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A Model for Viral Assembly around an Explicit RNA
Sequence Generates an Implicit Fitness Landscape
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ABSTRACT Previously, a stochastic model of single-stranded RNA virus assembly was created to model the cooperative ef-
fects between capsid proteins and genomic RNA that would occur in a packaging signal-mediated assembly process. In such an
assembly scenario, multiple secondary structural elements from within the RNA, termed ‘‘packaging signals’’ (PS), contact coat
proteins and facilitate efficient capsid assembly. In this work, the assembly model is extended to incorporate explicit nucleotide
sequence information as well as simple aspects of RNA folding that would be occurring during the RNA/capsid coassembly pro-
cess. Applying this paradigm to a dodecahedral viral capsid, a computer-derived nucleotide sequence is evolved de novo that is
optimal for packaging the RNA into capsids, while also containing capacity for coding for a viral protein. Analysis of the effects of
mutations on the ability of the RNA sequence to successfully package into a viral capsid reveals a complex fitness landscape
where the majority of mutations are neutral with respect to packaging efficiency with a small number of mutations resulting in a
near-complete loss of RNA packaging. Moreover, the model shows how attempts to ablate PSs in the viral RNA sequence may
result in redundant PSs already present in the genome fulfilling their packaging role. This explains why recent experiments that
attempt to ablate putative PSs may not see an effect on packaging. This modeling framework presents an example of how an
implicit mapping can be made from genotype to a fitness parameter important for viral biology, i.e., viral capsid yield, with
potential applications to theoretical models of viral evolution.
INTRODUCTION
Self-assembly of proteins into large biomolecular structures
is ubiquitous throughout protein biochemistry. One well-
known and well-studied example is the self-assembly of
viral capsids, the protein containers that surround and pro-
tect a virus’ genetic material. Although viruses employ
several different mechanisms of capsid assembly and
genome packaging (1–3), this article focuses on the coas-
sembly mechanism that is present in plus-sense single-
stranded RNA (ssRNA) viruses, one of the largest class of
viruses infecting a variety of hosts including humans, plants,
and animals. In the coassembly process, nucleic acid and
coat proteins interact to spontaneously assemble the capsid
shell around the viral genome. Recent experimental and
theoretical modeling work has demonstrated for a number
of ssRNA viruses that specific interactions between sites
within the nucleic acid (termed ‘‘packaging signals’’, PSs)
and coat proteins, facilitate the coassembly process and
are important for efficient assembly of the virion (4–6).
Additional experiments with the plant satellite tobacco ne-
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crosis virus (7) have also shown that fragments of the
wild-type viral genomic RNA sequence are better able to
promote assembly than mutated versions, suggesting that
the overall RNA sequence is important for fitness contribu-
tions related to assembly and packaging. Although theoret-
ical descriptions of the coassembly process exist for ssRNA
viruses (8–12), none of these models are able to take the spe-
cific sequence effects on the assembly process into account,
or by implication, the effects that sequence mutations would
have on the packaging capacity of a viral sequence.

The observed link between a viral RNA sequence and its
capacity to package presents an opportunity to construct an
implicit genotype-phenotype-fitness landscape for a ssRNA
virus, where fitness is measured by the yield of correctly
assembled virus particles. Single-stranded RNA viruses
are under a unique set of constraints to ensure that their ge-
nomes have high assembly and packaging fitness due to the
fact that their genomes must perform multiple functions in
the host cell. First, they must act as messenger RNAs
(mRNA) by providing a template for host ribosomes to
translate viral proteins. Moreover, because they do not enter
a DNA stage in which DNA is integrated into the cellular
genome, they must also regulate the synthesis of the
different viral proteins to ensure that each is present at the
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concentration required for optimal replication. In addition,
they must also be packaged into their protective protein
shells, but only late in the infection cycle, because prema-
ture packaging of the viral RNA would result in low titers
of progeny virus due to a lack of mRNA templates. Finally,
the presence of other cellular mRNA competitors presents
the virus with an additional challenge: how to distinguish
viral RNA from host RNA.

The temporal coordination of viral protein translation and
RNA packaging events that occur in vivo is critical for the
efficient assembly of viral progeny and is believed to be
controlled in part by RNA dynamics. Specifically, as the
RNA genome folds into different secondary structures, it
will present different structural elements with competing
regulatory roles. Such regulatory elements have been iden-
tified in bacteriophage MS2 where the translational
repressor serves as both a regulatory element to shut off syn-
thesis of the viral replicase gene and as an assembly initia-
tion site (13). A further example is in the plant Turnip
Crinkle Virus, where RNA structures at the 30 end control
minus-strand synthesis (14). Packaging signals themselves
also serve a regulatory role in facilitating efficient pack-
aging of RNA into viral capsids. The ability of these PSs
(or any regulatory elements in general) to be presented in
the RNA genome will potentially impact on viral processes
such as translation of viral proteins and/or packaging of
viral genomes into capsids.

To develop a modeling paradigm that can explore the role
of RNA dynamics in virus capsid assembly, as well as more
broadly the regulation of the overall viral lifecycle, this
article focuses on the development of a stochastic frame-
work that incorporates RNA dynamics into models for pack-
aging signal-mediated virus assembly. The resulting model
fully incorporates the primary sequence of the RNA (i.e.,
an RNA sequence of A, U, G, and Cs) and uses RNA folding
rules based on the BARRIERS method (15) and the Turner
rules (16) to generate simplified dynamics. The model is
then applied to a dodecamer capsid model where the capsid
shell is built from 12 pentameric units, similar to capsid as-
sembly in picornaviruses, to generate a small RNA sequence
that has enhanced assembly efficiency when compared with
other random RNA sequences. An interesting consequence
of this model is that, by coupling RNA sequence to assem-
bly yield, an implicit fitness landscape can be constructed
where single or multiple mutations to a sequence and their
effects on fitness can be assessed. This presents the opportu-
nity of modeling recent experimental observations of PS
mutations and their effects on assembly (4,7). The need
for biologically realistic fitness functions for studying
evolutionary processes has been previously discussed by
Stadler (17) and this model presents a potential framework
in which viral evolution could be explored using a more
realistic fitness function. Some of the features of the implicit
fitness landscape arising from the model, such as large re-
gions of neutrality and examples of epistasis, are discussed.
MATERIALS AND METHODS

Anumber of different theoreticalmodeling techniques exist for the prediction

of viral capsid assembly kinetics. These include stochastic methods such as

theGillespiemethod (8,12), theoreticalmodelsbasedonenergyminimization

(11,18), ordinary differential equation-based methods (19), and Brownian

dynamics models (10). Several of these methods have been adapted to study

the specific problem of RNA-coassembly that occurs in the class of ssRNA

viruses (8,10,12). However, when incorporating the explicit RNA sequence

into the model along with features of RNA dynamics such as hairpin folding,

issues of computational complexitymust be considered. Any assemblymodel

that includes the RNA and its sequence-specific effects, as well as mutational

effects, on capsid assemblymust be able to computeRNAfolding kinetics fast

enough such that multiple assembly simulations can be completed inminutes

to hours of computational time. Thus, more advanced Brownian dynamics

models will likely be too computationally expensive to accomplish this.

Instead, the Gillespie method developed for the assembly of viral capsids

around a static RNA genome (8) is adapted for simulating RNA hairpin

folding using a variant of the Gillespie algorithm, i.e., the ‘‘next-reaction’’

method (20). The advantage of the next-reaction method is that it will allow

for the construction of a binary queuing systemwith a computational cost per

reaction fired ofO(Log2(N)) in contrast to theO(N) cost in the traditional Gil-

lespie algorithm, allowing for effects such as mutations to the RNA sequence

and its impact on assembly to be explored in less computational time.
RNA folding kinetics model for ssRNA virus
assembly

The RNA kinetics model that is used in combination with the assembly

model for ssRNA viruses is based on the BARRIERS method (15). The

BARRIERS method uses the Wuchty suboptimal RNA folding algorithm

(21) to identify a set of RNA folds that are within a specified energy differ-

ence of the minimum free energy fold. Given this set of RNA folds repre-

senting a subspace of the complete RNA folding space, BARRIERS

identifies a set of local minima and saddle points. Once all local minima

and saddles have been identified, BARRIERS constructs transitions be-

tween pairs of local minima that connect through a saddle point and calcu-

lates the transition rate based on the height of the energy barrier between the

two local minima. The BARRIERS method can then perform RNA kinetics

using the set of local minima as the different RNA folding states, and a sto-

chastic-based method (such as Gillespie (22)), or a numerical method for

solving the set of coupled differential equations that results, can be used

to simulate the kinetics of RNA folding.

The general BARRIERS method will produce RNA structures that have

long-distance interactions, hairpins, and multiloops. However, for a variety

of viruses including bacteriophage MS2 (6), satellite tobacco necrosis virus

(5), and Human Parecho virus (4), experiments have shown that the RNA

structures involved in the binding to coat proteins are short simple hairpins

(of �20 nt) with specific sequence or structural features. Moreover, many

ssRNAviruses, such as those from the picornavirus family, are also believed

to assemble from the 50 ends of RNAs during synthesis of the plus strand.

This suggests that local hairpin structures are likely to be more important

than long-range interactions for some ssRNA viruses such as those from

the picornavirus family. Given this information, the RNA folding model

for virus assembly is simplified to only include local hairpins spanning a

user-specified number of nucleotides, which will allow for a substantial in-

crease in the computational efficiency of the RNA folding part of the assem-

bly algorithm. This results in the RNA sequence being modeled as a linear

chain of RNA hairpins with different sequence, bulge, and apical loop con-

figurations that can fold and melt at different rates depending on their base-

pairing and stacking interactions. To simplify the transitions between RNA

states, individual hairpins can either form or melt, but cannot transition to

another hairpin state (see Fig. 1 c). Finally, based on the sequence and struc-

ture of the RNAhairpin, the on- and off-binding rates to coat protein can then

be assigned, based on user-specified rules that will depend on the specific
Biophysical Journal 113, 506–516, August 8, 2017 507



FIGURE 1 A stochastic assembly model for ssRNA viruses with RNA folding reactions. (a) In the packaging-signal-mediated model of viral assembly,

viral coat proteins (pentamer shapes) coassemble with viral ssRNA to form a viral capsid containing the viral RNA genome. The coat proteins interact via

RNA secondary structures (here, RNA hairpins) present in the RNA genome. (b) Two types of reactions are used to model capsid assembly—an RNA/CP

reaction where CP can bind at rate kb or unbind at rate ku to any hairpin present in the RNA genome, and a CP/CP reaction where two coat proteins that

neighbor on the RNA strand associate or dissociate from each other with rates ka and kd, respectively. Binding rates for the RNA/CP reactions vary depending

on the sequence and secondary structure features of each RNA hairpin. (c) During assembly of the capsid, CP-free RNA hairpins can melt and ssRNA areas

can fold altering the local secondary structure of the RNA. Rates of folding and melting (kf and km) are sequence- and structure dependent and are estimated

using the BARRIERS methodology and the Turner 99 rules. (d) Given here are structures of hairpins with high affinity for MS2 CP (KD ¼ 1 nM), which

represent the three structures that can bind to CP in the model. The three critical sequence elements effecting the binding of RNA to CP (labeled 1–3) were

probed experimentally by Ulenbeck et al. (30). Table 1 lists the effects of mutations at these sites on the binding affinity. Multiple mutations are modeled as

being multiplicative in their effect on the binding affinity.
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virus of interest. It may be possible in the future to incorporate long-distance

interactions in RNA kinetics; however, current coarse-grained folding algo-

rithms can take up to 24 h to complete 100 s of folding (23), which is not fast

enough, currently, to simulate multiple thousands of assembly reactions.

The RNA folding states are computed in three steps. First, using a variant

of the Waterman-Byers algorithm (24), all RNA hairpins on a given RNA

sequence that contain a user-specified maximum number of nucleotides

are computed. Second, hairpins that are local minima are identified by

testing if the removal or addition of a basepair results in a lower energy struc-

ture. Third, the energy barrier is calculated between the folded and unfolded

states of the hairpin and the folding and melting rates computed. The con-

struction of the RNA folding states only needs to be precomputed once

before simulating the assembly of the virus. Once the RNA folding states

are computed (i.e., the set of all possible hairpins that can form), the assem-

bly simulation chooses from a set of reactions to fire that include coat protein

(CP) binding/unbinding to the folded RNA hairpins and CP-CP association

dissociation (Fig. 1 b), or RNA hairpin folding/melting (Fig. 1 c).
Next-reaction method for virus assembly with
RNA folding

Before presenting the next-reaction method for virus assembly and RNA

folding, the Gillespie model for virus assembly around a static RNA (8) is

first briefly discussed as its algorithmic procedure serves as the basis for

the assembly model that incorporates RNA folding. The Gillespie method,

for virus assembly around a static RNA containing a number of binding sites

(as depicted in Fig. 1 a), stores information on the PS binding sites, their af-

finities, and the capsid proteins that these PSs are in contact with for each

RNA in the simulation. From this configuration information, one can quickly

calculate the total number of reactions that are possible for any RNA in the

system that includes CP-CP association/dissociation and PS-CP binding/

unbinding as depicted in Fig. 1 b. The reaction flux a0(a) for a single RNA
508 Biophysical Journal 113, 506–516, August 8, 2017
a in the simulation is then calculated by summing over all i ¼ {1,Ma} reac-

tion rates, ai(a), that are possible for this RNA/capsid complex,

a0 ðaÞ ¼
XMa

i¼ 1

ai ðaÞ: (1)

From this, the total reaction flux F is computed for the entire system of

a ¼ {1,Nr} RNAs by summing over the reaction flux for each individual
RNA, i.e.,

F ¼
XNr

a¼ 1

a0 ðaÞ: (2)

To choose a reaction to ‘‘fire’’, the assembly algorithm first chooses a

random number r between 0 and 1, r ¼ [0,1], then computes F ¼ rF.

Following the traditional Gillespie stochastic algorithm, the RNA m is iden-

tified that satisfies the partial sum inequality,

Xm

a¼ 1

a0 ðaÞRF: (3)

After choosing the RNA m based on the value F, a specific reaction to fire

out of the M possible reactions for this RNA is identified by finding the
m

reaction j such that

Xm�1

a¼ 1

a0 ðaÞ þ
Xj

i¼ 1

ai ðmÞRF: (4)

Now that the specific reaction to fire in RNA m has been chosen, the system

can be updated according to this reaction and the time incremented by t,
with
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t ¼ �lnðrÞ
F

; (5)

where r is a random number between 0 and 1. Because only one RNA

and its list of reactions and reaction rates change after each Gillespie

step, a binary tree containing partial sums of the reaction fluxes for

each RNA, a0(a), can be used to quickly identify in Log2(Nr) time the

RNA m containing the reaction to fire next as well as resume the total

flux F, greatly speeding up the reaction selection and total flux summation

tasks. This procedure follows a similar binary tree method that was used

to speed up a Gillespie model of RNA kinetics at single basepair resolu-

tion (25).

To incorporate RNA folding into this algorithm, a variant of the tradi-

tional Gillespie method called the next-reaction method is used (20). The

next-reaction method differs from the traditional Gillespie method in two

key ways. First, instead of calculating the total flux F in Eq. 2, picking a

reaction to fire, and then calculating the time that reaction occurs using

Eq. 5, the next-reaction method samples the wait time for each possible re-

action i ¼ [1, Ma] in RNA a using

ti ðaÞ ¼ �lnðri ðaÞÞ
ai ðaÞ ; (6)

where the ri(a) are random numbers between 0 and 1. Second, wait times

are only sampled once, i.e., the random numbers are reused, until the reac-
tion actually fires. The next-reaction method simulates a series of chemical

reactions by selecting the smallest wait time to be the next reaction that is

fired. Once the reaction has been fired, a new time is sampled for the reac-

tion and the process repeats. Although the procedure of selecting the reac-

tion to fire in the next-reaction method differs from the traditional Gillespie

algorithm, one can show that they are mathematically equivalent and sam-

ple the same chemical kinetics (20).

In the case of virus assembly with RNA folding, where the RNA is a

simple linear chain of Nh hairpins that are either present or not, a queue

table in the form of a binary tree can be employed to allow for the selec-

tion of the next reaction with minimum wait time in O(1) time with update

of the queue table in O(Log2(Nh)) time. Consider the case of Nh ¼ 2n hair-

pins that can have states that are either folded (and thus present in the

RNA strand) or unfolded. Assign to each hairpin a wait time to fold or un-

fold (depending on its current state) according to Eq. 6, and construct a

queue table in the form of a binary tree on an array of length Nh. Once

the sorted binary tree has been constructed, the m ¼ Nh/2 element of array

points to the hairpin number that has the minimum wait time. After either

folding/unfolding the hairpin with the minimum wait time, a new wait

time for the hairpin to unfold/fold is sampled using Eq. 6 and the queue

table can be updated in O(Log2(Nh)) steps. Fig. S1 illustrates the queue ta-

ble and the selection and update process. When an unfolded hairpin

(hairpin A) that has minimum wait time in the queue overlaps with another

hairpin in the RNA sequence (hairpin B) that is already present, a new

folding time for hairpin A is queued, corresponding to the time to wait

for hairpin B to unfold plus the time to wait for hairpin A to fold. In

this fashion, reactions that are forbidden due to changes in the RNA

fold are requeued to occur at an appropriate time in the future. The advan-

tage of the next-reaction method over the traditional Gillespie algorithm is

that it removes the time-consuming step of looping over all possible

hairpin reactions (which may be in the thousands even for a small RNA

sequence), checking if each can occur, and then adding the appropriate re-

action flux for that hairpin folding/melting reaction into the total flux that

would require O(Nh) time whenever a reaction is fired. A similar queue

system can be constructed for the capsid assembly reactions for consis-

tency. Benchmarking of the assembly model has shown that the simulation

of capsid assembly with �2000 copies of a 360-nt RNA sequence can be

completed in �10–20 min on a single processor, making it feasible to

explore RNA sequence space and its impact on assembly via a genetic

algorithm.
RESULTS

To illustrate the features of the assembly model and the re-
sulting implicit fitness landscape, the assembly of a small
capsid comprising 12 pentameric units that assemble into
a dodecahedral capsid around a small 360 nt RNA is exam-
ined using the next-reaction method. As before, we consider
the assembly model depicted in Fig. 1, which requires 12 PS
sites to be present in the genome, one for each pentameric
unit, with appropriate affinities to successfully promote
virus assembly. In this way, this model follows previous
work (8), but with the added complexity that the explicit
RNA sequence is present and must fold PSs to present to
the coat protein for binding. As a result, not all PSs may
be able to fold due to competing hairpins that may
block their folding and hence binding to CPs. As discussed
above, although long-distance interactions are neglected to
simplify the computation, this assembly scenario is related
to the picornavirus genus of viruses. This includes the virus
families Parechoviruses (HPEV), Apithoviruses (FMDV),
and Enteroviruses (Polio). In these viruses, assembly is
believed to take place during synthesis of the plus strand
via interaction with local hairpin structures (4). After
choosing model parameters in the next section, an RNA
sequence with high assembly efficiency is evolved using
the assembly model and details of the sequence’s fitness
are examined.
Choice of model parameters

There are only three types of model parameters that are
required to be chosen to model capsid assembly: 1) the
CP-CP association/dissociation rates, 2) the CP-RNA
binding/unbinding rates for each hairpin, and 3) the
folding/melting rates for each hairpin. The CP-CP associa-
tion/dissociation rates, ka and kd, can be determined from
the relation

ka

kd
¼ e�bDGp ; (7)

where b ¼ 1/kBT, and DGp is the change in free energy due

to coat protein association with a partially formed capsid.
Assuming the CP-CP association rate ka has a rate of
ka ¼ 106 s�1, consistent with previous RNA-CP assembly
models (8), dissociation rates kd can then be computed using
Eq. 7 and the number of contacts made between the
incoming CP and the partially formed capsid, i.e., DGp ¼
ncC. In this model, a free energy change per contact of
C ¼ �2.5 kcal M�1 is used, which is approximately the
value needed for free pentamers to assemble into complete
capsids in the RNA-free situation (19).

The remaining constants are attributable to the Nh indi-
vidual hairpins that have been identified via the BARRIERS
method. Each hairpin will have a total of four rates associ-
ated with it: a rate of binding to CP, a rate of unbinding
Biophysical Journal 113, 506–516, August 8, 2017 509



TABLE 1 Effects of Mutations on Coat Protein RNA Binding

NT A G U C

1 1 2 2 2

2 100 100 1 0.18

3 1 1000 1000 1000

NT labels the nucleotide number in Fig. 1 d which, when altered according

to the table, changes the dissociation constant KD by the factor listed. Mu-

tations to multiple nucleotide positions affect KD in a multiplicative

manner. Estimates for the dissociation constant are based on experimental

data for bacteriophage MS2 (see (30) and (6)).

Dykeman
from CP, a rate of folding, and a rate of melting. The folding
and melting rates for hairpin i, kf(i) and km(i), are calculated
from the minimum free energy barrier between the folded
and single-stranded states, DGf (i), using the formula

kf ðiÞ ¼ Ae�bDGf ðiÞ; (8)

km ðiÞ ¼ Ae�bDGmðiÞ; (9)
where DGm(i) ¼ DGf(i) � G(i) is the free energy barrier for

melting andG(i) is the free energy of the fully folded hairpin
FIGURE 2 A genotype with high fitness and protein coding capacity evolved

2000 copies of the WT sequence for RNA/Capsid intermediates containing (a) 2

identified high fitness RNA. PSs that are used during assembly >90% of the time

used <90% of the time are shown with square brackets. The protein sequence

(d) Given here are secondary structures and nucleotide positions of the PSs in

see this figure in color, go online.
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i, calculated using the Turner rules (16). The constant A is
related to the attempt frequency in the Arrhenius equation
and is set to A ¼ 107, which yields folding rates on the order
of 10–100 ns, consistent with estimates for small hairpins
(26,27).

For the binding and unbinding rates for hairpin i, kb(i)
and ku(i), affinities are assigned based on both the second-
ary structure of the hairpin as well as specific features of its
sequence. First, the secondary structure of the hairpin is
checked against the three possible structures that are
allowed to bind to CP (see Fig. 1 d). If the hairpin
matches one of these, it is assigned the generic dissociation
constant for that structure as shown in Fig. 1 d. Next,
the dissociation constant is adjusted by a multiplicative fac-
tor F ¼ F1F2F3 depending on the specific nucleotide
sequence of the hairpin at the three specific positions
(numbered in Fig. 1 d). For each position i ¼ [1.3], the
multiplicative factor Fi is obtained from Table 1. Once F
has been calculated, the total dissociation constant for
hairpin i, KD(i), is obtained. The following relation can
then be used to calculate the binding and unbinding rates
kb(i) and ku(i),
from a random population of RNAs. Given here is the assembly kinetics for

–6 CPs and (b) 7–12 CPs. (c) Given here is the nucleotide sequence of the

are shown above the RNA sequence with parentheses whereas PSs that are

is shown below the RNA sequence with the stop codon labeled by a star.

teracting with CP during capsid assembly in the majority of capsids. To



FIGURE 3 Effect of single nucleotide mutations (insertion, deletion, or

polymorphism) on viral assembly fitness of the wild-type sequence. The

majority of mutations (>75%) result in at least 85% of the RNAs being

packaged into complete capsids within a 200-s time frame. A small minor-

ity of mutations (z6%) are deleterious and result in essentially no capsid

being assembled. To see this figure in color, go online.
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KD ¼ ku ðiÞ
kb ðiÞ ¼ ebDGb ; (10)

where ku(i) ¼ ku(i) and ku(i) ¼ kb(i)/V. Stopped flow kinetic
binding experiments have estimated that the binding rate for
these hairpins to CP are diffusion limited and are roughly on
the order kb ¼ 1.1 � 107 M�1 s�1 (28). The same value is
used here for all hairpins with one of the three structural
types shown in Fig. 1 d. Using a volume of V ¼ 0.7 mm3,
a typical volume of a small cell, the generic binding rate
for binding competent hairpins is kb(i) ¼ 0.0261 s�1. The
unbinding rate is then computed from Eq. 10 using the
KD(i) value calculated for the hairpin based on its sequence.
All other hairpin structures not shown in Fig. 1 d, have bind-
ing and unbinding rates set to a value consistent with very
weak binding, e.g., DGb > �3.0 kcal/M.
An RNA capable of efficient assembly

To identify an RNA sequence with high assembly efficiency,
a genetic algorithm that searches the ensemble space of all
RNA sequences of length 360 nucleotides is employed. Us-
ing a starting population of 2000 random RNAs that have
been seeded with 12 hairpins that can bind CP according
to the rules in the previous section, the RNA sequences
are optimized with respect to assembly efficiency (i.e.,
fast assembly) and yield of correctly assembled particles
containing one packaged RNA. Each of the RNA sequences
is subjected to assembly in the presence of 24,000 CP pen-
tamers, enough to package all 2000 RNAs into complete
capsids. Assembly is stopped after 200 s has elapsed, which
provides the selective pressure for fast assembly. This time
is reduced in later rounds to further increase the selective
pressure. After each of the 2000 RNAs has been tested for
its assembly yield after 200 s (or smaller time), the top
25% of sequences that have the most virus capsids assem-
bled is selected to move on to the next round and provide
the sequence diversity for the subsequent generation. Single
nucleotide mutations at random positions in the genome and
recombination events between pairs of RNA sequences that
swapped up to 30 nt between a pair of RNAs are used to
construct a new population of 2000 RNAs. Despite the enor-
mous search space of 4360 z 10216 different sequences, the
genetic algorithm converges rapidly (within 30–40 genera-
tions) to sequences that can package >90% of the 2000
RNAs into completed capsids in <200 s. This sequence
optimization process was repeated three more times with
different starting populations. Each of these additional opti-
mization runs also converged in a similar number of gener-
ations, but to different sequences with similar yields (see
Fig. S2), suggesting that the sequence space has many
equivalent solutions. Although the optimized sequences
have different genotypes, they do have a distribution of
PSs with similar affinities indicating that they have similar
phenotypes. The fast convergence (within 30–40 genera-
tions) combined with the fact that different random starting
populations can converge to a solution suggests that there is
a huge number of RNA sequences capable of efficient pack-
aging in the sequence space.

Because ssRNAviral sequences must also have the ability
to code for viral gene products as well as assemble, the se-
quences were checked for their ability to code for a gene
product with a single AUG start codon followed by a series
of codons coding for amino acids and terminating in a single
stop codon (UAA, UAG, UGA). Fig. 2 illustrates the assem-
bly kinetics for one such RNA sequence, which will be
referred to as the ‘‘wild-type’’ (WT) sequence. Fig. 2, a
and b, shows the assembly kinetics for intermediates con-
taining 2–11 coat proteins with the dashed line labeled
‘‘capsid’’ indicating the fully formed correctly assembled
viruses. As can be seen from the figure, 95% of the RNAs
are able to be packaged into capsids. Fig. 2 c shows the
RNA sequence with the amino acid sequence of the gene
product, and PSs used during packaging below and above
the nucleotide sequence, respectively. Packaging signals
with square brackets indicate PSs that are used 50–90% of
the time, whereas those with round brackets are used
>90% of the time during assembly. Fig. 2 d illustrates the
PSs secondary structure (numbered 1–12; see Fig. 1 b).

It should be noted that an alternative way of searching for
a WT sequence with both high assembly efficiency and the
ability to code for an amino acid sequence would be to first
fix an amino acid sequence, then perform synonymous mu-
tations on the RNA until a sequence with high assembly ef-
ficiency is identified. Although this method may actually be
closer to the type of mutational pressures that a virus might
be subject to because the structure and function of the viral
Biophysical Journal 113, 506–516, August 8, 2017 511



FIGURE 4 Effects of G277N, a synonymous mutation ablating PS11, on viral assembly fitness. (a) The valine (GUG) codon in the WT RNA sequence

(boxed) is mutated to the three alternative codons (GUC, GUU, GUA), which alters the secondary structure of PS11 and ablates its ability to bind to CP

according to the RNA-CP binding rules used in the assembly model. The result of all three mutations is the creation of a mutant PS11 capable of binding

CP. G277A and G277C also create a stable hairpin unable to bind CP, which competes with PS10 and PS11. (b) Assembly kinetics of the G277Umutant show

essentially unaltered assembly compared with WT. (c) Assembly kinetics for G277A mutant show a temporary kinetic trap formed at RNAs bound to nine

CPs. The trap is formed due to a delayed folding of PS10 and PS11 from the hairpin competitor shown in (a). (d) Assembly kinetics for G277C mutant are

given. A less severe temporary trap is formed due to the folding of the non-CP binding RNA competitor shown in (a). To see this figure in color, go online.
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protein must be preserved, it is quite difficult to implement
in practice, because it is not clear that every amino acid
sequence is able to be optimized for assembly under synon-
ymous mutations. Furthermore, for a given amino acid
sequence, it may be possible to make nonsynonymous mu-
tations to a few of the amino acids so that the sequence is
then able to be optimized for assembly whereas the structure
and function of the protein is preserved. These issues make a
full study of such a search scenario difficult.
Exploration of the fitness landscape and effects
of mutations on assembly

The assembly model developed here links an explicit nucle-
otide sequence to the number of capsids assembled, a mea-
sure of viral fitness. It presents an opportunity to explore the
implicit fitness landscape that is formed as a result, as well
as the effect of mutations. Although the size of the search
512 Biophysical Journal 113, 506–516, August 8, 2017
space makes a complete exploration of the fitness landscape
impossible, the local neighborhood of the fitness landscape
around the WT sequence can be explored. The local neigh-
borhood of sequences comprise the set of sequences that are
a mutational distance of 1 away from the WT sequence. Mu-
tations can be either a single nucleotide insertion, a deletion,
or a polymorphism. For the 360-nt WT sequence, there is a
total of 2880 sequences in this local neighborhood. Note that
a subset of these 2880 sequences will be synonymous muta-
tions that preserve the protein coding sequence. Each of
these sequences were generated and then tested for their
viral yield after 200 s of simulated assembly. Fig. 3 shows
the distribution of fitness yields, i.e., the percentage of viral
capsids assembled, for the local neighborhood of mutated
sequences. Interestingly, most of the sequences in the local
neighborhood (�75%) have very little difference in assem-
bly yield when compared to the WT sequence. However, a
small fraction of the sequences in the local neighborhood



FIGURE 5 Effects of G163A, a synonymous mutation ablating PS6, on

viral assembly fitness. (a) Mutation of the arginine (AGG) in the WT

RNA sequence (underlined in the sequence and boxed in the secondary

structure) to the alternative codon AGA results in a mutant PS6 that is un-

able to bind to CP according to the binding rules of the assembly model.

Assembly kinetics of RNAs containing (b) 2–6 CPs show that the majority

of RNAs are permanently trapped in intermediates containing five CPs in

complex with RNA. (c) Only six single nucleotide mutations are able to

restore assembly fitness and keep protein coding capacity. Each of these

mutations requires an amino acid change in the protein sequence. Four of

these mutations (labeled with a black dot) do not alter viral assembly fitness

with respect to the WT sequence (i.e., in absence of the G163A mutation).

To see this figure in color, go online.
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of the WT sequence (�6%) have essentially no capsid
assembled after 200 s. Similar behavior is seen in another
sequence solution where roughly 7% of mutations are dele-
terious (see Fig. S3). Thus the mutations associated with
these sequences represent the critical areas of the WT
sequence that are very sensitive to mutation and would be
expected to be highly conserved in a real viral sequence.
The sensitivity of some areas of the genome to mutation
leads to the natural question of whether these sites are asso-
ciated with areas of the genome that are critical for forming
the secondary structures of the PSs needed for interaction
with the CP during assembly. The surprising answer is
most, but not all: 12 out of the 244 mutations that reduce
the yield of capsid to <10% are outside of PSs and in the
regions between them.

To further investigate this, mutant sequences in the local
neighborhood of the WT sequence were identified that
ablate the ability of either PS 11 or PS 6 to bind to CP
and preserve the WT protein coding sequence (i.e., synony-
mous mutations). Three synonymous mutations (G277U,
G277A, and G277C) were identified that ablate WT PS 11
binding to CP. Fig. 4 a shows their effect on the secondary
structure of PS 11, whereas Fig. 4, b and c, illustrates their
impact on virus assembly. Although the mutations disrupt
binding of CP to PS 11, their effect on assembly is mostly
small (G277A or G277C) or nonexistent (G277U). This is
because although the G277 mutation ablates PS 11 binding
to CP, an alternative PS 11 (PS 11 mutant in Fig. 4 a) can
fulfill the role of the WT PS 11 and complete assembly.
The small reduction in viral capsid yield from the G277A
and G277C mutations is due to the formation of a hairpin
competitor in these cases that is unable to bind CP. This re-
sults in a temporary kinetic trap where the partially formed
capsid must wait for the hairpin competitor to melt and the
PS 11 mutant to fold in its place.

In contrast to PS 11, ablating PS 6 binding to CP via the
mutation G163A dramatically reduces the viral assembly
yield from >95% to <1.0%, roughly a 2-log reduction in
yield (Fig. 5). The G163A mutation is unable to produce a
stem-loop that is capable of binding CP in the place of
WT PS 6 and, as a result, assembly is permanently stalled
in the capsid intermediate containing five CPs (see Fig. 5,
b and c). Secondary mutations that both restore assembly
and preserve the ability of the RNA to code for protein
can be identified by examining the local neighborhood of se-
quences that are one mutation away from the G163A
sequence and calculating their assembly fitness. There are
six possible secondary mutations that restore assembly
fitness (listed in Fig. 5 d). Interestingly, all six will result
in a change to the primary protein sequence. Moreover,
four of the mutations (marked with a black dot in
Fig. 5 d), when assessed individually in the absence of the
G163A mutation, do not significantly alter the assembly
yield with respect to the WT sequence. This suggests that
several mutational pathways in the fitness landscape exist
Biophysical Journal 113, 506–516, August 8, 2017 513
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such that the G163A mutation can be incorporated into the
RNA sequence without impacting on capsid yield. Fig. 6
illustrates these pathways by showing a simple 2D slice of
the fitness landscape. To illustrate the 2D landscape, a pair
of mutations are selected and their effect on the assembly
yield is shown using bar graphs. Fig. 6 a shows the effects
of the G163A and C167A mutations on the WT sequence
both in isolation and together. The WT sequence and its
yield are shown in the bottom-left corner of the square.
Each edge of the square represents the presence of either
the G163A or C167A mutation. The empty box at the top
of the square represents the yield of capsid (<1%) after
the G163A mutation is applied to the WT sequence. One
can see that application of either the G163A or C167A mu-
tations results in a reduction in viral yield, with the com-
bined mutation restoring assembly yield to WT levels,
suggesting an epistatic effect. In contrast, for the pair of
mutations G163A and G166C shown in Fig. 6 b, the
G166C mutation alone is able to maintain WT assembly
yields. These results suggest that the fitness landscape that
results from this simple RNA folding and assembly model
is highly complex with areas of neutrality as well as com-
plex epistatic effects.

In addition to monitoring assembly yield, the assembly
model can also monitor the effect of mutations on the choice
of the 12 PSs used by the RNA sequence during assembly.
Fig. 6 c illustrates how the structure of PS 6 is altered to
the mutant PS 6 under the two mutations C167A followed
by G163A. After the first mutation, an alternative structure
514 Biophysical Journal 113, 506–516, August 8, 2017
(PS 6 option 2) is created, allowing CP to choose between
option 1 and option 2. However, the binding rules make
PS 6 option 2 unable to bind to CP due to the larger bulge.
This presents a competing structure that affects the yield of
capsid. After the mutation G163A is applied, it ablates PS 6
option 1 and closes the bulge of option 2, making the PS 6
mutant, which is CP-binding competent and restores capsid
yield. In contrast, Fig. 6 d illustrates how PS 6 usage and
structure evolves during the G166C and G163A mutations.
Mutating G166C creates a second binding-competent PS 6
(option 2). Both are able to bind equally well and the effect
on assembly is minimal. Mutating G163A ablates PS 6 op-
tion 1 and strengthens the stem of option 2, maintaining
capsid yield at WT levels. Fig. 6 d illustrates how a virus
may undergo random drift in the protein coding space
(because G166C alters the primary protein sequence)
although capsid assembly efficiency is unaltered. However,
it is clear from the mutational study of G163A that not all
areas of the sequence space may be directly assessable
without specific compensatory mutations elsewhere in the
sequence.
DISCUSSION

RNAviruses present an example of cooperative coassembly
where RNA-CP contacts, termed ‘‘packaging signals’’,
mediate packaging of the genomic RNA into the capsid
container. Previously it has been demonstrated using a sto-
chastic assembly model with fixed PSs that the position
FIGURE 6 2D assembly fitness landscapes and

mutational pathways. (a) The assembly fitness of

WT, the two single mutants G163A and C167A,

and the double mutant containing both mutations

are arranged in a 2D fitness plot. Assembly fitness

(in terms of percentage of capsid assembled) are

illustrated as shaded boxes. Edges in the 2D land-

scape indicate either the G163A or C167A muta-

tion to the genome, with the corner opposite to

WT containing the double mutation. (b) Given

here is the same as in (a), but for the mutations

G163A and G166C. (c) The mutation C167A

(lower-case a) alters the WT PS6 and creates an

alternative PS6 (option 2). Option 2 is unable to

bind to CP under the binding rules due to a larger

bulge and thus acts as a competitor to the option 1

PS6 and results in a kinetic trap and reduced viral

capsid yield as shown in (a). The mutation G163A

alters PS6 option 2 to become binding competent,

ablates PS6 option 1 and restores assembly effi-

ciency. (d) The mutation G166C (lower-case c) al-

ters WT PS6 and also creates an alternative,

binding-competent PS6 (option 2) that results in

the RNA retaining assembly efficiency. The subse-

quent mutation G163A ablates PS6 option 1 and

further stabilizes option 2. To see this figure in

color, go online.
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and affinity of the PSs in the linear genomic sequence en-
ables the virus to efficiently assemble. Extension of this
model to incorporate both genomic sequence information
as well as RNA folding effects has allowed for further
exploration of the roles that PSs may play during capsid
assembly.

An additional feature of this assembly model is that spe-
cific RNA sequences can be mapped to a fitness value based
on the number of infectious virus particles that are
completely assembled within a given time frame. Admit-
tedly, viral fitness is an abstract concept because in a biolog-
ical context, fitness is likely a complex interplay among
replication speed, replication efficiency, ability to evade
host immune responses, and success at producing infectious
virions in the host cell. Although only one aspect of viral
fitness is examined here, i.e., the number of infectious viral
copies produced due to successful genome packaging, the
resulting implicit fitness function does reveal some inter-
esting features that may be relevant to virus evolution.
Fig. 7 illustrates the implicit fitness mapping that arises as
a consequence of the assembly model. Given an RNA
sequence, kinetic folding of the RNA using the folding rates
allows the hairpin structures of the RNA to fold and melt in
competition with each other. The kinetics of the folding pro-
cess gives rise to a dominant phenotype for that RNA
FIGURE 7 An implicit genotype-to-phenotype-to-fitness mapping based

on an ssRNA viral assembly model. A specific genotype is mapped to an

RNA secondary structure phenotype via RNA folding and melting reactions

in the model. The kinetics and competition between different hairpins in the

sequence determines the ability of the RNA sequence to present secondary

structures capable of promoting CP binding and assembly. The CP-RNA

binding rules and assembly reactions allow the phenotype to be mapped

to a value of assembly yield, i.e., the number of correctly assembled capsids

within a specific time, which gives a measure of viral fitness. To see this

figure in color, go online.
sequence, which may contain small hairpins that are capable
of binding to CP with varying affinity. In the presence of
CPs that bind to specific RNA sequences and secondary
structures, this phenotype can then be assigned a fitness
value, i.e., the number of viral capsids that are successfully
assembled, using the RNA virus assembly rules and CP-
RNA binding rules. The genotype-to-phenotype-to-fitness
mapping introduced here extends previous work that intro-
duced an implicit phenotype to fitness mapping for virus as-
sembly based on a simple 12D space of possible RNA
phenotypes, with each dimension representing the affinity
of a packaging signal and fitness measured by viral yield
(unpublished data). Additionally, genotype-to-phenotype
mappings have also been used previously in evolutionary
models of RNA folding (29). In this example, Fontana and
Schuster use the Turner energy rules to fold various RNA
sequences and assign the sequence a phenotype based on
the sequences ability to form into a tRNA structure. The re-
sulting implicit mapping links a sequence to a biologically
relevant phenotype, in this case the tRNA structure. Here,
the implicit fitness function performs both mappings simul-
taneously, linking a genotype directly to a fitness parameter
relevant to ssRNAviruses, i.e., the ability to package a viral
genome into the capsid container efficiently.

The recent interest in the experimental identification of
packaging signals in a number of RNA viruses using
SELEX (4,5) has led to a number of experiments that
attempt to ablate these putative PS sites to prove function.
The ability of the assembly model to map sequences to bio-
logically relevant fitness measures allows for mutational
effects on viral capsid assembly to be explored and hence
theoretically predict the effects of mutations that ablate
PSs on assembly fitness. Paradoxically, the assembly
models show that mutating the RNA sequence such that
the binding of a PS to CP is ablated may not have any ef-
fect at all on assembly yield, leading an experimentalist to
conclude (incorrectly) that this PS is not truly a packaging
signal and has no biological function. However, the model
shows how a PS could have a proper biological function
(promotion of assembly) but still have no effect on assem-
bly if it was mutated in such a way that it cannot bind to
CP. This is due to alternative options for PSs existing at
some sites within the genome, and ablation of the main
PS causes an alternative PS structure to be utilized in its
place. This highlights the potential difficulties in designing
PS knockout experiments via reverse genetics and may
explain why recent PS knockout experiments in Human
Parechovirus (4) were hit-and-miss, where some PS knock-
outs resulted in essentially no viral titer although others re-
sulted in viral titers that were similar to WT. The model
here suggests that this could be due to some PSs being sen-
sitive to mutational change (e.g., PS 6 in the simulation
above) whereas others are more mutationally robust
because they have mutually exclusive PSs to replace the
ablated one (e.g., PS 11).
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It is the hope that the model developed here will enable
more sophisticated theoretical modeling of RNA virus as-
sembly as well as lead to the incorporation of additional fea-
tures of the viral lifecycle. Such models will present
opportunities to develop implicit fitness landscapes that
are biologically relevant and allow for the exploration of
the evolutionary landscape of RNA viruses. Although the
framework developed here has a very simplified RNA
folding model with room for improvement, the model dis-
cussed here has provided one example of how an implicit
genotype-to-phenotype-to-fitness mapping can be made
for ssRNA viruses.
SUPPORTING MATERIAL

Supporting Materials and Methods and three figures are available at http://

www.biophysj.org/biophysj/supplemental/S0006-3495(17)30687-2.
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1 Binary Tree based Queuing Algorithm

The assembly algorithm uses a queueing table stored in the form of a binary
tree to choose the next reaction to fire in O(1) time as well as update the
queue after each fired reaction in O(Log2(N)) time. To explain how the
binary tree queueing system works, the process of picking a reaction to fire
and updating the queue is illustrated for the case of a system with a total
of Nr = 8 reactions. Supplementary Figure 1 shows the queue table as an
array i = Q[k], with k ∈ [1 . . . Nr]. The elements k of the Q array store
an index to the reaction number i while the time that reaction number i is
scheduled to occur is stored in the array T [i]. The Q array is essentially a
binary heap which stores the index number of the reaction with minimum
queue time. For example, Q[1] stores the index of reactions 1 and 2 with
minimum time; i.e. Q[1] = 1 if T [1] < T [2] or Q[1] = 2 if T [2] < T [1]. The
other odd k values of the Q[k] array, i.e. Q[3], Q[5] and Q[7] are defined
in a similar fashion to Q[1] as illustrated by Supplementary Figure 1, with
Q[Nr/2] storing the index of the reaction with minimum time out of all of
the reactions, i.e. the next reaction in the queue to be fired.

So to pick the next reaction to fire, in, the algorithm will simply iden-
tify the index of the reaction in the Nr/2 element of the queue table (in =
Q[Nr/2]) which takes O(1) time. To update the queue, first the algorithm
calculates the next time that the reaction in will fire and updates T [in].
Afterwords, the algorithm can update the queue table to find the next re-
action with minimum time in O(Log2(Nr)) time and store the index of this
reaction in the Q[Nr/2] element of the table.

The pseudo-code for updating the queue table in O(Log(N)) time can
be written as follows:

n = nr/2;

i_n = Q[n]; /* INDEX OF NEXT REACTION TO FIRE /*

/* FIRE REACTION i_n /*

/* SET TIME TO T[i_n] /*

/* COMPUTE NEXT TIME FOR REACTION i_n AND STORE IN T[i_n] /*

/* UPDATE QUEUE /*

i = i_n;

IF ( i_n%2 = 0 ) { i = i - 1; }

1



j = i+0;

k = i+1;

IF ( T[j] <= T[k] ) {

Q[i] = j;

}

ELSE {

Q[i] = k;

}

n = 1

n1 = 2

n2 = 4

WHILE ( n1 < nr ) {

i = INT(i/n2) * n2 + n1;

j = Q[i-n];

k = Q[i+n];

IF ( T[j] <= T[k] ) {

Q[i] = j;

}

ELSE {

Q[i] = k;

}

n = n1;

n1 = n2;

n2 = n2 * 2;

}

2



Supplementary Figure 1: Diagram illustrating the binary tree based
queuing table used in the assembly algorithm. The example of the binary
tree is shown for the case of Nr = 8 reactions. The time that each reaction
is queued to occur at is given by the times Ti. Q[1] stores the index of
reactions 1 and 2 with minimum time; i.e. Q[1] = 1 if T1 < T2 or Q[2] = 2 if
T2 < T1. The other odd Q[k] values, i.e. Q[3], Q[5] and Q[7] are defined in
a similar fashion to Q[1] and the Q[4] = Q[Nr/2] element stores the index
of the reaction with minimum time.

2 Second RNA Sequence with High Assembly Fit-
ness

The assembly profile for a second sequence with high assembly fitness, iden-
tified via the genetic algorithm, is illustrated in Supplementary Figure 2.
As can be seen, the yield of capsids and the overall kinetics is roughly the
same as for the WT sequence reported in the main text, suggesting that
there exists multiple equivalent solutions in the RNA sequence space.

In addition, the effects of single nucleotide mutations on RNA sequence
2 on its assembly fitness is shown in Supplementary Figure 3. Similar to the
WT sequence, the majority of mutations result in very little change in the
assembly fitness, while a small number of mutations (roughly 7%) result in
essentially zero capsid being assembled.
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Supplementary Figure 2: A second RNA genotype with high fit-
ness and protein coding capacity evolved from a random popula-
tion of RNAs. Assembly kinetics for 2000 copies of RNA sequence 2 for
RNA/Capsid intermediates containing (a) two to six CPs and (b) seven to
twelve CPs. Assembly kinetics are similar to that of the WT sequence in the
main text suggesting multiple equivalent solutions exist in RNA sequence
space.
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Supplementary Figure 3: Effect of single nucleotide mutations (in-
sertion, deletion, or polymorphism) on assembly fitness of RNA
sequence 2. As with the the WT sequence in the main text, the majority
of mutations (> 75%) result in at least 85% of the RNAs being packaged
into complete capsids within a 200 second time frame. A small minority of
mutations (≈ 7%) are deleterious and result in essentially no capsid being
assembled.
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