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Abstract

Acoustical physical modelling synthesis uses mathematical algorithms to

describe a real-world sound production process or propagational environ-

ment. Digital waveguides can be used to form a 1D model of the vocal

tract, simplistically represented as a series of cylindrical tubes of varying

radius along a straight axis. This 1D signal propagating element can also

be extended to create a digital waveguide mesh (DWM), giving acoustical

synthesis of a higher dimensional structure, such as a 2D surface or 3D space.

The work contained in this thesis is an investigation into the effects of

increased dimensionality in the 1D waveguide vocal tract paradigm. A 2D

DWM is configured as a model of the tract, such that shape characteristics

are set within the width of the mesh. Wave propagation and reflection

is simulated along the tract from the glottis to the lips, as well as across

it, between the two inner walls, thereby removing plane-wave limitations

inherent in the 1D model. The 2D tract is found to give accurate formant

synthesis, producing vowels that give a good match to real-world targets.

However, problems associated with high sampling frequency limitations

and discontinuous dynamic operation are identified. Movements readily

occurring in speech, such as diphthongs, are not easily accommodated by

the static mesh structure.

A novel alternative approach is also presented which maintains a rect-

angular mesh, but maps the changing tract shapes onto the waveguide

impedances. This allows for stable dynamic manipulation of the modelled

space. Furthermore, sampling frequency limitations are removed, such that

real-time operation and interaction with the 2D tract model is achieved.
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Chapter 1

Introduction

1.1 Speech Synthesis

Current technologies in artificial speech generation are at a stage of near

perceived realism. Many state of the art text-to-speech (TTS) systems use

sample-based concatenative synthesis [5], [6]. Instances of the fundamental

units of speech, phonemes, are taken from recordings of natural speech and

spliced together to create new words and sentences not present in the original

utterance. The recordings are of a spoken voice, typically that of an actor,

reading aloud for several hours. A large database is constructed as each

possible diphone (the transition between the middle of one phoneme and

another) is extracted and categorised to be recalled for concatenation at a later

time. Such a scheme is, however, restricted to regeneration only of sounds

present in the original recordings. Even limited processing of the signal may

prove detrimental to the resulting naturalness. Furthermore, the user may

only communicate with the vocal identity provided with the system.

Articulatory vocal tract modelling attempts to recreate the behaviour of

the human speech apparatus to simulate the process of speaking, rather

than simply the sounds it generates. The tract is an acoustic resonator with

various mouth features that constantly alter, constrict and stop the way

vibrations travel through it. These articulations and tract shape changes,

combined with the glottal source produce the sounds we perceive as speech.

1
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An effective vocal tract model will demonstrate the ability to dynamically

adapt, accommodating the changes in the tract area function. This allows

for production of a connected chain of speech sounds to form continuous

utterances. Such a dynamic model can be used to simulate a diphthong - a

slide between two vowels, for example /aU/ in the word house. Area function

changes can also be made to represent constrictions to the air flow in the

model, giving lateral articulation such as the /l/ in the word lip. Plosive

articulations can be modeled in a similar way, forcing a momentary stop and

then release of the air flow, such as the /p/ in the word put. Articulatory vocal

tract simulations are physical models, in that they approximate observations

made in natural speech production.

1.2 Physical Modelling

Discretisation of continuous variables in a real-world system for computer-

based synthesis is a common modelling technique. Acoustical physical

modelling is currently a very interesting subcategory within this field. Well-

established finite difference techniques have been developed for analysis and

simulation of field variables in electromagnetics [7] and fluid dynamics [8].

This theory and methodology can be equated to problems in sound and

vibrations, and is continually adapted for applications in the audio spectrum

[9].

The formal definition of the 1D digital waveguide as an acoustical

physical model can be accredited to Julius Orion Smith III from the Cen-

ter for Computer Research in Music and Acoustics (CCRMA) in Stanford

University, USA. His online book is an extensive source for reference [10].

The waveguide is typically used as the fundamental building block that

facilitates acoustic signal propagation in distributed media. Much of the

following research has been directed towards its use in 1D virtual musical

instruments, for example forming the acoustic bore along the length of a

clarinet [11]. Similarly, its extension into higher dimensional representations

to form a 2D or 3D digital waveguide mesh (DWM) has been documented

2
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[12] [13]. In 2D, the DWM can be used to form a model of a vibrating

plate or surface, such as a drum skin [14]. It can also be used as a efficient

precursor to a 3D model for examining wave propagation and testing new

techniques whilst exploiting the lower computational demands inherent

in reduced dimensionality. A 3D DWM model can be constructed that

provides a virtual simulation of the acoustics of a room [15]. The waveguide

mesh naturally includes the diffraction effects that are absent in alternative

acoustical simulation methods, such as image-source [16] and ray-tracing

[17]. It therefore provides an accurate, although often computationally

intensive, model of sound propagation within an enclosed structure.

1.3 Physical Modelling of the Vocal Tract

The Kelly-Lochbaum piecewise articulatory vocal tract analogy is commonly

cited as the archetypal physical model [18]. One-dimensional wave prop-

agation along the tract is simulated with a chain of waveguides. The

spatial sampling used implies that the model represents a series of adjoining

cylinders of varying radius along a straight axis. The system acts as a

filter, shaping the spectrum with what is known in vocal terms as formants,

to the glottal input signal, such that speech-like sound is observed at the

output. Such time-domain articulatory vocal tract models have been used to

synthesise simple words with near realism, but the method is not comparable

to concatenative synthesis at its current state of development.

Several studies have been conducted into a 3D frequency-domain vocal

tract model using finite element modelling (FEM) [19] [20]. Limited research

has been used to demonstrate a time-domain model using a 2D transmission

line matrix (TLM) [21], which is equivalent to the DWM. Results have shown

that cross-tract modal patterns are present in the output.

The work contained within this thesis is a continuation of the ideas

associated with the TLM tract representation. Here it is presented as an

investigation into the effects of increased dimensionality in the time-domain

Kelly-Lochbaum vocal tract model. It is proposed that a 2D DWM model of

3
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the air-cavity contained within the human speech system may be constructed.

The additional dimensionality includes propagational effects across the tract

as well as along it, and so should offer increased accuracy of synthesis.

Indications are made towards how the techniques discussed here could be

applied to an eventual full 3D model, which should present a highly accurate

articulatory physical model of the voice.

1.4 Motivation

Concatenative synthesis is currently the preferred method of artificial speech

generation, giving the most natural results. However, as the requirements of

a system increase, the database needed to contain all the recorded samples

grows. Extended demands of such a system might involve elements of

speech across different languages, or the inclusion of emotional expression.

Clearly, such a speech synthesis system offering extensive naturalness would

imply an enormous database of samples. This opinion is echoed in the 2001

book Multilingual Text-To-Speech Synthesis - The Bell Labs Approach

”... we feel that the complex forms of coarticulation found in human

speech can only be mimicked by accurate articulatory models, because

concatenative synthesis would require too many units to achieve these -

significantly higher - levels of quality.” [22]

A well-established time-domain articulatory vocal tract model is the

piecewise cylinder analogy proposed by Kelly and Lochbaum [18]. Many

simplifications are made in forming it as a 1D representation. The simplifying

assumption that is removed in this work is the limitation of the propagational

mechanism to longitudinal plane wave motion. This implies an extension

of the dimensional representation of the tract air-cavity within the model.

It has been indicated in the surrounding literature that this may be worth

consideration. In Perry Cook’s 1996 summary of singing voice synthesis he

suggests that future work in speech physical models might involve

”...some significant component of non-linearity, and/or higher dimen-
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sional models. The main research areas involve modeling of airflow in

the vocal tract, development of more exact models of the inner shape of

the vocal tract tube, physical models of the tongue and other articulators,

more accurate models of the vocal folds, and facial animation coupled to

voice synthesis.” [23]

The eventual goal of a realistic articulatory synthesiser is still a dis-

tant ideal. Natural speech production involves many intricate and slight

muscular movements in the lips, tongue and jaw, organised with carefully

timed synchrony. A high-representation articulatory model that includes

all of these features would clearly be a very complicated system with large

computational demands. In terms of general speech research, each of the

individual articulators and features themselves present interesting analysis

and modelling challenges.

The vocal subsystem under scrutiny in this work is the propagational

airway contained within the vocal tract, with a view to making fewer shape-

based simplifications.

1.5 Thesis Outline

To begin with, physical modelling theory is discussed at length in Chapter

2. Derivations are given for the fundamental mathematical and physics-

based concepts which are used in discrete-time simulations of continuous

variable systems. In particular, the digital waveguide is presented as a

physical model which provides 1D propagation based on the travelling wave

solution to the wave equation. The review then moves on to consider how

such a 1D representation can be extended to form a model of a higher dimen-

sional structure with a DWM. Relevant additional mathematical material is

included in Appendix A.

Chapter 3 gives a selective and brief overview of the vast field of research

that is the human voice. The IPA phonetic notation is used to identify speech

sounds throughout the thesis. Details on this and example words are given

in Appendix B. The vocal tract is introduced as an acoustic resonator which

5
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imparts spectral formant characteristics onto the glottal excitation. Details

follow on some of the aspects of speech, such as production of vowels and

diphthongs, and plosive consonants. Various methods of generating artificial

speech are outlined. In particular, attention is drawn to the 1D time-domain

waveguide vocal tract analogy, and to attempts that have been made to

improve the model.

The construction of the 2D DWM vocal tract model is examined in

Chapter 4. Two approaches are identified for mapping the vocal tract area

function onto the mesh width; one based on a radial representation, and one

based on a diametral 2D slice though a 3D tract. The diametral method

is selected for further analysis on the widthwise mapped model, because

of its ease of implementation and the intuitive way in which it leads to a

full 3D model. Two interpretations for the diametral approach are used in

simulations; the width can be set as proportional to the tract radius, or to the

radius-squared. The model is shown to produce system frequency spectra

with formants that are similar to those generated with an equivalent 1D

model. It is also noted that the extent to which these formants match, and

the resulting likeness to the modelled vowel, is improved when the effect

of the shape changes is enhanced with the radius2 area functions. Next, the

sensitive and linear nature of formant bandwidth variation is demonstrated

when the additional boundary reflection coefficient is used to regulate energy

losses in the system. Some of the disadvantages of the width mapped mesh

tract model are highlighted with an analysis of the dynamic capabilities of

the system.

Limitations associated with the widthwise mapped mesh are addressed in

the design of a novel alternative approach presented in Chapter 5. The area

function is applied to the waveguide impedances, rather than mesh width,

such that it retains its structure whilst its resonant properties are altered.

Two approaches are used for mapping the area function onto the model;

impedance values can be defined as proportional to the radius-squared, or

to the radius-cubed. This method is shown to allow for dynamic shape

changes to be made, and for a reduction in sampling frequency, leading to
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construction of real-time interactive software to demonstrate the model.

Chapter 6 presents a discussion on the results obtained from both models

and an exploration of directions for potential future work.

A general conclusion is presented in Chapter 7. Relevant materials

from this research are available in the form of an accompanying CD af-

fixed in the back of paper copies of this thesis, and from the internet

at http://www-users.york.ac.uk/˜dtm3/vocaltract/ . The files

include the software that has been developed to demonstrate the real-time

dynamic impedance mapped DWM vocal tract model, and various sound

examples created with both model types.

1.6 Specific Contributions of the Research

The novel contributions contained in this thesis are as follows.

• An analysis of a 2D DWM time-domain simulation of the vocal tract is

presented.

• The flexible formant bandwidth response that is obtained with the

additional waveguide mesh boundary in the width-mapped model is

demonstrated.

• Waveform discontinuities are highlighted as a problematic issue in

dynamic operation.

• A new method of changing the shape of the modelled space using

impedance mapping is shown to allow stable dynamic changes to a

DWM.

• This is the first demonstration of a stable, dynamically varying DWM

and potentially opens new perspectives for research into vocal synthe-

sis using multidimensional signal processing, and also in more general

DWM applications.

• A real-time response is achieved in the 2D DWM vocal tract model.

7
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The work indicates that there should be clear advantages in moving

towards a full 3D model, giving extensive control over many physical

parameters of the human vocal system.

8



Chapter 2

Physical Modelling Synthesis

2.1 Introduction

The main aim in a computer-based simulation of the sound produced by a

musical instrument is naturalness of synthesis. In order to achieve this the

system will be required to generate sound that it is perceived as being very

similar to, or ultimately, indistinguishable from, the instrument in question.

Well established methods based on the play-back of recorded samples [24],

or reproduction of the known spectral content [25] have traditionally been

used to create a digital instrument. However, problems that are inherent with

such methods can be detrimental to the resulting naturalness. Sample-based

methods only allow for reproduction of content that is present in the memory

wavetable, and manipulation of the stored sounds often yields artificial results

[26]. Controlling parameters used in spectral synthesis, such as frequency,

magnitude and phase are mathematical concepts. They have little in common

with terms associated with musical performance and therefore have limited

interpretation for non-engineers [27].

A mathematical description of a real-world process or system can be used

to produce a simplified virtual simulation of the bodies within the defined

problem domain and the forces acting on them. This direct representation

allows for interaction with the model in a manner not possible using other

synthesis methods. Parameters controlling a system based on reconstruction
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of the physical process itself are based on, and therefore explicitly linked to,

those governing system response. Such intuitive, semantic control is inherent

in a physical model. In addition, the principles behind physical modelling

generally allow for low memory requirements to be placed upon a system

as the underlying algorithms involved are minimal. The definition of a set of

laws outlining possible modes of operation also allows for experimentation

with actions not permissable in the real world, for example on the grounds

of safety or impracticality.

With an increase in both the extent of knowledge about the physical

workings of the real-world instrument and the available computing power

with which to demonstrate it, it becomes feasible to increase the depth of

representation in the simulation. A physical model recreates the sound

generation process, rather than the simply the resultant sound. It therefore

behaves in a manner that is similar to its real-world equivalent, producing

sound of a highly organic nature [28].

Acoustical physical modelling uses the discretisation of real world me-

chanics to capture essential aspects of a sound producing or propagating

system. For example, a vibrating body can be represented as a series

of interconnected elements where each obeys the physics-derived laws

governing interaction with its neighbours. With constraints applied to the

system and inputs defined, the virtual model exhibits natural behaviour that

approximates real world expectations. One of the earliest physical models

was a discrete-time representation of the 1D acoustics of the vocal tract [18].

Following developments included calculations of the motion of a vibrating

string [29] and discrete mass-and-spring oscillatory systems [30]. Figure 2.1

shows an example of how a series of interconnected masses and springs

can be used to represent a string with fixed ends. An initial displacement

is applied and the model exhibits oscillatory motion similar to a real world

string.

The use of the digital waveguide as the signal propagating unit within

a physical model was formally defined when the Karplus-Strong plucked

string algorithm [31] was extended by Julius Orion Smith III into a more
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force

Masses and

springs

Figure 2.1: A physical model of a string using the mass and spring paradigm

general case [32]. In recent years digital waveguide modelling has emerged

as popular and versatile method of acoustical synthesis. The extent to

which the model follows behaviour stated in theory is the determining factor

in giving accurate enough representation while maintaining suitability for

given applications. Heavily simplified models might be employed where

real-time response is of concern, for example in the 1D synthesis of a small

resonating structure like a musical instrument [33] [34] [35] or a collision

between two objects [36]. Vibrations in structures with higher dimensionality

can be simulated, such as the 2D plane formed across a drum skin [14]. The

use of waveguide modelling in systems with a focus on accuracy of synthesis

would embrace more of the facets of the underlying theory used to define the

model, such as the air absorption effects and diffuse reflections used in 3D

room acoustics simulation [13] [37] [15].

This chapter examines the methods used to define a physical model of

an acoustic system, beginning with the underlying theory. The physical

constants and phenomenon that occur in the definitions of sound and

vibrations are discussed. These parameters are used in the derivation

of continuous equations that describe oscillatory wave motion. Some of

the techniques used to make the model suitable for computer simulation

are discussed. Emphasis is placed on the process of solving the wave

equation at points within a given discretisation. One such technique, the

digital waveguide physical model, is examined in depth. In particular, it is

shown how this representation of 1D wave propagation can be extended to

form a digital waveguide mesh that is used to model structures with higher

dimensionality.
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2.2 Acoustical Theory

The definition of the word sound follows two forms. It describes both the

cause and effect in the process of hearing. In perceptual terms

”Sound is the auditory sensation produced through the ear by the alter-

ation in pressure, particle displacement, or particle velocity propagated

in an elastic material” [38]

In terms of the physical process which results in perception, sound is also

the propagation of the mechanical disturbances of the particles within the

medium. It is this vibrational form of sound that is analysed and numerically

simulated in the field of acoustical physical modelling synthesis.

2.2.1 The Velocity of Sound in Air

A sound wave propagating in a gas exhibits longitudinal motion. It travels

away from a source as a series of compressions and rarefactions in the

particles. A momentary localised density increase gives rise to nearby de-

creases. A pressure gradient is formed across the change in density and elastic

forces in the particles attract them back towards their rest position. This

particle movement implies a velocity component in the resulting wave. The

restoring displacement back towards the source creates further compressions

with neighbouring particles, and hence further rarefactions, which are also

restored by elastic forces. This process continues as both the pressure and

velocity components of the wave propagate away from the source with the

same speed, maintaining a phase difference of π/2 between them. The total

velocity at which an arbitrary wave moves away from the source is referred

to as the wave speed v. It is determined from first principles using the ideal

gas law and the universal gas constant R = NAk, with Avagadro’s number

NA = 6.022×1023 mol−1 and Boltzmann’s constant k = 1.3807×10−23 JK−1. In

general, the ambient pressure P of a gas of density ρ, molecular mass m and

absolute temperature in Kelvin TK , is [39]

P =
ρ
m

RTK (2.1)
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The velocity v of a wave in a gas with heat capacity ratio γ is given by

v =

√
γP
ρ

(2.2)

Substitution of (2.1) into (2.2) shows that the wave speed in a gas is

independent of pressure [40]

v =

√
γRTK

m
(2.3)

If the gas is air, then the heat capacity ratio is γ = 7/5, molecular mass is

m= 29.0×10−3 kg mol−1 and the gas constant is R= 8.314 J mol−1 K−1. The

speed of a sound wave in air is usually denoted by the character c, and at

temperature TK is calculated as

c = 20.03
√

TK (2.4)

An equivalent form of (2.4) uses temperature in Celsius TC = TK−273

c = 20.03
√

273+TC (2.5)

A linear approximation for the temperature variation determines the speed

of sound in air at temperature TC as [41]

c = 331+0.6TC (2.6)

As such, a sound wave travels through air at room temperature of TC = 20◦C

at an approximate speed of c = 343ms−1.

2.2.2 Acoustic Impedance and Admittance

The two components of the wave - the scalar pressure variation p, and

the velocity vector of the particle movements u
¯

- are closely interlinked.

They follow the relationship that their ratio in an unbounded homogenous

medium is always constant. This quantity is called acoustic impedance Z.
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In some cases it is convenient to refer to it in terms of its inverse, acoustic

admittance Y.

Z =
1
Y

=
p
u

(2.7)

Impedance is defined as the geometric mean of the two sources of resistance

to displacement in the medium: tension and mass [10]. It can be calculated

from the density ρ and Young’s modulus of elasticity E of the medium to be

Z =
√

ρE (2.8)

The Young’s modulus of a gas is defined as E = γP. In the context of air, the

wave speed as calculated from (2.2), becomes

c =

√
Eair

ρair
(2.9)

Rearranging this for E and substituting into (2.8) gives

Zair = ρairc (2.10)

Air at a temperature of TC = 20◦C has density of approximately ρair = 1.2 kg

m−3. Therefore the acoustic impedance of air at room temperature is Zair =

411.6 kg m−2 s−1. Similarly, the acoustic admittance of air is Yair = 2.43×10−3

kg−1 m2 s.

It is also of interest to define the characteristic impedance experienced by

a wave propagating through an enclosed air column. For example, a wave

travelling through an infinitely long tube experiences an impedance that is

equivalent to Zair spread across the cross sectional area. The characteristic

impedance Z and admittance Y of an acoustic tube of cross-sectional area A is

Ztube=
1

Ytube
=

ρc
Atube

(2.11)

Many parallels may be drawn on the relationship between acoustic

impedance, pressure and velocity outlined in this section, and the relation-

14



2. Physical Modelling Synthesis

ship between electrical impedance, voltage and current in circuit theory [9].

2.3 The Wave Equation

The wave equation describes propagation of the particle disturbances within

a given coordinate system and speed. For a system in which variables of

interest are considered as a function of time only, an ordinary differential

equation (ODE) is constructed to describe the oscillatory behaviour. In the

more complex case where dependent variables change with time as well as

one or more spatial coordinates, then a partial differential equation (PDE) is

used.

2.3.1 Simple Harmonic Motion

When an ideal mass and spring are connected together they form a lossless

second order resonator. A more realistic, lossy system can be created with

the introduction of a damper. A simple damped resonator is illustrated in

Figure 2.2, where a small displacement results in oscillations created by the

spring restoring force. The damped harmonic motion will eventually decay

to return the mass to its equilibrium position.

displacement xrestoring force kx

(a) mass m

spring constant k (b)

damper resistance µ (c)

m

equilibriumfixed termination

Figure 2.2: Components in a simple resonator: (a) a mass, (b) spring and (c) damper

Simple harmonic oscillations in the system are defined by identifying the

three forces acting on the mass making the following assumptions:

• Mass (a) moves only a small distance in the x-axis and is unaffected by

any external force such as gravity or friction. The net force on the mass
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is defined by Newton’s Second Law as:

fn = m
d2x
dt2

(2.12)

• Component (b) has spring constant k, and is defined as massless with

no damping factor. Hooke’s Law states that the spring restoring force

against the displacement is:

fr =−kx (2.13)

• The force required to overcome the damper (c) is typically approxi-

mated as proportional to the velocity of oscillations. It is also assumed

as massless. If µ is the damper resistance, the force against displacement

is:

fd =−µ
dx
dt

(2.14)

Newtonian Mechanics requires that fn = fr + fd. The system equation is

therefore a second order ODE.

m
d2x
dt2

+µ
dx
dt

+kx= 0 (2.15)

If the damper was to be disconnected, or µ = 0, then the natural frequency

of undamped oscillations is ω0 =
√

k/m. With the influence of the damper a

decay constant emerges as α = µ/(2m), and the damped system oscillations

occur at a lower frequency of ωd =
√

ω2
0−α2.

2.3.2 One-Dimensional Wave Motion

Oscillatory wave motion in 1D can be defined by considering the forces acting

on an ideal elastic body under tension [42]. Figure 2.3 illustrates a short

string of density ρ that lies at rest along the horizontal x-axis and is given

a small initial displacement in the vertical y-axis, resulting in a tension T.

The assumption that negligible movement of the string takes place in the

horizontal direction allows for the Newtonian derivation of acceleration in
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terms of the acting force using only the transverse component of the tension.

The description of wave motion is therefore simplified to 1D. Additionally,

this derivation implies that propagation on the string is non-dispersive (all

frequencies travel with the same speed) and lossless in both directions.

String

T

T

x x+dx

y

y+dy

ds
θ1

θ2

Figure 2.3: String displacement resulting in constant tension T

The string and amplitude of displacement are both small enough such

that ds≈ dx. The Tension T acts as T sin(θ1) at x, and T sin(θ2) at x+dx, such

that the total force acting on the string is T sin(θ2)−T sin(θ1). From Newton’s

Second Law (2.12), then

T[sin(θ2)−sin(θ1)] = ρdx
∂2y
∂t2 (2.16)

If θ is small enough then sin(θ)≈ tan(θ) = ∂y
∂x, it is possible to say

T
dx

[
∂y
∂x

∣∣∣∣
x+dx

− ∂y
∂x

∣∣∣∣
x

]
= ρ

∂2y
∂t2 (2.17)

This difference in gradients is the differential coefficient of the gradient ∂y
∂x

divided by the space interval dx. Hence, as dx tends towards zero this

becomes a second order PDE

∂2y
∂x2 =

ρ
T

∂2y
∂t2 (2.18)

This can be rearranged to obtain the classic form of the one dimensional wave

equation. It describes the acceleration of the wave in the y direction in terms

of the second derivative of its resulting displacement with respect to x, at a
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wave speed of v =
√

T/ρ
1
v2

∂2y
∂t2 =

∂2y
∂x2 (2.19)

In the context of a 1D acoustic pressure wave p travelling along an ideal

uniform acoustic tube in the x direction at the speed of sound c, the PDE

becomes
1
c2

∂2p(x, t)
∂t2 =

∂2p(x, t)
∂x2 (2.20)

2.3.3 Boundary Conditions and Resonance

When the propagating medium under scrutiny is bounded, this implies that

reflections will take place. The manner in which these reflections manifest

and the physical properties of the system collectively define how oscillations

begin to appear within the system. At certain frequencies, oscillations exhibit

increased amplitude where a greater transfer of energy exists. Standing

waves are formed with wavelengths that are directly related to the geometry

of the space defined within the bounds. This phenomenon is called resonance.

Boundary conditions can be divided into two types [43]. Firstly, rigid

surfaces are defined such that the bounding impedance is very much bigger

that that of the transmitting medium. For a string this implies that one end

is fixed and no movement takes place in the y direction. In other words it

is a displacement node. When a wave is incident upon the fixed end of the

string, it exerts a transverse force on the termination. As no movement takes

place, Newton’s Third Law dictates that the rigid boundary must be exerting

an equal and opposite force on the string. The reflection at the fixed end of a

sting therefore presents a phase inversion.

Secondly, a free-end exists where the bounding impedance is very much

lower than the transmitting medium. This can be thought of as a string

that is attached to a frictionless guide-rod which prohibits motion in the x

axis, but allows unhindered displacement in the y direction. Here, maximal

movement, with reference to the amplitude of the wave, may take place. It

is a displacement antinode. A longitudinal force is exerted on the string from

the connection in the x direction, but not in the transverse y direction and so
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energy is reflected with a phase preservation.

The phase properties of reflected longitudinal waves at free and rigid

ends of an acoustic tube follow an inverse relationship to those of transverse

waves on a string [44]. Modal analysis of a tube can be achieved with

two wave variables. Here, pressure is the amplitude of variations above

and below atmospheric pressure. Displacement refers to the distance away

from rest position that the air molecules have moved in order to create

this pressure change. A rigid boundary constitutes a closed end of a tube

where no particle movement may take place. This implies a pressure

antinode where the force exerted by the closed end is large enough to

equal the maximal pressure presented by the wave, in order to enforce this

displacement node. When a high pressure part of the longitudinal wave hits

the boundary it exerts a force perpendicularly towards it. The boundary in

return exerts a force in the opposite direction. The wave is reflected as a high

pressure. There has, therefore, been a phase preserving reflection.

An open ended tube constitutes a free-end reflection. Atmospheric

pressure level is present at this end and so the amplitude of pressure

variations is equal to zero. This is a pressure node. Air molecules are free

to move in the unbounded region and so a displacement antinode is formed.

Some proportion of a high pressure part of an incident wave is transmitted

through the open end. As this happens, a small amount of air is sucked out

of the tube with it. Consequently, a low pressure region is reflected back into

the tube. This forms a phase inverting reflection.

2.3.4 Wave motion in 3D Cartesian Space

Equation 2.20 is an example of where wave motion in 1D has been extrapo-

lated from the more general 3D case using a separation of variables [43]. The

3D wave equation in cartesian coordinates x, y and z, is

1
c2

∂2p
∂t2 =

∂2p
∂x2 +

∂2p
∂y2 +

∂2p
∂z2 (2.21)

A brief review of different coordinate systems is presented in Appendix
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A.2. A full derivation of the mathematical technique of a separation of

variables is beyond the scope of this thesis. A summary is presented in

Appendix A.3. The process leads to wave numbers that identify the allowable

standing waves in the each of the separated axes, such that a universal modal

frequency equation can be defined to predict the frequencies at which these

resonances appear.

Standing Waves in a 3D Space

If the acoustic system in considered in 3D then three types of mode exist.

Axial modes are any path between two parallel rigid reflecting surfaces along

the length. Tangential modes form at a path between any four reflecting

surfaces. Oblique modes form at a path between six reflecting surfaces. A

combination of all three types of mode will contribute to the the acoustics of

a room [41]. Figure 2.4 illustrates the structure of a simple rectangular room

of length L in the x-axis, width W in the y-axis and height H in the z-axis.

W

H
z

x

y

Figure 2.4: A simple 3D acoustic space in Cartesian coordinates

Vibrations within the acoustical space will result in resonance. Axial

modes exist between each pair of rigid reflecting surfaces. A standing wave

is formed such that the molecule displacement component is zero at each

boundary. Figure 2.5 illustrates the first two modes in the x-axis between two

rigid reflecting surafces at a distance L apart.

Each standing wave exists as a sinusoid evaluated at multiples N of half a

wavelength λN - at λ1
2 = L, λ2 = L, 3λ3

2 = L, and so on.

λN =
2L
N

(2.22)
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Rigid 

boundary

Rigid 

boundary

N=1

N=2

L

Figure 2.5: Sinusoidal standing waves at the first two multiples of λ/2

Each of these can also be identified with a wave number

k =
2π
λN

(2.23)

Substituting for (2.22) into (2.23) gives the wave numbers kx, ky and kz, iden-

tifying each of the possible components in the x-, y- and z-axis, respectively,

as

kx =
Nxπ
L

Nx = 0,1,2, . . . (2.24)

ky =
Nyπ
W

Ny = 0,1,2, . . . (2.25)

kz =
Nzπ
H

Nz = 0,1,2, . . . (2.26)

The separation of variables method for extrapolating the 3D wave equa-

tion into independent terms is demonstrated in Appendix A.3.2. This is

achieved by the introduction of the three wave number terms −k2
x, −k2

y and

−k2
z. As in Equation (A.34), the squares of the wave numbers are related in

the following manner [43].

ω2

c2 = k2
x +k2

y +k2
y (2.27)

Where ω is the angular frequency of the mode identified by kx, ky and kz.

Substituting for (2.24), (2.25) and (2.26) gives

ω2

c2 =
(

Nxπ
L

)2

+
(

Nyπ
W

)2

+
(

Nzπ
H

)2

(2.28)

Rearranging (2.28) and substituting for ω = 2π f leads to the universal modal
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frequency equation [45]. This dictates that resonant peaks will appear at

values of fxyz in the frequency response of a simple room of length L, width

W and height H. The number of the modes are represented by the indices for

length Nx = 0,1,2, ..., width Ny = 0,1,2, ... and height Nz = 0,1,2, ...

fxyz=
c
2

√(
Nx

L

)2

+
(

Ny

W

)2

+
(

Nz

H

)2

(2.29)

2.3.5 The Cylindrical Tube

Cylindrical polar coordinates describe a problem-domain in terms of a

lengthwise z-axis, a radial r-axis and a rotation about the centre θ, as

demonstrated in Figure 2.6. The cylinder has radius a and length L.

a

z

r

L

θ

Figure 2.6: An acoustic tube in cylindrical coordinates

Using the Laplacian operator for cylindrical coordinates outlined in Ap-

pendix A.2, the wave equation becomes

1
c2

∂2p
∂t2 =

1
r

∂p
∂r

(
r

∂p
∂r

)
+

1
r2

∂2p
∂θ2 +

∂2p
∂z2 (2.30)

Standing Waves Along a Closed Tube

Note that if pressure variations in the radial r and rotational θ directions is

neglected (assumed to be constant), then the planar wave motion along the

tube is equivalent to (2.20)

1
c2

∂2p(z, t)
∂t2 =

∂2p(z, t)
∂z2 (2.31)

Wave motion in the z-axis is between two parallel rigid reflecting surfaces,

and therefore is equivalent to that defined in cartesian space. Standing

22



2. Physical Modelling Synthesis

waves are formed at multiples of half a wavelength as a result of the positive

reflections seen at both closed ends of the tube, as illustrated in Figure 2.7.

2

1

L

Rigid 

boundary

Rigid 

boundary

Figure 2.7: Modes of resonance for N = 1,2 in a cylinder with closed ends

The first two resonant modes shown highlight the displacement nodes

(minima) at both boundaries. Pressure waves, not shown in the diagram,

would follow a π/2 phase lag compared to the displacement components and

as such would appear as antinodes (maxima) at either end. These standing

waves are sinusoids evaluated at multiples N of π. A wave number for the

Nth lengthwise mode can be defined in similar terms to Equation (2.26) as

kz =
Nπ
L

N = 1,2, . . . (2.32)

A separation of variables in cylindrical coordinates is summarised in Ap-

pendix A.3.3. This leads to Equation (A.45), describing the relationship

between wave numbers kr and kz for modes in the r and z axes, respectively,

and the standing waves of angular frequency ω, that they represent [43].

ω2

c2 = k2
r +k2

z (2.33)

Examining only longitudinal wave motion and neglecting terms in r , such

that kr = 0, it is possible to equate kz to the frequencies of the modes of

vibration that it represents. Substituting (2.32) into (2.33) gives

ω2

c2 =
[

Nπ
L

]2

(2.34)

Substituting for ω = 2π f gives the modal frequencies in the z-axis of a tube of
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length L, with two closed ends.

fz =
Nc
2L

N = 1,2, . . . (2.35)

It is worth noting that a similar tube with two open ends would experience

negative reflections, resulting in pressure nodes and displacement antinodes

at the ends - the opposite of case for the closed tube. The modal frequencies,

however, would appear at the same frequencies as specified by (2.35) because

the Nλ/2 length of the standing waves remains, despite the reversal of

pressure and velocity nodes and antinodes.

Standing Waves Along a Tube Open at One End

A different case where the tube has one closed and one open end is illustrated

in Figure 2.8. The velocity components of the first two resonant modes are

shown.

L

0

1
Open

End

Rigid 

boundary

Figure 2.8: Modes of resonance for N = 0,1 in a cylinder with one open and one closed end

Reflections exist such that a phase inversion is present at the open end and a

phase preservation is seen at the closed end. This gives rise to standing waves

with displacement nodes at the closed end, and displacement antinodes at

the open end. Modes that satisfy this are at multiples of 2N + 1 of quarter

wavelengths. In other words, at frequencies of wavelength λN where λ0
4 = L,

3λ1
4 = L, 5λ2

4 = L, and so on. The wave number for the Nth lengthwise standing

wave is

kz =
(2N+1)π

2L
N = 0,1,2, . . . (2.36)

Examining longitudinal wave motion only, and neglecting r , such that kr = 0,

the frequencies of the modes of vibration in the z-axis can be determined.
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Substituting (2.36) into (2.33) gives

ω2

c2 =
[
(2N+1)π

2L

]2

(2.37)

Substituting for ω = 2π f gives the modal frequencies along the zaxis of a tube

with one closed end and one open end.

fz =
(2N+1)c

4L
N = 0,1,2, . . . (2.38)

Standing Waves Across a Straight Tube

Using a separation of variables, a solution to the cylindrical wave equation

in terms of r can be found [46] [47], as demonstrated in Appendix A.3.3.

Lengthwise z-axis propagation is separated from the remaining axes and

neglected, such that the domain under scrutiny is a circular cross-section of

the tube. A Bessel function of the first kind, which is described in Appendix

A.3.4, can be used to predict the modes of resonance in the circular plane [48]

[43]. As in Equation A.47, pressure standing waves appear in the form of

Bessel’s function Jm(kr r) of order m. The function is evaluated out from the

centre of the circle at r = 0 outwards to the edge at a radius of r = a. The wave

number kr identifies each standing wave. Figures 2.9(a) and 2.9(b) show the

first two cross-modes of the circle from the side and from above, respectively.

θ

r=0

r=ar=a

p

α‘02

α‘03

1st mode

2nd mode

(a) Side view

2nd Bessel

mode of J0(x)

1st Bessel

mode of J0(x)

(b) Above view

Figure 2.9: Pressure modes as a Bessel function of order m= 0
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The rotational symmetry about θ that is associated with m= 0 can be observed

from Figure 2.9(b). As detailed in Appendix A.3.4, points on the Bessel

function are annotated such that α′mn is the nth instance of a zero-gradient

- in other words, where J′m(kr r) = 0. The first of such zero-gradients occurs

at r = 0, where α′01 = kr0 = 0. This corresponds to no transversal modal

interactions. The first cross mode (black line) is a Bessel function of order

m = 0 evaluated from the centre where r = 0 and J0(kr r) = 0, to the first

occurrence of J′0(kr r) = 0 at the tube wall where r = a. This happens at

α′02 = kra= 3.832(taken from the graph in Figure A.2). The second cross mode

(grey line) is a Bessel function of order m= 0, evaluated from the centre to the

second occurrence of J′0(kr r) = 0 at r = a. From Figure A.2 α′03 = kra = 7.016.

In this way, the wave number in relation to standing waves along the r-axis

can be said to be

kr =
α′mn

a
m= 0,1,2, . . . n = 0,1,2, . . . (2.39)

The frequency of each mode can be obtained with substitution for (2.39)

into (2.33) (remembering that neglecting z terms implies that kz = 0).

ω2

c2 =
[

α′mn

a

]2

(2.40)

Subsituting for ω = 2π f gives [43]

fmn =
cα′mn

2πa
m= 0,1,2, . . . n = 0,1,2, . . . (2.41)

For example, a clarinet has an approximate radius of a = 8 mm. With α′02 =

3.832, the lowest mode of resonance across it with rotational symmetry is

f02 = 26.15kHz [46]. With α′03 = 7.016, this second lowest cross-mode is f03 =

47.9 kHz.

A Bessel function J1(kr r) of order m= 1 describes a different set of modal

resonances across the tube without rotational symmetry. Figure 2.10(a) and

2.10(b) illustrate the first two pressure standing waves across the tube from

a side view, and from above, respectively. Note the inverted waveform on
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either sides of the centre at r = 0.

θ

r=0

r=ar=a

p

α‘11

α‘12

1st mode

2nd mode

(a) Side view

1st Bessel

mode of J1(x)

2nd Bessel

mode of J1(x)

(b) Above view

Figure 2.10: Pressure modes as a Bessel function of order m= 1

It is possible to determine the lowest possible cross-mode frequencies with-

out the assumption of rotational symmetry. The first mode (black line) has a

zero-gradient at r = a, where α′11 = 1.841(from Figure A.2). Taking a= 8 mm,

Equation (2.41) gives the lowest overall cross mode of the clarinet as f11= 12.6

kHz. The second (grey line) has a zero-gradient at α′12 = 5.331 (from Figure

A.2). This gives f12 = 36.4 kHz. Using the same method, a Bessel function

with order m= 2 has a zero-gradient at α′21 = 3.054, giving the second lowest

mode at f21 = 20.8 kHz.

These results serve to indicate that, with f11 = 12.6 kHz, the lowest

transverse modal interactions in cylindrical acoustical bores do fall within

the range of human hearing.

2.3.6 Spherical Waves in a Conical Tube

A pressure wave in a conical tube, such as that illustrated in Figure 2.11, can

be viewed as part of a spherical wave radiating out from an isotropic source

at the cone apex [43]. Spherical wave motion follows the inverse square law,

where the energy present in the wave reduces as inversely proportional to

the distance squared from the source r2. The spherical wave equation also

considers angular rotation θ in the polar axis, and angular elevation φ in the

azimuthal axis. Using the Laplacian operator for spherical coordinates given
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in Appendix A.2, the wave equation is

1
c2

∂2p
∂t2 =

1
r2

∂
∂r

(
r2 ∂p

∂r

)
+

1
r2sinθ

∂
∂θ

(
sin(θ)

∂p
∂θ

)
+

1

r2sin2 θ
∂2p
∂φ2 (2.42)

A spherical wavefront passing through a cone will experience a decay

in amplitude with the increase in surface area as it travels along the tube

a distance r away from the cone apex. The reduction in amplitude will

follow a 1/r relationship, given the inverse square law, and that energy is

proportional to amplitude squared. The planar wave motion used to define

the cylindrical tube assumes no propagational decay and therefore cannot be

applied in this case. Spherically symmetrical wave motion in 3D is used to

describe the wave p such that it acts only as a function of r , and time t [10]. No

considerations are given to the variations with respect to angular rotation θ or

φ about the source. In other words the wavefront maintains its spherical form

as it travels away from the apex and no wave motion takes place across the

cone. Therefore, with reference to (2.42), the wave equation for longitudinal

motion in a conical tube is

1
c2

∂2p
∂t2 =

1
r2

∂
∂r

(
r2 ∂p

∂r

)
(2.43)

Standing Waves Along a Conical Tube

Longitudinal standing waves in a conical tube take a similar form as those

seen in the closed tube in Figure 2.8. Pressure nodes are formed at the

open end and antinodes appear at the apex of the cone. The modes of

resonance appear at the same frequencies as described in (2.38). However,

the standing wave itself experiences a reduction in amplitude that is inversely

proportional to the distance from the cone apex.

2.3.7 The Non-Uniform 1D Tube

The shape formed by an acoustical tube with arbitrarily varying cross-

sectional area is quantified in an area function A(x). Wave motion in such a

system is not strictly one-dimensional, as the spreading out of a longitudinal
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Open Apex

0

1

r

Figure 2.11: Modes of resonance for n = 0,1 in a conical cube

wavefront as it passes through a sharp increase in tube area would generate

a transversal component. However, for a relatively narrow tube that varies

smoothly in area along its length, this cross component can be considered

negligible. In this case Webster’s horn equation [43] is used to describe the

longitudinal wave motion

1
c2

∂2p(x, t)
∂t2 =

1
A(x)

∂
∂x

(
A(x)

∂p(x, t)
∂x

)
(2.44)

No assumptions are made regarding the shape of the wavefront and so this

equation governs both plane and spherical wave motion derived in Sections

2.3.2 and 2.3.6, respectively.

2.4 Numerical Simulation of the 1D Wave Equation

A simulation of the acoustical properties of a real world system can be

accomplished in two stages. Firstly, the identification of an appropriate

wave equation that governs the system behaviour allows for a continuous

description to be outlined. Assumptions and approximations are made to

parts of the model in order to simplify calculations to within the desired

scope of the simulation.

Secondly, the system is discretised with respect to the independent

variables, time and space. A generalised solution is found which satisfies the

system equation at the sample instants and locations. Numerical simulation

of the system takes place when calculations that are derived from the solution

are performed at the discrete points within the model. Many different
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techniques exist with which to discretise, solve and model the equations

of a real world system. An exploration of the main types and a thorough

treatment of their relation to one another from an acoustical viewpoint can

be found in Stefan Bilbao’s thesis [9].

In general, time-domain acoustical physical models fall into one of the

two following categories: lumped element models typically consist of masses,

springs and dampers and are used in simulation of vibrations described with

an ODE; distributed systems model wave propagation in the form of a PDE

with the use of transmission lines, or waveguides.

2.4.1 Mass and Spring System

The mass and spring system ODE (2.15) has a linear solutions of the form

x = e−αtAcos(ωdt +φ) (2.45)

This describes a decaying sinusoid where A is the initial or undamped

amplitude of oscillations and the phase shift φ depends on the definition of

the time t = 0.

This type of solution is commonly used as a physical model for a vibrating

system. For example, a coupled mass-spring resonator can describe the

motion of a clarinet reed [49] or a brass players lips [50] [51]. A network of

many interconnected masses and springs can also be used to form a model of

a resonating 1D string [52], 2D plate [30] or N-dimensional virtual instrument

[53].

2.4.2 Wave Scattering Solution

A numerical solution to the PDE for 1D wave motion exists in the form of the

separation of wave variables. No approximation or assumptions are required

and so the solution is exact. If the wave equation (2.20) is considered as a

difference of two squares then both sides may be factorised

(
∂
∂x

+
1
c

∂
∂t

)(
∂
∂x
− 1

c
∂
∂t

)
p(x, t) = 0 (2.46)
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From this it is clear that solutions of the form p(x± ct) will satisfy the

superposition of waves. This is the D’Alembert exact solution to the 1D wave

equation. A thorough treatment of the derivation is presented in Appendix

A.1. Using right going pr and left going pl components a general form is

defined as the sum of travelling wave components

p(x, t) = pr(x−ct)+ pl (x+ct) (2.47)

This is the basis for the waveguide physical modelling paradigm, which will

be covered in greater detail in Section 2.5.

2.4.3 Finite Difference Time-Domain Approximation

A finite difference time-domain (FDTD) scheme may be applied to a wave

equation in order to find a solution that is appropriate for numerical sim-

ulation [10]. An approximation is made such that each of the differential

operators in the wave equation are replaced with a finite difference. A

temporal difference can be applied to an ODE. However, where the wave

motion is a function of space and time (PDE), additional spatial differences

may also be used. In this sense it can be used to construct either a lumped

or distributed discrete approximation for the wave equation. For example, a

first-order difference in time T for a 1D pressure wave p(x, t) in a distributed

model can be defined as

∂p(x, t)
∂t

≈ p(x, t)− p(x, t−T)
T

(2.48)

Similarly, the difference constructed over a distance X is

∂p(x, t)
∂x

≈ p(x, t)− p(x−X, t)
X

(2.49)
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Second order centred differences follow

∂2p(x, t)
∂t2 ≈ p(x, t +T)−2p(x, t)+ p(x, t−T)

T2 (2.50)

∂2p(x, t)
∂x2 ≈ p(x+X, t)−2p(x, t)+ p(x−X, t)

X2 (2.51)

These may be substituted into the 1D wave equation (2.20)

p(x+X, t)−2p(x, t)+ p(x−X, t)
X2 =

1
c2

p(x, t +T)−2p(x, t)+ p(x, t−T)
T2 (2.52)

If it is specified that X = cT and the discretisation takes the form t = nT and

x = mX then

p(m+1,n)−2p(m,n)+ p(m−1,n) = p(m,n+1)−2p(m,n)+ p(m,n−1) (2.53)

For clarity, a time shift of n−1 is applied

p(m,n) = p(m+1,n−1)+ p(m−1,n−1)− p(m,n−2) (2.54)

The wave at any point can therefore be approximated by the sum of

neighbouring values at one time instant before, minus its own value two

time instants before. This scheme is sometimes referred to as a Kirchoff

representation [54] because of the summation of actual physical variables,

as opposed to the hypothetical travelling components used in the wave

scattering solution.

2.4.4 Wave Scattering and FDTD Equivalence

The two spatial discretisation methods that have been presented, wave-

scattering and FDTD, can be shown to be equivalent [9] [54]. The FDTD

method is seen to satisfy the travelling wave solution if the each of the

terms on the right hand side of (2.54) is substituted for the component
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decomposition p(m,n) = pr(n−m)+ pl (n+m) [10].

p(m,n) = pr ((n−1)− (m+1))+ pl ((n−1)+(m+1))

+ pr ((n−1)− (m−1))+ pl ((n−1)+(m−1))

− pr ((n−2)−m)− pl ((n−2)+m) (2.55)

=⇒ p(m,n) = pr (n−m)+ pl (n−2+m)

+ pr (n−2−m)+ pl (n+m)

− pr (n−2−m)− pl (n−2+m) (2.56)

This reduces to

p(m,n) = pr (n−m)+ pl (n+m) (2.57)

This result is the original left and right going component substitution,

therefore the FDTD scheme satisfies the traveling wave solution.

2.4.5 Conical Wave Equation

The equation for longitudinal spherical waves in a conical tube (2.43) can be

rewritten as [55]
1
c2

∂2p
∂t2 =

2
r

∂p
∂r

+
∂2p
∂r2 (2.58)

This can be rearranged to give the equation for wave motion in a conical tube

using spherically symmetrical coordinates [56]

1
c2

∂2rp(r, t)
∂t2 =

∂2rp(r, t)
∂r2 (2.59)

This can be viewed as equivalent to the planar wave PDE (2.20) if the

substitution ψ = rp is made

1
c2

∂2ψ
∂t2 =

∂2ψ
∂r2 (2.60)

33



2. Physical Modelling Synthesis

The d’Alembert solution to the PDE gives the superposition of two bidirec-

tional arbitrary waveforms fr and fl

ψ(r, t) = fr(x−ct)+ fl (x+ct) (2.61)

Therefore, with substitution for ψ, the wave equation for pressure variations

along the conical tube section can be presented in terms of a travelling wave

solution

p(r, t) =
1
r

[ fr(x−ct)+ fl (x+ct)] (2.62)

2.4.6 The Webster-Horn Equation

Equation (2.44) describes wave motion in a tube of arbitrary cross-sectional

area A(x). However, the dependency on area function means that this wave

equation cannot be solved analytically using the separation of travelling

wave variables for an exact solution [9]. The smoothly varying tube can

be spatially sampled such that it is modelled as a series of short cylindrical

or conical sections. Travelling wave solutions are then applicable within

each discrete tube section. This notion forms the basis for the piecewise,

or concatenated acoustic tube model [18]. A digital waveguide is used to

represent the wave motion within each short tube section, through a discrete

solution or approximation to the wave equation. A connected chain of

waveguides acts to approximate the overall behaviour of the continuous

tube.

2.5 The 1D Digital Waveguide

The main body of the work in this thesis is focused on the use of the

digital waveguide as the fundamental component in a distributed acoustical

model. It uses the wave scattering solution to the 1D PDE presented in

Section 2.4.2 to simulate wave propagation. The development of much of

the waveguide theory is accredited to work done by Julius Orion Smith III at

CCRMA, Stanford University, whose online book [10] is an extensive source
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for reference.

2.5.1 Bi-Directional Wave Decomposition

Simulation of acoustic wave propagation in a transmitting medium is founded

on the d’Alembert solution (2.47) to the 1D wave equation. Waveguide

modelling theory uses the notion that 1D wave motion may be considered

a composition of left going and right going components. The instantaneous

magnitude of the oscillations can then be obtained as a sum of left and right

components at any point along the modelled medium. It is worth noting

that the magnitude of vibrations is the physical variable under simulation

that would be observed in the real world system. The bidirectional travelling

wave components are a hypothetical consideration to facilitate propagation.

For example, an acoustic tube can be discretised in both time and space to

give a number of sample reference points, each separated by a bi-directional

digital delay. Figure 2.12 illustrates how this applies to a model of pressure

variations in an unbounded 1D homogenous medium, such as an infinitely

long tube of constant cross-sectional area (and hence constant impedance).

Sampling instants, indexed with n are separated by the delay units, marked

z−1.

z -1

z -1

z -1

z -1

z -1

z -1

p
r
(n+1)

p
l
(n-1) p

l
(n) p

l
(n+1)

p
r
(n) p

r
(n-1) p

r
(n-2)

p
l
(n+2)

p(x,nT)

Unit Distance dUnit Timestep T

+

Figure 2.12: Pressure components in a 1D waveguide acoustic tube model

The dissection of the medium into digital waveguides requires a discrete

version of the d’Alembert solution. The magnitude p of the pressure

variations at a time nT and at a distance x along the tube is the sum of the
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right pr , and left pl going components [33]

p(x,nT) = pr(x−cnT)+ pl (x+cnT) (2.63)

Wave simulation in (2.63) describes exact lossless non-dispersive 1D signal

propagation. The simplicity and accuracy of the propagational methodology

make it highly suitable for computer numerical simulation.

The delay units transfer signal values from one spatial sampling point to

another in both the right and left directions. Each therefore represents both

a length d of each discrete piece of tube and also a unit time-step T. These

physical quantities within the model are directly related to the speed of sound

c, such that the sampling frequency fs is

fs =
1
T

=
c
d

(2.64)

2.5.2 Scattering at an Admittance Discontinuity

The physical modelling representation of an acoustic tube of constantly

varying cross-sectional area is of particular interest to this work. The area

function is spatially sampled such that it is modelled as a series of adjoining

cylindrical tube elements. The Kelly-Lochbaum (KL) signal processing unit

is used to simulate wave scattering at the junction between two tubes of

different cross-sectional area, and therefore of different admittance. The KL

junction will now be examined following the notation of some of the detailed

derivations in the literature [18], [56], [46], [57].

Figure 2.13 illustrates the various signals surrounding an impedance dis-

continuity between tube sections i and i +1. The diagram also demonstrates

the introduction of the KL scattering junction in between the bidirectional

unit delay elements seen in Figure 2.12. It is convenient at this stage to

annotate pressure components as inputs and outputs to and from the junction

rather than according to their direction of travel. Therefore pressure p+
i and

velocity u+
i represent inputs to the KL junction from tube section i. Similarly,

pressure p−i and velocity u−i correspond to outputs from the junction towards
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i. All signal components are between the two unit delays and therefore exist

at the same time index n.

Ai         >       Ai+1

Yi        >       Yi+1

KL

pi
+(n), ui

+(n)

pi
-(n), ui

-(n)

pi+1
-(n), ui+1

-(n)

pi+1
+(n), ui+1

+(n)

z-1 z-1

Figure 2.13: Signal scattering at an admittance discontinuity

Continuity laws dictate that the pressure and velocity remain constant about

the junction between i and i +1. Therefore:

• The total pressure at waveguide i is always the sum of the input and

output components as defined in (2.63):

pi = p+
i + p−i (2.65)

• The instantaneous pressure at each connection is equal, and can there-

fore be referred to using the singular junction pressure term pJ. The

input and output pressure components will also follow this relation-

ship:

pi = pi+1 = pJ =⇒ p+
i + p−i = p+

i+1 + p−i+1 (2.66)

• The total velocity is the sum of the two components, with outputs

notated to be inverted with respect to inputs due to the reversed

direction of flow:

ui = u+
i −u−i (2.67)

• The instantaneous net flow is zero. Therefore the input and output
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velocities also remain balanced:

ui +ui+1 = 0 =⇒ u+
i −u−i +u+

i+1−u−i+1 = 0 (2.68)

The KL junction acts to scatter approaching signals according to the

change in impedance. As in (2.7), the characteristic impedance of tube section

i is the ratio of its pressure and velocity components. Hence, the input and

output velocity components to and from i in terms of acoustic admittance and

pressure are

u+
i = Yi p

+
i u−i = Yi p

−
i (2.69)

Considering (2.67), the total velocity on connection i is

ui = u+
i −u−i = Yi

(
p+

i − p−i
)

(2.70)

Substituting (2.70) into (2.68) gives the total velocity about a junction in

pressure terms only.

Yi
(
p+

i − p−i
)
+Yi+1

(
p+

i+1− p−i+1

)
= 0 (2.71)

Given (2.65), substitution of p− = pJ− p+ into (2.71) leads to

Yi
(
2p+

i − pJ
)
+Yi+1

(
2p+

i+1− pJ
)

= 0 (2.72)

Rearranging this for pJ gives the two-port scattering equation for junction

pressure in terms of the sum of its input pressure components, scaled by the

step in admittance between i and i +1.

pJ =
2
(
Yi p

+
i +Yi+1p+

i+1

)

Yi +Yi+1
(2.73)

Calculation of junction pressure is an intermediate step in determining

junction outputs in the scattering algorithms. Pressure value pJ itself is only

directly of interest where the junction is under scrutiny, either as an audio

output from the system, or for graphical drawing purposes to illustrate wave
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motion. In many cases it is more economical in computational terms to

reduce the scattering equations to pressure output terms only, with as few

multiplications as possible. Scattering equations which bypass consideration

of pJ are required. Outputs from the junction p−i and p−i+1 can then be derived

substituting for pJ in (2.65)

p−i = pJ− p+
i =

Yi−Yi+1

Yi +Yi+1
p+

i +
2Yi+1

Yi +Yi+1
p+

i+1

p−i+1 = pJ− p+
i+1 =

2Yi

Yi +Yi+1
p+

i −
Yi−Yi+1

Yi +Yi+1
p+

i+1

(2.74)

A reflection coefficient between the two impedances can be formed using

either admittance Y, impedance Z or, given (2.11), tube cross-sectional area A

r =
Yi−Yi+1

Yi +Yi+1
=

Zi+1−Zi

Zi +Zi+1
=

Ai−Ai+1

Ai +Ai+1
(2.75)

This leads to simplified scattering equations for the outputs from a KL

junction in input terms only [56]

p−i = rp+
i +(1− r)p+

i+1

p−i+1 = (1+ r)p+
i − rp+

i+1

(2.76)

Therefore some amount of signal incident upon the KL junction from either

direction is transmitted through, and some is reflected back. Finally, for speed

and simplicity of computation, it is possible to derive forms of (2.76) using

only one multiplication. Further substitution is made for the intermediate

signal w = r
[
p+

i − p+
i+1

]
.

p−i = p+
i+1 +w

p−i+1 = p+
i +w

(2.77)

Schematic representations for the signal flow in the KL scattering junction for

(2.76) and (2.77) are shown in Figures 2.14(a) and 2.14(b), respectively.

The remainder of this work will focus solely on waveguide theory using

pressure signals, however, the above derivation for KL signal scattering at
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(a) (b)r

(1+r)

(1-r)

pi+1
-pi

+

pi+1
+pi

-

-r

pi+1
-pi

+

pi+1
+pi

-

r

Figure 2.14: KL scattering of pressure signals in (a) the two-port junction and (b) the one-
multiply equivalent

an impedance discontinuity can be derived for volume velocity in a similar

manner. Elimination of pressure signals from (2.66), and the definition of

a reflection coefficient, results in the following velocity outputs from the

junction [56].

u−i = ru+
i +(1+ r)u+

i+1

u−i+1 = (1− r)u+
i − ru+

i+1

(2.78)

Similarly, the one-multiply equivalents with the intermediate signal w =

r
[
u+

i +u+
i+1

]
are

u−i = u+
i+1 +w

u−i+1 = u+
i −w

(2.79)

Figure 2.15 details the signal flow schematic for acoustic volume velocity

about a KL scattering junction.

(a) (b)r

(1-r)

(1+r)

ui+1
-ui

+

ui+1
+ui

-

-r

ui+1
-ui

+

ui+1
+ui

-

r

Figure 2.15: KL scattering of volume velocity signals in (a) the two-port junction and (b)
the one-multiply equivalent
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2.5.3 Simple Reflection Boundary Implementation

The 1D boundary junction equation is derived by considering the change

in admittance experienced across the connections of a simple terminating

junction [58] as illustrated in Figure 2.16. Additional notation has been

included in the diagram to indicate which of the neighbouring junctions

a pressure signal relates to. For example air pressure values labelled p+
B,J

indicate an incoming pressure at junction B from junction J (at J a unit time

step before), and those labelled p−B,J show the outgoing pressure at B, to J

(reaching J a time step later).

p
B,D

-

p
B,D

+=0

p
B,J

+

p
B,J

-

Dummy 

Junction

YB

D

Y1

J

Boundary

B

Figure 2.16: The general one-connection boundary junction

A dummy junction D is inserted within the bounding medium beyond

the actual boundary junction B such that it is not apparent to the main body

of the waveguide chain. Such a configuration is termed the one-connection

boundary junction as the second output from B to D within the bounding

surface is a hypothetical consideration used in the derivation. Junction D

does not contribute energy back towards the waveguide chain, acting only

to absorb a proportion of the pressure incident upon junction J, therefore

p+
B,D = 0. A reflection coefficient r is defined such that a proportion of the

energy incident upon B from J is reflected back towards J.

p−B,J = rp+
B,J (2.80)

If this boundary represents a raditaing surface, such as the open end of a pipe,
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then the output from the system is the remainder of of the reflected signal

p−B,D = (1− r) p+
B,J (2.81)

As described in (2.75), an impedance discontinuity between two mediums,

Y1 and YB constitutes a reflection coefficient r = Y1−YB
Y1+YB

. The two-port scattering

equation takes the form

pB =
2
(
Y1p+

B,J +YBp+
B,D

)

Y1 +YB
(2.82)

We define the ratio between the two admittances as YB = µY1, where µ = 1−r
1+r ,

and eliminate p+
B,D = 0. The pressure on the boundary junction is

pB =
2Y1p+

B,J

Y1 +µY1
=

2p+
B,J

1+µ
(2.83)

Substituting for r

pB =
2p+

B,J

1+ 1−r
1+r

(2.84)

Finally, rearranging for the general form of the scattering equation for the

pressure at a one-connection boundary node, gives

pB = (1+ r)p+
B,J (2.85)

2.5.4 The Conical Waveguide

The concatenated acoustic tube model can also be formulated using conical

waveguide segments [59]. Figure 2.17 illustrates the junction formed between

two conical tube elements, a and b.

The junction is defined such that the two cones intersect at a point where

their cross-sectional areas are equal, as indicated by the cross-hatched region

A. Although the two tube segments are conical in form, the apex of each cone

appears only for illustrative and derivational purposes and is not actually

present in the model. Each cone therefore comprises a unit conical waveguide

of length d and a theoretical tip of length r , measured as the distance from
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r
b

r
a

Cone a

A

Cone b

d d

Figure 2.17: A junction of two conical tube elements

the effective cone apex to the junction at A. The pressure on each conical

waveguide is governed by the travelling wave solution defined in (2.62). If

we define a value α for the junction as

α =
c(ra− rb)

2rarb
(2.86)

It can be shown that a frequency dependent reflection exists at the junction

[56] as

R(ω) =− α
jω+α

(2.87)

A discrete form of this reflection function can be identified and constructed

as a digital filter. This replaces the reflection constant in the standard KL

junction shown in Figure 2.14.

The conical junction model does, however, present some stability issues

in certain configurations [56]. Smoothly varying acoustic tube models can

be generated with overall stability. However, particular problems emerge in

the simulation of a quickly diverging flared horn. The conical waveguide

is defined under the assumption that spherical wave motion is maintained

throughout the tube section. That is to say that wavefronts at different

positions within it are parallel. A wavefront passing through a junction

between two cones, however, naturally experiences a change in shape. Once

it has entered the new cone, the wavefront will be spherical within the new

coordinates system, but not parallel to those in the previous system. This

concept is illustrated in Figure 2.18, where a junction between two cone

segments, a and b, is shown. They are arranged such that they form a non-

convex junction where both diverge in the same direction, with cone a at a
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lower rate than b.

Cone a

Cone b

d

d

Sa Sb

Figure 2.18: Missing volume in a non-convex conical tube junction

Notations Sa and Sb indicate a wavefront just before leaving cone a and

just after entering cone b, respectively. The two are clearly not parallel. The

step made betweens the two cone sections, apparent as the white region, has

been identified as a missing volume [60]. Instabilities in the conical junction

come about because wave motion within this region is not accounted for.

A reverse situation also exists for a convex junction, where a doubly defined

volume is problematic. This problem may be addressed with the introduction

of hyperbolic waveguides. The method uses a change of coordinates to

convert Webster’s equation (2.44) into a Schrödinger form for discretisation

[60]. It is of particular interest in the modelling of the flared bell at the end of

a brass instrument [61].

2.5.5 The Fractional Delay

The discretisation that is chosen for solving or approximating the wave

equation in a system defines the spatial sampling instants. Valid output from

the system can be obtained from one of these finite points at the waveguide

junctions, where a physical variable exists. It is possible to determine the

signal value in between the sampling instants with the use of a fractional

delay filter [56]. This allows for fine tuning of the sampling instants such that

bandlimited interpolation can be used to evaluate a signal at an arbitrary

point in time or space. There is, however, an increase in computational

requirements of a system employing such additional filter units.
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2.5.6 Completing the 1D Physical Model

Once the propagational mechanism is defined, additional factors can be intro-

duced to increase the depth of representation in the model. Characteristics of

the medium, such as losses and dispersion that were originally omitted from

the derivation of the wave equation can be reintroduced. The linear nature

of the waveguide allows for the effect of such properties to be commuted

from each discrete unit into a singular digital filter at either end. This

process separates the ideal propagational model from reflections and non-

linearities and results in a more efficient computational model. A frequency

dependant reflection, such as that observed at the opening of a many wind

instruments, may be also be accounted for in the bounding digital filter. For

example, a simple physical model of a clarinet consists of three distinct parts;

propagational, reflectance and nonlinear excitation [36]. This is illustrated in

Figure 2.19.

Radiation 

filter

Nonlinear 

reed model
Excitation

Output 

Bore delay line
Reflection 

filter

Figure 2.19: A physical model of a clarinet

The central acoustic bore is represented in 1D idealistic propagational

terms as a simple delay line. In this case, the bidirectional delays within the

waveguides perform only time-step operations and so have been collected

together into one equivalent unidirectional delay line. Reflectance and

radiation filters model the waveform interaction with the clarinet bell. The

excitation to the clarinet is generated with a constant flow of pressure input

to a simple mass and spring resonator.
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2.6 The Digital Waveguide Mesh

The waveguide theory discussed in Section 2.5 can be extended for use in

the modelling of wave propagation in structures with increased dimensional

representation. This requires a lattice of multiple-port scattering junctions,

each formed where a number of waveguides meet at the same spatial

sampling point. In an arbitrary configuration, this would constitute a Digital

Waveguide Network (DWN) [10]. More specifically, where junctions are

placed at regular intervals in a grid system, the model is called a Digital

Waveguide Mesh (DWM). The arrangement of junctions and the number of

connections at each defines how the model represents the target structure.

For example, a three-port scattering junction can be used to simulate signal

interaction at a point where two 1D systems intersect. This could be a side

branch in an acoustic tube such as a tone-hole in a musical instrument, or the

connection of the nasal cavity to the main tract in a vocal model. A three-

port (or higher) junction might also be used to model a point where three

(or more) waveguides meet on a 2D DWM model of vibrating plane, such

as a drum skin [12]. Similarly, an N-port junction might be employed where

many waveguides meet in a 3D DWM model of, for example, the acoustics

of a room [13].

2.6.1 General Multiple-Port Scattering

The multiple port scattering junction describes the summing and distribution

of N incoming and outgoing pressure waves incident at the same temporal

and spatial sampling location. Figure 2.20(a) illustrates the unit-junction

with N connections and Figure 2.20(b) extends this to include surrounding

junctions.

Lossless wave propagation through the junction is maintained by en-

suring that the multi-port equivalences for the continuity laws outlined in

Section 2.5.2 are adhered to for the N-connections:

• The pressure at the ith waveguide connection to junction J is the sum of
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Figure 2.20: N-port scattering: (a) the unit junction, and (b) with N neighbouring junctions

the incoming and outgoing pressure components to that connection:

pJ,i = p+
J,i + p−J,i (2.88)

• The sum of the input velocities is equal to the sum of the output

velocities (the net flow is equal to zero):

N

∑
i=1

u+
J,i =

N

∑
i=1

u−J,i (2.89)

• The pressure at each waveguide connection to a junction is equal and

can be referred to using the singular pressure term pJ:

p1 = p2 = pi = · · ·= pN = pJ (2.90)

As with the derivation for KL scattering, the relationship between pressure,

velocity and the admittance of the propagating medium described in (2.7)

can be extended to include input and output considerations. Velocity

components on each waveguide i as described in (2.69) can be summed

around the N connections in a manner that coincides with continuity law

(2.89)
N

∑
i=1

Yi p
+
J,i =

N

∑
i=1

Yi p
−
J,i (2.91)

Rearranging (2.88) to give p−J,i = pJ − p+
J,i and substituting into (2.91) to
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eliminate output components, gives

N

∑
i=1

Yi p
+
J,i−

N

∑
i=1

Yi pJ +
N

∑
i=1

Yi p
+
J,i = 0 (2.92)

Hence
N

∑
i=1

Yi pJ = 2
N

∑
i=1

Yi p
+
J,i (2.93)

This leads to the general form of the N-port scattering equation. The pressure p

at a junction J in terms of input pressures from N connecting waveguides of

admittance Yi is

pJ = 2
∑N

i=1Yi p
+
J,i

∑N
i=1Yi

(2.94)

For two port scattering (2.76) minimal terms were derived for efficient

algorithms that bypassed pJ. A similar method may be used to examine

signal flow at a multiple port junction. The scattering equations may be

condensed into terms concerning inputs and outputs only. This premise is

well discussed by way of example before a general case is outlined. Consider

the junction in Figure 2.21 where three waveguides of admittance Yi meet [56].

Y
1

J

Y
2

Y
3

Figure 2.21: A three-port junction

The scattering equation can be written, with N = 3, as

pJ =
2
(
Y1p+

1 +Y2p+
2 +Y3p+

3

)

Y1 +Y2 +Y3
(2.95)

Each of the three outputs are equal to the junction pressure minus the input
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from the same branch, as in (2.88)

p−1 = pJ− p+
1 =

[Y1−Y2−Y3] p+
1 +2Y2p+

2 +2Y3p+
3

Y1 +Y2 +Y3

p−2 = pJ− p+
2 =

[Y2−Y1−Y3] p+
2 +2Y1p+

1 +2Y3p+
3

Y1 +Y2 +Y3

p−3 = pJ− p+
3 =

[Y3−Y1−Y2] p+
3 +2Y1p+

1 +2Y2p+
2

Y1 +Y2 +Y3

(2.96)

The reflection coefficient seen at each branch is related to its own admittance,

and that of the remaining branches

r1 =
Y1−Y2−Y3

Y1 +Y2 +Y3
r2 =

Y2−Y1−Y3

Y1 +Y2 +Y3
r3 =

Y3−Y1−Y2

Y1 +Y2 +Y3
(2.97)

Substitution for (2.97) into (2.96) gives the output pressure components

for the three port junction in reduced mathematical terms. It is clear

that each output receives a reflection from the same connection, and some

amount of transmitted signal from all of the others. The proportion of

incident energy reflected/transmitted at each branch is determined by the

relationship between the admittances in (2.97).

p−1 = r1p+
1 +(1+ r2) p+

2 +(1+ r3) p+
3

p−2 = r2p+
2 +(1+ r1) p+

1 +(1+ r3) p+
3

p−3 = r3p+
3 +(1+ r1) p+

1 +(1+ r2) p+
2

(2.98)

A general form for the output components from a junction with N

differing admittance connections can be defined in a similar manner. The

general scattering equation in admittance terms is

pJ =
2∑N

i=1Yi pJ,i

∑N
i=1Yi

(2.99)

From (2.88), pressure output onto any connection k is

p−k = pJ− p+
k =

2∑N
i=1Yi p

+
J,i

∑N
i=1Yi

− p+
k (2.100)

This leads to the output pressure component on any connection k in terms of
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the input from k, and all from other inputs 0 < i < N, exclusive of k

p−k =

[
2Yk−∑N

i=1Yi
]

p+
k +2∑N

i=1,i 6=kYi p
+
J,i

∑N
i=1Yi

(2.101)

As with the three port example, this can be viewed as each output being a

proportion of input reflected from the same connection, plus some amount

of each of the other inputs transmitted through the junction. Splitting (2.101)

into reflected and transmitted parts

p−k =

[
2Yk−∑N

i=1Yi
]

∑N
i=1Yi

p+
k +

2∑N
i=1,i 6=kYi p

+
J,i

∑N
i=1Yi

(2.102)

As such we can define a reflection coefficient for the kth connection as

rk =
2Yk−∑N

i=1Yi

∑N
i=1Yi

(2.103)

Then the output component seen at each connection will be that reflected

from the same branch, plus all other signals transmitted through

p−k = rkp+
k +

N

∑
i=1,i 6=k

(1+ r i) p+
J,i (2.104)

2.6.2 Multiple-Port Scattering with Equal Admittance

In the case where the junction is defined at the connection of N equal

impedance waveguides, such as might be seen in a DWM of a homogenous

medium, the scattering equations may be further condensed. Scattering at

junction J with N equal admittance connecting waveguides Y1 = Y2 = · · ·= YN

reduces (2.94) to

pJ =
2
N

N

∑
i=1

p+
J,i (2.105)

Once the pressure at each junction has been calculated, the output to each

waveguide is set by Equation 2.88 as

p−J,i = pJ− p+
J,i (2.106)
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An increment in the time index is implemented by transferral of all outputs

at junction J to the relative inputs of the neighbouring junctions. The input

to the neighbouring junction i is then the time-delayed output from junction

J.

p+
J,i = z−1p−i,J (2.107)

It is useful to collect the three important equations (2.105), (2.106) and (2.107)

together in this manner as collectively they constitute a single and complete

pass of the scattering algorithms as applied to the main body of a DWM

model. During such an operation the pressure at each junction is directly

calculated from the inputs, followed by each output, ready to be transferred

to the neighbouring junction on that connection for the next timestep.

2.6.3 The General Multiple-Port Boundary Junction

The nature of an N-port boundary junction is considered in a similar manner

to the one-connection case. Figure 2.22 illustrates the dummy junction D in

the bounding medium of admittance YB, the actual boundary junction B and

the N connections to neighbouring junctions, each of waveguide admittance

Yi .

...N Waveguide 

Connections

p
B,D

-

p
B,D

+=0

p
B,1

-

p
B,1

+

Dummy 

Junction

YB

D

1

Boundary

B

N

Figure 2.22: The N-connection waveguide boundary junction

Taking into account the additional connection to D, and remembering that

p+
B,D = 0, the general scattering equation takes the following form.

pB =
2∑N

i=1Yi p
+
B,i

∑N
i=1Yi +YB

(2.108)
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The output on the kth branch can be determined in the same way as (2.100).

p−k = pB− p+
k =

2∑N
i=1Yi p

+
B,i

∑N
i=1Yi +YB

− p+
k (2.109)

This leads to

p−k =

[
2Yk−∑N

i=1Yi−YB
]

p+
k +2∑N

i=1,i 6=kYi p
+
B,i

∑N
i=1Yi +YB

(2.110)

The reflection coefficient for each connection is defined, taking into account

the boundary admittance, as

rk =
2Yk−∑N

i=1Yi−YB

∑N
i=1Yi +YB

(2.111)

The signal transferred through the connection is no longer simply (1+ rk)

because of the additional YB term. If we define the adjusted transmission

coefficient τk to be

τk = 1+ r− YB

∑N
i=1Yi +YB

=
2∑N

i=1,i 6=kYi

∑N
i=1Yi +YB

(2.112)

Each output from the junction can then be considered as a reflection from the

same port plus some amount transmitted through from each of the remaining

connections.

p−k = rkp+
k +

N

∑
i=1,i 6=k

τi p
+
B,i (2.113)

2.6.4 The Multiple-Port Boundary Junction with Equal Admit-

tances

If the N connections in Figure 2.22 represent waveguides in a homogenous

medium, such as in a DWM used to model wave propagation in air, then

all are of equal admittance Y1 = Y2 = · · · = YN. All can be replaced with a

singular mesh admittance term Ym. N-port scattering can now be derived in a

similar manner to the one-connection case in Figure 2.16. The ratio between
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the admittances is YB = µYm, where µ = 1−r
1+r such that a reflection coefficient

r = Ym−YB
Ym+YB

exists between the mesh and the boundary. The junction pressure

is calculated from the N-port scattering equation (2.94) in terms of pressure

inputs and singular mesh admittance Ym

pB =
2∑N

i=1Ymp+
B,i

∑N
i=1Ym+µYm

(2.114)

Eliminating Ym, the pressure at the boundary is

pB =
2∑N

i=1 p+
B,i

(N+µ)
(2.115)

As µ= 1−r
1+r , the general form of the scattering equation for the boundary junc-

tion B, at a medium providing a reflection r , with N mesh-body neighbours

is

pB =
2∑N

i=1 p+
B,i

(N+ 1−r
1+r )

(2.116)

This results in the following scattering equations for a boundary junction of

N connections, with N = 1,2,3,4. Confirmation of this derivation method can

be obtained by comparison of the equation for N = 1 and the one-connection

case (2.85).

• 1-Port Bounding Node: pB = (1+ r)p+
B,1

• 2-Port Bounding Node: pB = 2(1+r)
3+r (p+

B,1 + p+
B,2)

• 3-Port Bounding Node: pB = (1+r)
2+r (p+

B,1 + p+
B,2 + p+

B,3)

• 4-Port Bounding Node: pB = 2(1+r)
5+3r (p+

B,1 + p+
B,2 + p+

B,3 + p+
B,4)

2.6.5 Junction Excitation

Input to the waveguide structure is achieved with the introduction of an

additional junction connection. This can be established in either a regular

scattering or boundary junction. The scattering equation for any junction J

with N standard waveguide ports and an external connection contributing
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p+
ext with wave admittance Yext, is

pJ = 2
∑N

i=1Yi p
+
J,i +Yextpext

∑N
i=1Yi +Yext

(2.117)

This excitation can be applied to any number of junctions. Input to one node

constitutes a point source, whereas input to a line or plane of multiple nodes

represents a source with physical dimensions.

2.6.6 2D Mesh Topology and Dispersion Effects

An important factor in the construction of a DWM is the manner in which the

waveguides are arranged to fill the modelled space. As a 1D propagational

model the waveguide is an exact representation, in that it provides a complete

solution to the governing 1D PDE. A model that uses waveguides connected

in a grid form to extend the dimensional representation loses exactitude.

Considered in 2D, a wavefront emanating from a source propagates as an

expanding circle. True 2D waveform simulation would require that an

infinite number of plane waves radiates out from the source. Distributed

evenly amongst all angles, the waves would combine as a circular front. A

discrete model that uses a finite number of 1D waveguides to simulate 2D

propagation will therefore present an approximation to the inverse square

law bound circular spreading. Errors resulting from this approximation

manifest as a direction and frequency dependent dispersion. The extent to

which this effect is of concern depends on the arrangement of the junctions

and the time step represented in each waveguide. The sampling frequency fs

of the N dimensional mesh that uses waveguides of length d, and supports a

wave speed c is [62]

fs =
c
√

N
d

(2.118)

The Rectilinear Mesh

The originally proposed rectilinear topology uses waveguides that are ar-

ranged at regular intervals on a square cartesian grid [12]. Figures 2.23(a)

and 2.23(b) illustrate the regular 4-port scattering junction, and its use in a
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mesh of arbitrary shape, respectively.

(a) (b)

90°

J

Figure 2.23: Rectilinear topology: (a) the 4-port junction and (b) arbitrary shape mesh

Boundary junctions, indicated by white circles in Figure 2.23(b) are

implemented in 1, 2 or 3-port form, depending on edge orientation. Each

regular scattering junction has four connections, evenly spaced at 90◦ from

one another. The scattering equation for such a junction is

pJ =
1
2

4

∑
i=1

p+
J,i (2.119)

Calculation of the dispersion error using Von Neumann analysis [63]

provides a measure of the accuracy of wave propagation simulation in the

mesh model. The dispersion factor k is expressed as a function of two

spatial frequency coordinates ξ1 and ξ2. It represents the ratio of actual

mesh propagation speed c′ to desired propagation speed c, in directional

and frequency terms [64]. The centre point k(0,0) of the resulting 2D plot

is equivalent to DC. Any point on a circle of radius ξ away from the DC

centre denotes the actual spatial frequency ξ =
√

ξ2
1 +ξ2

2. Temporal frequency

is determined by f = cξ. It can be shown that k can be derived as [65]

k(ξ1,ξ2) =
c′(ξ1,ξ2)

c
=
√

2
2πξ

arctan

(√
4−b(ξ1,ξ2)2

b(ξ1,ξ2)

)
(2.120)

Where b(ξ1,ξ2) is a geometric factor related to the orientation of connections

in the topology with ω1 = 2πξ1 and ω2 = 2πξ2 [65]. For the rectilinear mesh b
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is

b(ξ1,ξ2) =
1
2

(
ejω1cT +ejω2cT +e− jω1cT +e− jω2cT)

= cos(ω1cT)+cos(ω2cT)

(2.121)

Figure 2.24 demonstrates the dispersion factor for the rectilinear mesh.

ξ1c ξ2c

k (ξ1,ξ2)
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Figure 2.24: Rectilinear DWM dispersion factor

Ideal propagation, such that signals travels at the same speed, independent of

frequency content or direction would show a flat dispersion factor such that

k(ξ1,ξ2) = 1, as observed at the DC centre. Directional scattering properties

are depicted in terms of an angular rotation about the centre, in accordance

with the spatial frequency coordinates. Here, the two waveguide axes in

the rectilinear mesh run parallel with ξ1 and ξ2. Figure 2.24 shows the

ideal propagation speed for all frequency content along the diagonal of the

rectilinear mesh where the dispersion factor is unity. In the axial direction, a

reduced wave speed is experienced by higher frequency components.

Nyquist theorem states that in a sampled system, frequency content at

up to half the sample rate can be sustained. A further limitation of the

rectilinear mesh is that the resulting output is only valid up to fs/4 [58].

This is because of the number of waveguides in any available pathway

between two junctions will always be odd or even, but never a combination.

For example, a pathway can be traced between two neighbouring junctions

through 1,3,5,7, . . . waveguides. Consider the input of a unit impulse to

a junction on a mesh where all surrounding nodes are at zero pressure at
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discrete time (n). At (n+ 1), the scattering equation (2.119) dictates that

surrounding junctions at one waveguide away will receive some scattered

pressure, and the central input junction will return to zero. By (n+ 2) the

wave will have spread to junctions at two waveguides away, but those at

one waveguide distance will return to zero. The central junction will have

been affected by its neighbours at this second time step and so will be non-

zero. This chess-board effect means that any two junctions at one waveguide

apart function alternately from one another [9]. The resulting effect is that

the mesh output valid bandwidth is halved from fs/2 to fs/4, and any spectra

produced will be mirrored about this point.

The Triangular Mesh

A triangular DWM is formed when the propagating medium is sampled

such that a radiating circular wavefront is spread amongst 6 equally spaced

connections [64]. Figures 2.25(a) and 2.25(b) depict the regular 6-port

scattering junction, and its use in a mesh of arbitrary shape, respectively.

(a) (b)

60°

J

Figure 2.25: Triangular topology: (a) the 6-port junction and (b) arbitrary shape mesh

Boundary junctions, indicated as white circles on the diagram, are present

as 1− 5 connection terminations. Each of the six connections at 60◦ from

one another on a regular junction contribute to the scattering equation in the

following manner.

pJ =
1
3

6

∑
i=1

p+
J,i (2.122)

This junction arrangement results in wave propagation that is more accurate

than the rectilinear topology. The geometric factor b used in the calculation
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of the dispersion error for the triangular mesh is

b(ξ1,ξ2)=
2
3

[
cos(ω1cT)+cos

(
ω1cT/2+

√
3ω2cT/2

)
+cos

(
ω1cT/2−

√
3ω2cT/2

)]

(2.123)

Figure 2.26 shows the dispersion factor for the triangular DWM.
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Figure 2.26: Triangular DWM dispersion factor

As with the rectilinear mesh, a reduced wave speed is experienced by

higher frequency content. However, the graph bears greater circular sym-

metry about the centre. The triangular topology has less angular variation

in terms of dispersion error, and therefore has a more even directional

scattering. Furthermore, the triangular dispersion factor about the majority

of the middle is approximately flat. This represents accurate propagation

at frequencies that are relatively low compared to the sampling rate. In

simulations where a wide bandwidth is required it is possible to reduce

the dispersion error in higher frequency content with the use of frequency

warping [66]. A warped FIR filter is used for pre- and post-processing of

signals into and out of the mesh to correct for shifts in the higher frequencies.

The Interpolated Mesh

Further improvements in scattering uniformity are offered with the use of

the interpolated mesh. An arbitrary number of connections are considered

at a rectilinear junction such that they form a circle around it. Those that

fall in between grid axes are purely hypothetical. Interpolation is used to
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extrapolate the effect of those additional connections onto actual connections

[67]. Figures 2.27(a) and 2.27(b) show the formulation of an interpolated

scattering junction and its use in a DWM of arbitrary shape, respectively.

(a) (b)

45°

Jc

Ja Jd

Ja

Ja

Ja

Jd

Jd

Jd

Figure 2.27: Interpolated topology: (a) the 9-port junction and (b) arbitrary shape mesh

A 3× 3 scattering matrix is formed such that the influence of each of

the 8 neighbouring junctions and the central junction itself, is defined. The

weighting applied to the diagonal, axial and central components is hd, ha

and hc, respectively. Bilinear or quadratic interpolation, or alternatively an

iteratively calculated optimum between the two methods, can be used to

define the point spreading function [68].

hx,y =




hd ha hd

ha hc ha

hd ha hd


 =




0.09398 0.3120 0.09398

0.3120 0.3759 0.3120

0.09398 0.3120 0.09398




optimum

(2.124)

The pressure at the junction is then

pJc =
2
N

3

∑
x=1

3

∑
y=1

hx,yp+
x,y (2.125)

The interpolated junction gives improvements in wavefront isotropy, but

introduces an extra 9 multiplications. As such the triangular mesh is widely

used in 2D modelling, considered to be accurate enough, whilst maintaining

suitable computational simplicity [10] [64] [69] [58].
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2.6.7 The Multiple-Port Finite Difference Junction

A finite difference scheme may also be applied to a multidimensional

structure. As for the 1D case, PDEs with respect to time and space are

approximated as second order differences. For example, the wave equation

for pressure p(x,y, t), in 2D Cartesian coordinates x and y is

1
c2

∂2p
∂t2 =

∂2p
∂x2 +

∂2p
∂y2 (2.126)

Following the same method as in Section 2.4.3, a FDTD approximation can

be constructed. Spatial coordinates x and y are indexed as mx and my,

respectively, and n is the discrete time step, such that the pressure p at a point

is

p(mx,my,n) = p(mx,my +1,n−1)+ p(mx +1,my,n−1)

+ p(mx,my−1,n−1)+ p(mx−1,my,n−1)

− p(mx,my,n−2) (2.127)

A general form of the scattering equation for pressure p at a FDTD junction J

with N ports of admittance Y can be derived [54] as

pJ(n) = 2
∑N

i=1Yi pi(n−1)
∑N

i=1Yi
− pJ(n−2) (2.128)

For a junction with N equal admittance connections, this becomes

pJ(n) =
2
N

N

∑
i=1

pi(n−1)− pJ(n−2) (2.129)

2.6.8 Finite Difference Boundary Implementation

The absence of travelling wave variables makes the FDTD scheme inflexible

to the formulation of multiple-port boundaries. The loss of the directional

information of incoming components at such a junction means that direc-

tional weighting of outgoing components is also lost. A 2D mesh using only

FDTD scattering is therefore limited in shape to a rectangular, rectilinear grid
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with edges that are parallel to the two cartesian coordinate planes x and y.

Boundaries are therefore straight and can be implemented using a line of

1D terminations. Simple 1-port reflecting FDTD mesh boundaries can be

simulated using the same admittance discontinuity analysis techniques used

for the wave scattering boundary in Section 2.5.3. The pressure p on a 1-

connection FDTD boundary junction B in terms of the singular neighbouring

junction J is

pB(n) = (1+ r)pJ(n−1)− pB(n−2) (2.130)

This boundary formulation is derived assuming 1D wave motion. When

used at the edges of a 2D or 3D mesh it only applies the desired reflection

to the components on the wavefront that are perpendicular to the boundary

at the point of incidence. All other components experience some small

reflection. This effect is negligible in the case for r values approaching fully

positive or fully negative reflections. However, it becomes apparent in the

case of an absorbing boundary, where r ≈ 0. A Taylor series approximation

to the pressure leading up to the edge of a mesh can be used as an improved

absorbing boundary condition [70]. Further advancements towards direc-

tionally balanced 2D FDTD boundary conditions have also been achieved

using a stepped impedance layer at the edge of the mesh [71]. Boundary

junctions employ a spatial averaging filter to take into account the effect

of scattering junctions within this additional layer [72]. The spatial filter

includes junctions on a line perpendicular to the boundary, as in (2.130)

and [70], but also considers the influence of junctions to either side. This

inclusion of surrounding pressure values from a broader range of incident

angles improves the directional behaviour of the boundary.

2.6.9 Wave Scattering vs FDTD: Mixed Modelling

The FDTD junction consists of three variables for any number of connections

in any dimensionality or topology. These are the total junction pressure val-

ues at the three time instants (n), (n−1) and (n−2). For each wave-scattering

junction a total pressure value is required with two travelling components for
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each connection. For a 1D system, wave-scattering methodology is preferred

as it offers the potential of combined delay lines for one computation per

time sample [10]. In higher dimensions, or where junctions have more than

two connections, the use of FDTD is advantageous. Scattering equations

contain fewer variables and operations per junction than wave-scattering.

This results in signal processing algorithms that are more computationally

efficient, placing lower memory and speed demands on a system. One

of the main disadvantages of the FDTD scheme, however, is numerical

instability. This is caused by rounding errors arising from the finite difference

approximation to the differential operators in the wave equation. Wave-

based scattering methodology is exact and is therefore numerical robust [73].

Furthermore, the geometrical inflexibility of FD boundary junctions places

limitations on allowed mesh shape.

Clearly, both approaches to spatial discretisation offer different advan-

tageous scattering properties; that of speed and efficiency in FDTD, and

stability and geometric flexibility in wave scattering. The two scattering

methodologies that have been presented here were seen to be equivalent in

Section 2.4.4. It is possible to combine the two modelling paradigms to exploit

the benefits of both with the use of the KW interface [54].
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Figure 2.28: Signal processing schematics for the (a) K-node, (b) KW-Converter and (c)
W-node, after [54]

These units provide a stable interface between Kirchoff (K) and Wave

(W) variables. K scattering is obtained with a linear transformation from W-
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variables, replacing travelling wave variables with past pressure values from

neighbouring junctions. This is an alternative approach to FDTD for use in

mixed modelling although there does not always exist an exact equivalence

between an FDTD model and linearly transformed W-variable K-model, for

instance the lack of appropriate equivalent boundary solutions.

Using mixed modelling, a multidimensional simulation of, for example,

the acoustics of a concert hall can be constructed that presents improvements

in computational efficiency [15]. The majority of the waveguide structure

away from the boundaries that consists of standard N-port scattering junc-

tions can be simulated with K methodology as to benefit from the reduced

computational load. The geometrical flexibility advantages of the wave-

scattering method at the boundaries can also be exploited. Furthermore,

with wave based N-port boundaries, the K scheme can also be implemented

as a different topology mesh as to benefit from the improved dispersion

characteristics.

2.7 Conclusions

In this chapter the use of digital waveguides in an acoustical physical model

has been discussed. Fundamental physical quantities, such as the speed

of sound in air, and the acoustic impedance experienced by a propagating

sound wave, were derived from first principles. The natural phenomenon of

resonance was introduced in order to highlight how wave reflections within a

confined system give rise to modal frequency peaks in the resulting spectrum.

These concepts of sounds waves and resonance are of particular interest in

speech studies. As will be seen in the next chapter, the human voice is an

acoustic resonator which is continually manipulated by its user to alter the

way in which a sound wave propagates through it. This process changes the

resonant qualities of the vibrating air-cavity within, giving rise to the many

different voice sounds we interpret as spoken communication.

Next, the numerical simulation of a real world system was discussed

in two general stages. Firstly, identification of a continuous wave equation

63



2. Physical Modelling Synthesis

governing system behaviour takes place. Second, a solution is found that

satisfies the wave equation within a given discretisation of the system. One

of the methods presented, the travelling wave solution, forms the underlying

theory of the digital waveguide. The manner in which this modelling

paradigm is used to construct a 1D simulation was examined through the

formulation of various scattering equations. This lead to the derivation of the

Kelly-Lochbaum concatenated tube model, which was originally presented

in 1962 as a 1D model of the vocal tract.

Finally, the use of the waveguide in a model with higher dimensional

representation was shown. The digital waveguide mesh was defined in terms

of multiple port scattering and boundary junctions. These techniques are

used in acoustical simulations of 2D surfaces, such as drum skins, and 3D

structures such as the acoustics of a room. 2D simulations are also often

used as an efficient precursor to full 3D systems, offering a proof-of-principle

examination of new techniques, such as boundary junctions, without adding

full complexities too early in the development stage. The analysis given in

this chapter demonstrating the expansion of the 1D waveguide model into a

multi-dimensional DWM is fundamental to the work contained in this thesis.

It lays down the process by which it will be suggested in the following

chapters that the well-established 1D vocal model can be extended into a

multidimensional model.

In all simulations, a number of assumptions and simplifications have to

be made to the definition of the synthesis system. The model needs to capture

enough essential aspects of the real world behaviour to meet the appropriate

level of representation that is required. At the same time, it is necessary

to determine real-world properties that are of no interest or consequence

to the desired performance, such that they can be omitted. Similarly, the

modelling methods themselves are not exact. The nature of discretisation

implies that some properties of the representation will be lost. Some of the

deficiencies of the modelling methods were discussed in this chapter, such as

the linearisation applied in the finite difference approximation of the wave

equation, or the dispersion characteristics of each of the different topology
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DWMs. These issues will be present in constructing a multidimensional

DWM model of the vocal tract, and are worth consideration. However, as will

be outlined in the next chapter, the human voice is a very variable system.

Large amounts of uncertainties will be present in voice modelling techniques,

and so achieving a perfect vocal synthesis system is not an expectation at this

stage in the research.
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Chapter 3

The Human Voice

3.1 Introduction

The human voice is a highly complex system that has evolved over many

years to allow communication between humans using a wide variety of

speech sounds. We use the lungs and vocal folds to create pressure waves

that undergo propagation and reflection within the resonating cavity formed

by the vocal tract. These acoustical disturbances are manipulated into spoken

communication using only a few articulatory movements. Speech synthesis

provides an alternative whenever human speech is not possible or practical.

In the most widely known application it functions as an artificial voice for

the vocally impaired. It also serves as an aid for the visually impaired in

conveying the content of an electronic document or email. In the broader

context of human-computer interaction, many further situations exist where

a computer system is required to audibly communicate with its user.

Natural sounding speech synthesis, such that it is indistinguishable from

a human speaker, is the goal in state-of-the-art applications. However, the

highly variable nature of speech, and complexity of the vocal system used to

create it, make this a non-trivial task. Recent developments in techniques

based on the joining together of short extracts of recorded speech have

resulted in artificial speech of a highly organic nature [6] [22] [5]. Ultimately,

however, such sample-based methods are limited to reproduction of only
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the sounds that were originally recorded. Articulatory models mimic the

actions of the vocal system, rather than reconstruct the resultant sound.

The high levels of complexity in such a model make them impractical

for current requirements. Low-level articulatory models that make many

simplifications to the vocal process, are widely used in speech research.

Continual advances in knowledge about the voice, alongside a constant

increase in available computational power, have stimulated interest into

higher levels of representation. At current levels of sophistication, natural

articulatory speech synthesis is largely a future consideration. However,

research into techniques to improve the accuracy of simulations of the

constituent vocal sub-systems is widespread.

This chapter starts off by briefly looking at the human vocal anatomy

and its function as an acoustic resonator. The vocal tract, and the manner

in which it is used to create the many speech sounds, is examined. Vocal

fold vibrations and the resulting glottal waveform are introduced. Phonetic

descriptions used follow the IPA notation [74]. For example the vowel in

the word bed is identified with the symbol /E/. A table of IPA descriptions

of vowels, diphthongs and voiced and voiceless consonants, along with

relevant word usage can be found in Appendix B.1. Next, three different

methods of generating artificial speech sounds are outlined:

• Formant synthesis - Reconstruction of the known spectral properties

• Concatenative synthesis - Joining together pre-recorded samples

• Articulatory synthesis - A model that mimics the physical vocal process

Particular focus is directed towards the time-domain acoustic tube articu-

latory vocal tract analogy. A thorough analysis is presented of the widely

established 1D Kelly-Lochbaum system. Finally, the potential of extending

the dimensionality in such a model is highlighted.
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3.2 Acoustics of Voice Production

The term vocal tract is used to describe the air cavity that is used in production

of human speech. It comprises three resonating chambers. Between the

vocal folds and the lips are the pharyngeal cavity followed by the oral cavity.

The nasal cavity forms a side branch from the oral cavity at the velum and

extends to the opening at the nostrils. The term vocal tract also includes

the various features that surround the cavities, such as the larynx, epiglottis,

pharynx, tongue, soft palate (or velum), hard palate, teeth and lips. Figure

3.1 illustrates these acoustically important features of the human head from

a sideways-on cross-sectional view, known as the mid-sagittal plane.

Vocal Folds

Nostrils

Nasal 

Cavity

Tongue

Trachea

Soft Palate / Velum

Hard Palate

Pharyngeal Cavity

Larynx

Esophagus

Epiglottis

Oral Cavity

Lips

Figure 3.1: The human vocal system, after [75]

The sounds created during continuous speech can be considered as the

result of a source-filter combination [76]. The vocal tract serves as a variable

shape acoustic filter that is continually manipulated by the speaker in order

to change its resonant properties. Excitation comes in the form of a stream

of pressure pulses that are generated as air flowing up from the lungs causes

the vocal folds to open and close periodically. The vocal tract filter acts to

impart its spectral characteristics onto the glottal source signal, such that the

resulting output from the lips is perceived as speech sounds.
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3.2.1 Vocal Tract Area Function

The full vocal tract shape can be acquired using either x-ray [76], magnetic

resonance imaging (MRI) [77] or acoustic pulse reflectometry [78]. For each

vowel shape, the subject will be asked to hold a tract position while the

scan takes place. During continuous speech the tract shape is continually

changing. Data acquired from a scan of a stationary tract position held for

some time will not, therefore, be an exact representation of that which would

be observed in speech. Static tract shapes are adequate for current levels of

speech modelling. However, methods introducing higher levels of accuracy

will be of benefit to future research.

For simplicity in modelling purposes the tract shape is generally quanti-

fied in a simplified 1D area function. Figures 3.2(a) and 3.2(c) illustrate the

tract in the position held for production of the /i/ vowel as in the word

bead, and the resulting 1D area function, respectively. The velum is closed

for production of such non-nasalised vowels and so the nasal cavity is not

included in the diagram. Figure 3.2(b) shows how the 1D data is extracted,

taking a plane that is roughly perpendicular to the localised airflow for

the orientation of the cross sectional area. This process has the effect of

straightening the tract.
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Figure 3.2: The vocal tract in the /i/ vowel position: (a) in situ, (b) area plane for cross-
sectional orientation and (c) resulting 1D area function

Information about the bend in the tract and the actual cross-sectional

shape is lost in this process. The 1D area function therefore provides an

approximation in the form of a series of circular area values projected along

a straight axis from the glottis to the lips.
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3.2.2 Nasal Tract Area Function

The soft palate or velum is used to control the air-flow into the nasal cavity.

For velar opening areas of 20 mm2 or less the sound produced is non-nasal

[79]. Acoustical coupling between the vocal and nasal tracts takes place when

the opening is in the region of 50mm2 [80]. The sinus cavities also contribute

to the nasal resonances. The combined nasal and sinus cavities form an

additional resonator of approximately 11 cm in length. The cross sectional

width variations can be quantified in an area function. Figure 3.3 shows an

example of the measured nasal tract area function.
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Figure 3.3: The nasal tract area function, after [81]

In general, nasal consonants are characterised by a formant at between

200-300 Hz in the speech spectrum [76]. During production of the nasal

consonants /m/ and /n/, the vocal tract is closed and the sound radiates

through the nostrils. This type of acoustical coupling generates antireso-

nances (inverted peaks) in the spectrum, the lowest of which are prominent

at around 1000Hz for /m/ and 1700Hz for /n/ [82].

3.2.3 Glottal Excitation

The source of excitation to the vocal tract is a combination of the air pressure

direct from the lungs and the vibrations of the vocal folds that results from

this sustained pressure. Located in the larynx above the trachea, the vocal

folds are two parallel mucosal membranes. They are attached at the front of

the larynx to the thyroid cartilage and at the back to the arytenoid cartilages.

The space in between the folds is called the glottis. For production of voiceless

vowels (whispered) and consonants the glottis remains open.
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In preparation for voiced phonation the arytenoids are made to rotate to

bring the folds closer together, causing tension across them. A contraction of

the diaphragm muscles forces a steady stream of air up from the lungs. The

air pressure builds up behind the closed glottis. When the force against the

vocal folds is greater than the elastic tension holding them together it causes

them to move apart, briefly releasing a pulse of air. Bernoulli’s principle

of fluid dynamics states that this increase in flow velocity will occur with

a decrease in pressure. The tension in the vocal folds, combined with the

reduction in pressure, will cause the glottis to abruptly return to its closed

state. This periodic cycle produces a train of pulses into the tract at an average

fundamental frequency of 120Hz for a male speaker [79].

Models of the glottal vibrations generally fall within two categories; those

that describe the motion of the vocal folds [83] [84] [85] [86] and those based

on a mathematical description of the resulting waveform [87] [88] [89].

Mass and Spring Models

The movement of the vocal folds during the periodic opening and closing

can be modelled with a mass and spring representation. Each fold can be

viewed of as a singular mass which moves in to meet the opposite fold in the

centre of the glottis. The spring represents tissue stiffness, or restoring force

provided by the muscles. Some damping may be included to represent the

energy absorption of the tissue. This simplistic model assumes that the whole

of the fold moves as one rigid mass and excludes effects of the flexibility

of the membrane on the resulting waveform. More accurate models have

been developed to give greater degrees of freedom to the moving parts in

each fold. These have been of the form of two- [83], three- [84] and sixteen-

mass [85] models. However, increased flexibility and accuracy resulting from

these models is offset with the greater computational complexity needed to

facilitate them.
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The LF Glottal Waveform Model

The Liljencrants-Fant (LF) four-parameter glottal flow derivative model [89]

is commonly used as excitation in vocal simulations. It provides a succinct

mathematical description of the air flow through the glottis as it opens and

closes. Figures 3.4(a) and 3.4(b) illustrate one cycle of the glottal flow u(t) and

differentiated glottal flow g(t) = du
dt waveforms, respectively.

 (b) g(t)

te

ta

tp

tc

T0

Ee

 (a) u(t)

tp

T0

E0

Figure 3.4: Glottal waveforms: (a) flow and (b) flow derivative

The four timing parameters needed to generate the waveform are tp, te, tc,

and ta. Different combinations of these values can be obtained from natural

speech of various voice type, such as modal (regular voiced phonation),

breathy or whispered. The glottal waveform for the associated voice type

can be reconstructed using the parameters. Time tp occurs at the moment

of maximum flow E0, as in Figure 3.4(a). Mathematically, the derivative

waveform g(t) in Figure 3.4(b) is defined in two parts. In the first section,

an exponentially growing sinusoidal component is used to represent the

time from glottal opening to its maximal negative value Ee, at time te. This

sinusoid has angular frequency wg = π
tp

. Secondly, the residual flow after te

is represented with an exponential component as the waveform returns to

zero at tc. Effective duration of the return phase is given by ta. The cycle is

complete at T0. The two stages of the waveform are

g(t) = E0eαtsin(ωgt) 0≤ t ≤ te (3.1)

g(t) = −Ee

εta

[
e−ε(t−te)−eε(tc−te)

]
te≤ t ≤ tc≤ T0 (3.2)
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Where α, the exponential growth factor of the sinusoid, is typically around

0.7, although is generally in the range 0.5− 0.9 [90]. The symbol ε denotes

the exponential time constant of the return phase. The following conditions

must hold.

∫ T0

0
g(t)dt = 0 (3.3)

ε =
1−e−ε(tc−te)

ta
(3.4)

E0 = − Ee

eαte sin(ωgte)
(3.5)

These constraints are established as to ensure that the model maintains

continuity. The area balance expressed in condition (3.3) is achieved with

iterative calculation of (3.5). During this, E0 and α are modified to determine

an equal distribution of positive and negative parts of the integral of g(t) [91].

For small ta values, the approximation ε = 1/ta may be made in place of (3.4)

[89].

3.2.4 Vowel Formant Frequencies and Bandwidths

In simplistic terms, the vocal tract exhibits resonant behaviour that is anal-

ogous to a straight acoustic tube, such as that illustrated in Figure 2.8, with

an open end at the lips, and a closed end at the glottis. This comparison is

particularly appropriate in the case of the tract shape held for producing the

neutral vowel /@/, heard for example at the beginning of the word about.

In this configuration the tract has the least cross-sectional variation, and so

best approximates the straight tube analogy. The average adult male vocal

tract measures 17.6 cm [76]. In Section 2.3.5 the modal frequencies along an

acoustic tube with one closed and one open end were analysed. Using a

wavespeed of c = 343 ms−1, the first three modes of resonance (N = 0,1,2)

along a tube of this length can be calculated with equation (2.38) to be 487

Hz, 1462Hz and 2436Hz. In the context of speech these resonant peaks are

called formants.

The different vowels are created as the tract shape is moved away from
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the neutral position, providing constrictions to the air-flow and changing the

resonant properties. This has the effect of moving the formant frequencies,

giving each vowel its identifiable characteristics. Figures 3.5(a) and 3.5(b)

show the tract shape in the position held for the /I/ and /O/ vowels,

respectively. The associated formant patterns, showing the first three peaks,

are included in the diagram.

(a) (b)

f

f1

f2 f3

dB f1 f2 f3

f

dB

/ I /

'bit'

/O /

'bought'

Figure 3.5: Tract shapes and formant patterns: (a) /I/ and (b) /O/ vowels

The diagram indicates that particular tract sections have greater influence

over individual formants. For example the tract configuration in Figure 3.5(a)

comprises a constriction made towards the front with the tongue, combined

with a larger cavity towards the back. This type of tract shape results in a

lowered f1 and raised f2 and f3, when compared to their neutral positions

[41]. Similarly, a constriction made further back, as in Figure 3.5(b), leads to

a raised f1 and lowered f2 and f3.

Figure 3.6 illustrates average formant frequencies and corresponding

bandwidths (in brackets) measured from a range of vowels occurring in

natural speech.

Formant frequencies are used to identify one vowel from another. In

perceptual terms, only the first three formants are required for differentiating

one vowel from another. Higher formants are considered to contribute to

the unique characteristics of the speaker [41]. The bandwidth of a formant

is defined as the width, or frequency range at a point 3 dB less than the

peak value. Formant bandwidths determine the extent to which the formant

frequencies affect the output. In other words, they control the quality of

the vowel sound. A tract with large bandwidth formants would add little

to the spectrum of the input source, and so the resulting speech output
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Figure 3.6: Average formant frequencies and bandwidths for male speakers, after [79]

would be perceived as similar to the glottal buzz. In general, increased losses

in a system imply less inward reflections and therefore weaker resonant

characteristics. In the opposite case, higher reflections result in lower

bandwidths and a stronger resonance. Vowel sound that is produced using a

system with overly narrow bandwidth formants is often described as having

an unnatural ringing, metallic quality.

3.2.5 Energy Losses

The vocal tract air cavity is enclosed by three main boundaries. Reflection

and absorption takes place at the vocal folds, tract inner walls and lip

opening.

The Glottal Boundary

The energy absorption of the vocal fold tissue follows a frequency-dependent

relationship with pressure waves incident upon it. However, on average

approximately only 3.1% propagates through to the trachea [92], [93]. Ne-

glecting vibratory effects it is therefore possible to consider the glottis as a

positive (phase preserving) reflection of rg = 0.969.
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Vocal Tract Walls

The soft tissue inside walls of the tract also present frequency dependent

positive reflections. Energy is absorbed as the yielding walls vibrate. Such

losses are more pronounced at the lower end of the spectrum as little

resonance of the large wall structure takes place at higher frequencies [94].

Friction between the air and tract walls, and heat conduction into the tract

walls generates viscous and thermal losses. The effects of heat and friction

losses are negligible at low frequencies [94]. A circuit-based analogy can be

constructed such that it models the transmission properties of a section of

acoustic tube, incorporating the effects of losses that would be observed in

the vocal tract [83], [95], [96]. An example of this type of model is shown

in Figure 3.7, which uses the analogue filter circuit components: resistor R,

capacitor C and inductor L.

Li
R
i

G
i

C
i

Cw

Rw

Lw
L
i

R
i

Zw

Figure 3.7: Circuit-based vocal tract acoustic tube section analogy, after [79]

Component Equation Acoustic representation

Ri
2µli(a2

i +b2
i )

πa3
i b3

i
Viscous loss

Ci
Ai l i
ρc2 Air compressibility

Li
ρl i
2Ai

Air mass inertia
Rw

Bw
l iSi

Part of yielding wall
Cw

l iSi
Kw

Part of yielding wall
Lw

Mw
l iSi

Part of yielding wall
Gi Heat conduction loss

Table 3.1: Relationship between circuit components and acoustical quantities, after [79]
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Lip Radiation

The boundary between the vocal tract and the air in front of the speaker at

the lips forms a negative (phase inverting) frequency-dependent reflection.

An analogy is formed such that the lip opening is modelled as a piston

at the inner edge of a spherical baffle (the head) that is forcing the air

column in front of it to vibrate. If it is assumed that the radiating surface

is small compared to the head, then the curvature of the sphere can be

neglected. Using this simplification, lip radiation is commonly represented

as an opening in an infinite plane baffle. A model using electronic circuit

components results in the following load applied across the lip termination

[94].

Zl (ω) =
jωLrRr

Rr + jωLr
(3.6)

This can be realised with a parallel resistor and inductor pair to represent a

lip opening of radius a, where Rr = 128/9π2 and Lr = 8a/3πc and c is the speed

of sound [96].

The lip opening has the effect of reflecting a greater proportion of

the lower frequencies back into the tract. A further simplified model,

which is more commonly used, implements this effect as a first-order high-

pass operation such that the radiated pressure wave can be obtained with

differentiation of the volume velocity signal [97].

3.2.6 Articulation

The tract shape is largely influenced by the arrangement of the articulators -

the tongue, jaw, teeth and lips. Articulators are held in specific positions for

production of voiced and voiceless (whispered) vowels. A slow movement of

these features generates a transition between two vowels, called a diphthong.

An example of this is /aU/, heard in the word house.

Sharp and abrupt articulator movements are used to create consonant

sounds. At a point of constriction turbulence is generated in the air-flow.

This gives rise to noise-like excitation called frication. The glottal approximant

/h/, for example, is made with turbulence at the partially open vocal folds.
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A constriction made with the lips and teeth produces the labiodental fricative

voiceless /f/ or voiced /v/. The tongue and hard palate are used together to

create the alveolar fricative such as /s/.

An obstruction to the airflow produces a complete stop. Upon release

this produces a sudden impulsive excitation, used in the generation of plosive

consonants. For example the sound /k/ where a stop is made between the

tongue and velum. The bilabial plosive voiced /b/ and voiceless /p/ are made

with a stop created with both lips. The tongue and hard palate are used for

production of the alveolar plosive /t/. Slight constrictions can be made to

the tract flow to make approximant consonants, where a small amount of

turbulence is generated. For example, semivowels such as /w/ are made with

the lips, and laterals such as /l/ are created with the tongue.

3.3 Vocal Synthesis

Advancements in speech technology research improve the way in which a

human can interact with a computer in the situation where traditional inter-

face devices such as a keyboard are not used. Direct spoken communication

with a computer involves the process of speech recognition. In the reverse

direction, the computer must provide audio output that is perceived to be

speech and the meaning of the intended message must be correctly conveyed

to the listener. This is speech synthesis. It can be broken down into two parts.

Firstly, analysis and phonetic description. The word, message or concept

intended for communication is expressed as a series of phonemes which still

contain the original meaning. Secondly, audible output is generated that

consists of the connected chain of phonemes, and hence is recognisable as

the intended communication. It is this secondary stage of acoustic waveform

generation of speech sounds which is of interest to this work.

3.3.1 Formant Reconstruction

Techniques based on spectral reconstruction make use of the known fre-

quency characteristics of speech to create a system of filters. The formants
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generated by the tract resonances can be modelled with a series of a notch

filters with independently tunable frequency and bandwidth [88], [98]. These

are continually modified to produce the formant patterns required for the

range of different vowel sounds. Small pulses are injected into the system

to model plosive consonants [99]. Noise based excitation can be used to

produce frication and voiceless phonation. A glottal pulse train is injected

into the system to provide voiced phonation. The system of filters imparts

the spectral characteristics of the chain of phonemes to be synthesised onto

the various excitations.

3.3.2 Speech Sample Concatenation

At present the most widely used method of speech synthesis uses concate-

nation of stored waveform samples. Several hours of spoken voice, typically

that of an actor, are recorded and analysed. An instance of each of the possible

units of speech, the phoneme, is extracted and stored in memory.

In what is known as text-to-speech (TTS) synthesis [6], the word, concept

or message that is to be expressed as artificial speech will be input by a

human or taken from an electronic document. A series of phonetic sounds

will be selected from the database that provides a best-fit match to the

desired utterance. The phonemes are connected together in a manner that

minimises any perceptual cues that might reduce the resulting naturalness.

Synthesised speech of a highly natural quality can be achieved with the use

of unit selection [100]. Typically, a large diphone database database would be

constructed, containing an example of each of the possible transitions from

the middle of one phoneme to another [5]. At the concatenation stage context

dependant selection is used to minimise the associated join cost function.

This results in an increased match between a waveform and its adjoining

segments and hence greater naturalness.

Concatenative synthesis does have its disadvantages. The database

needed to store all the pre-recorded segments will become very large as the

reqiurements of the system grows [22]. Advanced synthesis research involves
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consideration of large vocabulary capabilities, alternative language support

and emotional expression. Furthermore, the vocal identity that is provided

with the system will alway be limited to that which was originally recorded

as processing of the samples yields unnatural results [101].

3.3.3 Articulatory Modelling

Speech sound can be generated from a model that attempts to simulate the

vocal system rather than reconstruct the resulting output. An articulatory

model is a system in which moving tract parts are represented. Each is

configured such that it provides functionality that approximates its observed

role in the real world. In this sense it constitutes a physical model. Changes in

tract shape can be directly applied to the controlling parameters of the model

because of the semantic relation that exists between them. Furthermore,

interpolation between tract shapes also has meaning, as interim parameters

are physically realisable. In a spectral synthesiser interpolation between two

sets of formants might yield patterns that correspond to unrealistic tract

shapes.

The resulting signal that is actually simulated is the airflow as it is

manipulated by the articulatory tract features. In most vocal tract models

the two main assumptions made are that the tract is straight and that wave

motion is one-dimensional. Simulations based on an acoustic tube with

a straight axis, in part, allow for the simplified 1D representation to be

justified. It has been demonstrated that within spectral regions of interest, the

discrepancies that arise from this assumption are small [102]. A mathematical

model of a curved duct in cylindrical coordinates was constructed to compare

the difference in modal resonances with a straightened equivalent. For

simplicity in calculations the duct was given a constant rectangular cross

sectional area along its length. It was found that modal resonances below 4

kHz of a bent tube of constant cross sectional area differ from a straightened

equivalent by 2%−8%.

Typically, in simulations of musical instruments the wave motion is also
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assumed to be planar. The cross-axial modal resonances across a narrow

acoustic bore are typically considered to be above the region of concern for

standard audio applications. For example, the lowest cross-modal resonance

of the narrow acoustic bore in a clarinet has been calculated to be 26.2 kHz

[46].

In the frequency domain, an articulatory model consists of several con-

trollable transfer functions. Sections of tract (that are not necessarily equal

in size) are identified as important aspects within the speech system, such as

the lips, nasal cavity, and tongue. The space contained within each section

is used to derive a 2×2 or ABCD matrix [103]. Each represents the transfer

function of the section. It takes into account effects of yielding walls, viscous

losses, radiation and the position of articulators for the given vowel or area

function. The combined product of the chain matrices gives the complete

tract transfer function. A time domain glottal signal is convolved with

the impulse response of this function to generate the speech like output.

Improvements on this frequency domain approach make attempts to derive

transfer functions for each section from 3D data, using the complete MRI

scan, rather than a reduced 1D area function [101]. This incorporates

some effects of non-circular tract segments on their propagational behaviour.

However, the cascaded series of transfer function sections amounts to a 1D

representation.

A visual simulation of the intricate movements of the articulators during

speech has been constructed [104]. Full 3D MRI scans are taken of a speaker.

The data is parameterised to produce a graphical model of the articulations,

with particular emphasis on simulation of the complex shapes formed across

the contours of the tongue.

Physical limitations can be applied to an articulatory model, for example,

such that the tongue section can only move with the degrees of freedom

observed in the real world. In this manner a comprehensive model could,

to some degree of accuracy, achieve any of the sounds attainable with

the human voice. If these limitations are extended beyond real world

applications, then experimentation can take place that would otherwise not
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have been possible. This could include synthesis of speech from a very small

or very large vocal tract, such as that of a child, or a tall adult, respectively.

Furthermore, the potential for obscure speech synthesis arises, such as a

model that uses tract area functions taken from an animal.

3.4 The Time-Domain Acoustic Tube Vocal Tract Model

3.4.1 One-Dimensional Representation

The piecewise acoustic tube model is a widely established method of time-

domain articulatory modelling of the human vocal tract. It was initially

used to demonstrate the Kelly-Lochbaum scattering junction for signal dis-

tribution about an impedance discontinuity [18]. The travelling components

solution to the wave equation is used to simulate the pressure signal in

each equally sized tube section [94]. An in-depth analysis of the 1D digital

waveguide and its application in a piecewise acoustic tube model was

presented in Section 2.5.2. Developments of the model have been directed

towards the use of wave filters (equivalent to resistor-capacitor-inductor

small circuit tube approximations) in the model [105], [92], [106]. It has also

been used to generate singing synthesis [107], [93].

Given the assumptions made in straightening the tract and on planar

wave motion, the vocal tract is represented as series of adjoining tubes. This

type of model is called the 1D piecewise or concatenated acoustic tube model.

The 1D area function is spatially sampled and represented as a number of

discrete tubes of varying circular cross-sectional area. Figure 3.8(a) illustrates

the area function for the /i/ vowel taken from MRI data [77]. Figures

3.8(b) and 3.8(c) show the associated piecewise analogies using equally sized

cylindrical, and conical acoustic tube segments, respectively.

3.4.2 Conical Tube Sections

The spatially sampled cylindrical tube model shown in Figure 3.8(b) can be

considered a zero-order approximation to the area function. The conical tube
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(a) /i/ Vowel cross-sectional area function
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(b) Concatenated 11-cylinder acoustic tube analogy
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(c) Concatenated 11-cone acoustic tube analogy

Figure 3.8: The 1D /i/ vowel waveguide model

model illustrated in Figure 3.8(c) follows a first-order approximation. An

improvement in the agreement of simulated formants to those predicted in

theory is achieved with the use of conical waveguide segments [108]. As

discussed in Section 2.5.4, additional filter units are formed within each

junction to simulate the effects of spherical curvature of the wavefront as

it passes through the cone. However, it has been demonstrated that this

improvement comes with an increased computational load that is equivalent

to a doubly spatially sampled cylindrical tube model, with no further gain

in accuracy [109]. Therefore, with equal performance obtained from either

model, the simplicity of the junction implementation in the cylindrical tube

model makes it preferential.

3.4.3 The Nasal Tract

Nasalisation can be introduced into the 1D model [107]. The nasal tract

area function is translated into a 1D piecewise acoustic tube model. The

scattering junction at the nearest discrete point to the velum on the vocal

tract model is configured with an additional port such that it provides a side

branch opening into the nasal model. This third connection is the velum. The

coupling between the two cavities is controlled with the admittance of the

third waveguide.
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3.4.4 Energy Losses

The output pressure at the lips is typically modelled with the application of a

6 db/octave high-pass filter to the velocity signal at the lips [107]. Reflections

back into the tract at the lips are the remainder of this radiation function.

Tract losses along the inner walls can be combined and projected onto

either of the terminations. This is possible as the commutative properties

of waveguide modelling allow for the separation of material properties from

the purely propagational mechanism. The glottal boundary provides a high

positive reflection, as indicated in Section 3.2.5.

Figure 3.9 demonstrates how the tube representations are modelled with a

1D chain of waveguides that are separated by junctions and terminated with

glottal reflection rg, and lip radiation filter Rl (ω) boundaries. Included in the

diagram, the nasal cavity model is fixed at the velum and terminated at the

nostrils with the radiation filter Rn(ω).

Excitation

Speech

Sound
JJJJJJJJJJrg Rl(ω)

JJJJJJJ Rn(ω)

Nasal Tract

Mouth Lips

Nostrils

Glottis
Pharynx

Velum

Figure 3.9: The 1D waveguide vocal tract model with nasal cavity and radiation filters

For the cylindrical model, the admittance of each waveguide is deter-

mined from the area of the associated tube with (2.11). Propagation through

each waveguide junction J at the tube-area discontinuities is facilitated with

a KL scattering unit, as discussed in Section 2.5.2.

3.4.5 Dynamic Operation

The crosswise tract shape changes that take place in speech are simulated

with linear interpolation between area functions. This is implemented

with continual adjustments in the admittance of each waveguide. One

disadvantage of the 1D waveguide tract model is that the length must remain

fixed. Production of certain vowels, such as the /u/ vowel, involve a

rounding and protrusion of the lips. This has the effect of a slight lengthening
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of the tract and hence lowering in formants. Dynamic alterations in the length

have been simulated with the use of fractional delay waveguides in such a

model [108], [110]. The additional filter units required introduce an increased

computational load.

3.4.6 Computational Considerations

For illustrative purposes, Figure 3.9 shows a model using 11 waveguides

to represent the length of the vocal tract. Typically a 44-waveguide model

is used for sufficient accuracy in area function approximation. For a 17.6

cm vocal tract this gives a waveguide length of 0.4 cm, and a sampling

frequency of fs ≈ 88 kHz. Using the one-multiply junctions for signal-

flow at an impedance discontinuity, 44 multiplications and 176 additions

are required per time-step. Including the few extra operations needed for

boundary calculations, a real-time response is easily achieved on a standard

PC.

3.4.7 Extended Dimensionality

A vocal tract model that employs a discretised 1D version of Webster’s horn

equation assumes that the wavelength of the speech waveform is much larger

than the width of the tract. This implies that cross tract reflections are

therefore small and occur at high frequencies so are beyond the scope of low

bandwidth simulations. Minimal research has been undertaken to investigate

the effects of wave motion in a tract model beyond planar considerations into

a representation of higher dimensionality.

The reflections across a straight acoustic tube can be predicted using a

Bessel function, as demonstrated in Section 2.3.5. It was shown that the

lowest cross-modal behaviour of a clarinet with a radius of about 8 mm

exists at frequencies of 12.56 kHz and 20.8 kHz. Such high frequencies

are typically above the regions of concern for low bandwidth simulations,

especially those above the limits of human hearing at about 20 kHz. For

simulations of musical instruments this is often the justification for reduction
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of the wave propagation mechanism into 1D planar considerations [46] [35].

Many vocal tract simulations use the same assumptions for computational

simplicity, although equivalent radii of up to 20 mm are observed in speech.

Using the same method (2.41) and the same two lowest zero-gradient values

of α′11 = 1.841and α′21 = 3.054for the Bessel function with this larger radius,

a = 20 mm, cross tract reflections occur at

• f11 = 343×1.841
0.02×2π = 5.03 kHz

• f21 = 343×3.054
0.02×2π = 8.3 kHz

In more simplistic terms, treating the vocal tract as rectangular duct with a

constant width of 40mm, the lower limit for cross modes calculated with the

universal modal frequency equation (2.29) is 4.3 kHz. Tract openings of this

size take place at only a few locations, such as in the mouth, and also occur

infrequently in speech. However, these approximate lower bounds do serve

to indicate that the modal resonances across the tract fall within the regions

of interest of high bandwidth simulations.

3D finite element (FE) models of the vocal tract have been constructed to

investigate the effects of higher order cross modes [19], [20], [111]. FE models

present a similar method to finite difference (FD) for integration of partial

differential equations. In [19], wave propagation in the 3D tract model was

simulated with a spatial discretisation and calculation of frequency-domain

interactions between the elements. Lip radiation was simulated as a piston

in an infinite plane baffle [96]. Effects of yielding wall impedance were

considered to be negligible above 1 kHz and so were omitted. The tract

wall and glottal ends were implemented as hard reflecting boundaries. It

was concluded that the multi-dimensional model demonstrated higher-order

cross tract modes from 5 kHz upwards that were not accounted for in a 1D

electrical circuit based representation [96] used for comparison.

A 2D time-domain transmission line matrix (TLM) model of the vocal

tract has been used to demonstrate cross-modes [21]. Configured using the

/a/ vowel area function, the authors report the presence of transverse modes

at 5.2 kHz at the widest sections of the tract.
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3.5 Conclusions

The acoustical characteristics of the human voice and ways in which it

can be simulated have been discussed in this chapter. Emphasis was

placed on production of voiced vowels and their measured area functions

and associated formant patterns. The movement of the articulators was

highlighted as the cause of manipulations to the air-flow which creates the

variety of sounds observed in connected speech. Three methods for synthesis

of the voice were presented. Filter-based formant reconstruction was briefly

described. Sample-based concatenative methods were introduced as the

most widely used technique, yielding the most natural sounding speech.

Physically-based articulatory models were identified as a method of vocal

simulation with a potential for producing highly organic speech. Various

models, and the simplifying assumptions made for each were outlined. It

was indicated that a comprehensive vocal model of this type is currently

an unrealistic goal. Despite this, physical models of some of its smaller

subsystems, such as the mass-spring glottis and 3D tongue visualisation,

were discussed to emphasise the potential of research in this area. It

was noted that little has been done to investigate the effects of increased

accuracy in the propagational subsystem of such a model. Some studies

examining this notion in models were presented that reported cross-tract

modal interactions at frequencies above 5 kHz. In order to continue these

considerations, suggestions were made on extending the dimensionality of

wave representation in the time-domain waveguide vocal tract acoustic tube

model.

In general, this chapter demonstrates the largely variable nature of

the voice, and some of the many efforts to understand, characterise and

resynthesise aspects of it. It shows that physical modelling of the voice is

a potentially useful field, into which several studies have been conducted,

but also one in which there is still much to be discovered.
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Chapter 4

The 2D Digital Waveguide

Mesh Vocal Tract Model

4.1 Introduction

The widely established time-domain waveguide articulatory vocal tract

model was examined in Section 3.4. The main aim of this project is to

investigate the effects of increased dimensional representation as a direct

extension to the traditional 1D acoustic tube model.

The pressure waves in the vocal tract can be modelled with a 2D

representation, such that the assumptions on planar motion are removed.

Simulation of the acoustic waveform as it is manipulated by the vocal tract

articulators will therefore include propagational and reflectional pathways

across and along the tract. The technique of extending the 1D waveguide

into a 2D digital waveguide mesh (DWM) was examined in Section 2.6. The

2D DWM is applied here as a physical model of the resonator formed within

the human vocal tract.

This chapter begins by demonstrating the differences in construction

and frequency response between the 1D and 2D waveguide models. Two

methods by which a cylindrical acoustic tube can be modelled with a 2D

plane are discussed and one is selected for further examination. It is then

considered how such a model can be tested. The manner in which the
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4. The 2D Digital Waveguide Mesh Vocal Tract Model

vocal tract area functions can be applied to the width of mesh is discussed,

and a brief description of the software used to run the simulations is also

included. 2D DWM tract simulations are presented for a number of vowels,

including /i/ in the word ’bead’, /a/ in ’bard’ and /u/ in ’booed’. These three

are selected as between them they provide sufficient variation in articulator

movement and formant frequency to examine the model under a broad range

of attainable tract positions. The formant frequencies and bandwidths of

simulated vowels are then analysed with reference to the 1D model. Lastly,

problems associated with making dynamic shape changes to the 2D mesh

model are discussed.

4.2 1D - 2D Comparison

To begin with, it is worth demonstrating the difference between the 1D

and 2D physical modelling paradigms. Analysis of the construction and

frequency response of a rectangular 2D DWM highlight the additional

spectral content included with respect to a 1D waveguide of equivalent

length.

4.2.1 1D Chain

A 17.6 cm straight tube model can be constructed using a 1D chain of 176

equal impedance digital waveguides, where each represents a 1 mm section.

This results in a sampling frequency of fs = 343 kHz. With full positive

reflections (r = 1) at either end, the system sustains planar wave propagation

similar to that which would be observed in a straight tube with two closed

ends. The measured impulse response of the 1D model is given in Figure 4.1.

Peaks are labelled such that fx,y corresponds to the resonance with modal

number x in length, and y in width. Clearly, y bears no meaning in a 1D

model and is equal to zero. Comparison can be drawn with lengthwise modal

frequencies fx,y,z calculated from the universal modal equation (2.29), with

y= 0, z= 0 and l = 17.6 cm. The first five peaks are f1,0,0 = 974Hz, f2,0,0 = 1948
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Figure 4.1: 1D straight tube impulse response

Hz, f3,0,0 = 2923Hz, f4,0,0 = 3897Hz and f5,0,0 = 4384Hz. The resonances

of the 1D model in Figure 4.1 fall exactly on top of the theoretical values.

This is because the 1D waveguide method provides an exact travelling wave

simulation for a band-limited input signal, and is therefore an accurate model

of lossless planar propagation.

4.2.2 2D Mesh

Figure 4.2 depicts a 2D rectilinear DWM model of a rectangle. The 88×20grid

of 2 mm waveguides forms a 17.6×4 cm rectangular mesh, sampled at fs =

242.5 kHz. This represents a 2D plane of length 17.6 cm and width 4 cm. It

consists of 1653standard four-port junctions employing the 4-port scattering

equation (2.119) and 212one-port boundary junctions. A triangular DWM of

the same size, consisting of 1914scattering and 220boundary junctions, has

also been constructed for comparison.

4 cm

17.6 cm

r=1.0

r=1.0

r=1.0

r=1.0

Figure 4.2: 2D Rectilinear DWM model of a rectangular plane
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In order to highlight the modal resonances, all mesh edges are configured

to give maximal positive reflections r = 1.0. The frequency response of the 2D

digital waveguide mesh model in rectilinear and triangular form is depicted

in Figures 4.3 and 4.4, respectively. Results were generated using an impulse

injected onto the mesh at a short distance away from one corner, with the

output taken from the opposite corner. This configuration was used to ensure

detection of as many resonant modes as possible.
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Figure 4.3: 2D rectilinear mesh impulse response

f
1,0

dB

0

-50

-100

-150

f / kHz
0 2 4 6 8 10

f
2,0

f
3,0

f
4,0

f
5,0

f
6,0

f
7,0

f
8,0

f
9,0

f
0,1

f
1,1

f
2,1

f
3,1

f
4,1

Figure 4.4: 2D triangular mesh impulse response

The resonant peaks can be directly compared with those predicted from

theory using the universal modal frequency equation (2.29). Lengthwise

modes fx,0 are highlighted by the dotted lines. In general, peaks measured

from the rectilinear and triangular 2D models are in good agreement with
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theory. At higher frequencies the loss of exactitude caused by the dispersion

characteristics of the rectilinear mesh becomes apparent. Higher modal peaks

exist at increasingly erroneous values. However, this error is small at only

1.4% away from the theoretical value for f0,10, and 3.5% away from f0,20

towards the top end of the audible spectrum at 20 kHz. As such they are

apparent only on close inspection, and not visible in Figures 4.3 and 4.4.

The high sampling frequency, and hence fine resolution of the mesh provides

accurate scattering and therefore minimal dispersion effects. As discussed in

Section 2.6.6, the improved dispersion characteristics of the triangular mesh

increases its propagational accuracy. The maximum measured error away

from theory observed in the triangular mesh simulation was found at f0,20 to

be 1.3%.

The main difference between the 1D (Figure 4.1) and 2D (Figures 4.3

and 4.4) simulations is the presence of crosswise axial and tangential modes.

Using the modal frequency equation (2.29), the lowest of these should be at

f0,1 = 4278Hz, f1,1 = 4396Hz, f2,1 = 4709Hz, and so on. These modes can be

observed from both the rectilinear and triangular mesh simulations. Each of

the measured peaks were found to be accurately modelled, with less than 1%

error. These are not produced by the 1D model because it only simulates the

lengthwise modal pathways. It is clear that these peaks are introduced into

the frequency response with the use of higher dimensionality in the model.

4.3 Modelling a Cylinder as a 2D plane

In constructing a 2D model of a 3D real-world system it is clear that some

aspects of the problem domain will be lost. It should be decided how the

2D plane will represent the 3D tract, and which properties will be omitted.

Initially, it is convenient to consider the tract as a tube, or cylinder.

4.3.1 Radial Mesh

A mesh could be constructed such that it forms a model of the plane along the

cross-sectional radius of the tube from the centre to the inner wall. It would
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constitute a 2D model of a 3D space defined in cylindrical polar coordinates.

A brief outline of different coordinate systems is given in Appendix A.2. Such

a model would simulate propagation along the length of the cylinder in the

z-axis, and radially in the r-axis. The effects of the θ-axis could be taken into

account when defining the space that is modelled by the 2D mesh, rather than

simply disregarded. Figure 4.5(a) shows the manner in which a 2D DWM

might be used to form a radial representation that encompasses a summation

of the space defined by the angular axis θ.

a

Intergration

around 2π

z

r

(a) Radial mesh

z

r=a

r=0

Increasing

volume 

representation
V
min

V
max

(b) Volume represented by mesh

Figure 4.5: 2D DWM cylinder model

The summation around 0 < θ < 2π means that waveguide elements close to

r = a in the mesh embody more of the cylinder volume than those closer to r =

0, because the of the larger circular circumference. Therefore the quantity of

propagational space that is represented by the mesh increases proportionally

with r , away from the centre. This notion is illustrated in Figure 4.5(b), where

the radial mesh is overlayed with an volume map which increases with r

towards a. Lighter grey shading represents a higher volume.

Figure 4.6 demonstrates how a radial 2D DWM vocal tract model might

be constructed. An /i/ vowel 11-cylinder analogy is included to demonstrate

the space represented by the mesh. This is coarsely spatially sampled from

the 1D area function for visualisation purposes. Clearly, a more accurate

vocal tract radial mesh model would be achieved if area functions of greater

detail were used.

The manner in which the mesh would accommodate the increasing

volume within the waveguides approaching the inner wall has yet not been
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radial 2D mesh

Low-resolution /i/ vowel 

cylinder analogy

Figure 4.6: Radial 2D DWM vocal tract model

defined or tested. The additional r factor gained when defining cylindrical 3D

space as a 2D mesh serves to highlight an interesting point, and a potential

direction for investigation. Appendix A.2.1 shows how translation from

integration in 3D Cartesian coordinates to integration in cylindrical polar

coordinate systems also produces an additional r multiplication term. It is

thought that adjustment of the tube radius values which are used to define

the mesh size could be adapted to enhance the effects of additional volume

represented in it. For example, the squaring of the tube radius to give a mesh

width of a2, rather than a, would enhance the effects of the changes in cross-

sectional area along the cylinder. The difference in minimal and maximal

values of a squared area function would be increased and therefore the

changes that they introduce to the resonant behaviour would be accentuated.

Alternatively, impedance values could be used to introduce the additional

volume. A linear impedance gradient with respect to r from the the tube

centre to the inner wall may also be worth investigation.

At this stage, however, no mathematical proof can be offered to justify

these methods of interpreting the missing volume. However, experimen-

tation with such factors of the model may prove to be of use in the

prototype development stage, and may contribute towards an eventual

formal definition.

4.3.2 Widthwise Mesh

A mesh could also be constructed that forms the 2D plane across the tube

cross-section diametrically. The plane extends across the width from the inner

wall through the centre to the opposite inner wall.

Figures 4.7(a) and 4.7(b) indicate that this configuration might be interpreted
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Figure 4.7: Diametral mesh: Two interpretations

as a representation of a 3D tube in one of two ways. Firstly, the widthwise

mesh can be thought of as a slice though the diameter of the 3D tube, which

completely disregards the effects of the semi-circular tube volume either side.

This viewpoint is illustrated in Figure 4.7(a). Such a model would not prove a

highly accurate representation because of the missing volume. Nevertheless,

it would be useful as a precursor to a 3D model, determining the potential of

the technique, without implementing full 3D characteristics. In this case, the

width W(x) of the mesh can be said to be proportional to r , the radius of the

equivalent cylinder in the 1D model.

W(x) = 2

√
A(x)

π
= 2r (4.1)

Figure 4.7(b) shows how the mesh across the width of the tube could

be interpreted as a dual-integral mesh, similar to two of the radial meshes

outlined in Section 4.3.1, connected to one another along their length. Each

can be thought of as a summation of the space contained in the volume

around half of the circular cross-sectional area. In other words, the two halves

of the mesh contain a representation of the integral around 0 < θ < π, and

π < θ < 2π of the circular cross-section, respectively. As with the singular

radial mesh, the manner in which the additional volume could be included

within the waveguides is not yet certain. Impedance gradients, or a squared

radius function where the mesh width is proportional to r2 (as suggested for
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the radial mesh in Section 4.3.1) could be used to attempt to include the effects

of the additional volume in the model. In the latter case, the width W(x)

across the y-axis of the mesh is set directly as the value of the area function at

x, A(x), in the following manner

W(x) = A(x)

= πr2 (4.2)

Manipulation of the area function in this way deviates from a strictly

defined physical model in that it involves experimentation without a full

mathematical justification. However, such considerations can be overlooked,

given the extensive complexity of the real world vocal system, and the

number of other approximations, simplifications and assumptions that exist

in the current stage of development of the model. Exploration of the

possibilities at this stage can be viewed as initial, intuitive steps towards a

working prototype, and eventually, a more formally defined model.

4.3.3 Choice for Simulations

In defining the 3D space as a 2D mesh and disregarding effects of the addi-

tional dimension it is certain that some of the resonant qualities contributed

by the missing volume will be absent from the model. The widthwise 2D

slice model (Figure 4.7(a)) using the diameter of the circular cross-section - the

r-based area functions - has been chosen as a starting point for simulations.

Its simplicity and ease of implementation make it an intuitive base on which

to build further models. Initially, the missing volume issues will not be of

concern as the investigation will be a proof-of-principle analysis into a higher

dimensional model. An eventual full 3D system would not make any volume

omissions.

A 2D mesh model configured in this way will not fully incorporate the

crosswise resonances of the tract. It was shown in Section 2.3.5 how the

Bessel function describes different modal patterns on a circular cross-section

of a cylinder. Such circular waveform behaviour is not fully included in
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the propagational model across the width of the 2D mesh. Moreover, the

real-world cross-sectional areas measured in tract scans are not necessarily

circular in shape. Such assumptions are made when quantifying the tract in a

1D area function. Nevertheless, the 2D mesh serves as a proof-of-principle

for the techniques in modelling the tract in such a way. As such initial

mesh widths will be calculated as proportional to radius of the corresponding

circular cross-sectional area.

The lack of theory behind the inclusion of the missing volume in the

approaches presented in Figures 4.5(a) and 4.7(b) make them a non-ideal

starting point for investigation. However, given the similarities of the

widthwise dual-integral mesh in Figure 4.7(b) to the slice equivalent in

Figure 4.7(a), and the ease (simply squaring the radii) with which the

slice method could be adapted to facilitate the dual-integral, it is worth

attempting both. Comments made in Section 4.3.1 on integration around the

circular cross-sectional area do suggest that additional r factors in the area

function application to the model might have some grounding in changes of

coordinate and dimension. This may offer some answers on the matter of

enhancing the shape changes for the missing volume inclusion, although, as

already stated, no mathematical proof can be offered at this time.

Simulations, therefore, will be made using the widthwise 2D r , and r2

models in Figures 4.7(a) and 4.7(b), respectively. These will also be referred

to as the diameter-based (r), and area-based (r2) methods, in relation to the

circular cross-section property used to determine the mesh width.

4.4 Testing the Method

The ability of the model to recreate the acoustical properties of the vocal

tract in the various area function configurations can be measured in three

ways. Firstly, analysis of the frequency response of the model reveals the

formants that it produces. These can be compared with those observed in

natural speech. In general, speech varies to a large extent from person to

person. Clearly a direct comparison of the simulated formants with those
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measured from an arbitrary speaker will not necessarily give an accurate

description of the quality of synthesis. A comparison drawn against samples

of speech taken from the source of the area functions - the X-Ray [76] or MRI

[77] scan subject - at the time of acquisition would provide a more useful

test. However, such data is not easily obtained from studies carried out many

years previously. In the following sections average formant frequency values,

as shown in Figure 3.6, taken from male speakers from a range of vowels [112]

are used as an approximate guide.

Secondly, formant patterns can be contrasted with existing models and

with general theory on the resonant behaviour of acoustical systems. Al-

though, the complex and varied nature of speech makes a full theoretical

justification of such a model a non-trivial task. Calculation of the modal

frequencies arising from cross tract propagation in a tube of varying area

function is much more complicated than finding the lengthwise modes in

a straight tube. In the case of vocal tract modelling it is of interest to compare

the formants obtained from a 2D model with equivalent peaks obtained

from the well-established 1D model using the same area functions. In the

following simulations, the 1D model used for reference is spatially sampled

at 1 mm, giving sufficiently high resolution for a fair comparison.

Thirdly, the audible output generated with the application of a glottal

input to the model can be compared in informal perceptual observations.

This gives a measure of how similar a vowel sounds to that which would

be observed in human speech. Analysis of the likeness of simulated vowels

to their real-world equivalents in this work is based on the opinions of the

author. It is intended to give descriptive assistance in discussions about the

naturalness of synthesis offered by the 2D mesh vocal tract model.

4.5 Area Function Data

During speech, the majority of tract shape variations take place in the mid-

sagittal plane. This is the side-on view, as shown in Figure 3.1, in which

a large proportion of the movements of the jaw and tongue are observed.
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Clearly, the use of full 3D MRI scans would be preferential in constructing

a multidimensional physical model. However, due to lack of available data,

reduced 1D area functions [77] were used in this project. Such data actually

represents a series of cylindrical tubes connected along a straight axis, as

it lacks the detail of some of the intricate cross sectional shapes present in

the original scans. Despite this, the 1D data is sufficient for the purposes of

this proof-of-principle system. Hence the DWM tract model discussed in this

section, constructed using a 1D area function, forms a representation of wave

propagation through the 2D mid-sagittal plane of the straight-axis piecewise

acoustic tube analogy. Because of this, variations in area function set within

the 2D model relate to an increased tract opening, rather than movement of a

specific articulatory feature. However, the resulting synthesis research tool is

constructed such that the techniques that are developed remain valid. They

can easily be adapted for use in a model that is built around area function

data that contains few simplifying assumptions.

4.6 Widthwise Area Function Application

The tract shape can be applied to the width of the mesh, rather than translated

into impedance as in the 1D model. The tract width is spatially sampled such

that it is represented as a number of discrete waveguide lengths across the

mesh. As with the 1D model, the 2D tract length determines the number of

waveguides along the mesh. The following diagram illustrates the process of

2D spatial sampling, such that a waveguide mesh is constructed as a model

of the 1D area function for a static vowel shape.

Figure 4.8(a) is the /i/ vowel area function [77]. The process of forming a

2D plane to represent the space contained within the area function is shown

in Figure 4.8(b). The width W across the y-axis of the mesh is a measure of

the diameter of the tube described by the 1D area function. It can also be

calculated from the r2 area function as discussed in Section 4.3.

Spatial sampling is demonstrated in Figure 4.8(c). The grid underneath

the width plane is used to determine the best fit arrangement of waveguides
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Figure 4.8: The 2D widthwise /i/ vowel waveguide model

to model the acoustic cavity. Clearly the smaller the waveguide size, the

higher the resolution and therefore the greater the accuracy of representation.

Boundaries are configured with wall, glottis and lip reflections to be rw = 0.97,

rg = 0.97 and r l =−0.9, respectively, as outlined in Section 3.2.5.

Using this method, the mesh represents a 2D plane through the centre

of the 1D tube. It will therefore sustain wave propagation and reflection in

those two planes; along the tract from the glottis to the lips, and across from

inner wall to inner wall. This should increase the level of representation that

the model offers over the 1D equivalent. However, this method does not

include waveform interaction in the angular plane around the centre of the

circular cross-section. This would form the 3rd dimension if the model were

to be extended. It follows, therefore, that such a model forms only a pseudo

representation of the complete tract, disregarding the effects of the additional

dimension in the same way that the 1D model loses widthwise detail.

Figures 4.9(a), 4.9(b) and 4.9(c) illustrate the same process for the /a/

vowel area function. Similarly, Figures 4.10(a), 4.10(b) and 4.10(c) show the

construction of the widthwise /u/ vowel mesh model.
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Figure 4.9: The 2D widthwise /a/ vowel waveguide model
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Figure 4.10: The 2D widthwise /u/ vowel waveguide model

4.7 Software Implementation

The software that has been constructed to implement the DWM vocal tract

model was written in the programming language C++. It forms a test-bed

for the DWM vocal tract. User interaction is facilitated using the application

framework MFC [113]. A Windows dialog box provides the various options

for simulating the waveguide tract model in 1D and 2D, such as topology,

vowel selection and reflection parameters. These parameters are set before
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run-time. The model is built and the scattering equations are iterated until a

.wav output file is saved. In this sense the software is non-realtime and non-

interactive. Visualisation of the pressure waves in the tract is accomplished

with the inclusion of an OpenGL [114] window within the dialog box. Figures

4.11(a) and 4.11(b) show the graphical output from the program 0.25ms after

a smoothed gaussian impulse has been applied the glottal end of the /i/ and

/u/ vowel DWM models, respectively.

x

y

p

(a) /i/ vowel

x

y

p

(b) /u/ vowel

Figure 4.11: Widthwise mapped mesh 0.25ms after a smoothed gaussian impulse excitation

In the diagrams the input has been applied as a point source to one side

of the centre of the tract in order to give a visual demonstration of wave

scattering and reflection across and along the mesh. This mode of excitation

results in the asymmetry seen along the tract model visualisation. It is worth

noting that this is not a physically possible condition, as reflections along the

tract would be symmetric along the centre line.
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4.8 Simulation Results

4.8.1 Formant Analysis

The following diagrams show the formants produced by the mesh tract

model using widthwise area function application. White noise is input to

the mesh as a point source at the centre of the glottal end to highlight the

resonant peaks in the resulting output spectrum. Figures 4.12(a), 4.12(c),

and 4.12(e) show the formant pattern generated with the widthwise mapped

model using the diameter based mesh width (proportional to r) (4.1) in the

/i/, /a/ and /u/ vowel configurations, respectively. The graph next to each

is the formant patterns generated for the same vowel, but using the area

based mesh width (proportional to r2) (4.2). Further examples are given in

the second set of graphs, where Figures 4.13(a), 4.13(c), and 4.13(e) show

the /O/, /æ/ and /E/ vowel formants generated using the diameter based

mesh width. Similarly, Figures 4.13(b), 4.13(d), and 4.13(f) show the same

vowel formants using the area based mesh width approach. Equivalent

formant patterns generated with a 1D model with the same area functions

are expressed as a dotted line. Area functions used were those obtained from

MRI scans [77]. Average formant values [112] are included for reference. It

is worth reiterating that, although these are not the corresponding formants

to the area functions that were used, they do introduce an extra guide with

which to view the formant patterns generated in the simulations.

The graphs show that the 2D model generates formant peaks that are

distributed in similar patterns to the 1D equivalents. For example, the

simulated /i/ vowel exhibits the low f1, and higher and relatively close

f2 and f3 that are seen in the 1D model. Similarly, the closely bunched

f1 and f2 are also apparent in the /a/ vowel. The difference between the

diameter and area based mesh width models can also be observed from the

graphs. In Figures 4.12(a), 4.12(c), 4.13(a), 4.13(c) and 4.13(e), the 2D diameter

width model gives formants at positions that are tending towards the neutral

positions. That is, they are more evenly spaced than would be expected.

This is because the lower order area function application has less influence in
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Figure 4.12: Widthwise mapped formant patterns - comparing diameter and area based mesh
widths

changing the resonances. Figures 4.12(b), 4.12(d), 4.13(b), 4.13(d) and 4.13(f)

show that with the mesh width defined from the area, rather than diameter,

has more influence in shifting the formants. The larger differences between

minimum and maximum values present in the r2-, rather than r-based, area

function act to enhance the effect of the applied tract shape and push the

formants closer to those generated by the 1D model.
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Figure 4.13: Widthwise mapped formant patterns - comparing diameter and area based mesh
widths

Clearly the 1D and 2D formant patterns are not identical. The manner

in which the wave propagation is simulated in the space differs to a large

extent. The peaks also do not match the average formant values. As

expressed earlier, the variable nature of speech means that many different

observations and measurements may arise from different speakers. Average

values included on the figures are intended to demonstrate only the general

extent to which the formants vary from vowel to vowel.
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It seems that enhancing the effect of the constrictions for the /u/ vowel

can result in an obstruction to the propagating signal. This highlights a

general problem that is inherent with the widthwise mapping method of

area function application. As with the other vowels, the diameter width

mesh in Figure 4.12(e) shows the formants to be placed in positions that are

more equally spaced than would be expected. The area based mesh width

formants in Figure 4.12(f) have been overly affected by the exaggerated shape

changes. The peaks have been shifted away from the neutral positions to a

greater extent and it appears that the lower two formants have merged. It is

considered that this can be explained with reference to the area function itself.

The shape of the /u/ vowel involves some very small tract openings, such as

the close proximity of the lips. If a constriction that is made to the model

is enhanced in some way such that it is very small compared to the size of

the resonant chambers formed elsewhere, little of the simulated signal can

propagate through the restrictive opening. Formant frequencies produced

by such a model might begin to show unpredictable behaviour like that seen

in Figure 4.12(f).

These considerations highlight a problematic issue associated with the

widthwise mapped model. If an eventual model is to simulate many of the

aspects of the vocal tract, then an inability to accurately model very narrow

airways will prove a strong argument against its use. Translating the area

function into the distance across the mesh will always place restrictions on

the minimum width allowed. In order for any propagation to take place

along a narrow channel, its width must be at least two waveguides across, as

illustrated in Figure 4.14. This is because a central line of waveguides, with

an attached boundary junction on either side is the narrowest construction

possible with a 2D mesh. Fewer waveguides would entail a 1D model.

Furthermore, in dynamic speech, production of plosive sounds requires a

complete stop and the release of the airflow. If a waveguide mesh model

were to accommodate such obstructions smoothly, a minimum width would

prove a hinderance.
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Figure 4.14: Minimum channel defined by waveguide mesh structure

4.8.2 Formant Bandwidths

As discussed in Section 3.2.4, formant bandwidths are an important factor

in speech. They define the extent to which the effect of the formant is

imparted onto the excitation, and therefore directly influence the naturalness

of the synthesised vowel. Large, broad bandwidths contribute little to the

spectrum and result in much of the buzzing quality of the glottal pulse being

audibly present in the output. Conversely, unnaturally low, narrow formant

bandwidths would give rise to a metallic ringing quality in the speech output.

Formant bandwidths are dictated by internal energy reflections. In the

1D waveguide model this is governed by the boundary junction at each

end. These are defined by the glottis rg and lip r l reflections. The 2D

model extends the lip and glottis boundaries. They are modelled by multiple

reflecting junctions across the mesh, the number of which depends on the

opening area of the lips. In addition, the higher dimensionality introduces

two extra bounding surfaces along the length of the propagation space,

both characterised by the wall reflections rw. Neglecting any frequency

dependent behaviour at the boundaries, approximate reflection coefficients

can be obtained from the theoretical values that were discussed in Section

3.2.5. These are rg = 0.97, r l = −0.90 and the wall reflections should be a

highly reflective value of rw≈ rg. It is interesting to observe the influence that

these parameters have over the formant bandwidths.

Figures 4.15(a), 4.15(c) and 4.15(e) demonstrate the variations observed in

formant bandwidth when changing rg and keeping rw = 0.97and r l =−0.9 for

the /i/, /a/ and /u/ vowel DWM models, respectively. Notation is arranged

such that bandwidths B1, B2 and B3 correspond to the first three formants for

each vowel. Target values predicted by averages taken from measurements
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(see Figure 3.6 [79]) are indicated by T1, T2 and T3. A small black square

is placed where a synthesised bandwidth matches the average, indicating a

successful simulation. An alternative approach to bandwidth control is also

included in the diagram, where Figures 4.15(b), 4.15(d) and 4.15(f), indicate

the bandwidth response with respect to changes in rw, and keeping rg = 0.97.

The results were obtained with application of random noise to a point source

at the centre of the glottis end.
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Figure 4.15: Formant bandwidth variation in the 2D widthwise mapped mesh model

Where bandwidths are considered with respect to rg, none of the target

values are achieved. In most cases the simulated bandwidth B is between
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50− 100 Hz lower than T. Some, however, such as B1 and B2 for the /i/

vowel, and B2 for the /u/ vowel are close at less than 25 Hz away. It

can also be observed that little variation is present across the range tested.

This arrangement serves as a parallel to the 1D model, where only two

boundary junctions define the systems inner-reflections. Values set at each

end have to accommodate commuted losses along the length. As such, small

variations in the boundary coefficient have little effect in relation to the total

accumulated losses that they represent. In other words, they present a low

sensitivity. The 2D model includes the tract inner wall reflections separately.

The glottal boundary across the mesh width is much smaller than the wall

boundary along the length, and contains many fewer junctions. Bandwidth

variations show low sensitivity when the smaller, uninfluential rg is used as

a control. Target values may be achieved with this configuration, although

in order to increase the bandwidths to required levels greater energy loss

must be arranged in the mesh. Set into the glottal and lip ends, such energy

loss results in unnaturally low reflection coefficients that deviate from the

theoretical conditions discussed earlier.

In the case where rw is used as a controlling parameter much more

variation is present. The bandwidth changes follow a more responsive,

linear trend. Because of the dominating wall reflections, all but one target

bandwidths are achieved within the range that was examined. The sole

remaining value is B3 for the /i/ vowel, where the error from a successful

intersection was marginal at less than 25 Hz near rw = 0.90. Moreover, the

target formant bandwidths were attainable whilst keeping rg and r l reflection

coefficients set to approximate theoretical conditions. It is clear that reflection

parameters set within the wall have a dominating influence over bandwidth

values.

From Figures 4.15(b), 4.15(d) and 4.15(f) it can be concluded that for a

reasonable match to target formant bandwidths a value of rw = 0.92 should

be used as an appropriate minimum-error point between success points in the

2D graph simulations. These three values conform to logical expectations in

the human tract. The majority of losses should exist at the lips, where sound
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is actually radiated, with some vibrational and heat conduction losses present

in the fleshy inner walls of the tract, and a high reflection at the glottis.

4.8.3 Vowel Synthesis

The difference between the two mesh width mapping methods is more

apparent when a glottal input is used as excitation to the model in order to

generate speech-like sounds. Although output generated with the diameter

based (proportional to r) method sounds like the vowel that was modelled, it

also bears slight audible qualities of the neutral /@/. This is directly related to

the observations made on the tend towards equally spaced formant patterns

in Section 4.8.1. With the exception of the /u/ vowel, output generated

with the area (proportional to r2) based mesh width application resembles

the target vowel to a much greater extent. Figures 4.17(a) - 4.17(f) show

the spectra of various most natural sounding vowels generated with the

application of the LF glottal waveform model as a plane source along the

glottal end. The LF waveform and frequency content are shown in Figures

4.16(a) and 4.16(b), respectively. All were generated with the area-based

mesh width model, apart from the /u/ vowel, which was produced with

the diameter method. Approximate spectral envelopes have been included.
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Figure 4.16: LF glottal flow derivative model used for voiced excitation

No additional natural effects, such as vibrato or pitch variation, were

included as part of the glottal excitation so as to examine only the vowel

resonances. The harmonics of the input signal are distinct at multiples of
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Figure 4.17: 2D widthwise mapped mesh vocal tract model ’best’ vowel spectra

the fundamental - 131 Hz. It can also be seen from the diagrams how the

input spectrum (Figure 4.16(b)) is imparted onto the output spectrum to give

it greater prominence in the lower 1− 2 kHz region. It is the opinion of

the author that the vowel sounds present a strong likeness to each that was

modelled. The overall quality of naturalness, however, is reduced with the

use of a simplistic glottal model. Use of a better glottal input, such as a mass

and spring model, would increase the naturalness of synthesis.

111



4. The 2D Digital Waveguide Mesh Vocal Tract Model

4.8.4 Triangular Mesh

The same model can be constructed using the triangular DWM. This should

offer increase accuracy of synthesis because of its improved directional

propagation, as discussed in Section 2.6.6. Figures 4.18(a) - 4.18(f) show the

spectra generated with the triangular area-based width mapped tract model.

Dotted lines included on each graph indicate the same formants generated

by the rectilinear equivalent.
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Figure 4.18: Area based width mapped formants - comparing rectilinear & triangular mesh
models
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The results from each of the two topology models correlate with expectations.

Both are reasonably similar in the case of Figures 4.18(a), 4.18(d), 4.18(e) and

4.18(f). Little difference in terms of accuracy between the two topologies

is visible in this low bandwidth examination. It can be seen from Figure

4.18(c) that the second formant that was absent from the rectilinear /u/

vowel mesh is present in the triangular equivalent. This is considered to be a

direct consequence of using the the triangular mesh. Its construction is more

capable of accommodating the boundary changes around small constrictions

than the rectilinear mesh, which can only support stepped edges at 90◦ from

one another. As such, area functions with narrow channels may be better

modelled by the triangular mesh.

4.9 Dynamic Behaviour

The vocal tract shape constantly varies during connected speech. Movements

of the tongue, lips and jaw amount to changes in the area function that alter

the resonant properties of the tract and create the different speech sounds.

An ability to recreate this dynamic behaviour is essential in an articulatory

synthesis model.

On a simplistic level, a diphthong can be modelled as a linear interpo-

lation between two vowel area functions. Figure 4.19 shows the how the

formants of the 1D waveguide tract model change with a slide from the /i/

to /a/ vowels. The transition is applied smoothly over 500ms. The change

in formants is clear.

The 2D rectilinear mesh can also be used to facilitate a vowel slide. A

linear interpolation between the /i/ and /a/ vowel diameter based mesh-

width vocal tract models is shown in Figure 4.20. The overlayed dotted line

shows the 1D equivalent from Figure 4.19.

Although it produces accurate formant synthesis, the widthwise mapping

approach to area function application does not fully accommodate dynamic

changes in tract shape. The vocal tract configuration used to generate the /i/

to /a/ vowel slide in Figure 4.20 involves a widening in mesh width at the
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Figure 4.19: 1D tract model /i/ to /a/ vowel slide
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Figure 4.20: 2D mesh width tract model /i/ to /a/ vowel slide

mouth, and a narrowing towards the middle. Referring to the mesh layout

around these areas in Figures 4.8(c) and 4.9(c) it is clear that this transition

will require additional waveguides to be added around the mouth, and

removed from the middle region. These changes force surrounding junctions

to alter their behaviour. A small movement of a mesh boundary is examined

in Figure 4.21. The two states of the mesh highlight the difference in

boundary structure arising from a small change in modelled width. Moving

from the left to the right state illustrates a narrowing of the tract, such that

the grey junctions and waveguides are no longer active. Similarly, moving

from right to left demonstrates the reverse process where the grey junctions

and waveguides are added to the mesh.

This dynamic restructuring of waveguides at run-time can be problematic

in maintaining the continuity laws governing the mesh scattering equations.
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Figure 4.21: Junctions gained or lost in a mesh boundary movement

For example, an increase in width might see a 1-connection boundary

junction, such as node A on the right hand side of Figure 4.21, suddenly take

on the role of a 4-port scattering junction. This would lead to the averaging

of the single incoming pressure value across four outputs and hence a sharp

step in pressure gradient in the new mesh area.

Some attempts were made to develop a junction with the capability to

accommodate such changes. Scattering equation (2.94) was reconfigured

such that errors introduced by additional or removed pressure inputs were

spread evenly across existing connections as to minimize their effects. It was

found, however, that the manipulation of the equations was often in con-

tradiction with the underlying acoustic theory, and hence introduced more

instabilities rather than fewer. Minimum disruption to the pressure balance

at each junction was achieved simply by defining new pressure components

to be set to zero and that lost pressure components are disregarded.

The distance involved in moving a boundary between minimal and

maximal area function values is about 20 mm. The changes are infrequent,

as the number of junction manipulations is negligible when compared to the

number of samples in the given duration for the transition. For example,

using (2.118) the waveguide size in a high resolution mesh sampled at 120

kHz is about 4 mm. In the approximately 500ms required for the transition

in a diphthong, this would result in five junction changes at each moving

boundary point over 60000 samples. However, the small discontinuities

propagate across the mesh and are still audible in the output waveform.

Figure 4.22 shows the output generated for 30 ms after a boundary change is

initiated in the 2D model during a vowel slide. The LF glottal flow derivative
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model was used as excitation [89]. Approximately four cycles of the output

waveform are shown after a boundary alteration instant. Discontinuities are

clearly visible about 14 ms after a step in boundary movement, which are

audible as a high frequency click in the output.

80 90 100 110ms

Boundary 

change 

initiated
Discontinuities appear in waveform

Figure 4.22: 2D mesh width dynamic changes: discontinuities in the waveform

4.10 Conclusions

This chapter has presented and analysed a DWM model of the vocal tract.

A 2D model is implemented that builds upon the well established 1D

waveguide chain method. Two methods of defining the mesh width were

suggested; a diameter-based method which uses a width that is proportional

to the radius of the tract, and an area-based scheme which is proportional

to r2. The mesh used for simulation of the space contained within the tract

includes transverse and longitudinal propagation and therefore incorporates

more of the resonant characteristics. It was found that accurate formant syn-

thesis may be achieved. In general, the formant patterns are observed as close

to those generated with the 1D model. The simulated vowels are audibly

similar to those observed in natural speech, with those generated with the

area-based width giving increased likeness. The perceived naturalness of the

vowels would be further enhanced with the use of a better glottal model.

Analysis of the formant bandwidths has shown that the additional

boundary along the wall of the mesh provides a useful tool in regulating

energy losses. Using rw as a controlling parameter, a linear bandwidth

response is obtained. This facilitates fine-tuning of formant strength.

Lastly, the dynamic ability of the DWM model was discussed. It was

indicated that the spatially sampled nature of the static waveguide structure
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is not ideal for the modelling of dynamic systems. The discontinuities that

are introduced into the waveform when moving the boundaries of the mesh

tract model were demonstrated. This lack of stable dynamic capability is

an important issue that will greatly limit the use of the 2D DWM as a vocal

model, or indeed as a model of any moving acoustic system. The following

chapter will look at novel ways in which to address this problem.
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Chapter 5

A Dynamic Real-Time Approach

5.1 Introduction

The spatially sampled nature of the digital waveguide mesh means that it

models a static structure. Problems associated with dynamic manipulation of

the DWM vocal tract model were highlighted in Section 4.9. Audible wave-

form discontinuities were introduced into the resulting output. This chapter

details a novel approach for introducing the shape changes contained in the

area function to a 2D mesh model of the vocal tract. A rectangular mesh is

used to represent a straight tube. Changes to the tract shape are implemented

using waveguide impedance values, rather than with the unstable method of

moving the mesh boundaries. The mesh remains rectangular and is therefore

not prone to discontinuities arising from junctions that are forced to modify

their scattering properties. It is worth noting that the model is discussed

here in impedance terms in Z, whereas waveguide scattering equations were

derived in Section 2.5 using admittances in Y. The two are interchangeable,

given the reciprocal relationship that exists between them Z = 1/Y.

To begin with, the notion of manipulating the resonances of a straight

tube mesh with impedance changes is introduced. Two methods of applying

a constriction across the width of the mesh are described. Linear and raised-

cosine functions are presented for impedance increases towards the edges of

the mesh to bring about the constriction. Validation of the technique is then
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given in the form of the changing modal frequencies of a straight tube when

a steep constriction is slowly applied to the mid point of a mesh. The manner

in which the method can be used to create impedance maps based on 1D

area functions is then discussed. Next, a brief introduction to the software

that has been developed to test the models is given. Simulation results are

given in the form of a formant frequency analysis, followed by spectra of

some synthesised vowels. Lastly, the dynamic and real-time ability of the

impedance mapped mesh is considered.

5.2 Impedance-Based Area Function Application

An alternative method of imparting the effects of the shape changes con-

tained in the area function onto the 2D mesh has been developed. In the

well-established 1D model the area function is translated into waveguide

impedance. Building on this technique, it was considered how such changes

could be made to the impedances within a static rectangular 2D DWM, so as

to have the same airflow-constriction effects along the tract.

A step in impedance in the 1D model gives rise to some amount of trans-

mission through the discontinuity and some amount of reflection back in the

incident direction. Similarly, a step in waveguide impedance across the width

of a rectangular 2D mesh, such that the change is experienced by a signal

travelling along the length, would produce forwards-backwards reflections.

However, with equal impedance across the mesh at each impedance step, the

area function change would have little effect in the cross-wise plane. This

would render the use of the increased dimensional representation somewhat

superfluous. The impedance discontinuity can be applied such that it is not

uniform across the mesh. A constriction can be therefore be applied as raised

impedance regions if allowances are made in order to encourage cross tract

reflection against them. A lower central channel is defined such as to act

as a direct lengthwise propagation pathway. Constrictions are applied as

increases in impedance at the edges of the mesh, so as to facilitate cross-

reflections. Figure 5.1 illustrates the process of introducing raised impedance
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regions towards the edges of the straight tube mesh as to alter its resonant

behaviour.

Constriction fomed by 

raised impedance hill Zx 
at x

Uniform tube 

natural path

Constriction 

influenced path

y - width

x - length

Figure 5.1: Raised impedance hills causing a constriction

The semi-circular contours on the mesh represent a transition from the

lower, default impedance value to the higher regions towards the edges at

the point of constriction. With a given area function A(x), Zmin is defined as

the minimum impedance arising form the maximum area value.

5.2.1 Translating Tract Radius into Waveguide Impedance

In the 1D model, the impedance value Zx at each spatial sampling instant is

calculated from the 1D area function A(x) using (2.11). The mapping of the

area function onto waveguide impedances in the 2D DWM tract model is a

new technique which has not yet been formally defined. There is, therefore,

scope for experimentation with the model and the manner in which it is used

to represent the tract space. The impedance transition across a constriction

such as that illustrated in Figure 5.1, will be between Zmin at the centre of

the mesh, leading to Zx at either side. This impedance Zx defines the size of

the constriction function at each point across the mesh. How it is defined in

relation to the 1D area function needs to be addressed.

r2 Area Function

As a starting point, Zx can be obtained in the same manner as the 1D

model, directly from (2.11). It can therefore be described as being inversely

proportional to the circular cross-sectional radius squared, r2, because ρ and c
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are constant in each corresponding 1D tube section. Equation (2.11) becomes

Zx =
ρc

A(x)

=
ρc

πr2(x)
(5.1)

r3 Area Function

The selection process for the mesh width mapping method in Section 4.3

introduced the concept of the missing volume when modelling a 3D space

with a 2D plane. Linear impedance changes and additional r factors were

suggested as ways of incorporating some of the effects of the omitted space

into the DWM. No mathematical proof or formal justification for these

suggestions has been offered. However, the augmented r-factor mesh gave

improved vowel likeness in formant and vowel simulations in Section 4.8.

For this reason it is worth considering how to increase the effects of the

area function in the 2D impedance mapped DWM. The radius value within

the area function can be raised to an additional power of itself in order to

facilitate this. In this sense the impedance function can be said to follow a

relationship that is inversely proportional to r3. In this case, equation (2.11)

becomes

Zx =
ρc

A′(x)

=
ρc

πr3(x)
(5.2)

Where the tube cross-sectional area A′(x) = πr3(x) is not strictly a real quantity,

but a manipulated form of the area function. This leads to a 2D system that

isn’t a true representation of the tract space. But, given the number of other

approximations which must be made in forming such a model, and the lack

of a rigorous mathematical derivation, it follows that deviation from strict

modelling methodology can form a valid part of the investigation.

In summary, impedance maps derived from both r2 and r3 area functions

will be used in the following tract models.
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5.2.2 Constriction Function

Two functions have been considered in an attempt to find the most appro-

priate way to facilitate the transition. Figure 5.2 demonstrates how a linear

increase can be used to define the impedance variation Z(x,y) across the y-axis

of the mesh at a point x along the length.

Zmin

Zx

Zx,0
Zx,1

Zx,2
Zx,3

Tract Width w

y

Z

Z(x,y)

Figure 5.2: Linear impedance hills either side of a constriction

An impedance map configured using a linear increase towards the mesh

edges is defined by

Z(x,y) = Zx− (Zx−Zmin)y
w/2

0≤ y≤ w/2

Z(x,y) = Zmin+
(Zx−Zmin)(y−w/2)

w/2
w/2≤ y≤ w

(5.3)

Similarly, Figure 5.3 shows how this can also be achieved with the use of an

inverted raised cosine function.

Zmin

Zx

Zx,0
Zx,1

Zx,2

Zx,3

Tract Width w

y

Z

Z(x,y)

Figure 5.3: Raised cosine impedance hills either side of a constriction

The following equation is used to define the raised cosine impedance map.

Z(x,y) = Zx− (Zx−Zmin)
2

[
1+cos

(
2π(

y
w
− 1

2
)
)]

(5.4)
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It should be noted that the two functions offered here are by no means

the definitive answer in translating the area function into the impedance

map. Many other functions may prove useful in further development

of the method, but at this stage the linear- and cosine-based approaches

are intended to demonstrate the potential of the impedance technique in

dynamic 2D mesh simulations.

These methods of area function application to the waveguide mesh model

also allow for simulation of a complete stop to the airflow, such as that found

in plosive articulation. No minimum width channel is defined and so the

constrictions that are applied to the mesh can be increased to the point that

they form an obstruction to the signal propagation. Figure 5.4 illustrates a

raised cosine function impedance constriction that has been enlarged to form

the high impedance Zstop. This relates to the impedances in Figure 5.3 in the

sense that Zstop>> Zx > Zmin. The middle of the function has therefore been

omitted from the graph in order to scale the diagram to allow reference with

the lower impedance Zx.

Zmin

Zx

Zx,0 Zx,1 Zx,2 Zx,3

Tract width w

Zstop

y

>
>

>

Z(x,y)Higher impedance models a

complete cut-off to the airflow

Figure 5.4: Raised cosine function for high impedance obstruction Zstop

5.2.3 Validation

The method can be analysed with examination of the change in modal

frequencies brought about by a simple change to the shape of the modelled

space. Consider the 17.6× 4 cm rectangular mesh of equal impedance

waveguides in Figure 4.2. All four boundaries are set to fully positive
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reflections to allow for comparison with modal frequencies calculated with

the modal frequency equation (2.29). Half-way along, at x = 8.8 cm, a narrow

raised cosine impedance constriction is gradually applied across the width,

such that the resulting map is as portrayed in Figure 5.5.

Z
min

Z
max

Z
stop 
constriction

Figure 5.5: Impedance map of a sharp constriction halfway along a straight rectangular
mesh

The high impedance constriction is applied as a linear interpolation

between Zmin and Zstop, where Zstop= 1000Zmin. Excitation is of the form of a

smoothed gaussian impulse at a point in the centre of the glottal end. Figure

5.6 demonstrates the change in frequency response of the mesh over the 500

ms taken for the transition.
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t / s 0.50 0.25

f / kHz

f1,0

f2,0

f3,0

f4,0

f1,0

f2,0

17.6 cm mesh 8.8 cm mesh

f5,0

Figure 5.6: Changes in modal frequencies of a rectangular mesh resulting from a constriction

At time t = 0, the first four lengthwise modal resonances of the 17.6 cm

mesh are approximately as would be calculated using (2.29) as f1,0 = 974

Hz, f2,0 = 1948Hz, f3,0 = 2923 Hz and f4,0 = 3897Hz. As the constriction

is applied to the middle of the mesh it has the gradual effect of halving the

length. To begin with, modal resonances f1,0, f3,0 and f5,0 in Figure 5.6 are

seen to decrease in frequency and increase in bandwidth. Peaks f2,0 and f4,0

experience a growth in both frequency and bandwidth. At about t = 0.25ms,
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the constriction becomes an obstruction. At this point, neighbouring peaks

merge. The remaining lengthwise modes are those that would be expected

from a mesh of 8.8 cm. Using (2.29), these should be at f1,0 = 1948Hz and

f2,0 = 3897 Hz. Peaks in Figure 5.6 at t = 500 ms are observed at slightly

higher values of f1,0 = 2249and f2,0 = 4204. This can be accounted for by the

fact that length of the 8.8 cm mesh is reduced to a small extent by the width

of the constriction itself.

5.3 Vowel Impedance Maps

Equations (5.3) and (5.4) can be used to form a 2D impedance plane that

is derived from the 1D area function. Waveguide impedances within the

rectilinear mesh structure are set according to this map. Figures 5.7(a), 5.8(a)

and 5.9(a) give 1D area functions taken from MRI scans [77] of the vocal tract

in the position held for the /i/, /a/ and /u/ vowels, respectively. Beneath

each of these is the corresponding 2D r2 impedance map generated using

the raised-cosine impedance function (5.4). Lower impedance regions on

the map are indicated by darker shading, whereas higher impedances are

represented by the lighter areas. Equivalent linear impedance maps are

not included for reference as little visible difference is apparent at the scale

chosen for graphical representation.

Glottis Lips

A(x)

x      

(a) /i/ Vowel cross-sectional area function

Z
min

Z
max

(b) Rectangular mesh overlayed with impedance map

Figure 5.7: The 2D impedance mapped /i/ vowel waveguide model

The small airway created by raising the back of the tongue in production
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Glottis Lips

A(x)

x      

(a) /a/ Vowel cross-sectional area function

Z
min

Z
max

(b) Rectangular mesh overlayed with impedance map

Figure 5.8: The 2D impedance mapped /a/ vowel waveguide model

Glottis Lips

A(x)

x      

(a) /u/ Vowel cross-sectional area function

Z
min

Z
max

(b) Rectangular mesh overlayed with impedance map

Figure 5.9: The 2D impedance contour /u/ vowel waveguide model

of the /i/ vowel is apparent as the narrow darker impedance channel

surrounded by large lighter regions in the mouth area of Figure 5.7(b).

Similarly, the open mouth position held for production of the /a/ vowel can

be seen as the large, darker, lower impedance region in Figure 5.8(b).

5.4 Software Implementation

Software has been developed to demonstrate the capabilities of the impedance

mapped rectilinear DWM vocal tract model. A dialog box application has

been written in the C++ programming language with MFC. The open source

audio I/O library PortAudio has been used to facilitate the real-time sound

output form the model. A screen-shot of the application is shown in Figure

5.10.
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Figure 5.10: Real Time Application

Input is arranged in the form of an LF glottal waveform for voiced phonation,

or random noise for whispered excitation. Vowel selection buttons along the

top of the dialog box can be used to initiate a slide from the current vowel.

The sliders across the middle allow for real-time control of the area function

that is applied to the rectangular mesh. A sharp downward movement in

slider position at the lip end produces a sudden decrease in area function.

This can be used to simulate plosive articulation, as would be heard in the

consonant /p/ or /b/.

5.5 Simulation Results

The model constructed for the following simulations was formed using a

17.6× 4 cm rectilinear DWM, with a sampling frequency of fs = 242.5 kHz

and waveguide size of 2 mm. Boundary reflections were set to theoretical

values rw = 0.97, rg = 0.97, and r l =−0.9, as discussed in Section 3.2.5.

5.5.1 Formant Analysis

Analysis of the formant patterns generated using the raised-cosine impedance

mapped method of area function application indicates its vowel synthesis

potential. Figures 5.11(a), 5.11(c) and 5.11(e) show the spectral responses of

the /i/, /a/ and /u/ vowel r2 model, respectively. Neighbouring graphs
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5.11(b), 5.11(d) and 5.11(f) give the enhanced r3 model spectra for the same

vowels. Excitation was applied to the tract in the form of random noise

as a point source in the centre of the glottal end. The dotted lines provide

comparison against spectra generated using the 1D waveguide chain model,

using the same area functions. Measured formant values are also compared

with the average values shown in Figure 3.6 [79]. Once again, it is worth

stating that these average formant values cannot be directly compared to the

measured ones, but serve as an additional indication as to the general extent

that the formants change in natural speech.

Similarly, Figures 5.12(a), 5.12(c) and 5.12(e) show the formant patterns

for the /O/, /æ/ and /E/ r2 vowel models, respectively. Neighbouring

graphs 5.12(b), 5.12(d) and 5.12(f) give the enhanced r3 spectra for the same

vowels.

As with the widthwise model in Section 4.8.1 the impedance mapped

peaks do not exactly match those generated using the 1D model. The

underlying signal propagation mechanism is different. An identical formant

pattern would therefore not be expected. Towards the higher end of the

spectrum above 4 kHz, there is less concurrence between the 1D and 2D

models. However, in general a good agreement exists between the lower

three or four 2D peaks and their 1D equivalents in that they are shifted in the

correct direction away from the neutral positions. For example, a lowering

of f1 and raising of higher formants can be observed for the /i/ vowel.

Similarly, f1 and f2 have been moved closer together to tend towards the

/a/ vowel.

Changes in the frequency response due to enhancements made to the

applied area function are clear from the difference between the r2 vowels

on the left and r3 on the right. In some cases, such as in Figures 5.11(a)

and 5.11(e) the r2 peaks have not been shifted as far as those from the 1D

models. Figures 5.11(b) and 5.11(f) show how the effects of increasing the

strength of the constrictions moves some of the formants to be more in line

with 1D equivalents. The other spectra in Figures 5.11(c), 5.12(a), 5.12(c)

and 5.12(e) show that the r2 vowels give a good match to the 1D model.
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Figure 5.11: Raised-cosine impedance mapped formant patterns

The corresponding r3 formants in Figures 5.11(d), 5.12(b), 5.12(d) and 5.12(f)

appear to have been shifted beyond the target values.

5.5.2 Vowel Synthesis

With excitation of the impedance mapped model using the LF glottal wave-

form (shown in Figure 4.16(a)) as a plane source along the glottal end of the

tract, the following vowel spectra are produced.
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Figure 5.12: Impedance mapped formant patterns

In some cases, standard r2 formant values were measured to be closer to

the 1D model over enhanced r3 equivalents in the previous section. However,

perceptually, vowels simulated using the enhanced r3 area function are

considered to produce sounds that bear more audible similarities with the

real-world equivalents. Spectra given in Figures 5.13(a) to 5.13(f) are from the

r3 model, and are considered to represent the most natural vowel synthesis

offered by the impedance mapped method.
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Figure 5.13: 2D r3 impedance mapped mesh vocal tract model vowel spectra

5.6 Dynamic Behaviour

Impedance mapping area function application allows for stable dynamic

changes to be made to the mesh. This can be demonstrated with simulation

of a slide between two vowels, similar to that which would be observed

in a diphthong. The following figures demonstrate the change in formant

patterns generated when a /i/ to /a/ vowel transition is applied to the area

function of an impedance mapped mesh. A linear constriction function is
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used in Figure 5.14. Comparison with formant patterns generated using a

1D waveguide chain model (as in Figure 4.19) is included in the form of the

dotted line. The transition is achieved with a linear interpolation between

r2 area functions, using random noise excitation from a point source at the

centre of the glottal end of the tract.
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Figure 5.14: /i/ to /a/ vowel slide with linear impedance function map

The overlayed dotted line highlights that the changes in formants are also

very close to those generated using a 1D model. The lower two formants,

however, are attenuated by approximately 12 dB compared to the third and

fourth. Furthermore, the third formant can be seen to follow a slightly erratic

path, giving stepped changes rather than the smooth transition required.

Speech-like output generated using this model contains a buzzing quality

where the glottal waveform is emerging with little of the important lower

resonances imparted onto it. This is considered an artifact of the very narrow

channel created with the linear impedance hills. The central Zmin lower

impedance region has zero physical width (see Figure 5.2), and so has little

of the desired effect as a direct propagational path.

The raised cosine impedance mapped model vowel slide formants are

shown in Figure 5.15. Again, the frequencies appear at similar values to those

generated with both the 1D and 2D widthwise models. Issues identified with

the linear mapping function are no longer present. The relative strength and

smoothness of transition of the formants is more in line with those observed

in the 1D model.

132



5. A Dynamic Real-Time Approach

0

1

2

3

4

5

t / s 0.50 0.25

f / kHz

/i/ /a/

1D Formants

Figure 5.15: /i/ to /a/ vowel slide with raised cosine impedance function map

An additional example is given in Figure 5.16 in the form of an /a/ to /E/

raised cosine impedance mapped vowel slide.
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Figure 5.16: /a/ to /E/ vowel slide with raised cosine impedance function map

The wider central channel provided by the raised cosine method (Figure 5.3)

provides an increased acoustic throughput, and therefore does not restrict

the signal propagation as with the linear map. Figure 5.17 highlights this

difference. Comparison is drawn between the raised cosine impedance

function and the linear version (dotted line). The raised cosine function

offers a wider central channel whilst still providing a smooth transition in

the increased impedance effects towards the tract inner walls. Furthermore,

vowel sounds generated with the raised cosine function are considered to be

the most natural of the two simulations. As such, it is selected for use in

further simulations.
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Figure 5.17: Comparison of different constriction functions

Clearly, the two functions offered here do not qualify as an exhaustive

list of possible impedance variation shapes. It is worth reiterating that at

the current state of development, the impedance mapping technique is at an

experimental stage. Such arbitrary functions are chosen to demonstrate the

possibilities of manipulating the waveguide impedances in this way.

5.7 Stable Articulations

Using the raised-cosine impedance function, there are no discontinuities

audible in the resulting diphthong. This can be demonstrated with appli-

cation of the LF glottal waveform as a plane source applied at the glottal

end of the model during the slide between the two area functions. This is

illustrated in Figure 5.18 where the output waveform after an area function

change contains none of the high frequency discontinuities highlighted in the

widthwise equivalent in Figure 4.22.

80 90 100 110ms

Area function change initiated

Figure 5.18: No discontinuities in waveform at time of area function update
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5.7.1 Real-Time Operation

The impedance mapping techniques place no limitations on minimum width,

as the mesh retains its rectangular shape throughout. Therefore a 2D system

may be constructed with a waveguide size d = 11 mm, which gives a

sampling frequency of fs = 44.1 kHz, and given the fs/4 restraints for the

rectilinear mesh, a valid bandwidth of approximately 11 kHz. Such an

arrangement employing a rectilinear mesh topology comprises 60waveguide

junctions. Exploiting this reduction in sampling frequency, software has

been developed which demonstrates real-time 2D DWM vocal tract model

vowel shape manipulation. The model allows for real-time user interaction

using a mouse to bring about smooth vowel slides resulting in diphthongs

and sharper area function changes affecting momentary constrictions to the

airflow for simulation of plosive articulation.

Figure 5.19 shows example output from the software developed to sim-

ulate the 2D mesh vocal tract. In the simulation, voiced plosive articulation

is modelled in the 2D impedance mapped /i/ vowel mesh using a mouse

controlled slider which represents the area function at the lip end. The

plosive is generated with a constriction to the tract as indicated by the high

impedance Zstop in Figure 5.4. The waveform has four distinctive points

where a stop and release of pressure is generated as a direct result of the real-

time constrictions made with the user interface. Combined with LF glottal

excitation, each plosive part of the waveform is a synthesized version of

the word ‘bee’. Other vowels and area function manipulations at different

places along the tract may be used to simulate further voiced and non-voiced

plosive articulations.

0 30 60 90ms

bee bee bee bee

Figure 5.19: Dynamic articulations using the real-time impedance mapped mesh model
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5.8 Conclusions

In this chapter, changes in waveguide impedance have been shown to

provide a novel alternative method of area function application to the 2D

DWM vocal tract model. It has been demonstrated that equivalent formant

patterns to those generated with the well-established 1D waveguide chain

model can be produced with a rectangular 2D mesh with an overlayed

impedance map using the same area functions. Different approaches of

defining the impedance map have been discussed. It was also noted that

the relative size of the constrictions can be increased to enhance the extent to

which the resulting formants move away from the equally spaced, neutral

positions. Using the new method, stable, dynamic, real-time changes to

the tract space modelled by the DWM were demonstrated in the form of

synthesised diphthongs and plosive articulations.
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Chapter 6

Summary and Analysis

6.1 The 2D DWM Vocal Tract Model

The well-established 1D waveguide vocal tract model was originally pro-

posed by Kelly and Lochbaum [18] in 1962. The simplicity and intuitive

manner in which the tract is sampled as a series adjoining cylinders makes

it a good introduction into the wider field of physical modelling. As such,

it is frequently presented in the surrounding literature as the archetype

upon which more detailed acoustical simulations are built [10] [56] [46] [9]

[57]. Developments, such as the inclusion of a nasal tract, lip radiation

and wall losses have been used to synthesise the singing voice [107]. The

use of fractional waveguides has been investigated as a method of making

lengthwise changes to the tract shape [108] [110]. Further studies have been

conducted into improving the wave propagation mechanism. Traditional

waveguides can be substituted for conical equivalents that use scattering

methodology derived from the spherical wave equation. This increases the

accuracy of the model, giving higher-order area function approximation, but

also adds to the computational load [108] [109].

The work contained in this thesis is an investigation into an increased

dimensional representation in the Kelly-Lochbaum vocal tract model. Exten-

sion of the wave propagation mechanism into 2D has been presented as an

alternative development to the basic 1D waveguide model over methods sim-
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ulating enhanced order area function approximation. The digital waveguide

mesh (DWM) physical model is typically used in virtual simulations of the

acoustics of a room [13] [37] [15]. In this research it has been used to create

a structure that represents the air cavity contained within the human vocal

tract. A 2D DWM is formed such that lengthwise pressure wave propagation

and reflection is sustained along the model between the glottis and lip ends.

This is analogous to the planar wave propagation offered by the 1D system.

The additional dimension in the 2D DWM is distributed across the tract,

such that the simulated waveform within the mesh includes propagation

and reflection in between the tract inner walls. In the same way that the

1D model neglects non-planar considerations, this 2D model forms a pseudo

representation of the real acoustics of the tract. Modal interactions in the

remaining dimension are not taken into account. However, the 2D model

is intended as a proof-of-principle investigation. Factors that have been

taken into consideration in extending the mesh across the tract are directly

applicable to similar efforts in modelling the third dimension. This work,

therefore, demonstrates the potential of such an augmented representation

system, and some of the issues that might need to be addressed.

6.2 1D - 2D Model Comparison

To begin with, chapter 4 demonstrated how the modal resonances of a

rectangle can be simulated with a 2D DWM. The waveguide structure was

the same length as the average male vocal tract, 17.6 cm, with a width that

is approximately equal to some of the larger openings observed in speech,

4 cm. All four reflecting boundaries were given a fully positive reflection.

Comparison with the frequency peaks generated with a 1D waveguide model

of the same length clearly show the additional modal patterns introduced

with the extra dimension. Cross-axial modes begin to appear in the frequency

response of the mesh from about 4.3 kHz upwards.

This is not a model of the vocal tract. A negative reflection should be

set at the lip boundary, and tract widths of 4 cm are observed only in some
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places along the tract, and only occasionally during speech. Nevertheless,

the results do serve to highlight the additional acoustical properties that are

introduced with the use of higher dimensionality in the modelling structure.

6.3 Area Function Data

The shape of the vocal tract that is held for production of each of the many

speech sounds can be quantified in a 3D MRI scan. A large quantity of data

is produced for each scan. Publication of such detailed area functions is

often impractical, and so no 3D tract data was obtained for use in this work.

Typically, the data is reduced to form a series of cross-sectional area values,

each extracted from a plane that is perpendicular to the planar wave motion

along the tract. This results in a shape description that is ideally suited to the

1D piecewise acoustic cylinder model. Axial asymmetries around the tract

wall are disregarded, such that each area value represents a circular disc. The

bend half way along the length of the tract is also neglected, such that it forms

a straight tube. Such 1D area functions are readily available [76] [77] [78].

Vocal tract simulations presented in this work have used the 1D area

functions to define the shape of the 2D mesh. This implies that the model will

inherit the assumptions placed on circular cross-sectional area values and a

straight tract. With shape information that contains greater detail, the higher

dimensional model could be further extended, as it removes the requirements

for such simplifications to be made. A 2D mesh could be constructed that

takes more of, but not all, the axial asymmetries around the tract inner-

wall into consideration. Similarly, a mesh could also incorporate the bend

observed in the real tract. These effects were not investigated in this work.

Clearly, a 3D DWM vocal tract model constructed around full, 3D

MRI data would provide highly accurate acoustical simulation. All shape-

based approximations in the 1D and 2D models would not be necessary.

Axial asymmetries and the tract bend would be completely facilitated.

Furthermore, the 3D air cavity would allow for simulation of additional vocal

conditions. For example, the tongue position held for production of the
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lateral /l/ creates two air-channels, one either side of the tip. This scenario

could be fully realised with a 3D DWM.

6.4 Widthwise Area Function Mapping

It was shown in Chapter 4 how the tract shape detail contained within the 1D

area functions can be applied to the 2D model. The mesh is configured such

that the width at each point is calculated as the diameter of the equivalent

circular cross-section at each point along the 1D model. Changes to the

tract shape happen proportionally to r , the radius of the corresponding 1D

cylinder. It was discovered that with the mesh configured in this way,

the resulting formants were shifted away from the neutral positions in the

directions of those observed in the 1D model. However, the extent to which

the formants had moved was less than expected. Vowels synthesised with the

application of the LF glottal model were stated as having some of the audible

qualities of the neutral vowel /@/.

A variation on this method was also introduced that defines the width of

the mesh as proportional to r2. It was shown that this method may have some

grounding in the angular volume summation that is used in defining the 3D

space as a 2D mesh. However, no mathematical proof was offered for the

manipulation of the area function. The changes have the effect of boosting the

effects of the area function, such that the difference between large and small

values is increased. Using enhanced area values for the width, the formant

patterns were more in line with those from the 1D model. Furthermore, it

is considered that the artificial vowel sounds can be described as bearing a

strong resemblance to real world equivalents.

Disadvantages of the waveguide mesh vocal tract model were high-

lighted in Section 4.9. The DWM is a discrete modelling method and

so only exists at finite spatial sampling instants. If the mesh shape is

dynamically altered, the stepped movement from one sample location to

another produces discontinuities in the resulting waveform. Furthermore,

the limitations placed on a minimum channel width of two waveguides also
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raise functionality issues. A higher resolution mesh with smaller waveguides

will allow for a smaller minimum width channel, but this will involve a

higher sampling frequency, and hence greater computational requirements.

A vocal tract model that is limited to synthesis of static vowel sounds, with

high processing demands and non real-time performance would not prove a

particularly useful artificial speech generation tool.

6.4.1 Formant Bandwidths

In Section 4.8.2 it was demonstrated that the 2D mesh model offers sensitive

bandwidth adjustment. Formant bandwidths contribute to the naturalness of

vowel sounds. The ability to adjust synthesised bandwidth values towards

those observed in natural speech will increase the power of a vocal tract

model. In the 1D model, energy reflected back into the tract is largely

governed by coefficients r l and rg. Results from the 2D model give little

variation in bandwidth when rg is used as a controlling parameter with

wall losses set, equivalent to bandwidth variation in the traditional 1D

model. In contrast, when the additional reflection coefficient rw is used as

a controlling parameter bandwidth values follow an approximately linear

pattern of adjustment and hence optimum values can be achieved. The

theoretically predicted values set in r l and rg are valid and can therefore

remain fixed.

The simulated bandwidths do however, remain interrelated and currently

cannot be individually tuned. Further research remains in the field of

separating control of each of the three formant bandwidths, allowing fully

optimized bandwidths for each formant of each vowel. This may be achieved

by identifying which tract sections have a dominating influence on individual

bandwidths and allowing for variable rw values along the length of the tract.

6.4.2 Energy Losses

Investigations have been conducted into the frequency-dependent reflections

in the tract at the lips in the 1D model [96] [97] [115]. Losses in the
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tract walls have been accommodated along the length of the 1D frequency-

domain circuit component tract model [83], [95], [96]. Implementation of tract

losses in the 2D model in this work was directed towards simple frequency-

independent reflections along the glottis, inner-wall and lip boundaries.

Research into the application of the various forms of frequency dependent

losses to the DWM tract model should increase the accuracy of synthesis.

Considerations might involve how filter units could be employed to bring

about these more accurate energy losses in the various junction boundary

types, such as multi-port and variable impedance.

6.5 Impedance Area Function Mapping

Some of the disadvantages associated with the widthwise mapped mesh

were addressed in Chapter 5. Attempts were made to develop a 2D mesh

model which could accommodate the dynamic shape variations taking place

within the vocal tract during speech. Inspiration was drawn from the

archetypal 1D model, and the manner in which the area function changes

are made to the impedance values of each waveguide. This technique was

adapted to create a 2D impedance map that is applied to a mesh, which

retains its rectangular structure throughout simulations. The area function

changes therefore take place within the parameters of the waveguides, rather

than in the shape of the structure. It was seen to generate similar formants

peaks to those observed in the frequency response of the 1D model. However,

the extent to which the simulated 2D formants matched the 1D benchmark

was again increased with the use of an enhanced area function. Maps

generated with impedance values that were inversely proportional to r3

offered an improved synthesis over those based on an r2 relationship. This

conclusion was based on a greater perceptual correlation with the real-world

vowel sounds.
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6.5.1 Dynamic Operation

The impedance mapping technique allows for dynamic changes to be made

to the resonant characteristics of the mesh without introducing disconti-

nuities into the simulated waveform. Linear interpolations between area

functions give rise to a steady transition between formant patterns. This is the

first demonstration of a dynamically moving DWM, and as such it potentially

opens up new areas of research into multidimensional representations of the

vocal tract, as well as more general waveguide modelling applications.

The limitations placed on minimum width and high sampling frequencies

are no longer of concern. These improvements in the model allowed for

development of interactive real-time software which can be used to create

basic articulatory synthesis. Mouse-controlled sliders on the application

dialog box can be used to change the area function values applied to the

mesh. Using these, sudden changes can be made to produce synthesis of

realistic plosive sounds.

6.5.2 Mesh Topology and Boundary Considerations

The impedance map method introduces additional considerations in terms of

tract inner wall boundary implementation. The three interdependent factors

at a boundary junction are the reflection coefficient rw, the wall material

impedance Zw, and the mesh body impedance defined as Zx at each point

along the length. This arrangement is illustrated in Figures 6.1(a) and 6.1(b)

as the rectilinear and triangular mesh forms, respectively. The boundary

junction B separates the mesh body junctions J and the tract wall.

As defined in the area function, and hence in the impedance map, Zx

varies along the edge of the mesh body. This implies that at least one of

the other factors will also be nonuniform. The wall impedance can be kept

constant while the reflection at each junction varies, or the wall boundary can

be set to provide a constant rw, with a varying Zw. The notion of a variable

wall impedance raises questions, as the tract is constructed of similar fleshy

material along its length. It follows that it should be of constant impedance.
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Figure 6.1: Mesh boundary configuration

However, the formulation of the one-port boundary (Figure 6.1(a)) scattering

equation requires that either rw or both connecting impedances Zx and Zw

must be known (this was demonstrated in Equations (2.82) - (2.85), where

two admittance values either side of a discontinuity are substituted for a

single reflection coefficient). Considering this notion raises the question of

the physical values for the varying wall impedances. It is not clear how such

data could be determined. Given that the model is based on manipulating

the mesh body impedances, the definition of a constant Zw would result

in a largely variable reflection coefficients, and hence unpredictable energy

losses in relation to the changes in Zx. It was decided for this reason to

specify a constant reflection coefficient at the value rw = 0.92 obtained in the

bandwidth simulations in Section 4.8.2. The different wall impedances along

the length are therefore implicitly dealt with by each corresponding mesh

body waveguide of Zx and this uniform reflection.

This is not the case for the triangular topology mesh as it requires the

use of multiple port boundary junctions along the edges. Such junctions

were examined in Section 2.6.3 and an example of the two-port boundary

is given in Figure 6.1(b). The scattering equation (2.113) defines each output

in terms the reflection from that same port and the signal transmitted through

from the other connection. The reflection coefficient seen at each port of

the junction is different and depends on the relationship between all the

impedances, including that of the boundary, in this case, Zw. Because the

multi-port boundary junction has different Zx connections - Zx1 and Zx2 - as

well as a Zw, a constant reflection cannot be configured between the wall and

144



6. Summary and Analysis

mesh body. In other words rw1 6= rw2. Moreover, there cannot be a uniform

rw along the wall length. It follows that some arbitrary value for Zw must be

defined, corresponding to approximate energy loss expectations in relation

to the mesh body impedances at each junction.

A triangular mesh was constructed to implement the impedance mapped

tract model in an attempt to examine the effects of the improved accuracy

topology. However, for the reasons explained above, a stable structure was

not successfully achieved. The different mesh body waveguide impedances

at the boundary junction are determined from the map, as translated from

the area function. A constant reflection cannot be arranged along the tract

inner wall. Arbitrary wall impedance values were selected to match the

non-uniform mesh body impedances. However, the reflections from each

connection vary to a large extent. It is believed that waves incident upon the

irregular wall boundary experienced anomalous reflections. Unpredictable

results were obtained from the model. Further clarification of the role

of the multi-port, different-impedance boundary junction should allow for

formulation of a stable triangular mesh tract model of this type.

6.6 Unresolved Issues

In this work the exploration of how to translate the area function into the

impedance map lead to two specific ambiguities; how to represent the 3D

space as a 2D plane, and how to impart the impedance map across the

mesh as an impedance function. These issues were not resolved, but were

addressed with discussions on the increased power of r in the area functions,

and in providing two functions to bring about the impedance transition

across the mesh, respectively. Such ambiguities should be tackled in a

continuation of this work, although at the current stage of development the

approaches suggested here are sufficient for demonstrating the new tech-

niques. Any computer based model will require many simplifications and

approximations in order to meet the desired capabilities within reasonable

computational restrictions. In this work such approximations are acceptable
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for the proof-of-principle investigation, even if they deviate from a strict

physically defined representation.

A further issue that has been raised concerns the use of excitation in the

simulations. Results presented in Chapters 4 and 5 were generated with two

different types of excitation; point-source random-noise input for analysis

of the frequency response of the various meshes, and plane-source LF glottal

input for demonstrating the vowel sound spectra. In many of the simulations,

comparisons were drawn with the point-source noise excitation of the 2D

DWM tracts and the equivalent 1D model. Excitation of the 1D model is

equivalent to injection of an input across the whole of the tract surface area.

Analysis of the 2D system using a point source input will therefore produce

results from a different perspective to the 1D surface excitation. However,

the formant patterns that were generated remain a valid analysis of the

capabilities of the 2D tract model, given the stage of current development. A

more physically related glottal input of the mesh tract would involve a plane

or surface source excitation, such as that used for the vowel simulations.

6.7 Future Work

Further research relating to this work should consider the following issues.

Vocal Features

The central idea presented in this work is the development of a time-domain

vocal simulator that removes some of the spatial sampling assumptions of

the 1D model. Focus was placed on the propagational space contained within

the vocal tract, and not on the interaction with adjoining regions, such as the

nasal tract and subglottal regions. Such additional vocal features have been

developed for the 1D model, and could be adapted for application in the 2D

model. Construction of a 2D nasal cavity could be achieved using the same

methods presented here. The two meshes could be combined at the velum

by defining a side branch in the vocal tract using waveguide junctions with

additional connections.

146



6. Summary and Analysis

Mesh Topology

Further investigation of the use of different topology mesh structures should

be undertaken. The increased propagational accuracy offered by the tri-

angular and bilinearly deinterpolated meshes could prove beneficial to the

resulting naturalness of synthesis. Furthermore, clarification of the scattering

equations for triangular boundary junctions for use in impedance mapped

models would be of use. This should lead to a dynamic real-time triangular

mesh tract model.

Tract Energy Losses

Boundary implementation in this work has focused on simple reflection

modelling. Future work should also consider how more accurate tract losses

could be accommodated in the 2D model. Energy losses due to frictional,

thermal and yielding wall effects could be incorporated along the lengths

of the mesh as filter units. Consideration of how the frequency dependent

reflection at the lip opening could be accommodated in the mesh should also

increase the overall accuracy of the model.

Perceptual Tests

The 2D model has been presented here as a system that includes additional

dimensional representation, and hence increased modal characteristics of

the modelled space. It has not, however, been established as to whether

these higher order, cross-tract acoustical properties are of importance to

the perceived naturalness of synthesis. Perceptual tests could be used to

determine the extent to which the additional resonant characteristics of the

2D model are of significance, and also how its resulting naturalness compares

to the range of current 1D models.

Glottal Excitation

Glottal excitation used to simulate vowels was achieved with application of

the LF waveform. A physical model of the vocal folds should be a more
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accurate representation [83] [84] [85]. It would be of interest to investigate

additional dimensionality in a glottal model, and how such a system could

be connected with a multidimensional tract for interaction between the two.

Dynamic Modelling

The impedance mapping of area function was developed to address the prob-

lematic issues associated with the widthwise mapping alternative. Accurate

formant patterns and realistic vowels can be synthesised, but the rectangular

structure and impedance function act only to bring about similar resonant

changes in the system. A direct equivalence or mathematical proof examining

the relationship between impedance and widthwise mapping cannot be

offered at this stage. Future work may involve a more formal definition of

the techniques.

An exploration of alternative impedance functions across the mesh might

also prove useful. For example, the impedance variations across the mesh

do not necessarily need to be a strictly defined mathematical function. A

more physically meaningful version of the technique might involve the use of

moving impedance boundaries. The impedance map could be defined with

two distinct regions; a lower Zair through the centre of the tract and higher

Zf lesh towards the edges of the rectangular mesh. A sinusoidal function

similar to the one used in this work could be used to give a smooth transition

between the two. These flesh-air boundaries could be configured with the

ability to move inwards towards the tract centre to create a constriction, and

away from each other to provide an opening, whilst retaining their form. The

distance in between the two Zf leshregions could be directly obtained from the

area function and hence provide a more physically meaningful impedance

map.

As additional work, it might also be beneficial to re-examine the manip-

ulation of scattering junctions in the widthwise mapped mesh. Dynamic

restructuring of waveguide junctions for movable boundaries were not

successfully implemented in this work. This may be possible with further
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research, possibly including fractional delay techniques [56], although at an

increased computational load. The ability to make dynamic adjustments to

the length of the mesh should also be investigated. This would increase

modelling accuracy when forming tract shapes of varying lip protrusion.

Clarification of the Space Represented by the 2D Mesh

Results presented in this work showed that the formant synthesis offered by

the 2D mesh was approximately equivalent to the 1D model. The perceptual

match with real-world vowels was slightly improved with manipulation of

the area function, such that values as applied to the mesh are raised to

an additional power of r . This increased the extent to which the formants

were shifted away from the neutral positions. This finding may have

some grounding in theory, as indicated in Section 4.3.1, or it may just be a

consequence of experimentation with the model. It might be of interest to

consider formal definitions of the space that is actually modelled by the 2D

mesh. Moreover, construction of the radial mesh tract model suggested in

Section 4.3.1 may introduce further potential research directions for including

the effects of the neglected third dimension in the 2D mesh.

A 3D DWM Vocal Tract Model

This proof-of-principle work acts to demonstrate the potential for construc-

tion of a full 3D model using a complete 3D scan of the tract shape. The use of

full MRI scan data with complex-shape cross-sectional area data rather than

the circular form used for 1D simulation should increase the naturalness of

synthesis. With the inclusion of additional features, such as a nasal cavity,

and frequency dependent energy losses, it is believed that highly accurate

vocal synthesis could be achieved. A dynamic 3D model could also be

developed. It is considered that the impedance mapping of area function

presented in this work could be easily adapted for use in a 3D structure. A

17.6 cm long cuboid rectangular waveguide structure could have the area

function set within the impedance of waveguides through each 2D slice
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across the tract. Such a system would also lend itself well to the non-circular

tract shapes found in the complex 3D scans. Such a DWM model would be

well suited for use with techniques developed by Olav Engwall in 3D tract

scanning and graphical representation [104].
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Conclusion

An analysis of the use of the 2D digital waveguide mesh (DWM) in modeling

the acoustics of the human vocal tract has been presented. The research

has been put forward as a technique for increasing the level of dimensional

representation of the air-cavity within a vocal tract physical model beyond

the well-established 1D method. Two methods for applying the area function

data to the mesh have been demonstrated. The spectral results that were

presented establish that accurate formant synthesis can be achieved using

both techniques.

The first, widthwise mapping, was used to show that formant band-

widths follow a sensitive, linear response when the additional boundary

reflection parameter is used to control energy losses. However, the static

nature of the DWM structure is identified as a cause of discontinuities in

the simulated waveform when its shape is dynamically altered. Widthwise

mapping also defines a minimum channel width and requires an impracti-

cally high sampling frequency. The second area function application method

presented, impedance mapping, uses a constant rectangular structure and

tract shape changes are made within the waveguide impedances. This new

technique allows for stable dynamic manipulations to be made to the cavity

represented by the DWM. Moreover, the impedance-based method removes

minimum channel and high sampling frequency requirements, allowing for

a real-time response to be achieved.
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7. Conclusion

The research demonstrates the potential for future work into a 3D model

for highly accurate articulatory vocal synthesis. Simulation of additional

factors, such as lip radiation, tract inner wall frequency dependent losses,

a nasal cavity, tongue and jaw movement, would increase the potential of the

model to produce natural sounding artificial speech sounds.

152



Appendix A

General Mathematics

A.1 The d’Alembert Solution to the 1D Wave Equation

The classic form of the 1D partial differential equation (PDE) where the wave

variable u is dependant upon time t and the spatial coordinate x, with wave

speed c, is
1
c2

∂2u(x, t)
∂t2 =

∂2u(x, t)
∂x2 (A.1)

The general solution of the 1D wave equation was proposed by the French

mathematician Jean-le-Rond D’Alembert in 1747. The new variables ξ(x, t) =

x−ct and η(x, t) = x+ct are introduced into the PDE (A.1) and the chain rule

is used to express derivatives in terms of x and t as derivatives in terms of ξ

and η [116]. The new function v is created

u(x, t) = v(ξ(x, t),η(x, t)) (A.2)

Initially, first order differences are derived using the chain rule. Differentiat-

ing u with respect to x, noting that ∂ξ
∂x = 1 and ∂η

∂x = 1

∂u
∂x

=
∂v
∂ξ

∂ξ
∂x

+
∂v
∂η

∂η
∂x

=
∂v
∂ξ

+
∂v
∂η

(A.3)
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Similarly, differetiating u with respect to t, noting that ∂ξ
∂t =−c and ∂η

∂t = c

∂u
∂t

=
∂v
∂ξ

∂ξ
∂t

+
∂v
∂η

∂η
∂t

=−c
∂v
∂ξ

+c
∂v
∂η

(A.4)

The second order differential with respect to x is

∂2u
∂x2 =

∂
∂x

(
∂v
∂ξ

+
∂v
∂η

)
=

∂2v
∂ξ2

∂ξ
∂x

+
∂2v

∂η∂ξ
∂η
∂x

+
∂2v

∂ξ∂η
∂ξ
∂x

+
∂2v
∂η2

∂η
∂x

=⇒ ∂2u
∂x2 =

∂2v
∂ξ2 +2

∂2v
∂ξ∂η

+
∂2v
∂η2 (A.5)

Similarly, the second order differential with respect to t is

∂2u
∂t2 =

∂
∂t

(
−c

∂v
∂ξ

+c
∂v
∂η

)
= −c

∂2v
∂ξ2

∂ξ
∂t
−c

∂2v
∂η∂ξ

∂η
∂t

+c
∂2v

∂ξ∂η
∂ξ
∂t

+c
∂2v
∂η2

∂η
∂t

=⇒ ∂2u
∂t2 = c2 ∂2v

∂ξ2 −2c2 ∂2v
∂ξ∂η

+c2 ∂2v
∂η2 (A.6)

Substitution for the two second order differentials (A.5) and (A.6) into the

wave equation (A.1) gives

∂2v
∂ξ2 −2

∂2v
∂ξ∂η

+
∂2v
∂η2 =

∂2v
∂ξ2 +2

∂2v
∂ξ∂η

+
∂2v
∂η2 (A.7)

Rearranging (A.7) reveals that

∂2v
∂ξ∂η

= 0 (A.8)

This alternative form of the wave equation may be solved by direct integra-

tion. Firstly, with respect to ξ gives ∂v
∂η = g(η), where g is some arbitrary

function of η. A further integration with respect to η gives

u(ξ,η) = F(ξ)+G(η) (A.9)

Where F is some arbitrary function of ξ and G(η) =
∫

g(η)dη. Finally,

replacing ξ and η by their expressions in terms of x and t

u(x, t) = F(x−ct)+G(x+ct) (A.10)
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This result describes the summation of two arbitrary waveforms F and G. In

acoustical terms it provides a solution to the 1D wave equation for pressure

variation p in terms of the summation of left and right going wave variables

pl and pr at a point x in a 1D system

p(x, t) = pl (x+ct)+ pr(x−ct) (A.11)

A.2 Coordinate Systems

A general case for the wave equation in all coordinate systems can be defined

such that the pressure p, moving at wavespeed c over time t is described by

1
c2

∂2p(x, t)
∂t2 = ∇2p(x, t) (A.12)

Where ∇2, the Laplacian, is a differential operator used to characterise

different coordinate systems. Figures A.1(a), A.1(b) and A.1(c) demonstrate

the Cartesian, cylindrical polar and spherical polar coordinates systems,

respectively.
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Figure A.1: Coordinates systems

In cartesian x, y, z coordinates the Laplacian is

∇2 =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 (A.13)

In cylindrical polar coordinates r , θ and z the Laplacian is

∇2 =
1
r

∂
∂r

(
r

∂
∂r

)
+

1
r2

∂2

∂θ2 +
∂2

∂z2 (A.14)
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In spherical polar coordinates r , θ and φ, the Laplacian is

∇2 =
1
r2

∂
∂r

(
r2 ∂

∂r

)
+

1
r2sinθ

∂
∂θ

(
sinθ

∂
∂θ

)
+

1

r2sin2 θ
∂2

∂φ2 (A.15)

A.2.1 Coordinate Transformation

The volume in a three-dimensional space is often considered as an integral

over the three coordinates. The integral of a function f (x,y,z) can be

evaluated in terms of a transformation to coordinates u,v and w [117].

∫∫∫
f (x,y,z)dxdydz=

∫∫∫
f [x(u,v,w),y(u,v,w),z(u,v,w)]J dudvdw (A.16)

Where J is the Jacobian determinant

J =
∣∣∣∣

∂(x,y,z)
∂(u,v,w)

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣

∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣∣∣∣
(A.17)

Using this, it is possible to translate from 3D cartesian coordinates x, y and z

to cylindrical polar coordinates r , θ and z. From circular geometry, x = r cosθ

and y = r sinθ, and z is the same in both systems. The Jacobian determinant is

J =

∣∣∣∣∣∣∣∣∣

∂x
∂r

∂x
∂θ

∂x
∂z

∂y
∂r

∂y
∂θ

∂y
∂z

∂z
∂r

∂z
∂θ

∂z
∂z

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

cosθ −r sinθ 0

sinθ r cosθ 0

0 0 1

∣∣∣∣∣∣∣∣∣
= r(cos2 θ+sin2 θ) = r (A.18)

Therefore, the volume space V contained within a problem domain Scan be

obtained from integration in cartesian coordinates, or equivalently, integra-

tion in cylindrical polar coordinates adjusted by this additional r term.

V =
∫∫∫

S(x,y,z)dxdydz=
∫∫∫

S(r,θ,z)r drdθdz (A.19)
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A.3 Separation of Variables

The variables in a partial differential equation (PDE) can be separated to

form a number of ordinary differential equations (ODEs). This is the method

used to isolate wave motion in a particular axis from others in a problem

domain, such that it can be considered independently. For example, in

classical acoustical tube simulations, vibrations are considered along the

length, ignoring transverse effects. Here, a brief summary is given, following

the techniques described in [43], [46] and [35].

A.3.1 Helmholtz Equation

The Helmholtz equation is the result of a separation of variables in a PDE,

such that it becomes time-independent. It is possible to derive it with a

substitution into the wave equation:

1
c2

∂2p(x, t)
∂t2 = ∇2p(x, t) (A.20)

Separating the spatial from the temporal dependencies, a solution of the form

p(x, t) = p(x)e− jωt can be attempted.

1
c2

∂2

∂t2

[
p(x)e− jωt] = ∇2[

p(x)e− jωt] (A.21)

Noting that the left hand term is

1
c2

∂2

∂t2

[
p(x)e− jωt] =

1
c2 j2ω2p(x)e− jωt (A.22)

= −ω2

c2 p(x)e− jωt (A.23)

Therefore (A.21) becomes

∇2p(x)e− jωt +
ω2

c2 p(x)e− jωt = 0 (A.24)

Finally, dividing through by e− jωt gives the classical form of the Helmholtz

equation, where k2 = ω2/c2 relates to the wave number k and angular
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frequency ω of the harmonic solution.

∇2p(x)+k2p(x) = 0 (A.25)

Therefore harmonic solutions to the wave equation also satisfy the Helmholtz

equation.

A.3.2 Cartesian Coordinates

The wave equation (A.12) for pressure p in 3D cartesian coordinates x, y, and

z, is
1
c2

∂2p
∂t2 =

∂2p
∂x2 +

∂2p
∂y2 +

∂2p
∂z2 (A.26)

It can be stated that a separable solution exists as a product of four arbitrary

functions X(x), Y(y), Z(z) and T(t) [43].

p(x,y,z, t) = X(x)Y(y)Z(z)T(t) (A.27)

Substituting this into the wave equation A.26 and rearranging gives

1
c2

1
T

∂2T
∂t2 =

1
X

∂2X
∂x2 +

1
Y

∂2Y
∂y2 +

1
Z

∂2Z
∂z2 (A.28)

The left had side of (A.28) is dependent only on t, and the right hand side is

dependent on x, y and z. It is therefore possible to separate the equations and

equate them both to some arbitrary constant −k2.

1
c2

1
T

∂2T
∂t2 =−k2 (A.29)

1
X

∂2X
∂x2 +

1
Y

∂2Y
∂y2 +

1
Z

∂2Z
∂z2 =−k2 (A.30)
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Equation (A.30) can be further separated. The first term is dependent only on

x, the second on y, and the third on z. Therefore

1
X

∂2X
∂x2 = −k2

x (A.31)

1
Y

∂2Y
∂y2 = −k2

y (A.32)

1
Z

∂2Z
∂z2 = −k2

z (A.33)

Where the relationship between them is

k2
x +k2

y +k2
z = k2 =

ω2

c2 (A.34)

This separation constant −k2 relates to the wave number k and angular

frequency ω of the harmonic solutions to the wave equation. The four

separate ordinary differential equations are now

∂2T
∂t2 +k2c2T = 0 (A.35)

∂2X
∂x2 +k2

xX = 0 (A.36)

∂2Y
∂y2 +k2

yY = 0 (A.37)

∂2Z
∂z2 +k2

zZ = 0 (A.38)

Which are all forms of the Helmholtz equation A.25, solutions of which also

satisfy the wave equation and can be solved independently from each other

[43].

A.3.3 Cylindrical Polar Coordinates

The same techniques can be used to separate the modal variations across an

acoustic tube, in r and θ terms from those relating to the length in z terms

[43]. The wave equation in cylindrical coordinates is

1
c2

∂2p
∂t2 =

1
r

∂p
∂r

(
r

∂p
∂r

)
+

1
r2

∂2p
∂θ2 +

∂2p
∂z2 (A.39)
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A solution in terms of arbitrary functions R(r), Θ(θ) and Z(z) is defined

p(r,z,θ) = R(r)Θ(θ)Z(z) (A.40)

Substitution of (A.40) into (A.39) gives

1
c2

1
T

∂2T
∂t2 =

1
R

∂2R
∂r2 +

1
rR

∂R
∂r

+
1

r2Θ
∂2Θ
∂θ2 +

1
Z

∂2Z
∂z2 (A.41)

The following terms can be defined as

1
c2

1
T

∂2T
∂t2 = −k2 (A.42)

1
Θ

∂2Θ
∂θ2 = −m2 (A.43)

1
Z

∂2Z
∂z2 = −k2

z (A.44)

Where an additional factor kr is introduced such that

k2
r +k2

z = k2 = ω2/c2 (A.45)

This leads to the wave equation for modal resonances with respect to r

∂2R
∂r2 +

1
r

∂R
∂r

+
(

k2
r −

m2

r2

)
R= 0 (A.46)

This is a form of Bessel’s equation of order m. Solutions can be found using

the Bessel Function, which is described in greater detail in Section A.3.4.

Solutions to the cylindrical wave equation in the r axis are a sum of Bessel

functions of the first Jm and second Ym kind.

R(r) = Jm(kr r)+Ym(kr r) (A.47)

A.3.4 The Bessel Function

A Bessel function provides solutions to the Bessel differential equation, which

is of the form

x2 ∂2y
∂x2 +x

∂y
∂x

+(x2−m2)y = 0 (A.48)
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This second order differential has two linearly independent solutions, a

Bessel function of the first kind Jm(x), and of the second kind Ym(x), weighted

by coefficients c1 and c2, respectively

y(x) = c1Jm(x)+c2Ym(x) (A.49)

In general a Bessel function of the first kind and order m is expressed as

Jm(x) =
∞

∑
n=0

(−1)n

n!Γ(n+m+1)

(x
2

)2n+m
(A.50)

The Bessel function of the first kind function evaluated with order m = 0

(black line), m= 1 (grey line) and m= 2 (dotted line) is illustrated in Figure

A.2.

0
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Figure A.2: Bessel function of the first kind - order zero J0(x), one J1(x) and two J2(x)

The roots of the Bessel function are included on the diagram, such that αmn is

the x value where the nth instance of Jm(x) = 0 occurs - the zero crossings.

Similarly, α′mn is the x value where the nth instance of dJm(x)
dx = 0 occurs -

the zero gradients. These roots are useful in determining the frequency of a

Bessel function standing wave across the radius axis r of an acoustic tube. At

the rigid reflecting boundary inside such a tube of radius a, standing waves

form such that pressure components have zero gradient. From the diagram it

can be seen that the first three allowable standing waves from the tube centre
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at r = 0 to the tube edge r = a, in order of increasing frequency, are:

• From x = 0 to α′11 = 1.841(at r = a)

• From x = 0 to α′21 = 3.054(at r = a)

• From x = 0 to α′02 = 3.832(at r = a)
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Appendix B

Phonology

B.1 Phonetic Alphabets

All phonemes from all languages produced using the human voice are

identified, catagorised and represented with a unique symbol within the

International Phonetic Alphabet (IPA) [74]. Many schemes exist to provide

a translation for each symbol into a computer character for reproduction in

written work. Two widely used methods are the numerically based Uni-

code system [118] and the Speech Assessment Methods Phonetic Alphabet

(SAMPA) [119] which uses ASCII codes where Unicode is not available or not

appropriate. The following tables outline the IPA symbols (generated using

the LATEXpackage tipa ) commonly used in English and their corresponding

SAMPA equivalent. Descriptions relating to the oral configuration held for

utterance and example words are also given.
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IPA SAMPA Description Example Words
a a central open father, bard
i i front close unrounded see, bead
I I front close unrounded city, bit
E E front half open unrounded get, bed
3 3 front half open unrounded furry, bIrd
æ { front open unrounded cat, bad
2 V back half open unrounded run, but
O O back half open rounded law, bought
U U back close rounded put, book
u u back close rounded soon, booed
6 Q back open rounded not, bod
@ @ central neutral unrounded about, winner

Table B.1: Vowel catagorisation (English) - IPA and SAMPA symbols

IPA SAMPA Example Word
@U @U hope
aU aU house
aI aI kite
eI eI same
ju ju few
OI OI join
I@ I@ fear
E@ E@ hair
U@ U poor

Table B.2: Diphthong catagorisation (English) - IPA and SAMPA symbols

IPA SAMPA Description Example Words
b b bilabial plosive but, web
d d alveolar plosive do, odd
g g velar plosive go, get, beg
v v labiodental fricative voice, have
D D dental fricative this, breathe
z z alveolar fricative zoo, rose
Z Z postalveolar fricative pleasure, beige
m m bilabial nasal man, ham
n n alveolar nasal no, tin
N N velar nasal singer, ring
l l alveolar lateral approximant left
ë 5 velarised alveolar lateral approximant milk, bell
ô r\ alveolar approximant run, very
w w labial-velar approximant we
j j palatal approximant yes

Table B.3: Voiced consonant catagorisation (English) - IPA and SAMPA symbols
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IPA SAMPA Description Example Words
p p bilabial plosive pen, tip
t t alveolar plosive two, bet
Ù tS voiceless postalveolar fricative chair, nature, teach
k k velar plosive cat, skin
f f labiodental fricative fool, enough, leaf
T T dental fricative thing, with
s s alveolar fricative see, city, pass
S S postalveolar fricative she, sure, leash
h h glottal approximant ham

Table B.4: Voiceless consonant catagorisation (English) - IPA and SAMPA symbols
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