Proc. Mathematical Foundations of Computer Science ’97, vol. 1295 of
Lecture Notes in Computer Science, 458-467 (1997)

Simplification Orders for Term Graph Rewriting

Detlef Plump*

CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
E-mail: det@cwi.nl

Abstract. Term graph rewriting differs from term rewriting in that
common subexpressions can be shared, improving the efficiency of rewrit-
ing in space and time. Moreover, computations by term graph rewriting
terminate more often than computations by term rewriting. In this paper,
stmplification orders on term graphs are introduced as a means for prov-
ing termination of term graph rewriting. Simplification orders are based
on an extension of the homeomorphic embedding relation from trees to
term graphs. By generalizing Kruskal’s Tree Theorem to term graphs,
it is shown that simplification orders are well-founded. Then a recursive
path order on term graphs is defined by analogy with the well-known
order on terms, and is shown to be a simplification order. Examples of
termination proofs with the recursive path order are given for rewrite
systems that are non-terminating under term rewriting.

1 Introduction

When computations with term rewrite rules are implemented in, for example, in-
terpreters of functional programming languages, symbolic computation systems,
or theorem provers, terms are often represented by graph-like data structures.
Graphs, in contrast to trees, allow to share common subterms. This improves
the efficiency of rewriting not only in space but also in time since repeated
computations can be avoided.

Term graph rewriting is a computational model in which term rewrite rules
operate on graphs that represent terms. The technical setting of the present pa-
per conforms to [8,15,16]. (See [1,2,9] and the collection [17] for some alternative
approaches.) In this approach, term graphs can be transformed by both applica-
tions of term rewrite rules and so-called collapse steps which enhance the degree
of sharing.

Compared with term rewriting, term graph rewriting is not only more efficient
but also enjoys termination for a larger class of rewrite systems. For instance,
the following non-terminating term rewriting system is given in [4]:

f(a,b,x) = £(x,%,X%)
a—b

* On leave from Universitit Bremen, Germany. Author’s research is partially sup-
ported by the HCM Network EXPRESS, the ESPRIT Working Group APPLI-
GRAPH, and the TMR Network GETGRATS.

Non-termination is witnessed by the infinite rewrite sequence f(a,b,a) —
f(a,a,a) - f(a,b,a) = ... In contrast, the same system does terminate under
term graph rewriting. This is because graph rewrite steps with the first rule do
not copy the argument x but create a shared subgraph. A terminating compu-
tation starting from the tree representing f (a,b,a) looks as follows:

=

ISR T S

The question arises how to prove termination for systems like the present
one. Obviously, the techniques available for term rewriting (see [4] for a survey)
are not directly applicable. In this paper, the well-known concept of a simplifica-
tion order [3,12,18] is generalized from terms to term graphs. The main idea is
to base simplification orders on precedences of so-called tops, which are graphs
containing a single function symbol or variable. By ordering tops instead of func-
tion symbols, the homeomorphic embedding relation on trees can be extended
to term graphs such that sharing as in the above derivation is reflected.

Consider, for instance, the following precedence (where the three tops in the
middle of the first row are all smaller than the left top and greater than the right

top):
L N [N |

@ 2@

Under this precedence the right term graph of the above derivation is em-
bedded in the left term graph, but the left graph is not embedded in the middle
graph. In contrast, the left graph (which is a tree) is homeomorphically embed-
ded in the tree corresponding to the middle graph if a is greater than b.

Below it is shown that the embedding relation is a well-quasi-order on term
graphs whenever the given precedence is a well-quasi-order on tops. This result
extends Kruskal’s Tree Theorem [11] to term graphs. Simplification orders are
then defined as certain strict orders on term graphs such that “strictly embed-
ded” is a special case of “simpler”. These orders are shown to be well-founded
whenever the underlying precedence is a well-quasi-order. Subsequently, a recur-
sive path order on term graphs is introduced by analogy with the corresponding
order on terms and is shown to be a simplification order. In the present example,
the recursive path order over the given precedence allows to prove termination
of term graph rewriting.

2 Term Graphs

A signature X is a set of function symbols such that each f € X comes with a
natural number arity(f) > 0. Function symbols of arity 0 are called constants.
For simplicity, it is assumed that X' contains at least one constant. A set X of
variables for X must satisfy X N X =). For each variable z, let arity(z) = 0.

A hypergraph over ¥ U X is a system G = (Vg, Eg, labg, attg) consist-
ing of two finite sets Vg and Eg of nodes and hyperedges, a labelling function
labg:Eg —+ Y U X, and an attachment function attg:Eg — V§ which as-
signs a string of nodes to a hyperedge e such that the length of attg(e) is
1 + arity(labg(e)). In the following, hypergraphs and hyperedges are simply
called graphs and edges.

Given a graph G and an edge e with attg(e) = vv; ... v,, node v is the result
node of e while vq,...,v, are the argument nodes. The result node is denoted
by res(e). For each node v, G[v] is the subgraph consisting of all nodes that are
reachable from v and all edges having these nodes as result nodes.

In pictures of graphs, edges are depicted as boxes with inscribed labels, and
bullets represent nodes. A line connects each edge with its result node while
arrows point to the argument nodes. The order among the argument nodes is
given by the left-to-right order of the arrows leaving the box.

Definition 1 (Term graph). A graph G is a term graph if

(1) there is a node rootg from which each node is reachable,
(2) @ is acyclic, and
(3) each node is the result node of a unique edge.

The set of all term graphs over YU X is denoted by 7Gx x, and 7G5 stands
for the subset of all term graphs without variables; the latter are called ground
term graphs.

A graph morphism f:G — H between two graphs G and H consists of two
functions fy: Vg = Vg and fg:Eg — Epg that preserve labels and attachment
to nodes, that is, labgo fg = labg and attgo fg = fyoattg (where f3:VE — V3,
maps a string vy . .. v, to fy(v1) - .- fv(vn)). The morphism f is an isomorphism
if fy and fg are bijective. In this case G and H are isomorphic, which is denoted
by G = H.

3 A Well-quasi-order on Term Graphs

In this section, precedences are introduced as orders on certain small graphs.
Every precedence induces an embedding relation on term graphs. Recall that
a preorder (or quasi-order) is a reflexive and transitive relation, while a strict
order is irreflexive and transitive. A strict order > on a set A is well-founded (or
terminating) if no infinite sequence a; > a2 > ... over A exists. A preorder >
on A is a well-quasi-order (wqo for short) if for every infinite sequence a;,as, . . .
over A there are ¢ and j such that ¢ < j and a; <X a;. Note that if A is finite,
then every preorder on A is a well-quasi-order.

Definition 2 (Top). Let G be a term graph. The top of G, denoted by top, is
the subgraph consisting of the unique edge e with res(e) = rootg and all nodes
in attg(e). The unique edge label of a top t is denoted by lab(t), and Topsj; is
the set of all tops with function symbols from X.

Definition 3 (Precedence). Given a signature X, a precedence is a transitive
relation J on Topsy, such that for all s,t € Topsy,, s 2 ¢ implies s 1 ¢.

Thus, precedences are preorders satisfying a stronger property than reflex-
ivity. The containment of isomorphism guarantees that precedences are well-
quasi-orders whenever X' is finite. (Reflexivity is not sufficient for this as there
are infinitely many isomorphic copies of every top.)

Definition 4 (String embedding). Let O be a preorder on a set A. The string
embedding relation 1% on A* is defined as follows: a;...a, %% by...b, if
b1...by is empty or if there are j1,...,j, such that 1 < j; < ja2... < jp, <m
and aj, Jbi,...,a5, 3 by.

Hence, a 3% b means that b is embedded in a. By Higman’s Lemma [7], 3%
is a well-quasi-order on A* if J is a well-quasi-order on A.

Definition 5 (Immediate subgraphs). Let G be a term graph and e be the
unique edge such that attg(e) = rootgus ... vy, for some nodes v1, ..., v, (n > 0).
Then G[v1],...,G[vy] are the immediate subgraphs of G and subg is the string
G[Ul] Ce G[’Un]

The next definition extends homeomorphic embedding from trees to term
graphs (see [4] for a definition of tree embedding).

Definition 6 (Embedding). Let 1 be a precedence. The embedding relation
> on 7Gx is defined inductively as follows: G > H if

(1) S > H for some immediate subgraph S of G, or
(2) topg J topy and subg >S5 subg.

It is easy to show that > is a preorder containing isomorphism of ground
term graphs. In order to state Kruskal’s Tree Theorem in terms of I>, call a term
graph G a tree if indegree(v) = 1 for each non-root node v.!

Theorem 7 (Tree Theorem [11]). Let > be a well-quasi-order on X and 3
be the precedence {(s,t) € Topss, | lab(s) > lab(t)}. Then > is a well-quasi-order
on the set of all trees over X.

Note that the above precedence in general contains pairs with tops that are
not in tree form. But the restriction of I> to trees is clearly independent of this
part of the precedence.

! Given a node v in a term graph G, indegree(v) is the total number of occurrences of
v in the attachment strings of all edges e with res(e) # v.

Definition 8. The relations £ and > on TGy are defined as follows:
(1) G2HifG>Hand H>G.
(2)Gr HifG>H and H % G.

Observe that G £ H need not imply that G and H are isomorphic, even with
isomorphism as precedence. For example, the following equivalence holds over
every precedence:

B o

Now the Tree Theorem is extended to term graphs.

Theorem 9. Let J be a precedence that is a well-quasi-order on Topss,. Then
> is a well-quasi-order on TGy .

The Tree Theorem is a corollary of this result. For if > is a well-quasi-order
on X, the precedence {(s,t) € Topsy | lab(s) > lab(t)} is clearly a well-quasi-
order on Topsy.. With Theorem 9 follows that > is a well-quasi-order on TGy,
and hence, in particular, on the set of all trees over X.

Theorem 9 can be proved—without difficulties—by the “minimal bad se-
quence” method used by Nash-Williams for proving the Tree Theorem [13]. Al-
ternatively, Theorem 9 can be proved by the Tree Theorem via an encoding of
term graphs as trees. This proof is given below.

Proof of Theorem 9. First, X is enlarged to a signature Xy such that there is
a bijection between function symbols in Yy and isomorphism classes of tops
over Y. To this end, introduce for every f € X and every equivalence relation
~ on {1,...,arity(f)} a function symbol f. with arity(f.) = arity(f). Let
Yo ={f~]|f € X} Now consider any ¢ € Topsy, with lab(t) = f and string of
argument nodes vy ...v, (n > 0). Define 6(t) = f~, where ~ is the equivalence
relation {(i,j) | vi =v;} on {1,...,n}.

Claim: The relation >y = {(0(5),0(t)) | {s,t) € O} is a wgo on Xy.

Observe first that reflexivity of >4 follows from reflexivity of 3 and surjec-
tivity of the mapping 6. To see that 6 is transitive, suppose that 8(t1) >4 6(t2) =
0(th) >p 0(t3). Then t; 3ty 22 ¢, 1 t3 because 6 identifies only isomorphic tops.
Hence t; 3 t3 and 6(t;) >y 6(t3). Finally, since O is a wqo, surjectivity of 6
implies that >4 is a wqo, too.

Next, 8 is extended to a mapping @ from TGy to the set of trees over Xy
as follows: If G is a term graph with subg = S1...S, (n > 0), then O(G)
is a tree with lab(topg(g)) = 6(topg) and subgg) = O(S1)...0(S,). (This

defines ©(G) uniquely up to isomorphism.) Now consider the precedence Jy =
{(s,t) € Topsy, | lab(s) >4 lab(t)} and its induced embedding relation >¢. By
the above claim and the Tree Theorem, >4 is a wqo on the set of all trees over
Xy. Moreover, an easy induction on the size of (combined) term graphs shows
that for all G,H € TGy, G > H if and only if O(G) >y O(H). It follows that
> is a wqo, too. O

The next two lemmas characterize the equivalence £ and the strict part >
of I>. Given a string @ = ay ... an,, |a| denotes its length n while, fori =1,...,n,
a[i] refers to the element a;. The relations =, 7 and > are defined as follows:
== (; 8l E); = (; _ E) and >S5t = ([Zstr _ ﬂstr)‘

Lemma 10. Let 1 be a precedence. Then for all term graphs G and H, G & H
if and only if (1) topg = topy, (2) |subg| = |subx|, and (3) subg[i] £ subgli]
fori=1,...,|subgl.

Lemma 11. Let 1 be a precedence. Then for all term graphs G and H, G > H if
and only if (1) S > H for some immediate subgraph S of G, or (2) topg 1 topgy
and subg >3 subg, or (8) topg = topy and subg > subgy.

4 Simplification Orders

Simplification orders are certain strict orders that contain the strict embedding
relation. Theorem 9 guarantees that such orders are well-founded whenever the
given precedence is a well-quasi-order.

Definition 12 (Simplification order). Let > be the embedding relation in-
duced by a precedence that is a well-quasi-order. A transitive relation > on
TGx is a simplification order if it contains > and if for all G, H € TG, G 2 H
implies G % H.

Note that simplification orders are irreflexive, in particular.
Theorem 13. FEvery simplification order is well-founded.

Proof. Let > be a simplification order. Then, by Theorem 9, the underlying
embedding relation > is a well-quasi-order. Now suppose that there is an infinite
sequence G > G2 > ... Then there are ¢ and j such that G; < G;. On the other
hand, G; > Git1 > ... > G, implies G; > G; by transitivity of >. Hence, by
the definition of simplification orders, G; £ G is impossible. But then G; <1 G
and therefore G; < Gj. It follows G; > Gj, contradicting the irreflexivity of
simplification orders. Thus, > is well-founded. O

In order to introduce a recursive path order on term graphs, the lifting of an
order to a multiset order is recalled.

Definition 14 (Multiset extension). Let > be a strict order on a set A. The
multiset extension =™ on the set of finite multisets over A is defined as follows:
M =™ul if there are multisets X and Y such that

(1) B£XCM,
(2) N=(M-X)UY, and
(3) for all y € Y there is some z € X with z > y.

Lemma 15 (Dershowitz and Manna [6]). If > is a strict order on a set A,
then =™ is a strict order on the set of finite multisets over A. If = is moreover
well-founded, then =™ is well-founded, too.

The equivalence relation =y, defined next will be used in the definition of
the recursive path order.

Definition 16. Let J be a precedence. The relation ~;p, on 7Gx is defined
inductively as follows: G ~po H if (1) topg = topy, (2) |subg| = [subg|, and
(3) there is a bijection m on {1,...,|subg|} such that subg[i] Rrpo subm[m(i)]
fori=1,...,|subg|.

The equivalence class of a ground term graph G with respect to ~p, is
written [G]. Given a strict order > on TGy such that G' ®ipo G = H Ripo
H' implies G' = H', » is lifted to an order on equivalence classes as follows:
[G] > [H] if G > H. (See [12] for a similar lifting of preorders.) For G € 7Gx
with subg = Si...S,, the multiset {[S1],...,[Sn]} of equivalence classes of
immediate subgraphs is denoted by SUBg.

Definition 17 (Recursive path order). Let O be a precedence. The recur-
sive path order >.po on TGy is defined inductively as follows: G >0 H if

(1) S >1po H or S m~orpo H for some immediate subgraph S of G, or
(2) topg Jtopy and G >rpo T for all immediate subgraphs T' of H, or
(3) topg = topy and SUBg =24 SUBy.

Lemma 18. For oll G',G,H,H' € TGs5, G' ~po G >rpo H =rpo H' implies
G' o H'.

Theorem 19. The recursive path order is a simplification order whenever the
underlying precedence is a well-quasi-order.

The proof of this result requires to show the three conditions of Definition 12:
(1) transitivity of =rpo, (2) > C >=rpo, and (3) for all G, H € 7Gx, G = H implies
G #:po H. These properties are shown by induction on the size of term graphs,
where the induction steps use case distinctions according to the three cases of
Definition 17.

As a corollary of Theorem 19, >,,, is well-founded if the given precedence
is a well-quasi-order. This can also be shown by using the corresponding result
for the recursive path order on terms [4], exploiting the encoding © of term
graphs as trees given in the proof of Theorem 9. One has to show that for all
G,H € TGz, G o H if and only if O(G) =, O(H), where »-f | is the
recursive path order over the enlarged signature Xy.

5 Termination of Term Graph Rewriting

This section starts with a brief review of the term graph rewriting model inves-
tigated in [8,15,16]. In this approach, rewriting includes not only applications of
term rewrite rules but also steps for compressing term graphs.

Definition 20 (Collapsing). Given two term graphs G and H, G collapses
to H if there is a graph morphism f:G — H mapping rootg to rooty. This
is denoted by G >¢ H. The collapsing is proper, denoted by G »¢ H, if f is
non-injective.

A term rewrite rule | — r consists of two terms [and r such that [is not a
variable and all variables in r occur also in [. A set R of term rewrite rules is a
term rewriting system. (See [5,10,14] for surveys of term rewriting.)

For every term ¢, let Ot be a term graph representing ¢ such that only variables
are shared.? The graph resulting from a term graph G after removing all edges
labelled with variables is denoted by G.

Definition 21 (Instance). A term graph H is an instance of a term graph G
if there is graph morphism G — H sending rootg to rooty. An instance that is
a ground term graph is a ground instance.

Definition 22 (Term graph rewriting). Let G and H be term graphs, [— r
be a rewrite rule and v be a node in G such that G[v] is an instance of ¢I. Then
there is a proper rewrite step G =, 1, H if H is isomorphic to the term graph
(G5 constructed as follows:

(1) G1 = G — {e} is the graph obtained from G by removing the unique edge e
satisfying res(e) = v.
(2) G is the graph obtained from the disjoint union Gy + ¢r by
— identifying v with rootg,
— identifying the image of res(e;) with res(es), for each pair {e;,es) €
E¢ir X Eg, with labgi(e1) = labgr(e2) € X.
(3) G35 = Ga[roots] is the term graph obtained from G5 by removing all nodes
and edges not reachable from rootg (“garbage collection”).

Now the term graph rewrite relation =% on 7G5 x is defined by adding proper
collapse steps: G =g H if G =¢ H or G =, H for some rule l — r in R. The
relation =5 is terminating if no infinite sequence G; = G2 =R ... exists.

Definition 23. A precedence 1 is collapse compatible if whenever there is a
graph morphism ¢ — u between two tops t,u € Topsy, then ¢ J u. A collapse
compatible precedence that is a well-quasi-order is a well-precedence.

Lemma 24. Let J be a precedence. The embedding relation > contains the col-
lapse relation =¢ if and only if 3 is collapse compatible.

% That is, indegree(res(e)) < 1 for each edge e with labe:(e) € X, and e; = e for all
edges e1,e2 with labg:(e1) = labgi(e2) € X.

Theorem 25. Let >.p, be induced by a well-precedence. Then = is terminat-
ing if G =1, H itmplies G >0 H, for every rule | — r in R and all ground
term graphs G and H.

Proof. Tt suffices to show the absence of infinite derivations over TGy, since all
occuring variables can be replaced by a constant. Suppose that there is an infi-
nite sequence G; = G2 =R ... over TGy. As proper collapsing is terminating,
there are i1,45,... such that 1 =43 < iy <i3 <iy < ...and G;, >¢ Gi, =r
Gy =c Gi, =R ..., where all =x-steps are proper rewrite steps. By the assump-
tion and Lemma 24, this implies G;, > Gy, >rpo Gis B Giy >1po - - AS >1po is @
simplification order, > is contained in ;5o U Rrpo. With Lemma 18 follows that
there is an infinite subsequence Gj, >rpo Gj, >rpo ... of G1 =R G2 =% ...
But >.po is well-founded by Theorems 19 and 13, a contradiction. Thus = is
terminating.]

Due to a monotonicity property of >;p0, the premise of Theorem 25 can be
weakened.

Theorem 26. Let >y, be induced by a well-precedence. Then =g is terminat-
ing if L =r1o0t,,1—r R tmplies L >0 R, for every rule I — r in R and every
ground instance L of Q.

Ezample 27. Consider the following rewrite system R:

£(x) — g(x, %)
a—b
g(a,b) = £(a)

This system is non-terminating under term rewriting because there is an
infinite rewrite sequence f(a) — g(a,a) — g(a,b) —» f(a) — ... Termination of
term graph rewriting can easily be checked by means of Theorem 26, using the
following well-precedence:

@ 3@

Acknowledgement. The author is grateful to Annegret Habel and Andreas
Weiermann, who gave valuable comments on a previous version of this paper.

References

1. Zena M. Ariola and Jan Willem Klop. Equational term graph rewriting. Funda-
menta Informaticae, 26:207-240, 1996.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Andrea Corradini and Francesca Rossi. Hyperedge replacement jungle rewriting
for term rewriting systems and logic programming. Theoretical Computer Science,
109:7-48, 1993.

Nachum Dershowitz. Orderings for term rewriting systems. Theoretical Computer
Science, 17:279-301, 1982.

Nachum Dershowitz. Termination of rewriting. Journal of Symbolic Computation,
3:69-116, 1987.

Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Jan van
Leeuwen, editor, Handbook of Theoretical Computer Science, volume B, chapter 6.
Elsevier, 1990.

Nachum Dershowitz and Zohar Manna. Proving termination with multiset order-
ings. Communications of the ACM, 22(8):465-476, 1979.

Graham Higman. Ordering by divisibility in abstract algebras. Proceedings of the
London Mathematical Society, 3(2):326-336, 1952.

Berthold Hoffmann and Detlef Plump. Implementing term rewriting by jungle
evaluation. RAIRO Theoretical Informatics and Applications, 25(5):445-472, 1991.
Richard Kennaway, Jan Willem Klop, Ronan Sleep, and Fer-Jan de Vries. On the
adequacy of term graph rewriting for simulating term rewriting. ACM Transactions
on Programming Languages and Systems, 16(3):493-523, 1994.

Jan Willem Klop. Term rewriting systems. In S. Abramsky, Dov M. Gabbay, and
T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, volume 2, pages
1-116. Oxford University Press, 1992.

Joseph B. Kruskal. Well-quasi-ordering, the Tree Theorem, and Vazsonyi’s conjec-
ture. Transactions of the American Mathematical Society, 95:210-225, 1960.

Aart Middeldorp and Hans Zantema. Simple termination revisited. In
Proc. 12th International Conference on Automated Deduction, volume 814 of Lec-
ture Notes in Artificial Intelligence, pages 451-465. Springer-Verlag, 1994.

C. St. J. A. Nash-Williams. On well-quasi-ordering finite trees. Proceedings of the
Cambridge Philosophical Society, 59:833-835, 1963.

David A. Plaisted. Equational reasoning and term rewriting systems. In Dov M.
Gabbay, C.J. Hogger, and J.A. Robinson, editors, Handbook of Logic in Artificial
Intelligence and Logic Programming, volume 1, pages 273-364. Clarendon Press,
1993.

Detlef Plump. Collapsed tree rewriting: Completeness, confluence, and modularity.
In Proc. Conditional Term Rewriting Systems, volume 656 of Lecture Notes in
Computer Science, pages 97-112. Springer-Verlag, 1993.

Detlef Plump. Evaluation of functional expressions by hypergraph rewriting. Dis-
sertation, Universitit Bremen, Fachbereich Mathematik und Informatik, 1993.
Ronan Sleep, Rinus Plasmeijer, and Marko van Eekelen, editors. Term Graph
Rewriting: Theory and Practice. John Wiley, 1993.

Joachim Steinbach. Simplification orderings — history of results. Fundamenta
Informaticae, 24:47-87, 1995.

