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Abstract
Normal mode analysis has become a popular and often used theoretical tool in the study of
functional motions in enzymes, viruses, and large protein assemblies. The use of normal modes
in the study of these motions is often extremely fruitful since many of the functional motions of
large proteins can be described using just a few normal modes which are intimately related to
the overall structure of the protein. In this review, we present a broad overview of several
popular methods used in the study of normal modes in biological physics including continuum
elastic theory, the elastic network model, and a new all-atom method, recently developed, which
is capable of computing a subset of the low frequency vibrational modes exactly. After a review
of the various methods, we present several examples of applications of normal modes in the
study of functional motions, with an emphasis on viral capsids.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction and background

One of the most important paradigms in biological physics
is that of the relationship between structure and function in
proteins, protein assemblies, or enzymes. This paradigm
is a simple but powerful one; that the structure of these
nanomachines ultimately determines the function of these
nanomachines. One can see similarities to the relation of the
geometrical and symmetry properties of a simple molecule,
such as water, to its overall macroscopic properties. Change
one of the atoms in the molecule and the electron structure and
overall ‘shape’ or geometry of the molecule changes, causing
the overall macroscopic properties to change too. Similarly,
change (or add/delete) one or several of the amino acids in
a functional protein and the overall function of this protein
changes—perhaps by inhibiting certain enzymatic reactions
because the mutation occurs in the active site of the protein
or by making the overall protein non-folding or ‘shapeless’.

Proceeding further along, the function (such as an
enzymatic reaction) of the protein nanomachine often depends
on the motion or dynamical properties of its domains or a small
section of the protein, with the large motion dynamics typically
occurring at hinges, flaps, gates and otherwise floppy regions
of the protein. But how to theoretically study these types
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of motions effectively in order to understand the connection
between motion and function in these nanomachines? The
traditional method has predominately been by molecular
dynamics (MD) simulations of the system in a solvent [1–5].
These simulations produce great insights, and when the
timescales of the dynamics is short enough, MD is a tool
without equal. But there are other tools that also give
insight into dynamical fluctuations that are at the heart of the
structure–function paradigm. One of these tools is normal
mode analysis, and this will be the subject of this review.
Normal mode analysis seeks to find the natural concerted
motion of the nanomachine by investigating the vibrational
normal modes determined by its structure and the interactions
within its various parts. Our review will be broad and describe
several algorithms used to determine the normal modes and
specific frequencies of each. The topic is an old one, so there
are many twists of these basic algorithms that are useful, but we
will attempt to stick to the main ideas. By way of application,
we will use viral capsid assemblies as a recurring theme of a
complex example.

The problems of investigating dynamical motions in
biological proteins and assemblies using normal mode analysis
is difficult. Normal mode analysis is a single tool and is often
used in tandem with other tools such as traditional MD. In
addition, normal mode analysis has several limitations. Often
the dynamical motions in proteins involves large amplitude
motions while the theory of normal modes is for small
oscillations. Further, biomolecules are often highly damped
due to solvent and exhibit either few or no oscillations. A
review of some of the issues that limit the applicability of
normal mode analysis are addressed by Ma [6].

We will discuss a variety of approaches in this review.
An emerging new theme discussed in this review is that of
all-atom determinations of normal modes. This area has not
attracted much attention for large systems because it was an
intractable problem. The all-atom phonon functional method
described herein now makes these problems tractable [7–9].
A full all-atom picture removes some of the uncertainty of
the approximations of other methods. A comparison will be
made to coarse grained models to obtain evidence for validity
or shortcoming of other models. Generally, the coarse grained
models do well for the displacement patterns, although they do
not predict frequencies well or not at all. Most applications in
the literature do not focus on the frequencies as generally these
are even more difficult to find and often what is interesting
is the displacement pattern itself. But in some applications,
partial oscillations are important and having information about
the frequencies is useful. One such example is impulsive
stimulated Raman scattering which ‘pings’ the system with
a short pulse [10, 11]. The length of the pulse should be a
quarter of a period of oscillation to be most effective. Estimates
of frequencies are needed are to investigate such systems
knowledgeably.

We now present an outline of this review paper. In
section 2, basic principles of the harmonic approximation,
the central theory of most normal mode analysis, will be
given. After a description of the harmonic approximation,
we discuss an often calculated quantity from normal modes

which is useful in describing the ‘floppiness’ or ‘rigidity’ of
a protein, the thermal B factors or Debye–Waller factor. In
section 3 we describe the mathematics of continuum elastic
models. Examples will include the M13 bacteriophage and
how the continuum theory can be advanced further to obtain
estimates of relative Raman scattering profiles followed by a
brief discussion of determining the overall macroscopic elastic
properties of an icosahedral capsid from continuum models.
Next, section 4 will discuss one of the most popular methods
in coarse grained normal mode analysis, the elastic network
model, and more briefly the rotation–translation block method.
Some work on the coarse grained models of viral capsids
and other enzymes are reviewed. In section 5, we switch
to a statistical approach, principal component analysis. The
foundations of principal component analysis will be related to
normal mode analysis in the harmonic limit. An example of
principal component analysis will be made from a molecular
dynamics simulation. In addition, we will discuss an example
of categorizing the static structures of the Ras kinase protein.
Section 6 describes the all-atom phonon functional technique.
This technique is quite new and determines a subset of the
lowest frequency modes of a very large system, exactly, within
an empirical force field model. By seeking only a subset of the
lowest modes, the all-atom phonon functional method avoids
diagonalizing large matrices. We compare the results of the
all-atom phonon functional for the polio capsid to previously
determined results using a restricted basis set of oscillation.
The need for having reasonable estimates of capsids is useful
for impulsive stimulated Raman scattering (ISRS) experiments
which are a suggested mechanism for destruction of viral
capsids using pulsed light [10]. We give an example of such a
destruction for M13 viral capsids using an MD simulation with
added forces from a laser. In section 7 we describe some of the
ways in which the normal modes of a protein are used to search
for a mode displacement subspace in order to better understand
conformational changes of enzymes. One example is given
in detail—that of open to closed transition of lactoferrin.
Comparisons are made of the all-atom phonon functional and
the elastic network model. Finally, the work concludes with
mode displacement subspace of a quite complex system, a
gram-negative bacterial ABC transporter. This membrane
protein is an assembly of three distinct functional protein
complexes-the periplasmic binding protein which functions as
a ‘cargo holder’, a transmembrane protein with a functional
gate, and an ATP–ADP driven ‘engine’. An all-atom model
is used to find cooperative motions throughout the quaternary
structure of protein complexes.

2. Basic principles

We outline the basic physical and mathematical framework
that is required to describe and compute normal modes of a
molecule, protein complex, or virus. Normal mode analysis
is appropriate for small excursions from equilibrium in which
the restoring forces are linear. We first describe the point mass
model in which the massive objects (atoms, residue/beads, or
proteins) are discrete, and later we consider the continuum
model. Thermal B-factors (the Debye–Waller factor) which
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describe average squared displacements from equilibrium is
given as an example of the use of normal modes to compute
a qualitative quantity.

2.1. Harmonic approximation

The purpose of a normal mode analysis is to describe the
principal collective motions of a group of N atoms that move
in a potential energy of interaction V . Empirical potential
energy functions extensively developed for classical molecular
dynamics simulations are written as

V ( �r1, �r2, . . .) =
∑

bonds

kb(r − req)
2 +

∑

angles

ka(θ − θeq)
2

+
∑

dihedrals

vn

2

[
1 + cos (nφ − γ )

]

+ 1

2

∑

i j

(
qi q j

εr
+ A

r 12
− B

r 6

)
. (1)

The first and second terms in the empirical potential describe
the energy due to bond stretching and the bending between two
bonds as simple harmonic potentials with spring constants kb

and ka .1 The third term describes the potential energy due to
rotation of a chemical group around a single bond (for example
rotating the three hydrogens about the C–C bond in C2H6).
The last terms are the electrostatic potential from Coulomb
and van der Waals interactions. Force field models such as
AMBER [12] and CHARMM [13] have extensively developed
parameters for individual amino acids and nucleic acids.

Ordinarily, one solves for the motions of the atoms by
integrating the second order differential equation

mi
d2�ri

dt2
= −�∇V (2)

over time for each atom i . This is a general solution but
is computationally demanding and requires deep analysis
to understand the system’s behavior. The harmonic
approximation solves the problem of describing the motion but
in the limit of small excursions from equilibrium. It treats
the systems of atoms as a collection of small displacements
about an equilibrium position R where the net force on all
N atoms is zero. The solutions oscillate about equilibrium
with characteristic angular frequencies ων and displacement
patterns |ην〉. They are determined as eigenvalues and
eigenvectors of a ‘dynamical matrix’. To obtain these, the
potential energy V can be expanded in a Taylor series about
the equilibrium and truncated, i.e.,

V ( �r1, �r2, . . .) = V ( �r1, �r2, . . .)|R +
∑

i,α

∂V

∂riα

∣∣∣∣
R

(riα − Riα)

+ 1

2

∑

i,α

∑

j,β

∂2V

∂riα∂r jβ

∣∣∣∣
R

(riα − Riα)(r jβ − R jβ), (3)

where α or β represent one of the directions x , y, or z while i
and j represent one of the N atoms. Since atoms at equilibrium
have zero net force, the second term in equation (3) is zero.

1 A factor of 1/2 could be included in front of these terms—historically it is
not. This factor of 1/2, whether it is there are not, affects the spring k values
by a corresponding factor of two.

Furthermore, we are free to add any constant term to the
potential energy without effecting the results. Neglecting the
first term, equation (3) simplifies to

V ( �r1, �r2, . . .) = 1

2

∑

i,α

∑

j,β

∂2V

∂riα∂r jβ

∣∣∣∣
R

uiαu jβ, (4)

where uiα = (riα − Riα) is the α component of the
displacement of atom i from its equilibrium position �Ri .
Equation (4) can be rewritten in compact form as

V ( �r1, �r2, . . .) = 1
2 〈�u| ↔

φ |�u〉 (5)

where |�u〉 is the column vector of length 3N which contains
the atomic displacements uiα where i is the atom index and
α the Cartesian direction. The symmetric 3N × 3N atomic

force-constant matrix (or Hessian matrix)
↔
φ has components

φiα, jβ = ∂2V

∂riα∂r jβ

∣∣∣∣
r=R

. (6)

The equation of motion is easily constructed and solved
exactly. The kinetic energy of the atoms,

T = 1
2

∑

iα

mi u̇
2
iα, (7)

along with equation (5) for the approximate potential energy
produces the Lagrangian,

L = T − V = 1
2

∑

iα

mi u̇
2
iα − 1

2

∑

iα, jβ

uiαφiα, jβu jβ. (8)

The Lagrangian along with Euler’s equations [14] yield the
following set of 3N coupled equations of motion

mi üiα = −
∑

jβ

φiα, jβu jβ. (9)

Harmonic solutions of equation (9) take the familiar form of

uiα = Qηiαe−iωt , (10)

where ηiα are the components of the vector describing the
displacement mode pattern of the masses, and Q describes
the amplitude of the collective motion. Substitution into
equation (9) gives

miω
2ηiα =

∑

jβ

φiα, jβη jβ, (11)

which in matrix form becomes

↔
φ |�ην〉 = ω2

ν

↔
M |�ην〉 (12)

where the 3N × 3N matrix
↔
M is diagonal with elements

Miα, jβ = miδi jδαβ . The index ν labels the 3N
possible solutions for the displacement eigenvectors |�ην〉 and
eigenfrequencies ων .

Equation (12) is in the form of a generalized eigenvector

equation with matrices
↔
φ on the left and

↔
M on the right.
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It is convenient to convert to ‘mass weighted’ coordinates,
i.e., eiα = √

miηiα so that equation (12) can be written in
the following simpler form of a standard Hermitian matrix
eigenvalue problem,

↔
D |êν〉 = ω2

ν |êν〉 (13)

where the matrix
↔
D is the 3N ×3N dynamical matrix given by

↔
D = ↔

M
−1
2 ↔
φ

↔
M

−1
2

, or more simply in component form, Diα, jβ =
φiα, jβ/

√
mi m j . Diagonalizing the dynamical matrix yields a

set of 3N orthonormal eigenvectors |êν〉 with corresponding
eigenvalue ω2

ν . The eigenvector |êν〉 describes the mass
weighted collective displacement of the 3N atoms.

The connection between the displacement eigenvectors
and the eigenvectors of the dynamical matrix and their
orthonormality conditions can cause confusion, and so we
summarize them here. The two set of vectors are related

to each other by the transformation |�ην〉 = ↔
M

−1
2 |êν〉 and

|êν〉 = ↔
M

1
2 |�ην〉. The eigenvectors |êν〉 of the dynamical

matrix are normalized to unity and are orthonormal to each
other; 〈êν |êν′ 〉 = δνν′ . The displacement eigenvectors |�ην〉
are normalized with the weighting of the mass matrix, 〈�ην |

↔
M

|�ην′ 〉 = δνν′ .
The power of the normal modes is that a general

displacement of atomic positions can be written as a
linear combination of the displacement eigenvectors, |�u〉 =∑

ν Qν(t)|�ην〉, where the Qν(t) are the amplitudes of each
mode in the pattern and have harmonic (cos(ων t) and sin(ων t))
time dependence. The amplitudes then become generalized
coordinates and are useful for thermodynamic evaluations and
for quantization of the system. Specifically, the kinetic and
potential energies are easily represented in terms of the normal
mode eigenfrequencies and mode amplitudes;

T = 1
2 〈�̇u| ↔

M | �̇u〉 = 1
2

∑

ν

Q̇2
ν(t)

V = 1
2 〈�u| ↔

φ |�u〉 = 1
2

∑

ν

ω2
νQ2

ν(t).
(14)

The Lagrangian in these generalized coordinates defines
the generalized conjugate momenta, Pν = ∂L/∂ Q̇ν =
Q̇ν . The harmonic oscillator problem is one of the primary
problems in statistical mechanics that has an exact solution.
Normal mode analysis produces a system of 3N independent
harmonic oscillator problems. In this regime, the classical
partition function becomes a product of partition functions for
each mode, Z = νZν , where the partition function for each
mode is

Zν =
∫ ∫

e−β( 1
2 P2

ν + 1
2ω

2
νQ2

ν) dPν dQν . (15)

Thermodynamic averages of a quantity X are easily computed
via,

〈X (Qν , Pν)〉 =
∫ ∫

X (Qν, Pν)e−β( 1
2 P2

ν + 1
2ω

2
νQ2

ν) dPν dQν

Zν
.

(16)

The results are that averages over displacements satisfy
〈Qν〉 = 0, 〈Q2

ν〉 = kbT/ω2
ν , and 〈QνQ′

ν〉 = 0 (ν 	= ν ′).
Averages over momenta satisfy similar relations 〈Pν〉 = 0,
〈P2

ν 〉 = kbT , and 〈Pν P ′
ν〉 = 0 (ν 	= ν ′).

In summary, the potential energy function V which
governs the motions of the atoms completely determines the
small collective motions of the atoms that take place at a
given local minimum. The challenge of applying normal mode
analysis to a large protein or protein complex such as a virus
is two fold; (i) to obtain a potential energy function which
accurately describes the interactions between the atoms such
that the resulting normal modes correctly predict the collective
motions (plus frequencies) of the protein and (ii) to diagonalize
the often large 3N × 3N dynamical matrix. We will see in
subsequent sections that the solution to these problems has
required either approximations to the potential energy function
and/or a reduction in the basis set in order to reduce the size
of the dynamical matrix so that it is solvable. New methods
(phonon functional method) have been recently developed
which allow for the subset of low frequency modes of a large
protein to be computed to atomic detail. This will be described
in section 6.

In this review we will focus on developments in biological
physics. However, normal mode analysis finds uses in many
branches of engineering, physics, and chemistry. Polymer
science is one area that made many novel developments
and advances. For example, normal mode eigenvectors and
eigenvalues can be averaged over trajectories in molecular
dynamics to obtain a time average Hessian [15, 16].
Preconditioning iterative solutions of the normal mode
problem have been advanced [18]. Spares matrix techniques
based on a variant of the Arnoldi process in the software
package ARPACK [17] which extend the popular Lanczos
algorithm are often used [16].

2.2. Thermal B-factors from normal modes

Thermal B-factor (Debye–Waller factor) of atoms in a protein
describe the average squared displacements of the atoms in the
protein away from their equilibrium positions at a temperature
T . They are a useful measure of a protein’s flexibility or
rigidity. Normal modes can be used to estimate the B-factors.
Within a classical harmonic framework, the B-factor for atom
‘i ’, Bi , is [19]

Bi = 8π2

3
〈U 2

i 〉, (17)

where U 2
i = u2

i x + u2
iy + u2

i z , and uiβ are the β components

of the displacements away from the equilibrium position �Ri ,
(i.e. �ri = �Ri + �ui ). The brackets in equation (17) denote an
average computed at temperature T .

Computing the thermal B-factors requires the calculation
of the average of the atoms’ squared displacements from
equilibrium, 〈U 2

i 〉. The average squared displacement from
equilibrium can be written in terms of classical harmonic
normal modes, with the dominant contributions due to the
low frequency modes. In a harmonic description of protein
dynamics, the displacement �ui (t) of an atom i is

�ui(t) =
∑

Qν(t)�ηi (ν). (18)
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Averaging the displacement squared, 〈U 2
i 〉 = ∑

μν〈QμQν〉�ηi

(μ) · �ηi (ν) which simplifies using the thermodynamic averages
following equation (15) to

〈U 2
i 〉 = kbT

mi

∑

ν

e2
i (ν)

ω2
ν

, (19)

where the vector �ei (ν) is the mass weighted displacement
vector ( �ηi (ν) = �ei (ν)/

√
mi ) for atom i in mode ν and is

the normalized eigenvector of the dynamical matrix. The
expression (19) for the thermal B-factors show that the
contributions from each mode depends on 1/ω2

ν—the low
frequency modes dominate. This of course assumes that
the spectrum is somewhat uniformly distributed. One can
obtain a reasonable approximation to the thermal B-factors by
truncating the sum up to some maximum frequency.

As an example of a B-factor calculation for a protein
we compare the experimental and theoretical B-factors for
alpha lytic protease (PDB ID 2ALP) in figure 1. This
problem was first investigated by Miller et al [20]. The B-
factors that are displayed represent an averaged value for each
amino acid residue. The average is computed by summing
individual B-factors over the heavy atoms (no hydrogen) in
each amino acid then dividing by the total number of heavy
atoms. The theoretical B-factors are computed using two
different regimes. In the top panel, the thick line indicates
the theoretical B-factors computed with the all-atom phonon
functional method (see section 6 below) for modes up to
20 cm−1 using the empirical AMBER potential energy model
while the thin line indicates the experimental values. One
sees qualitative agreement of the normal mode results and
experiment at least in identifying regions with the largest
motions (residues 82 is an exception). In the bottom panel,
the curve with the high values shows the theoretical B-factors
computed using the Cα elastic network model, ENM (to be
described fully in section 4). For a proper comparison with
the all-atom method, we scaled the frequencies computed from
the elastic network model so that the frequency of the lowest
elastic network mode was the same as the frequency for the
lowest all-atom mode. The ENM also identifies the region
with the largest motion, but exaggerates the displacements.
This is likely due to the ENM’s tendency to give a more dense
spectrum of low frequency modes than the all-atom model—at
least in the case when the frequency of the lowest ENM mode
is fit to the all-atom model. This will be further discussed in
section 7.

3. Continuum models

Continuum models of normal modes have been central to
obtaining a fundamental understanding of the types of motions
that a large protein or protein assembly can exhibit. Continuum
models have mostly been applied to viral capsids and have
been successfully used to describe some of the mechanical and
physical processes that viral capsids exhibit. Such examples
include the structural transitions involved in capsid maturation
events [21] and the distribution of stress on viral shells in
response to internal and external pressures [22]. Continuum

Figure 1. Experimental and theoretical B-factors for alpha lytic
protease (PDB ID 2ALP). Top panel: theoretical B-factors computed
from an all-atom normal mode calculation with AMBER force field
(thick line) plotted with the experimental B-factors (thin line).
Bottom panel: theoretical B-factors computed from a Cα ENM
(curve with generally higher values) with experimental B-factors
(generally lower values). The frequencies of all the modes in the
ENM prediction were scaled such that the lowest mode had identical
frequency with the all-atom results.

models have also been used to determine the stability of capsids
of different shape (spherical, cylindrical, or conical shell
capsids like HIV) based on the ratios of the Foppel von Karmen
number and spontaneous curvature [23]. In all, continuum
models have been useful for describing the vibrational modes
and distortion of viral capsids and a variety of other physical
phenomenon related to viral capsids.

In this section we provide a general overview of the theory
of continuum models of vibrational modes. We then follow
with a review of work that has been done on calculating the
vibrational modes of tubular and spherical viral capsids and
discuss how continuum models of vibrational modes have been
used to predict Raman scattering profiles, Young’s modulus,
and the Poisson ratio of viral capsids. Continuum modeling can
be found in other areas of science and engineering and plays an
important role in structural engineering [24].

3.1. Continuum model theory

In continuum models of vibrational modes, one solves for the
displacements per unit length, �u(�r , t), as a function of position
�r and time t within the elastic material. The partial derivatives
of the displacements per unit length �u(�r , t), describe the
shear and bulk stress at position �r within the elastic material.
Figure 2(a) illustrates the relations of the displacements per
unit length and their derivatives to the stress tensor components
ui j = ∂ui/∂x j . Assuming small deformations of the elastic
material that obey Hook’s law, one obtains the following
equations of motion [25]

(λ+ μ) �∇( �∇ · �u)+ μ∇2�u = ρ �̈u. (20)

The parameters λ and μ are the Lamé coefficients [25] which
describe the stiffness of the material while ρ is the density of
the material. The Lamé coefficients are related to the Young’s

5
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Figure 2. Continuum model of elastic vibrations. (a) Illustration of the displacement per unit length �u(�r, t) in 2D for an infinitesimal square
section (with area dx × dy) of an elastic medium. The relative displacements between the corners of the infinitesimal square give the elements
of the strain tensor (ui j = ∂ui/∂x j ) for the elastic material. (b) Representation of the tubular M13 capsid as an isotropic elastic material with
inner and outer radii of a and b, respectively. (c) Cross section showing the representation of an icosahedral virus as an isotropic elastic sphere
with inner and outer radii of a and b, respectively.

modulus E and Poisson ratio σ of the material by the following
relations:

λ+ μ = E

2(1 + σ)(1 − 2σ)
, μ = E

2(1 + σ)
. (21)

Solving equation (20) for �u(�r , t) (subject to appropriate
boundary conditions—see below) at every point within the
material provides a complete description of the possible
vibrational mode patterns that can be exhibited. The solution
to equation (20) can be obtained numerically or, in cases
where the material can be approximated as a tube or sphere,
analytically [26–29, 31, 32]. When solving equation (20), it
is usually useful to separate �u(�r , t) into its longitudinal and
transverse components �ul and �ut which have the following
properties;

�∇ · �ut = 0,

�∇ × �ul = 0.
(22)

One can immediately see that if ∇ · �u = 0 (i.e. �u = �ut), then
the first term in equation (20) is zero and the equation can be
written as

∇2 �ut = 1

c2
t

∂2�ut

∂ t2
, (23)

while if ∇ × �u = 0 (i.e. �u = �ul), then ∇2 �ul = �∇( �∇ · �ul) and
equation (20) can be written instead as

∇2 �ul = 1

c2
l

∂2�ul

∂ t2
. (24)

The constants ct and cl are the transverse and longitudinal
speeds of sound which are related to the Lamé coefficients by

the relations

c2
t = μ

ρ
,

c2
l = λ+ 2μ

ρ
.

(25)

Thus, the longitudinal and transverse portions of �u each satisfy
their own vector wave equation with a characteristic speed of
sound ct or cl.

For tubular viruses such as M13, and tobacco mosaic virus
(TMV), the capsid can be modeled as an infinite hollow tube
with the tube axis along ẑ. Cylindrical coordinates r , θ , z
are used. Figure 2(b) illustrates the geometry used for M13
with inner and outer radii a and b. In this case, one can solve
equation (20) by writing the displacement per unit length in
terms of gauge invariant scalar and vector potentials � and
�H [26],

�u = �∇�+ �∇ × �H . (26)

With the appropriate choice of gauge ( �∇ · �H = 0), substitution
into equation (20) yields separate transverse and longitudinal
wave equations for the vector and scalar potentials,

∇2� = 1

c2
l

∂2�

∂ t2
, ∇2 �H = 1

c2
t

∂2 �H
∂ t2

. (27)

The solutions for both equations take the form of a Bessel
function times either cosine or sine of the polar angle θ [26],
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� = f (r) cos(θ) exp (ikz − iωt),

Hr = hr (r) sin(θ) exp (ikz − iωt),

Hθ = −hr (r) cos(θ) exp (ikz − iωt),

Hz = hz(r) sin(θ) exp (ikz − iωt),

(28)

where the radial functions f (r), hr (r), and hz(r) are given by

f (r) = A0 Zn(αr)+ B0Wn(αr),

hr (r) = A1 Zn+1(βr)+ B1Wn+1(βr),

hz(r) = A2 Zn(βr)+ B2Wn(βr).

(29)

The functions Zn(αr) and Zn(βr) represent either regular
or modified Bessel function of the first kind depending on
the sign of α2 = ω2/c2

l − k2 and β2 = ω2/c2
t − k2.

Similarly Wn(αr) and Wn(βr) are either regular or modified
Bessel function of the second kind. An additional solution
to equation (27) can be obtained by replacing cos (nθ) for
sin (nθ) and sin (nθ) for − cos (nθ) in the solutions for the
potentials � and �H (equation (28)). This corresponds to a
rotation of the displacement pattern by π/2 about the tube
axis which results in an additional displacement pattern that
is orthogonal to the first.

In the case of icosahedral viruses, the capsid can be
modeled approximately as a spherical shell. Figure 2(c)
illustrates the geometry for the spherical shell and its relation
to an empty icosahedral virus which has inner and outer radii
of a and b. In this case, the solution to equation (20) can be
written as �u(�r , t) = �u0(�r)e−iωt with �u0(�r) given by [27–29]

�u0(�r) = A0 �∇φ + A1 �Lψ + A2 �∇ × �Lψ
+ B0 �∇φ′ + B1 �Lψ ′ + B2 �∇ × �Lψ ′ (30)

where the operator �L = �r × �∇. The functions φ and ψ
satisfy separate longitudinal and transverse wave equations
respectively. The solutions can be written in terms of spherical
harmonics and spherical Bessel functions

φ = jl(ωr/cl)Ylm(θ, φ),

φ′ = nl(ωr/cl)Ylm(θ, φ),

ψ = jl(ωr/ct)Ylm(θ, φ),

ψ ′ = nl(ωr/ct)Ylm(θ, φ),

(31)

where jl is a spherical Bessel function of the first kind and nl

is a spherical Bessel of the second kind.
The discrete frequencies and corresponding displacement

patterns that are available to the spherical shell or hollow
tube can be obtained by applying boundary conditions to the
displacement patterns in either equation (29) or (30). For
proteins with free boundaries, the boundary conditions are that
the normal component of the stress tensor vanish at the surface;

i.e.
↔
τ · n̂ = 0. Requiring this to be true everywhere on the

surface implies that the three components of the stress tensor
τr,i = 0 (with i = r, θ, z for cylindrical coordinates and
i = r, θ, φ for spherical coordinates) must separately vanish
at the inner and outer radii a and b, respectively. Enforcement
of these boundary conditions will determine the frequencies ω

and the six coefficients A0, A1, A2, B0, B1, and B2 that can
be used in equation (29) for the tube or equation (30) for the
sphere to determine the corresponding displacement patterns.
The boundary conditions can be written in the form of a 6 × 6

matrix equation,
↔
C · �A = 0, where �A is the column vector of

coefficients, �A = (A0, A1, A2, B0, B1, B2). The elements of
the matrix will depend on ω, the inner and outer radii a and
b, and the speeds of sound ct and cl. In the case of the hollow
tube, the matrix elements also depend on the wavenumber k.

In practice, one determines the discrete frequencies and
their displacement patters by varying ω until the determinant

of the matrix
↔
C vanishes. Once the determinant vanishes,

the value of ω corresponds to a natural frequency of the

tube or sphere. The matrix
↔
C can then be diagonalized

for this value of ω. Any eigenvectors of the matrix
↔
C

which have zero eigenvalue give a set of coefficients, �A =
(A0, A1, A2, B0, B1, B2), which can then be used in either
equation (29) or (30) to determine the displacement patterns.

In summation, all that is required to determine a set
of discrete frequencies and displacement patterns for any
virus capsid in a continuum model are just four parameters:
the inner and outer radii a and b, and the transverse and
longitudinal speeds of sound ct and cl. Usually the transverse
and longitudinal speeds of sound are not known a priori, and
require a reasonable estimate to be used. Speeds of sounds of
the lysozyme protein have been experimentally measured to be
ct = 915 and cl = 1817 m s−1 [30]. These measurements
provide a reasonable estimate of the speeds of sound in protein
structures which can them be used to model the vibrational
modes of a virus or large protein structure.

3.2. Applications of continuum models

Using the mathematical theory outlined above, one can
construct the continuum vibrational modes for either spherical
or tubular viruses. As was seen above, for the case
where the shape of the virus can be modeled by a
hollow spherical or cylindrical tube, the vibrational modes
are completely determined analytically in the continuum
framework and depend on just four parameters—the transverse
and longitudinal speeds of sound ct and cl, and the inner and
outer radii a and b of the spherical shell or hollow tube.

Balandin and Fonoberov performed some of the first
predictions of the vibrational modes of tubular viral particles
such as M13 and tobacco mosaic virus using continuum elastic
theory [31]. Modeling M13 as a solid tube and TMV as a
hollow tube, their work focused on prediction of the dispersion
relations for M13 and TMV in mediums of water and air.
Interestingly, their results on damping suggest that radial
vibrations are in the overdamped to slightly underdamped
regime with a quality factor of Re (ω)/Im (ω) = 3.6 [31].

Dykeman, Sankey, and Tsen also used the continuum
elastic model to predict the vibrational modes of M13 [32].
However, in contrast to Balandin and Fonoberov’s work, M13
was modeled instead as a hollow tube. Dispersion relations
for n = 0, 1, 2 are shown in figure 3. In addition, the work
also extended the popular bond polarizability model [33–36]
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Figure 3. Dispersion relations for the M13 capsid. The wavenumber k is in nanometers and frequencies are in cm−1. The dispersion curves
are shown for (a) n = 0, (b) n = 1 and (c) n = 2.

used to predict Raman scattering profiles to an ‘amorphous
isotropic bond polarizability model’ (AIBP) for use in a
continuum elastic framework. This allowed the vibrational
modes predicted from a continuum theory to be used to predict
the corresponding Raman scattering cross section from each
mode. A plot of the predicted Raman scattering profiles within
the AIBP model can be seen in figure 4 for modes with n =
0, 1, 2. The AIBP predicts radial modes with n = 1 are Raman
silent while radial modes with n = 0, 2 and axial modes with
n = 1 contribute to the Raman cross section. The largest peak
is from an n = 1 axial shearing mode at roughly 10 cm−1.

More recently, Yang et al [29] predicted the vibrational
modes of several icosahedral viruses and an icosahedral
enzyme, lumazine synthase, using the generalizations of
the continuum model formulas outlined above. By using
vector spherical harmonics and their representations in the
icosahedral group, they were able to classify normal modes
computed in a continuum theory in terms of the irreducible
representations of the icosahedron. Additionally, by fitting
predictions for the mode frequencies from continuum elastic
models to those from an anisotropic network model, Yang et al
were able to obtain values of the ratio of the Young’s modulus
to the microscopic force constant E/γ and the Poisson ratio σ .

4. Elastic network models

Elastic network models (ENM) of normal modes are arguably
one of the most popular methods today for computing the
normal modes of a protein due to its simplicity and relative
accuracy. It is especially useful for uncovering floppy mode
displacement patterns. Their are many variations of ENM’s,

but the central idea relies on reducing the number of degrees of
freedom available to the protein. This reduces the size of the
dynamical matrix allowing it to be diagonalized using standard
methods. In this section we highlight the basic theory of elastic
network models and discuss two popular methods for coarse
graining the molecule. We then provide several examples of
the application of such models to a wide variety of problems.

4.1. Elastic network model theory

The elastic network model was originally pioneered by
Tirion [37] to model the large amplitude (or equivalently low
frequency) vibrational modes of a molecular structure using a
phenomenological model for the potential energy. The energy
model consisted of a simple single parameter Hookean spring
potential between all pairs of atoms that were separated by
a distance less than a user specified cutoff distance rc. In
the following, we use the term ‘atom’ to refer to the objects
connected by the spring which can be either individual atoms
(hydrogen, nitrogen, carbon, etc) or a collection of atoms.
Generally, the usefulness of the ENM is its ability to course
grain the system so that each ‘atom’ represents a collection of
atoms in an amino acid (often referred to as a bead), that move
more-or-less rigidly together. An extra bonus of the ENM is
that it determines the modes without the initial minimization
step that is required in all-atom full force field methods. This
allows raw x-ray coordinates of proteins to be used in the
normal mode analysis.

The single parameter model is extremely simple, and
surprisingly accurate in determining the low frequency
displacement patterns of proteins. Since the contribution to
the potential energy from each atom pair takes the form of
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Figure 4. Raman scattering cross section predictions for the M13 virus capsid in the amorphous isotropic bond polarizability model (AIBP).
Raman cross sections are illustrated for (a) n = 0, (b) n = 1 and (c) n = 2. (d) Combined Raman scattering intensity from n = 0, 1, and 2.

V = 1
2 ke(d − de)

2 where d = |�ri − �r j | and de is the
distance between the atoms at equilibrium, the dynamical
matrix elements can be written in terms of the direction cosines
of the bond between atom pairs as

Diα,iβ = ke

mi

′∑

j

riα − r jα

|�ri − �r j |
riβ − r jβ

|�ri − �r j |�i j

Diα, jβ = − ke√
mi m j

riα − r jα

|�ri − �r j |
riβ − r jβ

|�ri − �r j |�i j .

(32)

The value ke is the universal spring constant in the ENM, mi

is the mass of atom i , and the labels α and β denote one
of the directions x , y, or z. The prime in the summation
indicates that the sum is over all atoms j excluding the j = i
contribution. The term�i j is a Heaviside step function used to
restrict contributions to pairs that are separated by a distance
less than a specified cutoff rc i.e.

�i j =
{

1 if |�ri − �r j | < rc

0 otherwise.
(33)

Note that in the potential energy used for the ENM above,
motions which change the orientation of the bond direction do
not change the potential energy. This potential energy model
is the most popular and is often referred to as the ‘anisotropic
network model’ [38]. Another choice for the potential energy
between atom pairs i and j is V = 1

2γ (
�� · ��) where �� =

(�ri − �Ri ) − (�r j − �R j ) and �Ri is the equilibrium position of

atom i . When this potential energy is used in an ENM, the
model is referred to as a ‘Gaussian network model’. As one
can see, motions which change either the bond orientation or
its length contribute to a change in the potential energy in the
Gaussian network model. However, a peculiarity of Gaussian
network models (as noted in a comment by Thorpe [39]) is that
the potential energy term in Gaussian network models do not
enforce rotational invariance.

Over time, the ENM has come to be synonymous with
a coarse graining of the molecule with the use of Tirion’s
single parameter potential. As discussed in section 2, the
frequencies and displacement patterns of a molecule with N
atoms is determined by diagonalizing the 3N × 3N dynamical
matrix. Many proteins and protein complexes, such as viruses,
have hundreds of thousands or even millions of atoms, making
a direct diagonalization of the dynamical matrix prohibitive
on today’s computers. Coarse graining reduces the number
of degrees of freedom of the molecule by either neglecting
the motions of certain atoms or by clumping sets of atoms
together. We highlight the most popular methods in each
category, specifically: (i) the Cα method and (ii) the rotation
translational block method (RTB) [40].

In the Cα method, one only considers the motion of the
Cα carbon atom in each amino acid of a protein. For a protein
that has NR amino acid residues, this results in a new coarse
grained ‘molecule’ which has NRCα atoms with three degrees
of freedom each. Since the average amino acid residue has
approximately 20 atoms, this method of coarse graining can
reduce the number of atoms in a molecule by roughly a factor
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Figure 5. Elastic network representations of the lactoferrin protein (PDB ID 1LFH). (a) Ribbon diagram of the lactoferrin protein. Beta sheet
and alpha helix structures are thick ribbons and coils respectively while uncoiled loops are thin lines. (b) Structure of the lactoferrin protein
where only Cα atoms are shown. (c) Elastic network connections between the Cα atoms used to construct the Tiron potential in a Cα only
elastic network model. Atoms within a cutoff of 8 Å are shown connected via a ‘bond’. (d) Example of the rotational translation block coarse
graining method where each amino acid constitutes a rigid ‘block’ that can undergo rotations and translations about three principal axes
(shown in the dashed line).

of 20, or the dynamical matrix by a factor of 602. Figure 5
illustrates how a network of Cα carbon atoms is formed for the
lactoferrin protein, shown in a ribbon diagram in figure 5(a).
The backbone Cα atoms for the lactoferrin protein are shown
in figure 5(b). The backbone Cα atoms are then connected
by a spring with spring constant ke if they are separated by
a distance less than rc. The springs (drawn as a C–C bond)
between Cα atoms in figure 5(c) represent one of these identical
elastic network springs. In the Cα method, a typical value for
the cutoff is rc = 8 Å.

In the RTB method, one ‘clumps’ a number of atoms
together to create a rigid unit with six degrees of freedom,
i.e. three rotations and three translations. An example is shown
in figure 5(d) for the lactoferrin protein. Here each amino
acid in the protein is a rigid object which can translate and
rotate about each of the three principal axes represented by
the dashed red line. Representing the motions of the amino
acids in this way allows one to construct a ‘reduced basis set’
of vectors which can be used to form the displacement patterns
for all atoms in the protein. A reduced basis set of vectors is
simply any set of M orthogonal vectors |�vi〉 with i = [1,M]
of length 3N where N is the number of atoms in the molecule
and M < 3N . This is in contrast to all-atom methods which
use the ‘full basis set’ i.e. the set of 3N orthogonal vectors
that can be formed by considering the three translations for
each atom in the molecule. Once one has the M orthogonal
basis vectors, the dynamical matrix is reduced by applying the
similarity transform

↔
D

rtb=↔
V

† ↔
D

↔
V (34)

where
↔
V is the M × 3N matrix formed using the ‘reduced

basis set’ of M orthogonal basis vectors |�vi 〉. The rotational

translational block dynamical matrix
↔
D

rtb
is then a smaller

M × M matrix that can be diagonalized producing ν =
[1,M] squared frequencies (ω2

ν = λν) with corresponding
eigenvectors of length M ; êrtb(ν). The frequencies ω2

ν directly
approximate M of the 3N frequencies of the full dynamical
matrix while the M components of its eigenvectors êrtb(ν) can
be used construct M approximated normal modes |ê∗

ν〉 using
the reduced basis set;

|ê∗
ν〉 =

M∑

i=1

|�vi 〉êrtb
i (ν). (35)

This method of coarse graining is also adaptable to models
other than the ENM which use a reduced basis set, such
as the basis set of dihedral motions [41], but compute the
dynamical matrix elements from the full atomic force field
instead of Tiron’s phenomenological force field constructed
from a network of identical springs between Cα atoms. This
type of model is also discussed in the all-atom methods section
below. Within the ENM framework, the RTB method usually
considers each amino acid as a rigid block, but in the case of
viruses, entire proteins have been considered as rigid blocks or
‘beads’ [42].

We also mention a group theoretic approach for viral
capsids by Peeters et al [43]. In this approach the coarse
graining treats an entire protein as a single bead. However
unlike Tama [42] in which the potential energy is computed
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from the network of identical springs between all Cα atoms
in the proteins, the beads are connected by single springs
where the strength of the springs scales with the association
energy between the proteins. This minimalist approach gives
an overall picture of how tiling of the triangular faces of the
icosahedron affect the global modes.

4.2. Applications of elastic network models

ENM’s have been widely used in a large variety of biological
problems ranging from the determination of functional protein
motions [44–46] to the fitting of high resolution protein
to a low resolution cryo-EM data in order to facilitate
understanding of functional motions of protein complexes [47].
The success of the ENM in such a variety of situations and its
overall simplicity have made it an important tool in theoretical
biophysics.

Perhaps one of the most well known applications of the
elastic network model has been in the study of the large
motions of viral capsids [42, 48]. The large size of viral capsids
have made ENM’s a useful starting point in the study of the
vibrational modes of capsids. Tama and Brooks were some of
the first pioneers in this area. A comprehensive review on using
the elastic network model to predict the vibrational modes of
several viruses is presented in [42]. Figure 6 shows the two
lowest non-degenerate modes for the hepatitis B virus that were
calculated by Tama and Brooks [42] using an ENM.

In addition to viral capsids, the ENM has also been
successfully used in the study of functional motions of
other large protein structures such as the citrate synthase
enzyme [44], and a mechanosensitive ion channel in E. coli
MscL [45, 49]. The citrate synthase enzyme is an important
protein that performs the first catalytic steps in the production
of ATP from acetyl-CoA. The different functional motions
that the enzyme undergoes in response to binding of different
substrates is important for the regulation of binding acetyl-CoA
and the subsequent production of citroyl-CoA. Similarly, the
mechanosensitive ion channel MscL acts as a critical ‘safety’
valve for E. coli when osmotic pressure builds on the cell wall
due to a change in environmental salt concentrations. Osmotic
pressure on the cell wall induces a conformational change
allowing the transmembrane pore to open and reestablish an
equilibrium between the concentration of ions such as Na+
inside and outside the cell wall. Both are prime examples of
the work that has been done on studying the functional motions
in proteins using the elastic network model.

Another example where the elastic network model has also
been used successfully is in the prediction of flexible and rigid
regions of proteins. This is usually done by calculating the
B-factors of amino acids in the protein using the formulas
discussed in section 2. Amino acids which have a large B-
factor are undergoing large root mean squared fluctuations
away from their equilibrium position and are thus predicted
to be very flexible. Likewise, amino acids with a small B-
factor values have small RMS deviations and are areas of the
protein that are rigid. Bahar et al show that the B-factors
for several proteins can be predicted using a simple ENM
with the Gaussian network model potential [50]. As with all

Figure 6. Diagram of the lowest non-degenerate normal modes of
the hepatitis B virus (reproduced with permission from [42].
Copyright 2005, Elsevier.) (a) Lowest frequency non-degenerate
mode and (b) second lowest frequency non-degenerate mode of the
hepatitis B virus.

ENMs, the values for the frequencies produced by the ENM
are arbitrary due to the free choice of the elastic network spring
constant. Bahar et al show that reasonable agreement between
theoretical and experimental B-factors can be achieved by
adjusting the spring constant which ranges from 0.99 to 3.0
in their study.

One of the most recent applications of the elastic network
model involve studying conformational changes in protein
structures by flexibly fitting high resolution protein structures
into low resolution cryo-electron microscopy images [47]. For
example, the cowpea chlorotic mottle virus (CCMV) is a
small T = 3 plant virus that undergoes a thermodynamically
reversible swelling of its capsid from a ‘closed’ unswollen state
to a ‘open’ swollen state which has 60 pores [48]. This motion
is believed to be functionally important to the infection process
by allowing the internal ssRNA to be released into the infected
cell. The ‘closed’ state has been successfully crystallized and,

11



J. Phys.: Condens. Matter 22 (2010) 423202 Topical Review

using standard x-ray diffraction, visualized to a high resolution
of 2.8 Å [51]. However, the ‘open’ swollen state has only
been able to be visualized using low resolution cryo-electron
microscopy to a resolution of ∼28 Å. The flexible fitting
procedure involves moving the proteins in the capsid of the
high resolution ‘closed’ structure along the normal modes in
small steps, until the predicted EM density of the structure
closely fits the low resolution cryo-EM data. In this manner,
one can both construct a best fit atomic model for the low
resolution data, but also learn about which modes are important
for the functional motion.

5. Principal component analysis—PCA

A major goal of normal mode analysis is to reduce the
complexity of the full dynamics of a complex system, and to
describe it in terms of a few generalized coordinates such as
normal modes. The low frequency modes will exhibit larger
excursions from equilibrium and these floppy modes play an
especially important role. However, the usefulness of the
normal modes is limited because of damping effects due to
water and anharmonicity (which exists even in vacuum). There
is an entirely different approach to the problem, and that is in
terms of principal components (PCs). This alternate method
is capable of reducing the dimensionality to a few components
and is not restricted to harmonic systems—i.e. the system can
be heavily damped or not oscillate at all. The method is called
principal component analysis (PCA). PCA and is a fairly old
technique [52] with a much wider range of applications than
is described here. The method in effect computes second
moments of a multivariate distribution and describes deviations
from the average in terms of a set of principal components,
which represent the collective motions that produce the largest
deviations. The principle components are eigenvectors of a
covariance matrix (described below) and the vectors with the
largest eigenvalues are those producing the largest variance—
thus the largest excursions from some average geometry.

Imagine we simultaneously both flip a coin and toss a
six sided die. We add their scores (the coin score is +1 for
heads and −1 for tails). A principal component analysis will
produce the (obvious) result that the principle components of
the variance are individually the die and the coin, and the
component with the largest eigenvalue, which is the main
source of the variance, corresponds to the die. This all appears
unenlightening—but if instead one is dealing with thousands
of variables, PCA can pick out which ‘modes’ are dominating
the fluctuations. A mode then corresponds to a concerted
motion of the masses producing large deviations away from
the average structure.

The use of PCA is similar to the concept of ‘essential
dynamics’ within molecular dynamics simulations [53].
Essential dynamics separates configuration space into two
subspaces—the ‘essential’ subspace contains a few degrees of
freedom in which anharmonic motion occurs that comprise
most of the positional fluctuations, and the constrained region
which in Gaussian distributed (normal mode like). Other
ways of obtaining the ‘essential’ subspace containing the large
positional fluctuations is through rigidity theory [54].

Thus, PCA is a technique to display the fundamental
modes of motion contained in the complex dynamics of a
biomolecule in equilibrium with its surroundings. Dynamical
hinge like opening and closing modes can be obtained which
are important for understanding the functionality of enzymes
and biomolecules which operate as nanomachines. The
method usually uses molecular dynamics (MD) simulations
to explore the dynamics. The PCA is performed as a post-
processing step of the trajectory data generated. The dynamics
occurs in water where normal mode analysis has limited
applicability, so PCA offers a very powerful method for
developing a conceptual understanding of important floppy
regions of the system responsible for large dynamic distortions
and transitions between conformers in realistic settings.

The core quantity in PCA is the covariance matrix,

Cα,β = 〈(rα − 〈rα〉)(rβ − 〈rβ 〉)〉 (36)

where rα is one of the 3N atomic coordinates of the system.

The matrix
↔
C is 3N ×3N , is symmetric (hence Hermitian) and

thus has real eigenvalues and orthonormal eigenvectors. There
are two types of averages typically performed. The first type
is over an MD trajectory (or several trajectories). The second
type is to perform the average over several static structures such
as different conformations of the same protein or very similar
proteins. The different conformations in the latter type are due
perhaps to ligand binding and the structures come from x-ray
or other structural measurements.

We first consider dynamic systems and relate PCA to
harmonic analysis. But remember that PCA does not require
harmonic systems. Both PCA and the thermodynamics of
normal modes describe fluctuations, and it is instructive to
see the relationship between the two. We finally describe a
use of PCA from MD on ubiquitin and then describe a use to
categorize static structures in the Ras protein.

We consider the case of an MD simulation of a harmonic
system. Both PCA and NMA must produce the same
description. Let us see how this occurs. The system oscillates
around equilibrium and so rα−〈rα〉 reduces to uα, the harmonic
distortion from equilibrium. The displacement correlation
matrix Cαβ is formed from the particles’ trajectory,

Cαβ = 〈uαuβ〉. (37)

The average is over the long-time trajectory of the MD
simulation which is simulated at constant T using a thermal
bath. (The displacements �u have been corrected by removing
the center of mass motion and rigid body rotations.) The matrix
Cαβ is the central quantity evaluated. But what information
does it contain about dynamical modes?

A clear interpretation of Cαβ is obtained when we expand
the displacements into normal modes. The displacement vector
of length 3N , |�u〉, when expanded in terms of the normal
modes results in the correlation matrix

Cαβ =
∑

ν

〈Q2
ν〉(ην)α(ην)β. (38)

Here (ην)α is the αth component of the displacement vector
|�ην〉 and 〈QνQν

′ 〉 = 0 for ν 	= ν ′
. Recalling that the
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squared deviations 〈Q2
ν〉 in thermal equilibrium are kbT/ω2

ν

(see equation (16)), the correlation matrix can be written in
a compact notation as

〈uαuβ〉 = kbT 〈α| ↔
λ |β〉. (39)

Here |α〉 is the unit vector (0, 0, . . . , 0, 1, 0, . . . 0) where the

‘one’ is at the site corresponding to the index α. The
↔
λ matrix

is
↔
λ=

′∑

ν

|�ην〉 1

ω2
ν

〈�ην |. (40)

We have added a prime to the sum to indicate that the zero
frequency modes (rigid body translation and rotation) are
omitted from the mode sum. Zero frequency modes of course
make the dynamical matrix singular with no inverse. But all
other modes (in this derivation) are included.

This analysis gives us the connection we seek, and that
is that the correlation matrix is proportional to the sum over
all modes weighted by the inverse frequency squared (sans the
zero frequency modes) with proportionality constant kbT ,

↔
C = kbT

′∑

ν

|�ην〉 1

ω2
ν

〈�ην |. (41)

This central relationship adds a foundation for meaning and
understanding of the correlation matrix. The floppy modes
with small ω now contribute to large eigenvalues of the
correlation matrix. Thus they stand out prominently in the
analysis.

We take as a toy model to illustrate the connection between
the covariance and dynamical matrices two equal masses m
connected by a spring k which are allowed to move in one
dimension. There is one non-zero frequency mode, ω2

0 =
2k/m, with eigenvector |ê0〉 = (1,−1)/

√
2 and displacement

vector |�η0〉 = 1√
2m
(1,−1). The displacement vector (without

the zero frequency mode corresponding to the center of mass

translation) is |�u〉 = Q(t)√
2m
(1,−1). The correlation matrix

↔
C

has components C11 = 〈u2
1〉 = Q(t)2/(2m). Similarly, the

other matrix elements are C22 = 〈u2
2〉 = Q(t)2/(2m) and

C12 = C21 = 〈u1u2〉 = −Q(t)2/(2m). Recalling that the

average 〈Q2〉 is kb T
ω2

0
(see equation (16)) the

↔
C matrix is

↔
C= kbT

2mω2
0

[
1 −1

−1 1

]
. (42)

This covariance matrix has eigenvalues kb T
mω2

0
and 0. The

zero eigenvalue reflects the stationary center of mass. The
eigenvector for the dynamical portion is (1,−1)/

√
2. Thus

the correlation matrix has eigenvalues proportional to the
inverse squared of the dynamical matrix and the eigenvectors
(displacement patterns) are identical to the dynamical matrix.

One of the early uses of PCA from molecular dynamics
was by Hayward et al [55]. They followed in MD the
structure of bovine pancreatic trypsin inhibitor (BPTI) protein
in vacuum and determined the covariance matrix Cαβ . An
effective frequency is defined for each of the PCs and the

frequency is given by ω2
Eff(i) = kbT/λi where λi are

the eigenvalue for the i ’th principal component. Analysis
of the trajectory in terms of PCs shows that the first
principal component describes an apparent barrier crossing
phenomenon, while the trajectory projected onto higher PCs
show Gaussian-like distributions similar to a quasi-harmonic
theory. The key here is that only a small number of effective
PCs are needed to describe the motion. This theme arises
frequently in this area (either PCA or normal modes) and that is
the fact, or hope, that a few generalized coordinates are useful
to describe the complex dynamic behavior.

More recently Ramanathan et al [56] have compared PCA
(in a form known as the quasi-harmonic analysis (QHA))
and normal mode analysis for ubiquitin from MD using eight
different starting structures. Their goal is to model the slow
conformational motions from an ensemble of runs totaling
0.5 μS of MD simulations and compare them to a ensemble
of 116 structures from NMR refinements. The quasi-harmonic
modes are similar to PCA but are determined from the similar
matrix

Fαβ = m1/2
α m1/2

β 〈(rα − 〈rα〉)(rβ − 〈rβ 〉)〉 (43)

instead of Cαβ , making it similar to the mass weighted

eigenvectors of the dynamical matrix. The compact form of
↔
F

for a harmonic system is
↔
F = kbT

∑′
ν |êν〉 1

ω2
ν
〈êν | which shows

a one-to-one connection with eigenvalue and eigenvectors of
the dynamical matrix. Eight different starting x-ray structures
of ubiquitin were used corresponding to PDB ID codes of
1UBQ, 1P3Q, 1S1Q, 1TBE, 1Y1W, 2D3G, 2FCQ, and 2G45.
The entire ensemble was used to find the QHA modes. They
find that ten QHA modes contribute 78% of all the dynamical
properties. Their modes describe the fluctuations of the
structures in the NMR ensemble of structures.

Figure 7 shows the projection of the QHA modes of
the MD ensemble and the NMR ensembles. Most of the
NMR structures fall into a subclass of all the MD trajectories,
but some MD trajectories sample regions of QHA-space
not sampled by the NMR ensemble. Their comparison of
the QHA to BNMA highlights advantages of QHA. These
advantages center on the QHA averaging over a much larger
configurational space and is better able to describe the
transitions that occur in an enzyme.

PCA need not be applied to dynamic fluctuations, but can
be used to explore a mapping of many different conformers
or mutants of a family of proteins. There has been recent
work by Gorfe et al [57] exploring the variety of structures
associated with Ras kinase proteins. Ras proteins are switches
that affect cell growth and are important in cancer. Ras proteins
bind GTP/GDP and their binding affects the shape of the
protein allowing signaling process to occur within the cell.
Gorfe et al studied a set of over 40 different x-ray structures
containing different conformers. Specifically they find that the
variance of a specific domain, called the catalytic domain, can
be described at the 57% level by just two principal components.
Continuing further, 88% of the variance is contained in eight
dimensions. Using just 2 PCs, a separation of Ras was clearly
visible concerning the state of the bound ligand—those with
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Figure 7. Quasi-harmonic approximation (QHA) of modes for
ubiquitin from [56]. Plotted are (a) mode 2 versus mode 1 and
(b) mode 3 versus mode 4. These projections highlight the similarity
of the structures explored in various MD trajectories or for the
similarities of structures in the ensemble of 116 NMR structures (red
squares). Each of the MD runs started in from one of the eight
different structures (PDB ID codes 1UBQ, 1P3Q, 1S1Q, 1TBE,
1Y1W, 2D3G, 2FCQ, 2G45), and the circled sections indicate
regions primarily sampled by an MD trajectory from one of the
specific eight starting structures.

GTP generally resided in one region within this subspace
while those with GDP resided in another. Such a conformer
plot [58] is extremely useful in highlighting similarities and
dissimilarities in structure and their relationships.

6. All-atom phonon functional method

We have discussed several approximate methods to determine
the vibrational modes of large complex biomolecules. There
has been a recent development, called the all-atom phonon
functional (AAPF), that allows all-atom calculations of the
vibrational modes to be computed from an empirical force
field. As there are many empirical force fields, this has not been
the traditional barrier to solving this problem. The traditional
barrier has been the huge size of the dynamical matrix. Even
the elastic network model has difficulty with large complexes
of proteins such as viral capsids. The phonon functional is a
general technique that can be applied to any force field model
(of finite range) and it need not be all atom. It applies equally
well to a generalized Born all-atom force field model or even
to a simplified coarse grained ENM. What is the catch? The

phonon functional only gives a subset of vibrational modes—
the lowest frequency ones where the number M is chosen by
the user. The computational expense goes up approximately
linearly with the number of modes M chosen, at least where
M is not too large. A typical number of modes chosen is
about 100. These low frequency subset of modes usually are
those involved in the ‘essential dynamics’ of the system or the
‘mode displacement subspace’ for conformer transitions. In
this section we highlight the basic theory behind the phonon
functional and its deep ties to electronic structure calculations.

6.1. The phonon functional method

Essentially the phonon functional method is a special matrix
diagonalization technique for large matrices that are especially
prone to being ill-conditioned. The goal of the phonon
functional method is to (i) determine the eigenfrequencies ω2

ν

and (ii) the eigenvectors |êν〉 (or equivalently the displacement
vectors |�ην〉) exactly (within an empirical energy model),
(iii) work primarily with vectors and avoid storage of large
matrices, and (iv) do this for a user chosen number of M modes
starting with the lowest. We focus here on proteins and show
applications to viral capsids; the technique can be applied in
any type of normal mode analysis which can be described as
‘atoms’ (including RTB or C α models) with any potential
energy function.

The phonon functional method is a technique borrowed
from electronic structure theory. We will initially frame
the problem within this context since it is highly motivated
from this viewpoint. The reader can skip to equation (44)
to forgo this. The basic bottleneck steps of the electronic
structure and vibrational analysis are the same—determine
eigenvalues (electron energies or vibrational frequencies) and
eigenfunctions (wavefunctions or displacement patterns).

Electronic structure theory, requires wavefunction eigen-
vectors of a Hamiltonian, H , with a few (perhaps a hundred)
occupied states and a very many (perhaps many thousands) of
unoccupied excited levels. In density functional methods, the
wavefunction for the ground state is written as a product of
single particle wavefunctions, with each electron in a different
state to satisfy the exclusion principle. The occupied states
determine the total energy and are the main focus of attention.
The occupied states also determine the charge density of the
material. Often only a few excited states are also considered
since the affect of low lying excitations determine the doping
properties, electron or hole transport, or the optical properties
of the material. The difficult quantity to evaluate is G, the
sum of single particle energies often called the band-structure
energy. It is G = ∑

ioccupied
λi , where the sum is over occupied

(lowest lying) electron orbital energies satisfying Hψi =
λiψi . Thus G, as defined, requires only the eigenvalues.
Generally, however, to get eigenvalues requires computing the
eigenvectors. An energy functional that determines G is G =
Tr(H f (H, μ)) where f is the Fermi function, f (H, μ) =

1
eβ(H−μ)+1 . The trace is over any complete orthonormal basis.
The property of the trace makes the functional G invariant
to the set of orthonormal basis states used to construct the
matrix H . The Fermi function acts as a filter to pick out the
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subspace of eigenvectors that are occupied. Thus (assuming
low temperature) f (λ, μ) is 1 (occupied) or 0 (unoccupied)
depending on whether λ is below or above the Fermi level μ.

This form of G is not useful in practice because the Fermi
function acting on a state ψ is difficult to compute. Instead
the functional is first changed to Min(TrM H ) which is to
minimize the trace over the number M of occupied states
(which depends on the number of electrons). The well know
problem with this form is that the exclusion principle is not
enforced—the minimum is where all electrons drop down to
one single orbital (e.g. all electrons of oxygen are in the 1s
state). To enforce the exclusion principle the M states must
be made orthonormal. This is awkward, at best, since the
functional itself is ignorant of these issues and minimization
cannot continue in a straightforward fashion.

We now come to the problem at hand—and that is
finding the lowest M frequency states of the dynamical matrix
which is analogous to the occupied subspace in electronic
structure. There are many solutions offered from electronic
structure theory and we choose that of Ordejon–Drabold–
Martin–Grumbach (ODMG) [59]. The functional is simple
in form but it’s action is surprisingly powerful. We define a
phonon functional Gp as,

Gp = Min{TrM(D
s + Ds(1 − S))}. (44)

Here Ds is the dynamical matrix shifted by its largest

eigenvalue (
↔
D −ω2

max

↔
I ) which results in a matrix with a

completely negative eigenvalue spectrum, and S is the matrix
of overlaps of the vectors in the subspace of M basis states.
The meaning of the overlap and the reason for shifting the
dynamical matrix will soon be made clear. The subscript
M on TrM is to remind us that the minimization problem is
not over the enormously large basis of the full atom system
(perhaps with millions of modes), but over the M modes in
the basis set (say 100). Thus the matrices Ds and S are small
(M × M) and trivially diagonalized. The difficulty is obtaining
these matrices and varying the subspace so as to minimize Gp.
However, once Gp is minimized, the resulting subspace of M
vectors that is produced from the minimization is that of the
lowest M frequency modes—exactly!

So what are the matrices Ds and S? We start off by taking
a wild guess and form M random vectors of length 3N to form
a subspace of M dimensions. The M basis vectors we denote
as |ui〉 where the i is a label for each of the M vectors. These
vectors need not be normalized or orthogonal. The vectors
must be linearly independent, but choosing them at random
from a much larger subspace offers essentially zero chance of
them not being linearly independent. We form the small M×M
subspace dynamical matrix Ds and overlap S as

Ds
i j = 〈ui |D̂s |u j〉 Si j = 〈ui |u j〉. (45)

Note that the full dynamical ‘matrix’ D̂s is not represented as a
matrix—rather it is an operator. This is very similar to standard
practice in electronic structure where the Hamiltonian is not
represented as a matrix, but rather is an operator that changes
a vector into a resultant vector, i.e. Ĥ |ψ〉 = |result〉. Here, the
operator D̂s acts on a vector D̂s |u j〉 and that resultant vector

is what must be computed. This operation of the dynamical
matrix on a vector proceeds in nearly exactly the same fashion
as the computation of the force vector in an MD simulation.
In an MD simulation, the derivatives ∂V/∂xi are generated
for each term in each sum in the empirical potential energy
model one at a time (see equation (1)) and are added into
a work vector of length 3N . At the end of the loop over
all energy terms, the work vector contains the correct force
vector. The procedure for the dynamical matrix operating
on a vector proceeds in a similar fashion. The second order
derivatives ∂2V/∂xi∂x j are generated analytically for each
energy term. For the bond energy terms in equation (1), there
are 36 such terms for each bond between two atoms in the
sum. After computing these derivatives, they are multiplied
by the 36 appropriate components of the vector being operated
on and added into a work vector of length 3N . As with the
computation of the force, after the loop over all energy terms is
complete, the work vector contains the result of the operation
of the dynamical matrix on the vector.

As an example, we illustrate how the functional works
with the most trivial model—a space of just one dimension.
The dynamical matrix Ds is 1 × 1 with eigenvalue −λ0

(recall that the dynamical matrix is modified so as to have a
completely negative definite spectrum). The trial vector |u1〉
must be proportional to the eigenvector since the space is one-
dimensional in this example. The only degree of freedom is
simply the norm of the vector. Having chosen a random trial
vector, its squared norm is 〈u1|u1〉 = S. Using Tr(Ds) =
−λ0S and Tr(Ds(1 − S)) = −λ0S + λ0S2, the energy
functional Gp becomes (after completing the square)

Gp = −λ0 + λ0(1 − S)2 = Term1 + Term2. (46)

Figure 8 plots Term1, Term2, and the full functional Gp.
The minimum of Gp occurs at S = 1 (i.e. |u1〉 is the
normalized eigenvector |ê1〉 = 1) and the value of Gp is
−λ0, the sum (here just one contribution) of the eigenvalues.
This simple example illustrates how the functional works—it
produces a kind of energy landscape in displacement vector
space whose minimum is the sum of the lowest eigenvectors
and the minimization can proceed by varying M states without
regard to normalization, or more importantly but not evident
in this 1D example, orthogonality. After Gp is minimized, the
M vectors found span the subspace of the M lowest frequency
modes. A final diagonalization of the (small) M×M matrix Ds

in that subspace yields the linear combination of vectors that
are true eigenvectors of the full 3N × 3N dynamical matrix
and the eigenvalues are the eigenvalues of the full dynamical
matrix.

We next address the iteration procedure that takes us from
the ‘wild guess’ initial set of vectors to a better and better
set of vectors until iteration converges the functional to the
exact result (up to a tolerance of precision). The concept is to
adjust the basis vectors |ui〉 defining the ‘occupied’ subspace
of M vectors until Gp is minimized. Optimization problems
have many solutions, and we choose a conjugate gradient
(CG) method [60]. A computationally expensive part of the
CG algorithm is to minimize the function along a chosen
line, and this generally requires many function evaluations.
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Figure 8. A plot of the phonon functional versus the overlap of the
sought after state for a one-dimensional model in which the (shifted)
dynamical matrix Ds has just one eigenvalue −λ0. The trail
eigenvector is a multiple of the single eigenvector, but is not
normalized and has squared norm of S. The functional is written as a
sum of two terms, each plotted individually. The full functional Gp,
which is the sum of the two terms, has a single minimum at
eigenvalue −λ0 with normalized eigenvector.

Fortunately for the Gp functional, the minimization along the
line is analytic, requiring only a cubic equation to be solved.
Details concerning the computation of the gradients and the
construction of the cubic equation can be found in [8] and [9].
Since a cubic equation may have more than one real root, the
root with the deepest minimum is chosen.

Each step of the minimization procedure of Gp will require
M dynamical matrix operations on a vector to be computed—
one necessary for the update of each |ui〉. Although the
time to minimize the phonon functional is likely to have a
complicated dependence on M and the number of atoms N ,
some estimates can be made. Since the dynamical matrix
operating on each vector can be computed in order N steps,
a very simple approximation is that the time for minimization
of the phonon functional scales roughly as order M N .

The convergence of Gp is illustrated in figure 9. Taken as
an example is the T = 4 viral capsid of hepatitis B (HEPB) and
the specific PDB coordinates are those of 1QGT [9]. Details of
how such a calculation proceeds will be discussed later. For
now we need to know that the capsid has symmetry of the
icosahedron. The capsid can be represented (geometrically) as
a truncated icosahedron (i.e. C60) with each of the 60 vertexes
containing four identical proteins. The entire capsid has 1.6
million modes, and symmetry (group theory) is used reduce
the calculation. The value of M used is 100. In figure 9
we show the A mode convergence of Gp in the subspace
corresponding to modes from the A irreducible representation
of the icosahedron (point group I ). These modes are non-
degenerate and are the easiest to compute. Figure 9 shows
what is equivalent to

√
(Tr(Gp)/M), which is the square root

of the average frequency squared. The extra term ω2
max is a

technical detail (described more below) resulting from a shift
of the frequencies to insure that Gp has a single minimum.
The important points of the figure are that (i) the convergence
is monotonic, (ii) that around 1000 iterations the result is

Figure 9. The convergence of the phonon functional Gp for the
lowest M = 100 modes of A symmetry for the capsid of hepatitis B.
The shift −ω2

max is removed. The plotted quantity, when converged is
equal to the RMS average of the first 100 modes. The convergence is
smooth and the precision is far better that 0.1 cm−1. The
minimization is performed by a conjugate gradient procedure of the
random vectors.

reasonably converged, and (iii) at several thousand iterations,
convergence is far less than a fraction of a cm−1. It should be
recalled that the lowest frequency is less than 1 cm−1 while the
highest is greater that 3000 cm−1 making the ratio of high to
low eigenvalues larger than 10+7. The ill-conditioned nature
of the dynamical matrix apparently causes no difficulty in the
phonon functional method.

We conclude this section with some quirks of the method
which one must be aware of, and some comments about
computational effort. The first is that the spectrum has to be
shifted for the functional to have a minimum and the second is
that the converged vectors |ui〉 are not yet eigenvectors. First
the shift quirk Ordejon et al [59] have shown that the spectrum
of eigenvalues must be negative definite for the functional to
converge. The vibrational problem with eigenvalues ω2 is the
antithesis of this—all eigenvalues are positive. To shift the

spectrum, we replace
↔
D by

↔
D

s= ↔
D −ω2

max

↔
I where ωmax is

the largest eigenvalue in the spectrum. It usually is a local
vibration of hydrogen. Fortunately, it is easy to compute
as the application of D̂ to any random vector a few times
(a Lanczos type method) rapidly converges a vector to the
upper extreme of the spectrum. We add a small cushion to
this estimate to ensure we are safely above this maximum
frequency. Secondly, the converged set of vectors |ui〉 are not
eigenvectors, but span the subspace of M lowest eigenvectors

of
↔
D. Since we are minimizing a Trace which is invariant under

orthogonal transformations, each vector is a linear combination
of eigenvectors within this low frequency ‘occupied’ space.
The final eigenvectors and eigenvalues are however trivial to
determine. Simply solve the generalized M × M eigenvalue

problem
↔
D

s �ψ = λ
↔
S �ψ . Here

↔
S , upon exact convergence,

will be the unit matrix. It is included in the diagonalization
here to more accurately allow for convergence of the phonon
functional to within a finite tolerance. The eigenvalues λν
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are ω2
ν and the vector �ψ of length M determines the linear

combination of large vectors |ui〉 of length 3N that makes an
eigenvector of the dynamical matrix.

Finally a few words about computational effort. One
expects several thousand iterative minimization steps (NIter ∼
1000) and each step will require the operation of M dynamical
matrix D̂ operations on a vector. Each operation is very similar
to an MD step as discussed above (instead of computing a
first derivative it computes a second derivative). Roughly, the
scaling with number of atoms and size of subspace gives a
computational scaling with M and N that goes as order (M N).
Put in terms of traditional MD simulations, the computer time
is similar to NIter × M MD steps. A rough estimate of the
computational effort uses NIter = 1000 and M = 100, to
yield a computational effort similar to 105 MD steps, which
is approximately equivalent to a 100 ps MD simulation.

6.2. Tubular virus M13—vibrations, impulsive stimulated
Raman scattering, and inactivation of virions

Ultra-short laser pulses of visible or near infrared light have
been shown to inactivate viruses [10, 61, 62]. By tuning the
length of the laser pulse (100 fs to several ps) and the intensity
of the laser, conditions can be found that do not damage
other organisms such as cells or bacteria. This discovery
has profound implications in the prevention and spread of
infection, and especially has implications for the cleansing of
blood within blood-banks or in undeveloped regions of the
world.

The physical mechanism responsible for the inactivation
of viruses is not fully understood. One intriguing mechanism
suggested is impulsive stimulated Raman scattering (ISRS).
ISRS scatters light through the Raman coupling of the light to
the polarizability of the electrons. However, the polarizability
is dependent on the configuration of the atoms within the
structure. This dependence produces an indirect coupling of
the electric field of the laser with the dynamical and structural
properties of the material. The electric field of the laser
oscillates far to quickly to be in resonance with the low
frequency oscillations of the capsid. Rather, the effect couples
distortions quadratically to the electric field. The electric field
squared is proportional to the intensity, and the intensity is
modulated into pulses. The length of the laser pulse can be
made to be compatible with the timescale of an oscillation.
This produces a ‘kick’ on the capsid. The kick should last for
about 1

4 of a vibrational period to produce the largest effect.
If the kicks are large enough, the virus can, theoretically,
break apart. This interesting application does not require full
oscillations as in a standard resonance conditions, such as the
shattering of a wine glass through sound. If the system is
undamped, completion of just ∼ 1

4 of an oscillation will likely
be enough to produce damage to the capsid.

In the ISRS technique, (pioneered by Nelson et al
[63, 64]), an electric field from the laser polarizes the proteins

through their polarizability
↔
α , producing a time dependent

dipole moment on the proteins in the capsid; �p(t) = ↔
α · �E(t).

The energy of interaction, U(t), is then simply U(t) =
− 1

2
�E · ↔
α · �E . The electric field we are considering is applied

as a Gaussian pulse of duration τL with the frequency of the
laser being ωL. The applied electric field from the laser then
has the form �E(t) = �E0e−t2/2τ 2

L cos (ωLt), which produces an
energy of interaction

U(t) = − 1
2

�E0· ↔
α · �E0e−t2/τ 2

L cos2 (ωLt). (47)

The polarizability of the capsid depends on its structure, so
it implicitly depends on the displacements of a normal mode
pattern if it exhibits a distortion. Raman scattering depends
on the polarizability derivatives and for a displacement pattern
|�ην〉 of amplitude Qν there exists a driving force on this mode
due to the external field given by

FQν
= −∂U(t)

∂Qν

= 1

2
�E0 · ∂

↔
α

∂Qν

· �E0e−t2/τ 2
L cos2 (ωLt). (48)

Evaluating such derivatives is somewhat involved and details
can be found in [11] and [65]. The equation of motion for the
mode becomes that of a driven harmonic oscillator with a time
dependent Gaussian force, Q̈ν + ω2

νQν = FQν
. The solution

to this can be determined from the harmonic oscillator Green’s
function and is approximately Qν(t) = Qmax

ν sin(ων t), where
the maximum amplitude is given by

Qmax
ν = √

π

(
τL

2ων

)
F0e−ω2

ν τ
2
L/4. (49)

This is a very interesting result and exhibits a kind of
‘resonance’ due to the kick. The prefactor τL is large for long
pulses and the 1/ων prefactor is large for low frequencies.
However, the major dependence on the size of the amplitude
of the mode is controlled by the exponential Gaussian factor
that includes both τL and ων . It is maximum when both
ωντL is small. If we imagine a specific mode ν, then the
largest amplitude excitation will occur when the laser pulse
time is τL = √

2/ων . This gives the result that one should
‘tune the laser’ to τL = 0.225Tν where Tν is the period of
oscillation for mode ν. The interpretation is that the laser must
‘kick’ the oscillator for about 1/4th of a cycle to obtain the
largest amplitude of oscillation. Unlike a resonance with a
driving frequency, the ISRS mechanism requires less than a
single oscillation to excite the mode. If the excitation is large
enough, past some (difficult to determine) threshold, the kick
can produce damage, and inactivate the virus.

Simulations of the ISRS effect of the M13 virus have been
performed in previous studies [11, 65]. In these simulations, a
low frequency symmetric breathing mode was found to damage
the capsid. Figure 10 shows the trajectory of the M13 capsid
from a MD simulation which had an impulsive force from
ISRS. The pulse width of the light used in the simulation was
τL = 1 ps and had a maximum force on the capsid at t = 0.
Figure 10(a) shows the capsid at t = −5 ps, or 5τL prior to
the maximum force of the ISRS pulse. Figure 10(b) shows the
capsid at t = 0, when the maximum force is being exerted
on the capsid. As can be seen in the figure, very little has
happened to the capsid at the peak of the pulse. Clear damage
to the capsid is seen at t = 5 ps (figure 10(c)) and t = 10 ps
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Figure 10. Trajectory snapshots of a molecular dynamics simulation of the M13 bacteriophage with an additional force from a pulsed (ISRS)
light source. The magnitude of the ISRS force on each atom is proportional to the average intensity of the light pulse Ī (t) = I0 exp(−t2/τ 2

L),
where I0 is the maximum intensity of the light, and τL is the duration of the light pulse. We used I0 = 1.5 PW/cm2 and τL = 1 ps for this
simulation. A qualitative plot of the force on the capsid from the light pulse during the MD simulation is shown on the right-hand side of the
figure with the red line indicating the current force at the given MD simulation time. (a) The capsid at t = −5 ps. At this time, there is
negligible force from the light. (b) The capsid at t = 0 ps. At this time the force on the capsid is maximal as indicated by the red line. Note
the capsid has almost no response to the light at this point. (c) Snapshot of the capsid at t = 5 ps showing large structural distortions. At this
time, the light pulse is nearly gone and the force on the capsid is negligible. (d) Snapshot of the capsid at t = 10 ps showing the structural
distortions remaining and permanent damage to the capsid.

(figure 10(d)), after the light pulse has stopped interacting with
the capsid. For a pulse width of τL = 1 ps, the most damage
is produced to modes which have a period of ∼4 ps-consistent
with the approximate period of the breathing mode (∼6 ps).

It should be noted that these simulations produce
breakup at intensities much greater than that of experiment.
Experimental intensities for several viruses are in the range of
approximately 100 MW cm−2 to 100 GW cm−2. Notice the
wide range of intensities necessary. Our simulation required
an intensity of order 1 PW cm−2, which is orders of magnitude
larger than experiment. This brings up several questions.
Of course the first question is whether ISRS is the correct
mechanism for inactivation of viruses. The inactivation shows

a threshold like behavior, which is what one may expect with
ISRS. But other mechanisms, such as multi-photon absorption,
could also be expected to produce threshold behavior. Further
experimental and theoretical work will be necessary to reveal
the science that is occurring during inactivation of viruses with
ultra-short laser pulses.

6.3. Vibrations of icosahedral viral capsids

The all-atom phonon functional allows previously intractable
vibrational problems to be solved. An example of this is
the determination of the mode displacement patterns and
frequencies for icosahedral viral protein capsid particles. A
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viral capsid consists of a spherical-like assembly of many
individual proteins, often identical, arranged in a spherical
cage-like assembly. The minimum number of proteins on the
cage is 60. The purpose of the icosahedral cage is to protect
the viral genome which resides inside.

Dykeman et al [9] have used the phonon functional
method and applied it to the human virus capsids of polio
and hepatitis B, and to the plant virus cowpea chlorotic mottle
virus (CCMV). To our knowledge these are the only normal
mode calculations using a full atomistic model will all degrees
of freedom. We briefly review the results here for the polio
virus, as we can compare its result to those with the work of
Vlijmen [41] who used an atomistic potential energy model but
restricted the basis set by allowing only dihedral distortions.

The polio virus (PV) is a small RNA virus that is a severe
pathogen in humans. It has the potential to be eliminated
as was successfully accomplished by smallpox, although this
work is ongoing and there are severe obstacles. An x-ray
structure of the virus is taken from Grant et al [66] (PDB
ID 1VBD) and PV is a T = 3 virus (180 proteins in the
capsid). The number of atoms in the icosahedron is nearly
800 000 and there are nearly 2.4M modes. An implicit
solvent mode is used for the empirical force field between
atoms of the capsid [67, 68]. The x-ray structure is energy
minimized to a zero force structure from which the normal
mode calculation proceeds. Group theory is used to simplify
the problem and modes of A, T1, T2, G and H symmetry of the
icosahedral group I . There is far more programming effort in
the development of the group theory code than in the simpler
phonon functional code.

Figure 11 shows a stick spectrum of the vibrational modes
of various symmetries and compares them to the dihedral
distortion only model of Vlijmen et al. The figure shows
the first 50 modes for each representation and just the lowest
three modes from Vlijmen are shown for comparison. The
frequencies are very similar, but fine agreement between the
two calculations is not there. Part of this difference is
attributable to the different force fields used. Also shown in
figure 11 for the A modes are the participation percentages
Wν for a few low frequency modes. The participation number
gives an estimate of the total number of atoms participating in
the distortion of a mode. The participation number is obtained
from a kind of information entropy Wν = eSν for each mode.
Here, Sν is the (information) entropy of each mode. The more
entropic a mode is the more spread out the distortion is. The
information entropy is given by Sν = − ∑

α pα(ν) ln(pα(ν)).
The probabilities pα(ν) are the squared component of the
normalized relative displacements for each atom/direction α =
[1, 3N], pα(ν) = |ηα(ν)|2, where ηα(ν) ∝ M− 1

2 eα(ν). The
quantity Wν is a kind of number of accessible sites determined
by the entropy. The number Wν is made into a percentage by
Wν(percent) = 100×Wν/N1 where N1 is the number of atoms
in one of the 60 icosahedral ‘cells’ of the capsid (N1 = 13, 074
for polio virus). Most of the low frequency modes have high
participation numbers indicating a concerted motion of large
groups of atoms. These modes will be described well by
simpler models like the ENM. However, some modes have
low participation number and are usually random coils or

Figure 11. A stick spectrum of the vibrational modes of the polio
virus of their group theoretic symmetries. The black lines are from
the all-atom phonon functional and the red lines are a few of the
modes from [41] which allowed only dihedral distortions. The
percentages on the left refer to the per cent of atoms participating in
the first few A symmetric modes determined by the all-atom phonon
functional.

other unrestricted regions directed in toward the interior of the
capsid. For ssRNA viruses such as Polio, these random coils
often interact with the genome inside—an effect not included
in this potential energy model since structural information on
how the genome interacts with these random coils is often
unavailable.

7. Normal modes and conformational changes

Many proteins, such as enzymes, can toggle between two
conformers and these conformers represent the active and the
inactive enzyme. Describing the conformational change as
they change functionality, often due to binding of a ligand, is an
important yet not satisfactorily solved problem. The simplest
example of such a transition is a ‘pac-man’ transition between
open- and closed states. A binding ligand changes the barrier
between the initial and final states so that a transition can
occur and the free-energy barrier can be overcome. Likewise,
binding with inhibitors may change the conformation and
inhibit binding with effectors shutting the functionality down.
Other, more complex examples such as the ABC transporter
describe below, have several moving parts that re-organize
cooperatively so that the whole assembly can provide a
function.

The question then arises ‘Can normal mode displacement
patterns be used to describe the cooperative motion within
a proteins, or protein assembly?’ The answer appears to
be ‘sometimes’. We first will describe a simple open–
closed system, lactoferrin, where we use the all-atom phonon
functional (AAPF) and find that the answer is ‘yes’, in that
just two modes describe 63% of the transition and six modes
describes it at the 81% level. We then compare this with a
determination of the same quantity using the simpler ENM and
find that the ENM produces qualitatively similar results, but
requires more modes to describe the motion than the AAPF.
We follow this up with a discussion of the work of Petrone
et al [69] who use an ENM and find examples where even 20
modes do not describe the transition to better than 50%.
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Figure 12. Superimposed open and closed structures of lactoferrin.
On the left, the open (dark) and closed (light) regions of the enzyme
are evident. The regions on the right are the similar areas of the two
conformers.

Lactoferrin belongs to the class of transferrin proteins that
shuttle around iron and control iron levels in animals. It is
found in milk and leucocytes. The binding and unbinding with
iron complexes produces a large-scale conformational change
within the protein. Optimization (energy minimization) was
first performed on the original x-ray PDB [70] structures 1LFH
(open) and 1LFG (closed).

An implicit solvent generalized Born model was used in
the force field to determine the optimized structure and the
second derivatives required for the dynamical matrix. The two
optimized solutions for the open and closed states were then
aligned. The center of mass of the two were made coincident,
and a grid of 106 Euler angle rotations were made to minimize
the RMS deviation between the two structures. Figure 12
shows the trace of the backbone for each of the two aligned
structures. The functionally important parts of the protein are
dark for the open state and light for the closed state. The
remaining domains of the open and closed lactoferrin proteins
that are not involved in the functionally important motion are
on the right. As can be seen in the figure, the major difference
between the two is the region on the left which shows a
transition between open and closed structures that occurs via
a moving of the two flaps.

The harmonic vibrational modes of the open structure
were then determined using the phonon functional method with
the goal to determine if a single floppy low frequency mode or
several low frequency modes can describe the transition from
the open to the closed conformer. The number of degrees
of freedom is 3N , where N , the number of atoms is 10 509
including hydrogen. The component displacements from the
open to the closed are δdα = r o

α − r c
α where the composite

label α denotes a specific atom and Cartesian direction, while
the ‘o’ and ‘c’ superscript correspond to open and closed
configurations. For each normal mode ν, we define a projection
pν and a projection angle θν as

pν = cos2 θν = |〈�ην |
↔
M | �δd〉|2

|〈 �δd| ↔
M | �δd〉|2

. (50)

Figure 13. A stick spectrum of the frequencies of the open structure
of lactoferrin computed by the all-atom phonon functional and the
elastic network model. The ENM has its spring adjusted to exactly fit
the frequency of the lowest AAPF mode. Notice that the density of
modes in the ENM (23 modes below 5 cm−1) is higher than that in
the AAPF model (13 below 5 cm−1).

It is easy to show that the sum, �ν cos2 θν , over all 31 527
modes, is 1. The projection pν is the ‘amount’ of normal mode
displacement contained in | �δd〉 and is one when summed over
all modes.

Figure 13 shows the results of the normal mode analysis.
Figure 13 is a stick spectrum of the frequencies of lowest
frequency modes computed by both the all-atom phonon
functional (AAPF) method, and by the ENM model. The ENM
model used only the Cα atoms of the protein backbone and a
spring with the same spring constant connected all neighbors
within 10 Å. The ENM model spring was fit to reproduce the
lowest mode near 1 cm−1 in the AAPF calculation. One feature
worth noting is that the three lowest modes in both methods are
fairly close in frequency. A second feature is that the density
of levels (i.e. the number of levels per cm−1) is higher in the
ENM than in the AAPF, being roughly twice as high.

Figure 14 plots the projection computed for each mode ν
and a partial sum of all projections up to mode ν. This is done
for both the AAPF and ENM methods. (The six zero frequency
modes are not shown.) The results are interesting and
somewhat surprising. First, by adding up around seven modes,
both models show that the conformational change can be
recovered by over 0.8 (80%). The quantitative correspondence
between the two methods is very good. Next when we try
to describe the transition with just a couple of modes, the
AAPF result is more willing. In the AAPF method, one mode
(ν = 2) projects around 40% and adding in just the first two
modes yields 64%. Thus, the projection is highly localized
into a couple of modes. The ENM model tends to spread
out its projection and is more delocalized. It takes about
five modes to achieve this 64% level. Finally the projection
saturates around 7–10 modes in both cases. Adding dozens of
modes additional modes in either case does little to increase
the summed projection.

In this lactoferrin system, there exists a mode displace-
ment subspace (MDS) that generates the displacement pattern
connecting to the two conformers. These modes are similar
to the essential dynamics excursions determined by principal
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Figure 14. The overlap of the open to closed transition by modes of
the open structure. The projection pν (equation (50)) are the lower
two curves and the partial sum (�pν , the upper two curves) of the
open lactoferrin on the displacement vectors of the transition to the
closed conformer. The solid lines are the all-atom phonon functional
and the dashed are the elastic network model. The AAPF converges
more rapidly than the ENM, yet converges to roughly the same sum
of over 80% projection with ∼7 modes. The AAPF yields a 64%
projection with just two modes.

components that a protein takes as it thermally samples
configuration space. The existence of an MDS can be a useful
aid in probing the pathways in the complex energy landscape.
This conclusion in line with that of Tama et al [71] who find
that even one mode is useful in the description of an open to
closed conformational change.

A comprehensive study of the connection between normal
modes and conformational changes has been performed by
Petrone et al [69]. Their model of the normal modes was
an elastic network model, a far simpler model than AAPF
and especially useful for a rapid analysis. In the few test
cases (myosin, calmodulin, NtrC, and hemoglobin) at least 20
modes were found to be necessary to achieve a description of
even 50% of the conformational change. There was a very
large variation from one test case to the next suggesting that
sometimes a normal mode analysis offers a small subspace to
describe the MDS, while in other cases the MDS is too large
that a NMA is not very useful.

7.1. Example of functional motions in a complex
system—normal modes of an ABC transporter

As an example of application of normal mode analysis in
the study of complex biological proteins, we demonstrate
the use of the phonon functional method to compute the
low frequency modes of an ATP-binding cassette (ABC)
transporter with over 20 000 atoms. ABC transporters
are a family of membrane proteins that are involved in
the active transport of diverse substrates across cellular
membranes [73]. The clinical relevance of ABC transporters
cannot be understated. Mutations of the ABC transporter
complex are responsible for disorders in humans such as
cystic fibrosis and Tangier disease [74, 75]. In bacteria and
cancerous cells, over expression of multi-drug ABC exporters
confers drug resistance, making antibiotic and chemotherapy

Figure 15. Illustration of the three domains of a gram-negative
bacterial ABC transporter. The three domains are the periplasmic
binding protein (PBP), the transmembrane domain (TMD), and the
nucleotide binding domain (NBD). The PBP, TMD and NBD are
stacked from top to bottom respectively. The transmembrane domain
penetrates the inner lipid membrane which separates the periplasm
from the cytoplasm of the bacterium. Binding of ATP to the
nucleotide binding domain facilitates conformational changes which
allow transport of substrates (direction indicated by arrow) from the
periplasm to the cytoplasm.

treatments ineffective [76]. The normal mode analysis of the
ABC transporter illustrated here shows how several distinct
proteins can come together and exhibit a concerted functional
motion. A review of NMA of membrane proteins can be found
in [72].

The general ABC transporter (figure 15) consists of a
two subunit nucleotide binding domain (NBD), which drives
the transport process by binding and hydrolyzing ATP, and
a two subunit transmembrane domain (TMD) that forms a
translocation pathway through the membrane. The entrance
to the translocation pathway is blocked by a gating region
which opens as a result of the conformational changes that
occur in the NBD from ATP binding and hydrolysis. In gram-
negative bacteria ABC importers, the substrate is delivered to
the translocation pathway by a periplasmic binding protein
(PBP) which binds to the substrate in the periplasm and is
essential for transport [77]. The three components consisting
of the PBP, TMD, and NBD must follow a concerted motion in
order to achieve transport of the substrate. The function of the
assembly is to deliver the cargo trapped in the PBP through the
TMD which has a gated channel. The NBD is the ‘engine’ that
drives the delivery.

Our example illustrates the conformational changes of a
complete molybdate ABC transporter of the archaeal bacteria
Archaeoglobus fulgidus using the fully atomistic phonon
functional method to compute the normal modes from the x-
ray crystal structure [78]. Although NMA is not capable of
predicting the complete pathway that each atom will take as
the gating region opens, it can provide information on how
each of the three domains move in concert, at least for small
displacements. Thus, one can think of the NMA of the ABC
transporter as analogous to examining how the connecting
rod and piston of a locomotive work cooperatively to rotate
the wheels by making small displacements of the locomotive
forwards and backwards.
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Figure 16. Low frequency ‘corkscrew’ mode of the Archaeoglobus fulgidus molybdate ABC transporter with frequency of 2.62 cm−1. The
left-hand figure shows all carbon atoms in the structure with arrows indicating the direction of the atomic displacements. The right-hand
figure gives an overall schematic of the coupled motions between domains. The individual motions for various sections of the ABC
transporter are illustrated with arrows.

The A. fulgidus molybdate ABC transporter (figure 15)
was prepared for NMA by first protonating the x-ray
structure [78] (PDB code 2ONK). The bound tungstate and two
ATP molecules that bind to the NBD were not included in the
simulation. It is unlikely that this will appreciably affect the
global low frequency modes of the entire complex. The lipid
membrane was also excluded from the calculation. The final
structure consisted of the NBD, TMD and the PBP and had
a total of 20 667 atoms. The structure was then energetically
minimized using the AMBER 94 force field [12] with the
generalized Born (GB) implicit solvent model [67, 68] to a root
mean squared (RMS) force gradient less than 10−4 eV Å

−1
.

A cutoff of 10 Å was used for electrostatic interactions. The
resulting RMS deviation of the optimized structure from the
original x-ray structure was 1.75 Å.

Using the optimized structure and the AMBER 94 force
field with the GB implicit solvent model, the lowest M = 100
normal modes of the ABC transporter were found using the
phonon functional method described in section 6. A low
frequency mode at 2.62 cm−1 (78.6 GHZ) is of particular
interest and is illustrated in figure 16. This mode shows how
the three different domains (PBP, TMD, and NBD) operate in
a concerted motion and can best be described as a ‘corkscrew’
like motion. An examination of the mode reveals that the lower
portion of the NBD has a rigid region near the C-terminal
hinge while the upper portion of the NBD (at the NBD/TMD
interface) couples to two alpha helices (coupling helices,
CH) of the TMD. As the NBD opens/closes, the TMD/PBP
interface twists. The twisting of the TMD/PBP interface causes
the two lobes of the PBP to move in a shearing like motion that

is consistent with theoretical studies of other PBP [79]. The
PBP lobe shearing also has similarities to the ligand to unligand
hinge-twist transition found in a crystallographic study of a
maltodextrin binding protein [80]. Thus, the shearing of
the lobes could be related to motions that will result in an
opening of the PBP binding cleft and the subsequent release
of the bound substrate. Overall, the normal mode describes a
combined motion of the three domains that is connected and
highly concerted. The three components (NBD, TMD, PBP)
operate together like a machine, similar to the gears in a motor.

Although the normal mode analysis of the ABC
transporter cannot predict the exact pathway that the three
domains of the ABC transporter undergoes during the transport
cycle, it does provide clues about how the three domains
operate in concert, and what the important interactions between
domains are. Although it would be very interesting to follow
the normal mode to see how (or if) the PBP binding cleft would
open, mode following in a computational setting is extremely
difficult and is plagued by many problems. However, in
figure 17 we offer a hypothesis how this ‘corkscrew’ motion
could lead to an opening of the PBP binding cleft. One can see
in figure 17(b) a hypothetical illustration of how the twisting
like motion at the TMD/PBP interface combined with the
shearing motion in the lobes of the PBP simultaneously forces
the substrate binding cleft and gating region open.

To get a feeling for how this motion impacts the whole
transport process, we illustrate a hypothetical transport cycle
of the ABC transporter in figure 18. This transport cycle makes
use of the information gained from the normal mode analysis.
As can be seen in the figure, the transport cycle consists
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Figure 17. Proposed conformational changes that occur as the ABC transporter moves between the resting state with a closed translocation
pathway and the transition state with an open translocation pathway. The proposed conformational changes are based on the normal modes.
(a) The resting state. (b) Illustration of the ‘loading stroke’, which moves the ABC transporter from the resting state to the transition state. The
twist at the PBP/TMD interface causes the binding cleft in the PBP to separate. (c) Illustration of the ‘power stroke’, which moves the ABC
transporter back to the resting state.

Figure 18. Diagram of the hypothetical transport process for the molybdate ABC transporter inferred from the all-atom normal modes. The
two Phe 200/Tyr 218 residues making up the gating region are indicated by blocks. The substrate is indicated by a black circle. (a) Resting
state with no PBP present. (b) The PBP and two ATP molecules bind to the NBD causing the NBD to close. This begins the loading stroke.
(c) The transition state after completion of the loading stroke. The substrate becomes trapped in the TMD after being released from the PBP.
(d) One or two of the ATP molecules are hydrolyzed forcing the NBD open. This begins the power stroke. (e) Open state after completion of
the power stroke. The substrate is now free to enter the cytoplasm. (f) The transport process is complete and the ABC transporter returns to a
resting state.

of five stages, resting, loading, transition, power, and open.
The resting stage represents the state of the ABC complex
prior to interaction with the PBP. After a PBP carrying the

substrate makes contact with the TMD, binding of ATP to the
NBD facilitates the loading stage. It is the loading stage in
which we believe the normal mode computed in the AAPF
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method may describe the beginning stages of the functional
motion that takes place. The result of this functional motion
is the transition state where the PBP binding cleft and gating
region (consisting of PHE 200 and TYR 218) are forced open,
allowing transport of the substrate through the channel. Finally
in the power stage, the NBD ‘engine’ catalyzes the ATP–ADP
reaction and results in a conformational transition to the open
stage, which resets the ABC transporter to the resting stage.

8. Conclusions

As we have shown in this review, there are a variety of methods
that can be used to calculate the normal modes of proteins,
viruses, or large protein assemblies to predict their functional
motions. Each of the methods have their strengths and
weaknesses. Continuum elastic theories can provide simple
insights into the basic dependence of functional motions and
structural transitions in terms of just a few quantities such as
Young’s modulus or the Foppel von Karmen number. Elastic
network and other coarse grained models are powerful tools
that can simplify a complex protein into a simple network
of connections which can give a reasonable description of
its dynamical properties. And finally, recent developments
of tractable all-atom methods provide quantitative estimates
of frequencies and more precision in describing displacement
patterns. In the case of lactoferrin discussed in this review, the
increased precision in the displacement patterns were able to
describe the open to closed transition with the first two modes
better then coarse grained methods.

Normal mode analysis is just beginning to scratch the
surface into the connections of protein structure to protein
function and their are many unanswered questions that remain.
New novel applications of normal modes, such as in the study
of impulsive stimulated Raman scattering of viral capsids, or
the use of normal modes in the construction of a transition
pathway between two protein conformers, continue to provide
new challenges and new areas of application for normal modes.
Indeed, the wide range of successes of normal mode analysis in
predicting functional motions and other properties have made
it a tool that will be continued to be used and explored in many
biophysics applications. Indeed the future for normal modes in
biological physics appears bright.
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