

1
2

3

1
2

3

1

1

+

∗

1

∗

+

1

Figure 1: A term graph

We write type(H) for |extH | and call H an n-hypergraph if type(H) = n. The length of the sequence
of attachments |attH(e)| is the type of e. Hyperedge e is an m-hyperedge if type(lab(e)) = m. We also
write type(e) = m if the context is clear. If an n-hypergraph has exactly 1 hyperedge and all its nodes are
external, that is EH = {e} and |VH |= n, it is called the handle induced by e and denoted by Ie. Moreover
if type(e) = n and extH = att(e) such a hypergraph is called the handle induced by A and denoted by A•.
We write attH(e)i for the ith attachment node of e ∈ EH and extH,i for the ith external node of H. The set
EX

H = {e ∈ E | labH(e) ∈ X} is the subset of EH with labels in X ⊆C. We define |H|= |VH |+ |EH | as the
size of H and we call H a size-n-hypergraph if |H|= n.

Figure 1 shows a term graph, a form of acyclic hypergraphs that represent functional expressions
with possibly shared subexpressions. (See [13] for an introduction to the area of term graph rewriting.)
Grey boxes represent hyperedges labelled with the function symbols ∗, + and 1, while nodes are drawn
as black bullets. Lines connect hyperedges with their attachment nodes, whose position in the attachment
sequence is given by small numbers.

Two hypergraphs H,H ′ ∈ HC are isomorphic, denoted H ∼= H ′, if there are bijective mappings
hV : VH → VH ′ and hE : EH → EH ′ such that h∗V (attH(e)) = attH ′(hE(e)) and labH(e) = labH ′(hE(e))
for each e ∈ EH and h∗V (extH) = extH ′ . Two isomorphic hypergraphs are considered to be the same. A
hypergraph H is a subgraph of H ′, denoted as H ⊆ H ′ if VH ⊆VH ′ and EH ⊆ EH ′ .

Hypergraphs are generated by replacement operations. Let H ∈HC and B ⊆ EH and let repl : B→
HC be a mapping with type(repl(e)) = type(e) for each e ∈ B. Then the replacement of the hyperedges
in B with respect to repl(e) is defined by the operations: remove the subset B of hyperedges from EH ; for
each e ∈ B, disjointly add the vertices and the hyperedges of repl(e); for each e ∈ B and 1≤ i≤ type(e),
fuse the ith external node extrepl(e),i with the ith attachment node attB(e)i.

Federico Vastarini, Detlef Plump 3

We denote the resulting hypergraph by H[e1/R1, . . . ,en/Rn], where B = {e1, . . . ,en} and repl(ei) = Ri

for 1≤ i≤ n, or H[repl]. The replacement preserves the external nodes, thus extH[repl] = extH .
Given the subsets Σ,N ⊆C used as terminal and non-terminal labels, with Σ∩N = /0, we denote EΣ

H
and EN

H respectively the subsets of terminal and non-terminal hyperedges of H.
The replacements applied during the generation are defined in productions: p= (A,R) is a production

over N, where lhs(p)=A∈N is the label of the replaced hyperedge and rhs(p)=R∈HC is a hypergraph
with type(R) = type(A). If |extR|= |VR| and ER = /0, then p is said to be empty.

Let H ∈HC and let p = (lab(e),R), with e ∈ EH , then a direct derivation H ⇒p H ′ is obtained by
the replacement H ′ = H[e/R].

A sequence d of direct derivations H0⇒p1 · · · ⇒pk Hk of length k with (p1, . . . , pk) ∈ P is denoted as
H⇒k Hk or H⇒∗P Hk if the length is not relevant. We denote it as H⇒∗ Hk if the sequence is clear from
the context.

A derivation H⇒∗ H ′ of length 0 is given if H ∼= H ′.
Given an ordered set {α1, . . . ,αn} where ai < a j if i < j ∈ N we define a hyperedge replacement

grammar, or HRG as a tuple G = (N,Σ,P,S,(markp)p∈P) where N ⊆ C is a finite set of non-terminal
labels, Σ ⊆ C is a finite set of terminal labels with N ∩Σ = /0, P is a finite set of productions, S ∈ N is
the starting symbol, (markp)p∈P is a family of functions markp : ER→{α1, . . . ,αn} assigning a mark to
each hyperedge in the right-hand side of a production p (Figure 2). For each pair ei,e j ∈ ER with i ̸= j,
mark(ei) ̸= mark(e j).

We denote as PA ⊆ P the subset of productions where lhs(p) = A. We call a production p = (A,R) ∈
PN ⊆ P non-terminal if EN

R ̸= /0 or terminal if p = (A,R) ∈ PΣ = P\PN .

A ::=
1

2 3

1 1B
α2 A

α3

A
α1

1

P1

1
2 3

1

B
α1

A
α2

1

P2

1

1

1

P3

B ::=

1
2

31
2

3

B
α1B

α2

1

2 3

P4

1

2

3

1

2

3
B
α1 B

α2

1

2 3

P5

1
2 3

+

1

2 3

P6

1
2 3∗

1

2 3

P7

Figure 2: An ambiguous hyperedge replacement grammar for term graphs

The marking of the hyperedges in the rhs of each production, represents the order in which the
replacements are carried out (α1,α2, . . . ,αn−1,αn). It allows for the definitions of ordered derivation tree
and leftmost derivation.

Given a set of productions P, we denote by TP the set of all ordered trees over P which is inductively
defined as follows: for each p ∈ P, p ∈ TP; for t1, . . . , tn ∈ TP and p ∈ P, p(t1, . . . , tn) ∈ TP.

Then, given an HRG G, an ordered derivation tree t for e such that lab(e) = X ∈ N, is a tree
p(tα1 , . . . , tαn) in TP, such that p = (X ,R) is a production in P, and tα1 , . . . , tαn are derivation trees for
e1 . . .en, such that X1 . . .Xn are the labels of the non-terminal hyperedges in R marked with α1 . . .αn,
respectively (Figure 11).

We define the yield of an ordered derivation tree t, denoted with yield(t), as the sequence of replace-
ments: yield(p(tα1 , . . . , tαn)) = rhs(p)[e1/yield(tα1), . . . ,en/yield(tαn)].

Let t be an ordered derivation tree for a hypergraph H obtained from a derivation d = S•⇒∗P H and
trav(t) its pre-ordered visit. Then d is said to be a leftmost derivation, denoted as lmd(H), if and only if
the order of the applied productions of d corresponds to trav(t).

Since we need a measure to ensure the termination of the proposed algorithm, we define an HRG

4 Random Graph Generation in Context-Free Graph Languages

to be non-contracting if for each direct derivation H ⇒p H ′, |H| ≤ |H ′|. We call a grammar essentially
non-contracting if there exists p = (S,R) ∈ P such that p is the empty production.

The hyperedge replacement language (HRL) generated by an HRG is the set L(G) = {H ∈HΣ |
S• ⇒∗P H}. We define for each A ∈ N, LA(G) = {H ∈ HΣ | A• ⇒∗P H}. We also define for n ∈ N,
LA

n (G) = {H ∈HΣ | A•⇒∗P H ∧|H|= n}. Clearly LA
n (G)⊆ LA(G). We denote as |LA

n | the size of the set
of all size-n-hypergraphs in L that can be derived from A•.

For example, the hyperedge replacement grammar in Figure 2 generates the class of all term graphs
with function symbols in {∗,+,1}. Note that hyperedges with non-terminal labels are depicted as white
boxes. A derivation with the Chomsky normal form version of this grammar is given in Figure 10.

We define a grammar G to be ambiguous if there are ordered derivation trees t1, t2 ∈ TP, such that
t1 ̸= t2 and yield(t1) ∼= yield(t2), or equivalently, if there exist H,H ′ ∈ L(G) such that H ∼= H ′ and
lmd(H) ̸= lmd(H ′). If yield(t1),yield(t2) ∈ Ln(G) we say that G is n-ambiguous. A non-ambiguous
version of the term graphs grammar is given in Figure 3.

A ::=
1

2 3

1 1B
α2 A

α3

A
α1

1

P1

1
2 3

1

B
α1

A
α2

1

P2

1

1

1

P3

B ::=

1
2

31
2

3

D
α1B

α2

1

2 3

P4

1

2

3

1

2

3
D
α1 B

α2

1

2 3

P5

1
2 3

+

1

2 3

P6

1
2 3∗

1

2 3

P7

D ::=
1

2 3
+

1

2 3

P8

1
2 3∗

1

2 3

P9

Figure 3: A non-ambiguous hyperedge replacement grammar for term graphs

3 Random hypergraph generation

In 1994, Mairson proposed a pair of methods for the sampling of strings from context-free grammars
[11] . His approach requires, as input, a grammar G in Chomsky normal form and the length n of the
word to be generated. He proves that, if G is non-ambiguous, such a word is generated uniformly at
random. The first method has a time complexity of O(n2) while requiring O(n) space, and vice versa, the
second method runs in linear time using quadratic space. In the following we adapt the first of Mairson’s
methods to hyperedge replacement grammars. We use our running example of a term graph language to
illustrate the generation process.

We define a Chomsky normal form (CNF) for hyperedge replacement grammars as a tuple GCNF =
(N,Σ,P,S,(markp)p∈P) where:

• N ⊆C is a finite set of non-terminal labels
• Σ⊆C is a finite set of terminal labels with N∩Σ = /0
• P is a finite set of productions
• S ∈ N is the starting symbol

Federico Vastarini, Detlef Plump 5

• (markp)p∈P is a family of functions markp : ER→ {α,β} assigning a mark to each hyperedge in
the right-hand side of a production p

Each production p = (A,R) ∈ P satisfies one of the following constraints:

• ER = {e1,e2} where lab(e1), lab(e2)∈N and mark(e1) ̸= mark(e2), in which case the replacement
is firstly carried out on the hyperedge marked with α , then on the one marked with β

• ER = {e1} where lab(e1) ∈ Σ and mark(e1) = α

• ER = /0, |VR|> |extR|
• A = S, p is the empty production and for each q ∈ P, for each e ∈ rhs(q), lab(e) ̸= S

Note that in the first two cases, rhs(p) contains either exactly two non-terminal hyperedges or a single
terminal hyperedge and may also contain isolated nodes. Productions according to the third case are
considered as terminal productions. The last case specifies that the empty production is only allowed if
there is no other production having the starting symbol in its right-hand side. The grammar in Figure 4
is the CNF version of the term graph grammar in Figure 2.

A ::=
1

2 3

1 C
αA

β

1

P1

1
2 3

1

B
α

A
β

1

P2

1

1

1

P3

B ::=

1
2 3

1
2

3

D
αB

β

1

2 3

P4

1
2 3

1

2

3
D

α B

β

1

2 3

P5

1
2 3

+

1

2 3

P6

1
2 3∗

1

2 3

P7

C ::=
1

2 3

1B
α A

β

1

2
3

P8

D ::=
1

2 3
+

1

2 3

P9

1
2 3∗

1

2 3

P10

Figure 4: CNF of the grammar in Figure 2

Lemma 3.1. There exists an algorithm that for every hyperedge replacement grammar G produces a
grammar G′ in CNF such that L(G) = L(G′).

Proof. We present a set of rules to transform any grammar G, into an equivalent grammar G′ such that,
for each direct derivation H⇒p H ′ with p∈ PG, it exists an equivalent derivation H⇒∗Q H ′ with Q⊆ PG′ .
The proof is provided with a running example showing the application of the rules. The grammar in
Figure 5 contains productions that are not in CNF: P1 has more than 2 hyperedges; P2 has a single non-
terminal hyperedge; P3 is an empty production, but its lhs is not S; P4 has 2 hyperedges one of which is
terminal.

S ::=
1

2
3

1

23

1

2

B

B

C
1

2
P1

B ::=
1

2

C

1
2

3

P2

1

2

3

P3

C ::=
1

2

1

2
a

S

1

2

P4

1

2

c

1

2

P5

Figure 5: Starting grammar for the proof of CNF equivalence.

6 Random Graph Generation in Context-Free Graph Languages

For a production p = (A,R) ∈ P, that is not already in CNF, we consider the following set of rules,
applied in this order, to obtain a corresponding equivalent set of productions P′ in CNF:

1. If p is the empty production, for each production q = (B,X) ∈ P having e ∈ EX with lab(e) = A in
its rhs, for each production q′= (A,Y)∈P having A in its lhs we apply the substitution R′=X [e,Y]
and add the productions p = (B,R′). We then remove the productions that are no longer needed.
The proof of equivalence of the derivations H⇒q H ′⇒q′ H ′′ and H⇒p′ H ′′ is the following: if e′

with lab(e′) = B is the hyperedge involved in the derivation H ⇒q H ′ then H ′′ = H[e′/X [e/Y]] =
H[e′/R′] since R′ = X [e,Y].

S ::=
1

2

1

2

1

2

C

C

C
1

2
P6

1

2

C

1

2

P7

C ::=
1

2

1

2
a

S

1

2

P4

1

2

c

1

2

P5

Figure 6: Removal of the empty production P3.

In order to remove the empty production P3 (Fig. 6) we apply the replacements of all the produc-
tions having B as their lhs to all the productions having a hyperedge labelled as B in their rhs. We
remove P1 and introduce the productions P6 and P7. We then remove P2 and P3 since they are no
longer needed.

2. If ER = {e′} with lab(e′) ∈ N for each production q = (lab(e′),X) ∈ P we add the production
p′ = (lab(e),R′) with R′ = R[e′/X]. If ER′ = {e′′} with lab(e′′) ∈ N this step is iterated and termi-
nates when |ER′ | > 1 or ER′ = {et} with lab(et) ∈ Σ or |ER′ | = 0 and |VR′ | > extR′ . The proof of
equivalence of the derivations H⇒p H ′⇒q H ′′ and H⇒p′ H ′′ is the following: if e′ is the hyper-
edge involved in the derivation H ′⇒q H ′′ then H ′′ = H ′[e/R[e′/X]] = H[e/R′] since R′ = R[e′/X].

S ::=
1

2

1

2

1

2

C

C

C
1

2
P6

1

2

1

2
a

S

1

2

P8

1

2

c

1

2

P9

C ::=
1

2

1

2
a

S

1

2

P4

1

2

c

1

2

P5

Figure 7: Removal of production P7

Since P7 has a single non-terminal hyperedge C (Fig. 7), we apply a replacement for each produc-
tion that has C on its lhs. In our case, using the replacements of P4 and P5, we obtain P8 and P9.
The production P7 is removed from the grammar.

3. If |ER|= k > 2 we consider the subgraph X of R composed by the subset EX ⊂ ER of hyperedges
e2, . . . ,ek and their attachment nodes. We introduce a new label T so that N′ = N∪{T} and a new
handle T • of eT with ext(eT) =

⋃
2≤i≤k

att(ei) such that type(eT) = type(X). We then consider the

hypergraph R′ composed by R\X and T • where VR′ = VR\X ∪VT • and ER′ = ER\X ∪ET • . Finally
we add the productions p′ = (A,R′), p′′ = (T,X) to P′. If |EX |> 2 this step is iterated. The proof
of equivalence of the derivations H ⇒p H ′ and H ⇒∗P′ H ′ is the following: if ea is the handle

Federico Vastarini, Detlef Plump 7

S ::=
2

3

1
1

2

T

C
1

2

P10

1

2

1

2
a

S

1

2

P8

1

2

c

1

2

P9

C ::=
1

2

1

2
a

S

1

2

P4

1

2

c

1

2

P5

T ::=
1

2

1

2

C

C

1

2

3

P11

Figure 8: Removal of production P6

of the lhs of p we consider the following equivalence of the replacements then H ′ = H[ea/R] =
H[ea/R′[eT/X]] since R = R′[eT/X].
Since production P6 has three non-terminal hyperedges (Fig. 8), we create a new label T , a new
handle T • and the production P11. Then we add the production P10 so that the replacement of
the hyperedge labelled as T by the rhs of P11 results in the rhs of P6. The production P6 is then
removed from the grammar.

4. If |ER|> 1 and exists e′ ∈ER such that lab(e′)∈Σ a new label T is introduced so that N′=N∪{T}.
We add 2 new productions p′ = (A,R′) to P′ where R′ = R with lab(e′) = T and p′′ = (T,e

′•). This
step is repeated for each e′ ∈ ER with lab(e′) ∈ Σ. Due to the confluence property [3] of HRGs
the order in which the terminal hyperedges are chosen is irrelevant. The proof of equivalence of
the derivations H ⇒p H ′′ and H ⇒p′ H ′ ⇒p′′ H ′′ is the following: if e′ ∈ ER with lab(e′) ∈ Σ

is the hyperedge involved in the derivation H ⇒p H ′′ then H ′ = H[e/R] = H[e/R′[e′/e
′•]] since

R = R′[e′/e
′•].

S ::=
2

3

1
1

2

T

C
1

2

P10

1

2

1

2A

S

1

2

P8

1

2

c

1

2

P9

C ::=
1

2

1

2A

S

1

2

P4

1

2

c

1

2

P5

T ::=
1

2

1

2

C

C

1

2

3

P11

A ::=
1

2

a

1

2

P14

Figure 9: Removal of productions P8 and P4

Both rhs of productions P4 and P8 are composed by a terminal and a non-terminal hyperedge. We
introduce a new label A and a its handle A• along with the production P14 (Figure 9). We then add
the productions P12 and P13 resulting from the substitution of the terminal hyperedges labelled
with a by the non-terminal hyperedges labelled with A. Productions P4 and P8 are then removed
from the grammar.

From this point on, if not explicitly specified, we always refer to an HRG as an HRG in CNF. We
stress that the input of the method must be already provided in this form, that is, the time required for the
transformation is not taken into account during the evaluation of the time complexity.

In order to complete the adaptation of the grammar we propose a more suitable short-hand represen-
tation of the productions that only extracts the necessary information, so, for each p = (A,R) ∈ P and
i ∈ N0 we use the following notations:

• A
p−→ BC, i for a non-terminal production where B,C ∈ N are the labels of the marked hyperedges

eα ,eβ ∈ R with mark(eα) = α , mark(eβ) = β and i = |VR\extR|.

8 Random Graph Generation in Context-Free Graph Languages

• A
p−→ a, i for a terminal production where a ∈ Σ is the label of the marked hyperedge eα ∈ R and

i = |VR\extR|.
• A

p−→ λ , i for a terminal production where ER = /0 and i = |VR\extR|.

Matrix M2 (Tab. 1) shows the short-hand representation of the productions of the grammar in Figure
4. Considering a second input n as the size of the hypergraph to be generated, we are ready to describe
a pair of algorithms (Pre,Gen) for the random sampling of a hypergraph H from a grammar G. Such a
hypergraph is sampled in LA

n (G), where A ∈ N is the non-terminal we begin the sampling from. If A = S
and G is n-unambiguous, H is sampled uniformly at random among all the hypergraphs in Ln(G).

3.1 Pre-processing phase

The Pre-processing phase is used to construct a pair of matrices M1,M2 needed in the generation phase.
Let G = (N,Σ,P,S,(markp)p∈P) be an HRG, let n∈N be the size of the hypergraph H ∈ Ln(G) we would
like to generate, then the algorithm Pre (Alg. 1) produces the structures required for the generation.

Table 1: Matrices M1 and M2 resulting from Pre(G′,12)
M1 M2

N 1 2 3 4 5 6 7 8 9 10 11 12
A 1 0 2 0 14 0 92 0 616 0 3920 0
B 2 0 8 0 32 0 128 0 256 0 512 0
C 0 0 2 0 32 0 76 0 488 0 2928 0
D 2 0 0 0 0 0 0 0 0 0 0 0

P 1 2 3 4 5 6 7 8 9 10 11 12

A P1−→CA,1 0 0 0 0 2 0 16 0 128 0 992 0

A P2−→ BA,1 0 0 2 0 12 0 76 0 488 0 2928 0

B P4−→ DB,1 0 0 4 0 16 0 64 0 128 0 256 0

B P5−→ DB,1 0 0 4 0 16 0 64 0 128 0 256 0

C P8−→ BA,1 0 0 2 0 12 0 76 0 488 0 2928 0

A P3−→ 1,0 1 0 0 0 0 0 0 0 0 0 0 0

B P6−→+,0 1 0 0 0 0 0 0 0 0 0 0 0

B P7−→ ∗,0 1 0 0 0 0 0 0 0 0 0 0 0

D P9−→+,0 1 0 0 0 0 0 0 0 0 0 0 0

D P10−→ ∗,0 1 0 0 0 0 0 0 0 0 0 0 0

We begin initializing the entries of two matrices M1 = (N×N) and M2 = (P×N) to 0. Each entry
(A, ℓ) of M1, also denoted as A[ℓ], represents the number of derivations yielding a hypergraph of size ℓ+
type(A), from a non-terminal A ∈ N. Each entry (p, ℓ) of M2, also denoted as p[ℓ] represents the number
of derivations yielding a hypergraph of size ℓ+ |extR|, from a production p ∈ P. According to the type
of production they are also denoted as A

p−→ λ , i[ℓ] or A
p−→ a, i[ℓ] for terminal productions and A

p−→
BC, i[ℓ] for a non-terminal production. Considering each terminal production p ∈ PT , either yielding a
single terminal hyperedge A

p−→ a, i or at least a single isolated node A
p−→ λ , i, the corresponding M2

entry p[i+1] in the former case, or p[i] in the latter, is set to 1. Then, for each ℓ∈N in 1≤ ℓ≤ n, for each
non-terminal A ∈ N, A[ℓ] = ∑p∈PA p[ℓ] and for each production p ∈ PN , p[ℓ] = ∑0<k<ℓ B, [k] ·C[ℓ− k].

The matrices can be used to generate hypergraphs in LA(G) of size ℓ+ type(A), with 1≤ ℓ≤ n from
any non-terminal A ∈ N. If the non-terminal A is chosen before the pre-processing phase we can reduce
the size of the tables to n− type(A). Table 1 shows the result of running the algorithm Pre using the
grammar G′ in Figure 4 and a size of 12 as input.

Federico Vastarini, Detlef Plump 9

3.2 Generation phase

In the generation phase a non-terminal Ā ∈ N is chosen and a size-n̄-hypergraph H, with 1 ≤ n̄ ≤ n+
type(A), is generated using the data collected in the matrices M1, M2 and a pseudo-random number
generator RNG. The algorithm Gen (Alg. 2) describes this process.

On input Gen(G,⟨M1,M2⟩, Ā, n̄− type(A)), if Ā[n̄− type(A)] = 0 the generating algorithm fails, oth-
erwise, having Ā• as a basis, the algorithm recursively calls the function derH proceeding through the
following steps:

1. The RNG is used to choose a production p ∈ PA with probability p[ℓ]/A[ℓ].
2. If p ∈ PA

Σ
, the replacement of e, the handle of A, with the hypergraph R in rhs(p) is returned.

3. If p ∈ PA
T the RNG is used again to choose a “split" 0 < k < ℓ′ with ℓ′ = ℓ− i and probability

B[k] ·C[ℓ′− k]/A
p−→ BC, i[ℓ]. The hypergraph rhs(p)[eα/derH(B,k),eβ/derH(C, ℓ′− k)] pro-

duced by the replacement of eα with the result on the recursive function on input derH(B,k) and
the replacement of eβ with the result of the recursive function on input derH(C, ℓ′−k) is computed.
Then, the replacement of the hyperedge e, the handle of A, with the aforementioned hypergraph is
returned. We use the notation BkCℓ′−k to indicate such a split.

The derivation d = A• ⇒∗P H in Figure 10 corresponds to the sequence of replacements computed
by the recursive function derH to generate the size-12-hypergraph H in Figure 1, using non-terminal
A as input. For each step we show the probability of the production p to be chosen and the choice of
the split and its probability if p ∈ PN . Since G is non-ambiguous, the first step shows that |L12(G)| =
3920, that is, there are 3920 unique size-12-hypergraphs to choose from, each having a different ordered
derivation tree. Figure 11 shows the tree t for which yield(t) =H, so that trav(t), or equivalently lmd(H),
corresponds to the unique sequence of productions applied by the generation algorithm to produce H. In
the figure are also indicated the starting symbol A and the replaced hyperedges eα and eβ , respectively
on the edges connecting the left and right child of each node. The proof of termination of the Generation
algorithm is based on the assumption that the input grammar is non-contracting:

Algorithm 1: Pre - Pre-processing phase

Input: (G,n), where G = (N,Σ,P,S,(markp)p∈P)
and n ∈ N, n≥ 1

Output: ⟨M1,M2⟩
for 1≤ ℓ≤ n do

foreach A ∈ N do
A[ℓ] := 0;

end
foreach p ∈ P do

p[ℓ] := 0;
end

end
foreach A

p−→ a, i ∈ PΣ do
A

p−→ a, i[i+1] := 1;
end

foreach A
p−→ λ , i ∈ PΣ do

A
p−→ λ , i[i] := 1;

end
for 1≤ ℓ≤ n do

foreach A ∈ N do
foreach p ∈ PA do

A[ℓ] := A[ℓ]+ p[ℓ];
end

end
foreach A

p−→ BC, i ∈ PN do
for 1≤ k < ℓ do

A
p−→ BC, i[ℓ+ i] := A

p−→
BC, i[ℓ+ i]+B[k] ·C[ℓ− k];

end
end

end

Proof. Let’s consider a measure equivalent to the size of a hypergraph |H|. To each application of the
recursive function derH in each step of the algorithm Gen, corresponds a direct derivation between two

10 Random Graph Generation in Context-Free Graph Languages

Algorithm 2: Gen - Generation phase
Input: (G,⟨M1,M2⟩, Ā, n̄), where G = (N,Σ,P,S,(markp)p∈P), ⟨M1,M2⟩ := Pre(G,n), Ā ∈ N

and n̄ ∈ N, 1≤ n̄≤ n+ type(Ā)
Output: H ∈ LĀ

n̄ (G)

ℓ= n̄− type(Ā)
if Ā[ℓ] = 0 then

return ⊥;
end
Recursively generate H using (Ā, ℓ) as first input as follows:
function derH (A, ℓ):

p←− RNG with p ∈ PA and probability p[ℓ]/A[ℓ];
if p ∈ PT then

return A•[e/R];
else

ℓ′ = ℓ− i;
k←− RNG with 0 < k < ℓ′ and probability B[k] ·C[ℓ′− k]/(A

p−→ BC, i)[ℓ];
return A•[e/R[eα/derH(B,k),eβ/derH(C, ℓ′− k)]];

end
end function

1

A P1⇒
1

2 3

1 C

A
Step 1

P1 (992/3920)
C7A3 (152/992)

P8⇒ 1

1
2 3

1

A

B

A
Step 2

P8 (76/76)
B5A1 (32/76)

P5⇒ 1

1

2

3

1

2

3

1

A

B

A

D

Step 3
P5 (16/32)

D1B3 (16/16)

P10⇒ 1

1

2

3

1

2

3

1

A

B

A

∗

Step 4
P10 (1/2)
No split

P4⇒ 1

1

2

3

1
2

3

1
2

3

1

A

B

A

∗

D

Step 5
P4 (4/8)

D1B1 (4/4)

P9⇒ 1

1

2

3

1
2

3

1
2

3

1

A

B

A

∗

+

Step 6
P9 (1/2)
No split

P7⇒

P7⇒ 1

1

2

3

1
2

3

1
2

3

1

A

∗

A

∗

+

Step 7
P7 (1/2)
No split

P3⇒ 1

1

2

3

1
2

3

1
2

3

1

A

∗

1

∗

+

Step 8
P3 (1/1)
No split

P2⇒ 1

2 3

1

2

3

1
2

3

1
2

3

1

1

B

∗

1

∗

+

A

Step 9
P2 (2/2)

B1A1 (2/2)

P6⇒ 1

2 3

1

2

3

1
2

3

1
2

3

1

1

+

∗

1

∗

+

A

Step 10
P6 (1/2)
No split

P3⇒ 1

2 3

1

2

3

1
2

3

1
2

3

1

1

+

∗

1

∗

+

1

Step 11
P3 (1/1)
No split

Figure 10: A derivation d = A•⇒∗P H using the grammar of Figure 4

Federico Vastarini, Detlef Plump 11

sentential forms F ⇒ F ′ such that F ≤ F ′. Since the grammar is in CNF, at each step there are two
possible cases:

1. derH chooses a non-terminal production. In this case a single hyperedge e ∈ F is replaced with
a hypergraph R ⊆ F ′ containing 2 hyperedges and 0 or more internal nodes. Clearly |F | < |F ′|,
meaning that the size of the sentential forms gets progressively close to n.

2. derH chooses a terminal production. A hyperedge is replaced by a terminal hyperedge or a single
node and 0 or more additional internal nodes. In this case |F | ≤ |F ′|. Even if the size is not
incremented, being a terminal production, the recursion does not progress any further.

If it is not possible to generate a size-n-hypergraph using the input grammar G the algorithm trivially
ends in one step.

4 Uniform distribution and time complexity

We now state our first main result, the uniform generation guarantee for Algorithm 2.

Theorem 4.1. Given a grammar G = (N,Σ,P,S,(markp)p∈P), Algorithm 2 generates from every non-
terminal A ∈ N a size-n-hypergraph H ∈ LA

n (G), provided that LA
n (G) ̸= /0. If G is n-unambiguous and

RNG is a uniform random number generator, the hypergraph is chosen uniformly at random.

Proof. Let G be an n-unambiguous grammar in CNF, the recursive function derH derives a hypergraph
H ∈ LĀ

n̄ (G) simulating trav(t) where yield(t) = H and let P(c j) denote the probability of the jth choice
c made using the RNG at each step of the recursion, for a production or a split, according to lmd(H).

Let’s recall that for the parallelization, confluence and associativity properties of context-free hyper-
edge replacement grammars [3], the sequence of replacements associated to a derivation preserves the
result of the derivation, despite of the order in which the replacements are applied. Thus, we are able to
discuss each of its steps independently.

By definition, since the grammar is n-unambiguous, for any non-terminal A∈N we know that the set
of hypergraphs that can be generated using different productions p∈ PA are pairwise distinct. Otherwise,
there would exist trav(t ′) ̸= trav(t ′′) for which yield(t ′)∼= yield(t ′′).

From algorithm Pre (Alg. 1) we know that ∑p∈PA p[ℓ] = A[ℓ] and so the probability of the choice c j

of each production in lmd(H) can be expressed by P(c j) = p[ℓ]/A[ℓ]. Also, if p ∈ PN , since the grammar
is n-unambiguous the subsets of hypergraphs that can be derived by choosing different splits are also
pairwise distinct. For a production p ∈ PN then ∑0<k<ℓ B[k] ·C[ℓ′− k] = A

p−→ BC, i[ℓ], thus a split can
be chosen with probability P(c j) = B[k] ·C[ℓ′− k]/p[ℓ].

Knowing that for an lmd, if the grammar is n-unambiguous, both the choices of productions and
splits are made from independent sets, considering the corresponding derivation tree t, the probabilities
associated to the choice of a node P(c) and the ones associated to its children P(c′) and P(c′′) are of the
form m

q , m′
q′ and m′′

q′′ with m,m′,m′′,q,q′,q′′ ∈ N and q′q′′ = m. Moreover, the probabilities of two con-
secutive choices P(c) and P(c′) are bound to the law of compound probabilities [10], that is, the choice
of a node given the choice of its parent is of the form P(c′|c) = P(c′∩ c)/P(c). Then, considering their
independence, P(c′|c) = (P(c′)P(c))/P(c) = P(c′). The same applies for P(c′′). The overall probability
of the choice of a node and its children is then P(c)P(c′)P(c′′) = m

q
m′
q′

m′′
q′′ =

m′m′′
q .

Finally, considering the chain of probabilities described by an lmd, since for Ā q = |Ln̄(G)| and for
each terminal production p ∈ PΣ m = 1, then for each H ∈ Ln̄(G) we can define its probability P(H) to
be generated as the productory of independent choices:

12 Random Graph Generation in Context-Free Graph Languages

P(H) =
k

∏
j=1

P(c j) =
m1

|Ln̄(G)|
· m2

q2
· mk−1

qk−1
. . .

1
qk

=
1

|Ln̄(G)|

Each hypergraph H ∈ Ln̄(G) is generated over a uniform distribution given the uniformity of the
sampling of the underlying RNG.

For the complexity analysis we consider the time required by the algorithm Gen (Alg. 2) for the
generation of the hypergraph and the space required by the algorithm Pre (Alg. 1) to store the required
data, taking into account that the input grammar is already provided in the correct CNF and the query to
the RNG and the replacement operations are performed in unit time. The gaps present in the tables, that
are not encountered in string method, are due to the possibility of a production to increase the size of the
resulting hypergraph by more than 1 in a single step.

Theorem 4.2. With the assumptions of Theorem 4.1, the size-n-hypergraph H is generated by Gen (Alg.
2) in time O(n2).

Proof. The proof of Theorem 4.2 is based on the analysis of the following recurrence relation for the
function derH: T (n) ≤ cn+ max

1≤k<(n−i)
[T (k)+T (n− k− i)], where T (k) and T (n− k− i) are the com-

putational steps required to process the result of the split and i is the number of internal nodes of the
current production. In the worst case, we consider that i = 0 and that k = 1. A simple example is the
discrete hypergraph language in which every iteration may generate a terminal hyperedge from eα and
the rest of the resulting hypergraph from eβ without adding any node. Since the choice of the production
is constant, while the choice of a split is linear in n, choosing a split n times leads to a quadratic behavior.

Since i≪ n, we may rewrite the recursion as:

T (n)≤ cn+ max
1≤k<n

[T (k)+T (n− k)]

Then, considering the worst case k = 1, for the next step of the recursion we obtain:

T (n−1)≤ c(n−1)+ max
1≤k<(n−1)

[T (k)+T (n− k−1)]

That is, at each step the choice of a split happens on an input of size n−1. Since this choice requires
linear time and it is taken n times, the relation has solution O(n2).

We omit a discussion of the time complexity of the pre-processing phase (Alg. 1) which can be
shown to be linear, considering that given a grammar G in CNF, being its size |G| constant, for each
production p a short form containing the information about the labels and the internal nodes is obtained
in constant time.

5 Conclusion

Our main results, presented in Section 4, are that the method generates hypergraphs uniformly at random
and in quadratic time. A topic for future work is to design an alternative generation algorithm that runs
in linear time and quadratic space, following Mairson’s second method in [11].

Federico Vastarini, Detlef Plump 13

C A

B A B A

D B

D B

P1

P8 P2

P5 P3 P6 P3

P10 P4

P9 P7

A

Figure 11: Ordered tree t for the derivation d in Figure 10

Another interesting topic is to extend the quasi-polynomial-time approximation algorithm of Gore
et al. [7] from strings to hypergraphs. This algorithm guarantees an approximated uniform distribution
even for ambiguous grammars.

Our method allows to generate strings uniformly at random in some non-context-free string lan-
guages because hyperedge replacement grammars can specify certain string graph languages that are not
context-free. For example, this applies to the language {anbncn | n ≥ 0}. Moreover, our method is able
to generate strings uniformly at random for a range of inherently ambiguous context-free languages.

The practically most promising application of our generation approach is the testing of programs in
arbitrary programming languages that work on graphs. If the inputs of such programs are graphs in a
context-free graph language, our method can generate test graphs uniformly at random in the domain of
interest. This should allow to refine random testing approaches such as [1, 8].

References

[1] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. Tse. Adaptive random testing: The art of test case
diversity. Journal of Systems and Software, 83(1):60–66, 2010. doi: 10.1016/j.jss.2009.02.022.

[2] N. Chomsky. On certain formal properties of grammars. Information and Control, 2(2):137–167,
1959. doi: 10.1016/S0019-9958(59)90362-6.

[3] B. Courcelle. An axiomatic definition of context-free rewriting and its application to NLC graph
grammars. Theoretical Computer Science, 55(2):141–181, 1987. doi: 10.1016/0304-3975(87)
90102-2.

[4] F. Drewes, A. Habel, and H.-J. Kreowski. Hyperedge replacement graph grammars. In Handbook
of Graph Grammars and Computing by Graph Transformation, volume 1, pages 95–162. World
Scientific, 1997. doi: 10.1142/3303.

[5] J. Engelfriet. Context-free graph grammars. In Handbook of Formal Languages, volume 3, pages
125–213. Springer, 1997. doi: 10.1007/978-3-642-59126-6_3.

[6] O. Goldreich. Candidate one-way functions based on expander graphs. In Studies in Complexity
and Cryptography. Miscellanea on the Interplay between Randomness and Computation, pages
76–87. Springer, 2011. doi: 10.1007/978-3-642-22670-0_10.

14 Random Graph Generation in Context-Free Graph Languages

[7] V. Gore, M. Jerrum, S. Kannan, Z. Sweedyk, and S. Mahaney. A quasi-polynomial-time algorithm
for sampling words from a context-free language. Information and Computation, 134(1):59–74,
1997. doi: 10.1006/inco.1997.2621.

[8] R. Hamlet. Random testing. In Encyclopedia of Software Engineering. John Wiley and Sons, 2002.
doi: 10.1002/0471028959.sof268.

[9] H. Kajino. Molecular hypergraph grammar with its application to molecular optimization. In
Proceedings 36th International Conference on Machine Learning (ICML 2019), volume 97 of
Proceedings of Machine Learning Research, pages 3183–3191. PMLR, 2019. URL https:
//proceedings.mlr.press/v97/kajino19a.html.

[10] P. S. le Marquis de Laplace. Théorie analytique des probabilités. In Œuvres Completes de Laplace,
volume 7, pages 181–192. Gauthier-Villars, Imprimeur-Librarie, 3rd edition, 1820. URL http:
//eudml.org/doc/203444.

[11] H. G. Mairson. Generating words in a context-free language uniformly at random. Information
Processing Letters, 49(2):95–99, 1994. doi: 10.1016/0020-0190(94)90033-7.

[12] S. Micali and R. L. Rivest. Transitive signature schemes. In Proceedings Topics in Cryptology (CT-
RSA 2002), volume 2271 of Lecture Notes in Computer Science, pages 236–243. Springer, 2002.
doi: 10.1007/3-540-45760-7_16.

[13] D. Plump. Term graph rewriting. In Handbook of Graph Grammars and Computing by Graph
Transformation, volume 2, pages 3–61. World Scientific, 1999. doi: 10.1142/9789812815149\
_0001.

https://proceedings.mlr.press/v97/kajino19a.html
https://proceedings.mlr.press/v97/kajino19a.html
http://eudml.org/doc/203444
http://eudml.org/doc/203444

	1 Introduction
	2 Hyperedge Replacement Grammars
	3 Random hypergraph generation
	3.1 Pre-processing phase
	3.2 Generation phase

	4 Uniform distribution and time complexity
	5 Conclusion

