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ABSTRACT

In this paper I outline a fast method called KFOLD
for implementing the Gillepie algorithm to stochasti-
cally sample the folding kinetics of an RNA molecule
at single base-pair resolution. In the same fashion as
the KINFOLD algorithm, which also uses the Gillespie
algorithm to predict folding kinetics, KFOLD stochas-
tically chooses a new RNA secondary structure state
that is accessible from the current state by a single
base-pair addition/deletion following the Gillespie
procedure. However, unlike KINFOLD, the KFOLD al-
gorithm utilizes the fact that many of the base-pair
addition/deletion reactions and their corresponding
rates do not change between each step in the algo-
rithm. This allows KFOLD to achieve a substantial
speed-up in the time required to compute a predic-
tion of the folding pathway and, for a fixed number of
base-pair moves, performs logarithmically with se-
quence size. This increase in speed opens up the
possibility of studying the kinetics of much longer
RNA sequences at single base-pair resolution while
also allowing for the RNA folding statistics of smaller
RNA sequences to be computed much more quickly.

INTRODUCTION

The prediction of the secondary structure of an RNA
molecule has been a heavily researched area for the last few
decades and still remains one of the important challenges
in biophysics and computational biology today. Compu-
tational techniques for predicting the minimum free en-
ergy secondary structure of an RNA based on the Turner
rules for RNA base-pair stacking interactions (1) were pio-
neered by Zuker (2), and others (3) using a dynamic pro-
gramming algorithm. Although these classic algorithms
based on dynamic programming have become a powerful
tool for predicting the minimum free energy structure of
an RNA molecule as well as other sub-optimal structures,
these methods provide only thermodynamic descriptions of

the folding space and give little if no details on the kinetics
of folding.

Plus-sense single-stranded RNA viruses (+ssRNA) pro-
vide a particularly salient example of the importance of the
kinetics of RNA folding. The genomes of ssRNA viruses
are under multiple evolutionary pressures to ensure that
their genome is copied, that viral gene products are pro-
duced from the RNA genome (which also serves as an
mRNA template) and that their genomes are selectively
packaged during capsid assembly. Due to the multitude of
functional roles that are required of ssRNA viral genomes
during their life-cycle, RNA dynamics are expected to play a
key role in regulating genome copying and viral protein pro-
duction. For example, Simon and co-workers have recently
demonstrated for Turnip Crinkle Virus (TCV), a small T =
3 plant virus, that the 3′ end of the viral genome transiently
adopts different RNA structures which regulate translation
by the RNA-dependent RNA polymerase (RdRp) (4). Sim-
ilar regulatory features have also been seen in small self-
replicating RNA fragments such as SV11 (5). In addition
to regulating genome copying, the kinetics of RNA fold-
ing is also expected to play a crucial role during genome
packaging in ssRNA viruses (6–10). Computational models
which are capable of probing the kinetics of RNA refolding
in large sequences (> 1000 nt) will present an opportunity
to explore the regulatory and packaging roles of the viral
genome in this class of viruses.

Kinetic folding algorithms have been previously devel-
oped to probe the dynamics of RNA and its alternative
structures which may be only occupied transiently (11–14).
A key issue with kinetic folding programs is the size of the
RNA and length of folding time that can be simulated. For
example, one of the first RNA kinetic folding algorithms,
KINFOLD (11,12), models RNA kinetics at the most mi-
croscopic level possible, i.e. in terms of single base pair
additions/deletions. However, currently it can only be used
on small RNAs of around 50-100 nt due to both memory
and computational time constraints. This problem has led
to additional algorithms (13–19) that either model the ki-
netics of an RNA using a more macroscopic view in which
the barriers between local minima in the energy landscape
are first characterized then simulated using numerical inte-
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gration (17,18) or fast-Fourier transforms (19). Additional
methods have also allowed entire helices to elongate in a sin-
gle reaction (20). Other algorithms have attempted to im-
prove on the efficiency of the Gillespie procedure through
the use of memorization of previous states (21). However,
these methods are still limited to around a few 100 nt. Thus,
current Gillespie algorithms which model RNA folding at
single base-pair resolution still remain difficult to imple-
ment for longer sequences (> 1000 nt) due to computational
time and computer memory constraints.

This paper introduces several computational strategies
which allow the Gillespie algorithm (22) to be applied to
the RNA kinetics problem with greater efficiency. The re-
sult is an algorithm in which the computational cost for
calculating the transition to the next state performs loga-
rithmically with the sequence length N. These new compu-
tational strategies open up new opportunities to examine
the folding kinetics of large RNA sequences (> 1000 nt) at
single base-pair resolution. First, a few current RNA kinet-
ics algorithms are briefly discussed and the KINFOLD al-
gorithm is introduced as a background of current state-of-
the-art methods for computation of RNA folding kinetics
at single base-pair resolution. Next, the KFOLD algorithm
is introduced along with descriptions of the strategy used
by KFOLD to achieve a substantial speed-up in compu-
tational time when compared to KINFOLD. Finally, the
KFOLD algorithm is applied to several examples of RNA
folding kinetics.

MATERIALS AND METHODS

Algorithms for RNA folding kinetics

A variety of work has been done on the problem of com-
puting RNA folding kinetics resulting in two basic types of
algorithms. The difference between the two types of algo-
rithms relates to the degree of coarse-graining involved in
the types of secondary structural rearrangements that occur
when moving between RNA folding states. At one extreme,
one could consider single base-pair additions/deletions
when moving between RNA states. This type of algorithm
would yield a more microscopic picture of RNA folding
events and is the type that is implemented in the KIN-
FOLD program (11,12). At the other end of the spectrum,
one could consider much larger rearrangements of the base
pairs in the RNA secondary structure when moving be-
tween different RNA states (13–19). In this strategy, the
energy landscape is examined and local minima identified
along with barriers (saddle points) between them. Both
methods have their advantages and disadvantages. The ad-
vantage of considering single base-pair additions/deletions
when moving between RNA states is that a reasonable es-
timate of the transition rate between the states Si and Sj
can be obtained from the free energy difference between the
states �Gij = Gj − Gi using:

ki j

kji
= e−β�Gi j (1)

where kij denotes the transition rate from state Si to state Sj.
An alternative method for estimating transition rates used
by Flamm, called Kawasaki dynamics (23), uses a symmet-

ric form of Equation (1) to uncouple kij from kji, i.e.

ki j = k0e−β�Gi j /2, (2)

where k0 is a pre-factor which can be adjusted to fit compu-
tational estimates of the folding times of RNAs to experi-
mental measurements. Currently there are at least two dis-
advantages of Gillespie-type algorithms. The first is that the
computational cost to compute a fixed number of changes
to the secondary structure of the RNA in question, and thus
its trajectory, is quite high and scales with the number of
secondary structure neighbours m. The number of neigh-
bours of an RNA secondary structure varies depending on
its current fold and sequence but is related to sequence size
N and is bounded from above by m = N2. The second is that
many trajectories of the RNA are required to be computed
in order to obtain reasonable statistics of the kinetics. Given
these issues, single base-pair resolution methods have tradi-
tionally only been used on small RNAs with length less than
around 100 nt.

Methods such as HIKINETICS (13,14), KINEFOLD
(15,16) and others (17–19) are based on the second type
of RNA folding algorithm and consider a more coarse-
grained picture of RNA folding events, theoretically allow-
ing for a faster computation of the RNA folding trajec-
tories. For example, Senter et al. have used a fast-Fourier
transform method to obtain fast approximate folding ki-
netics of RNAs (19), while Gies et al. have described a co-
translational model of RNA folding (24). But these meth-
ods have the disadvantage that the transition rates between
two RNA secondary structures differing by more than one
base pair are not easily computed using Equation (1) above.
This is due to the coarse-grained transition involving multi-
ple single base pair transitions, with different barriers be-
tween these states. Estimating the transition rate in this
regime is more complex and more computationally de-
manding and will be rate-limited based on the largest bar-
rier encountered during the transition. Thus, the transi-
tion rate between local minima is not necessarily related to
the energy difference between the local minimum. However,
transition rates can still be estimated in these methods. For
example, Huang et al. use a partition function method to es-
timate the kinetic transition rates between RNA structures
which give reasonable kinetics for a variety of RNAs (13).

The KFOLD algorithm

KFOLD implements the Gillespie algorithm (22) for com-
puting RNA kinetics which is a type of continuous time
Markov chain (CTMC) in which the probability of tran-
sitioning to the next state is independent of the previous
state. The basic algorithm requires that the following two
quantities be computed each time the RNA is moved to a
new secondary structure: (i) the set of m neighbour struc-
tures Si which differ from the current fold S0 by an appro-
priate move, e.g. a single base-pair addition/deletion; and
(ii) the transition rate for moving from S0 to Si, k0i, us-
ing Equation (2) along with the total flux � = ∑

i=1,m k0i =
∑

i=1,m k0e−β�G0i /2. These two computations are iteratively
repeated to create a trajectory of structures that the RNA
moves through in time. There are two major computational
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bottlenecks in a traditional implementation of this proce-
dure. First, the time to compute the total flux �, which
scales as O(m). And second, the time to compute the m sec-
ondary structures Si which differ from S0 by an appropriate
move along with the corresponding transition rate for the
reaction k0i. When the difference between states Si and S0 is
a single base pair, then the energy difference between states
can be calculated in O(1) time and the computational cost
to compute neighbours and transition rates will also scale as
O(m), giving a total scaling of the basic algorithm as O(m)
per update of the RNAs secondary structure.

Although the KFOLD algorithm follows the same ba-
sic Gillespie protocol as KINFOLD, KFOLD achieves in-
creased computational efficiency and a logarithmic cost
per update of the RNA secondary structure by employing
two strategies to reduce the computational costs described
above. The first is to break up the problem of finding the
structures Si which neighbour a given RNA structure S0
into many smaller ones by finding neighbours of local sec-
ondary structures in the RNA. By doing this, only a small
portion of the neighbour list will need to be updated be-
tween steps, decreasing the cost of calculating neighbours
dramatically to approximately O(1). The second strategy
uses a partial sum table to (i) compute the total flux � and,
(ii) choose one of the reactions to fire in order Log2(N) time.
The result of these two changes is a Gillespie algorithm for
RNA kinetics in which the computational cost for comput-
ing updates to the secondary structure performs logarithmi-
cally with sequence size N. These two methods are discussed
in the following sections.

Computing neighbouring structures in KFOLD. The
KFOLD algorithm represents a secondary structure of an
RNA (Figure 1) by a series of smaller structural elements
which contain a loop of single-stranded nucleotides con-
taining interspersed single base pairs and a continuous
Watson-Crick (WC) helix at the closing base pair of
the loop. For simplicity purposes, these small structural
elements, illustrated in Figure 1B, will be referred to as
loop elements and denoted by the symbol L. The loop
element can be characterized by the number of single WC
base-pair elements in the loop, also called its degree d (25),
which denotes the number of WC base pairs bordering
the loop. Loop elements with d = 1 are hairpin turns and
contain a series of single-stranded bases closed by a WC
helix. A d = 2 loop is either a bulge, or internal loop, while
d > 2 loops are multi-branch loops. Any RNA structure
can be decomposed into a unique set of loop elements. In
KFOLD, each loop element Ll is labelled by the closing
base-pair (i, j) with i < j of the loop which begin/end the
loop. The sole exception to this rule is the special external
loop which contains the first and last nucleotides and is
labelled by (N, 1). The inversion (j, i) allows the KFOLD
programme to distinguish external loops from internal
loops in the rare case when the last nucleotide of a sequence
is base-paired to the first nucleotide by a lonely base pair. In
this case, there will be both an internal loop labelled by (1,
N) and an external loop labelled by (N, 1). Figure 1 shows
an example of the loop elements for an RNA containing 45
nt. The secondary structure of this RNA has NL = 4 loop
elements, as illustrated in Figure 1B, with number pairs

Figure 1. Illustration of the loop elements of an RNA. (A) Secondary
structure of a 45 nt RNA with various nucleotides labelled by their po-
sition in red. (B) The RNA secondary structure can be decomposed into
four loop elements labelled by the number pairs L1 = (5, 37), L2 = (11,
16),L3 = (26, 31) and L4 = (45, 1). Note that L4 indicates the external
loop of the RNA.

given by

L1 = (5, 37), L2 = (11, 16), L3 = (26, 31),

L4 = (45, 1). (3)

Note that the loop element L4 = (45, 1) = (N, 1) labels the
special external loop which contains the nucleotides {1, 41,
42, 43, 44, 45}.

The KFOLD algorithm breaks up the neighbour prob-
lem by computing neighbouring structures of the loop el-
ements which make up the current RNA fold and storing
the portion of the total transition flux that is due to possi-
ble transitions to these neighbours. Figure 2 illustrates an
example of the partitioning of neighbour structures for a
small hairpin with five neighbour structures. The structure
S0 represents the current RNA secondary structure while Si
with i = {1, 5} represent the neighbours. Two neighbours
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Figure 2. Diagram illustrating the calculation of neighbouring RNA structures by loop element. Nucleotides highlighted green indicate reactions in which
a base pair can be added to the current structure while those highlighted red indicate reactions in which a base pair can be removed. (A) Pictorial represen-
tation of the five neighbours of S0. In a Gillespie procedure for RNA folding, S0 will transition to one of the structures Si in the next reaction. Transition
rates, k0i, are shown for each of the reactions. The five possible reactions can be partitioned by the two loop elements L1 and L2 and partial fluxes �1 and
�2 computed for each. (B) Pictorial representation of the five neighbours of S′

0. Note, the reactions for loop element L1 are identical to those in (A) and
thus the transition rates for S′

0 → S′
1 and S′

0 → S′
2 will be identical to those for S0 → S1 and S0 → S2. Thus, in the event of a transition from S0 → S5 = S′

0,
the partial flux �1 does not need to be recalculated.

(S1 and S2) can be associated with loop L1, while three (S3,
S4 and S5) can be associated with loop L2 as illustrated
in Figure 2A. One can see that the difference between, for
example, the structures S1 and S2 associated with loop el-
ement L1 and S0 is a base-pair addition/deletion in loop
L1. In addition to breaking up neighbour computations, the
KFOLD algorithm will also break up the computation of
the total flux � by loop elements. For the example shown in
Figure 2, the KFOLD algorithm would compute two par-
tial fluxes �1 = k01 + k02 and �2 = k03 + k04 + k05, and store
these for later use in computing the total flux � = �1 + �2.

There is a substantial time advantage to computing
neighbouring structures by the local secondary structural
elements of the RNA and storing the partial flux �l as-
sociated with it as illustrated in Figure 2. This is because
when a new structure Si is selected during the Gillespie algo-
rithm (i.e. S0 will transition to Si), new neighbouring struc-
tures of Si can be computed by looking at the base-pair
additions/deletions that can occur in individual loop ele-
ments. The computational advantage stems from the fact
that for the vast majority of loop elements in the RNA (i)
the total number of reactions for the loop element, (ii) the
transition rate for those reactions and (iii) the contribution
to the total flux from that loop element, �l, will remain un-
changed. Thus, one only needs to calculate new base-pair
moves for a few (at most three) of the loop elements in the
entire RNA structure after each secondary structure up-
date. Figure 2 illustrates how the partial flux for loop ele-
ment L1 would not need to be recalculated when the struc-
ture S0, shown in Figure 2A, transitions to structure S5
(note S5 = S′

0 in Figure 2B). Comparing Figure 2A and B,
one can see that the base-pair additions/deletions possible
for loop L1 and their respective transition rates are identi-
cal.

Although only reactions involving base-pair opening and
base-pair formation are illustrated in Figure 2, it is possi-

Figure 3. Illustration of the move set used for computing neighbours of
a loop element in KFOLD. The six moves that are allowed are (i) helix
nucleation; (ii) extension of a base pair at the end of a helix; (iii) retraction
of a base pair at the end of a helix; (iv) opening of base pairs within the
terminal helix which closes the loop; (v) helix morphing; and (vi) defect
diffusion of a single nucleotide.

ble to incorporate more complex reactions into the KFOLD
algorithm with negligible computational cost and without
changing the logarithmic scaling of the algorithm. Figure 3
illustrates the six types of moves (the move set) that can oc-
cur in each loop element and that are currently modelled
in KFOLD: (i) nucleation; (ii) helix extension; and (iii) he-
lix retraction along one of the d base pairs in the loop; (iv)
opening of a base pair within the terminal helix; (v) helix
morphing; and (vi) defect diffusion. The move set is the
same as previously used by Flamm (11), with the one ex-
ception that multiple nucleotides cannot diffuse into a helix
in a single move (c.f. Figure 3). Also note that this move set
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will satisfy detailed balance, i.e. each reaction has a back-
wards reaction with the rates satisfying Equation (1). Pseu-
doknot reactions involve the nucleation of single-stranded
nucleotides in one loop with those in another loop and are
currently not modelled in KFOLD. It should be possible
to incorporate some types of simple pseudoknot reactions
into KFOLD in the future by looking at loops separated
by a single helix. Reaction rates could be estimated using
similar techniques employed by KINEFOLD (15,16). Long
distance pseudoknots are potentially more difficult to in-
corporate because Gillespie models have no information
about the spacial geometry of the fold and potential steric
clashes which would prohibit some long-distance pseudo-
knots from forming.

With this move set and strategy for computing neigh-
bours, it can be shown that the computational cost to com-
pute the partial flux and neighbours of a loop element ap-
pears to perform logarithmically over a long simulation
(see Supplementary Table S1), while the growth for the to-
tal computational cost per Gillespie update is bounded by
Log(N) (c.f. Supplementary Figure S1). Since new neigh-
bours only need to be recomputed for a couple of loop el-
ement after each update of the secondary structure, the to-
tal cost of updating the data structure of neighbours in the
KFOLD algorithm should perform logarithmically with se-
quence size when averaged over a large number of steps.

Computing the flux and selecting a transition in KFOLD.
In addition to determining neighbours, the Gillespie algo-
rithm for RNA folding also requires that the total flux � =∑

i = 1, mk0i be computed, where k0i are the individual tran-
sition rates calculated using Equation (2). A transition can
then be selected by finding the first state Sj with transition
rate k0j such that

∑
i = 1, jk0i ≥ r�, where r is a random

number in the interval [0, 1]. The simplest way to compute
the total flux would be to sum over all the partial fluxes
� = ∑

l=1,NL
φl which are stored for each loop element. A

combinatorics analysis of RNA structures in Hofacker et al.
(25) showed that, in the limit of large N, the number of loops
in an RNA secondary structure would scale with sequence
size as O(N). However, since all but a maximum of three of
the partial fluxes �l for each of the loop elements in an RNA
structure will remain unchanged between Gillespie steps, a
partial sum table can be used to reduce the computational
cost of calculating the total flux � and selecting a transi-
tion to O(Log2N). Details of the partial sum table and how
a specific transition is chosen can be found in the supple-
mentary material with a specific example of the partial sum
data structure illustrated in Supplementary Figure S2. The
computational cost of calculating the total flux is demon-
strated in Supplementary Figure/Table S1.

KFOLD pseudo-code. A generic description of the
pseudo-code for the KFOLD algorithm is now given.
Note that the pseudo-code makes no assumptions about
the move set; i.e. the move set can be chosen to be the six
moves shown in Figure 3 or something more complicated
(such as reactions involving pseudoknot formation). With
these caveats, the basic KFOLD procedure can be given as
follows:

1. Extract the total flux � from the partial sum table.
2. Choose two random numbers r1 and r2 on the interval

[0, 1].
3. Increment the time by � = −ln(r2)/�.
4. Identify the first loop element Li which satisfies

∑
l = 1, i�l

≥ r1� by using the partial sum table. During the
identification of Li, calculate the remainder �̄ = r1� −∑

l=1,i φl on the fly.
5. Out of the possible transitions in the loop Li which are

determined by the move set, choose a transition S0 → S�

to fire by summing over the transition rates k0j for each
of the base-pair reactions that are possible for this loop
until

∑
j=1,μ k0 j ≥ �̄.

6. Move the structure to state S�.
7. If the move to state S� results in loops being created

(such as during nucleation) or destroyed (such as when
two helices merge), add or subtract these loops from the
list of loop elements.

8. Re-calculate reactions, transition rates and the partial
flux �i for loop Li according to the move set as well as
for any other loops that where created. Re-sum the par-
tial sum table after the partial flux for each loop has been
re-calculated. Goto STEP 1.

Supplementary Figure S2 illustrates the partial sum table
and the process of choosing a reaction to fire in the KFOLD
algorithm for the example transition S0 → S5 shown in Fig-
ure 2. Note that although the modified process of choosing a
reaction in KFOLD involves first choosing a loop, followed
by choosing a specific reaction in that loop, only a single re-
action will end up being chosen from the full set of m pos-
sible ones. Supplementary Figure S1 demonstrates the run-
time and performance of the KFOLD code. As can be seen
in Supplementary Table S1, the cost of computing a Gille-
spie update in the KFOLD algorithm is expected to perform
logarithmically according to the mathematical analysis - c.f.
Supplementary Figure S1. The runtime analysis also shows
that KFOLD can compute 107 RNA folding steps on large
RNAs substantially faster than KINFOLD and in a simi-
lar time frame to small RNAs, while KINFOLD scales as
O(N) for large N as expected.

Availability. The KFOLD program is written in FOR-
TRAN and the source code is available from GITHUB
at https://github.com/edykeman/kfold or from the author’s
personal website at http://www-users.york.ac.uk/∼ecd502/.

RESULTS AND DISCUSSION

KFOLD is applied to two different RNA folding examples
with different lengths. The first example is of a small 20
nt synthetic sequence while the second is the 56 nt RNA
from the spliced leader of Leptomonas collosoma. These two
examples provide a simple illustration of the KFOLD al-
gorithm and are used to benchmark its accuracy. The en-
ergy model used for the calculations is the Turner 99 en-
ergy model (1) which contains terms for dangle energies,
terminal mismatches, and a logarithmic penalty formula for
multi-loops. No coaxial stacking energies are currently in-
corporated, but the energy functions in KFOLD are mod-
ular and additional terms such as these can be incorpo-

 at U
niversity of Y

ork on July 27, 2015
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

https://github.com/edykeman/kfold
http://www-users.york.ac.uk/~ecd502/
http://nar.oxfordjournals.org/


Nucleic Acids Research, 2015, Vol. 43, No. 12 5713

Figure 4. Folding kinetics of a small 20 nt RNA sequence computed with the KFOLD algorithm. A total of 105 folding simulations were generated for
the sequence UUGCUAAGCA ACCAUUGGUU. The three lowest energy structures are monitored along with the denatured state. Each simulation
computed the folding trajectory of the RNA and output the structure at regular time intervals up to a maximum time of 10 ms. (A) The three lowest energy
structures are labelled S1 (lowest energy structure) to S3. (B) Population kinetics for the three lowest energy structures. The open chain configuration S4
is shown in blue and the brown line represents the population of all other structures which are not S1–S4. (C) Histogram of the first passage times for the
RNA to fold from the completely denatured state to the MFE structure S1. The base 10 log of the first passage times are used to create the plot.

rated. Nucleation rates in KFOLD are obtained from poly-
mer theory formulas (26–28). Supplementary Figure S3 il-
lustrates the behaviour of the forward rate of base-pair nu-
cleation used in KFOLD as a function of nucleotide length.
Reaction rates for the remaining moves (ii)-(vi) shown in
Figure 3 are calculated using the Kawasaki formula (see
Equation (2)), with pre-factors estimated from experimen-
tal and theoretical work (29–31). Specific details about the
choice of pre-factor used to calculate the transition rates k0i
can be found in the supplementary material. Note that since
KFOLD uses real estimates for the kinetic rates the simula-
tions times discussed correspond to real experimental time
estimates.4

Folding kinetics of a small 20 nt RNA

To test the accuracy of the KFOLD algorithm and insure
that it reproduces the equilibrium thermodynamics of an
RNA at long times, the folding kinetics of the small 20nt
RNA sequence UUGCUAAGCA ACCAUUGGUU was
calculated. Using RNAsubopt from the ViennaRNA pack-
age, all possible structures satisfying canonical (G-C, A-U,
G-U) base-pairing were calculated. The RNAsubopt pro-
gram found 4127 different RNA states for the 20nt se-
quence. The energy of these structures were then computed
using the Turner 99 energy model and the partition func-
tion calculated along with the probability of each state at
thermal equilibrium. A total of 105 folding trajectories were
generated using KFOLD, with each trajectory simulating
folding up to a maximum time of 10 ms (note this is roughly
equivalent to setting the maximum simulation time in KIN-
FOLD between 107 to 108). Figure 5B shows the probability

of occurrence of the three lowest energy states in the ensem-
ble (c.f. Figure 5A) along with the unfolded state S4 as a
function of time. As can be seen from the graph, KFOLD
reproduces the correct equilibrium populations predicted
using the partition function (i.e. S1 = 41.3%, S2 = 11.3%,
S3 = 8.2%).

In addition to calculating population kinetics, the first
passage times for the RNA to fold from the completely de-
natured state to the MFE state (structure S1) were also cal-
culated. Figure 5C shows a histogram of the folding times.
The times used to generate the histogram in Figure 5C are
the base 10 Log of the folding time in seconds. This re-
veals an average time of around 10�s for the first time the
RNA will encounter the MFE state. Both of these results
are consistent with mean first passage times generated from
the KINFOLD program (when KINFOLD times are mul-
tiplied by a constant factor), which is to be expected since
KFOLD performs the same Gillespie procedure for RNA
folding, just in a more efficient way.

Folding kinetics of the spliced leader from Leptomonas collo-
soma

The spliced leader RNA from Leptomonas collosoma is a
56-nt RNA which adopts two different stem-loop structures
(32) and is present in mature mRNAs of trypanosomatid
protozoa. Figure A illustrates the two lowest RNA sec-
ondary structure states predicted using the Turner 99 energy
model. The KFOLD algorithm was used to compute 1500
separate folding trajectories of the RNA sequence starting
from the completely denatured state. A total of 1 s of fold-
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Figure 5. RNA folding kinetics of a small 56 nucleotide spliced leader RNA from Leptomonas collosoma computed with the KFOLD algorithm. (A) The
two lowest energy structures of the spliced leader RNA predicted using MFOLD algorithm (2) which uses the Turner 99 energy rules. The structures are
labelled S1 (lowest energy structure) and S2. (B) Folding kinetics of the spliced leader RNA predicted using KFOLD. A total of 1500 separate trajectories
were computed and the number of RNAs within the ensemble having either structure S1 or S2 calculated. The unlabelled brown line indicates all other
folds which were not in either structure S1 or S2. (C) Histogram of the first passage times for the RNA to fold from the completely denatured state to the
MFE structure S1. The base 10 log of the first passage times are used to create the plot.

ing was computed along with the first passage times for the
RNA to fold into the MFE state (state S1).

As can be seen in Figure B, the RNA folds predominantly
into either structure S1 or S2. Interestingly at around 100
ms, the structure S2 decays into the MFE structure, sug-
gesting that S2 forms a temporary kinetic trap. This is fur-
ther supported by the first passage times shown in Figure
C. Here, one can see that there are two peaks in the distri-
bution of folding times, one at around 1 �s and the other at
around 100 ms. In combination with the kinetic trajectory
shown in Figure B, this data suggest that there are two path-
ways to fold to the MFE state. The first pathway is fast and
takes the structure directly into the MFE state. The second
is a slow pathway which is interrupted by a temporary ki-
netic trap, the state S2. The time to resolve this kinetic trap
and fold into the MFE state is roughly 100 ms. These results
roughly match in vitro experiments (32) which show the pre-
dominant fold of the RNA ex vivo in the absence of proteins
is S1. It should be noted again that the energy model used in
this simulation is the Turner 99 energy model, not the 2004
model. Other groups have folded the same RNA sequence
using the Turner 2004 model and have obtained different
folding kinetics for the RNA (13).

CONCLUSION

Fast, efficient and accurate RNA secondary structure
prediction and RNA folding kinetics algorithms remain
one of the foremost challenges in computational biology.

Gillespie-type models for RNA folding kinetics have suf-
fered from two major drawbacks: (i) that the computational
cost to compute a fixed number of changes to the secondary
structure of the RNA scales with the number of secondary
structure neighbours m which can be as high as N2; and
(ii) that many trajectories of the RNA are required to be
computed in order to obtain reasonable statistics of the ki-
netics. The KFOLD algorithm addresses one of these is-
sues by presenting an improvement to the scaling and per-
formance of Gillespie-type RNA kinetics algorithms which
model RNA folding in single base-pair addition/deletion
resolution. As demonstrated above, the improved algorithm
performs logarithmically with sequence size as opposed to
the O(N)-O(N2) scaling of the traditional method. It should
be noted that although KFOLD can compute updates to
the secondary structure quickly, it still suffers from the re-
maining problem shared by all Gillespie-type folding mod-
els, i.e. the requirement for a large number of trajectories
to compute accurate statistics. However, by speeding up the
computation of RNA folding trajectories as demonstrated
here, KFOLD should be capable of generating many more
folding trajectories in the same CPU time as the traditional
Gillespie procedure, thus reducing the overall time to gen-
erate the folding statistics for an RNA.

It is expected that through the use of additional computa-
tional techniques, such as coarse graining of RNA restruc-
turing, memorization (21) or other Gillespie techniques
(33), to improve the efficiency, further reductions in time
could be potentially achieved. Moreover, the KFOLD al-
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gorithm has the potential to incorporate pseudoknot reac-
tions with limited cost. With these further improvements,
Gillespie-type models have the potential of being applied to
more complex RNA kinetics problems.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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