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Building a viral capsid in the presence of genomic RNA
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Virus capsid assembly has traditionally been considered as a process that can be described primarily via
self-assembly of the capsid proteins, neglecting interactions with other viral or cellular components. Our recent
work on several ssRNA viruses, a major class of viral pathogens containing important human, animal, and
plant viruses, has shown that this protein-centric view is too simplistic. Capsid assembly for these viruses relies
strongly on a number of cooperative roles played by the genomic RNA. This realization requires a new theoretical
framework for the modeling and prediction of the assembly behavior of these viruses. In a seminal paper Zlotnick
[J. Mol. Biol. 241, 59 (1994)] laid the foundations for the modeling of capsid assembly as a protein-only
self-assembly process, illustrating his approach using the example of a dodecahedral study system. We describe
here a generalized framework for modeling assembly that incorporates the regulatory functions provided by
cognate protein–nucleic-acid interactions between capsid proteins and segments of the genomic RNA, called
packaging signals, into the model. Using the same dodecahedron system we demonstrate, using a Gillespie-type
algorithm to deal with the enhanced complexity of the problem instead of a master equation approach, that
assembly kinetics and yield strongly depend on the distribution and nature of the packaging signals, highlighting
the importance of the crucial roles of the RNA in this process.
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I. INTRODUCTION

The self-assembly of viral capsids from their constituent
capsid proteins is one of the prime examples of molecular
self-assembly. Traditionally these have been considered as
processes determined entirely by the assembly of the capsid
proteins, i.e., by neglecting effects due to the genomic RNA
or other viral components such as scaffolding proteins [1].
There are two basic mechanisms of capsid assembly used
by viruses. In the first, a procapsid lacking nucleic acid is
constructed and subsequent work must be done to package the
genome into this structure. The second involves spontaneous
coassembly of coat proteins and nucleic acid to form the virion.
Zlotnick’s work was one of the first to introduce a theoretical
framework for this [2]. In this approach, the gradual buildup of
a viral capsid from its protein building blocks is modeled via a
set of kinetic equations that specify the individual reactions
occurring between capsid proteins during the process. By
solving the corresponding set of differential equations for the
concentrations of the assembly intermediates, their concen-
trations are predicted and thermodynamic as well as kinetic
descriptions of this process have been established [2–4].

Recently, we have shown that in several ssRNA viruses
that use the capsid coassembly mechanism, a number of
contacts between viral coat proteins and sequences within their
cognate genomic RNAs, called packaging signals (PSs), play
essential roles in ensuring efficient capsid assembly [5–9].
Examples include the bacteriophage MS2 [5,6,10–16] and the
plant satellite virus, Satellite tobacco necrosis virus (STNV)
[8,17,18]. While assembly in the absence of these contacts is
possible in vitro, it is mostly very slow and inefficient. Such
a process would be nonviable in vivo because for most cells
and hosts, partially assembled capsids would trigger antiviral
defense mechanisms such as an immune response or RNA
silencing. We therefore revisit the assembly modeling problem

here by discussing ways of incorporating the roles of the
genomic RNA.

Although the roles of the strongest packaging signals, e.g.,
in initiating the assembly process, have long been recognized
in the experimental literature [5,12,13,19], the existence and
roles of the weaker ones have traditionally been overlooked.
This is due to the fact that their structures are defined in terms of
general sequence or structure motifs, rather than by repetition
of identical contiguous sequence segments, making simple
bioinformatics analyses that attempt to locate them in ssRNA
genomes unsuccessful [20]. Using a combination of RNA
systematic evolution of ligands by exponential enrichment
(SELEX), a technique that identifies sequences with affinities
for a target protein such as a viral coat protein, structural
and biochemical information on RNA recognition, and a new
bioinformatics approach, we were recently able to predict the
locations of the potential lower-affinity PSs in the genomes of
STNV [8] and bacteriophage MS2 [9]. In the latter case this
even included predicting their locations in the tertiary structure
of the packaged genome. In addition to these theoretical
and experimental data, recent assembly experiments have
demonstrated the vital roles played by multiple lower-affinity
PSs in the cognate genomes of ssRNA viruses in ensuring
faithful capsid assembly. These experiments revealed a two-
stage assembly process, where in the first stage multiple
cognate RNA–coat protein (CP) interactions cause a collapse
of the hydrodynamic radius of the RNA so that it will fit
within the capsid. This effect is specific to cognate viral
RNAs. Noncognate RNAs can be packaged into virus-like
particles, but much less efficiently and with lower fidelity than
the packaging of the cognate genome [15].

The predictions of lower-affinity PSs in the genomes of
STNV and MS2, along with this recent experimental evidence,
strongly imply that current models of packaging mechanisms
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FIG. 1. (Color online) Geometry of the dodecahedron study system. (a) Dodecahedron as a coarse-grained model for a viral capsid formed
from 12 pentamers. (b) The RNA-protein contacts at the centers of the pentagonal faces inscribe an icosahedron, here shown in red. (c) Example
of a Hamiltonian path on the icosahedron. (d) Example of a protein intermediate that cannot occur during coassembly with RNA. Dashed lines
illustrate how this intermediate would violate the local-rule-assembly model by jumping to another part of the shell instead of moving to one of
the four neighboring pentamer sites that are vacant. (e) and (f) Two assembly intermediates with identical protein configurations but different
RNA organizations. These are considered as different intermediates in the case of assembly in the presence of RNA.

for ssRNA viruses in which the RNA genome is considered
as a homogeneous polyelectrolyte [21–25] are not sufficient
to account for these observations. Indeed, the experimental
data call for a paradigm shift in the modeling of the ssRNA
virus assembly, requiring a new theoretical framework that
supersedes simple electrostatic models, includes information
on the PSs and their varying affinities to coat protein, and
is able to reproduce the differences in assembly efficiency
observed for cognate and noncognate RNAs. Packaging
signals can in principle be incorporated into kinetic models of
capsid assembly by introducing additional reactions between
RNA and capsid protein. However, as we discuss in the
following section, this increases the complexity of the model
dramatically, so that techniques reliant on the solution of
differential equations, as in Zlotnick’s approach [2,4], are no
longer viable. We therefore introduce an algorithm that incor-
porates RNA–coat protein binding events into the assembly
model in a way that avoids this complexity problem, akin to
complexity reduction in approaches taken in the protein-only
cases considered by Schwartz and co-workers [26,27]. This
makes our approach scalable to much larger viral systems.
Our results demonstrate important insights into the roles of
PSs in ssRNA virus assembly. Based on the dodecahedron
model system, they illustrate that yield and speed of assembly
vary significantly both with the location in the RNA of the
strongest packaging signal that initiates assembly and with the
overall locations of the other packaging signals in the RNA and
their affinity for coat protein. We hence provide a theoretical
explanation for the vital roles of lower-affinity PSs in ensuring
yield and speed of capsid assembly.

II. MODEL SYSTEM

As a model system we use the dodecahedron, which can
be considered as a coarse-grained representation of a virus
assembling from 12 clusters of five proteins (pentamers),
with RNA binding sites at the centers of the pentamers
[see Fig. 1(a)]. Examples of such capsids are found in the
Picornaviridae, e.g., Equine rhinitis A virus [28], and a
number of small plant viruses of the Comovirus family, e.g.,
Cowpea mosaic virus [29]. Zlotnick considered assembly of
a dodecahedral capsid via sequential attachment of individual
pentamers from both an experimental [1] and a theoretical
point of view [2]. He described this process via an assembly
graph representing all possible pathways to the fully formed
capsid that can occur via attachment of a single pentamer at
a time. If constraints from interactions with genomic RNA
are neglected, pentamers are free to attach at any unoccupied
interface on the growing capsid. However, if contacts with
genomic RNA must be made, attachment of a capsid protein to
the growing protein shell will be constrained by the secondary
and tertiary structures of the RNA. As discussed in previous
work [30], it is unlikely that, as the genomic RNA and
protein shell coassemble, the RNA would suddenly move a
large distance from one area of the growing shell to another.
In this context, our model assumes that RNA–coat-protein
coassembly is governed by local assembly rules, a simpler view
that is more consistent with experimental observations such as
the inner and outer shells of RNA observed in cryo–electron-
microscopy (cryo-EM) reconstructions of bacteriophage MS2
[31] and many other ssRNA viruses. In the local-rule-assembly
model [30], CP can only be added next to the two CPs that are
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bound to the ends of the RNA fragment in complex with the
partially formed shell.

For the dodecahedron model system, this implies that
addition of incoming CP is only possible at specific sites
that are consistent with the RNA forming contacts at all
vertices of an inscribed icosahedron [see Fig. 1(b)], i.e.,
those forming Hamiltonian paths on this icosahedron such
as the one shown in Fig. 1(c). As a result, some of the
assembly intermediates in the RNA-free case are no longer
accessible in the context of a local-rule-coassembly process.
An example of an intermediate that is no longer accessible,
because there is no connected path between the centers of all
its pentagonal faces, is shown in Fig. 1(d). In this illustration
the RNA adds the first four sequential coat proteins following
a local-rule-assembly model. It then moves to another part
of the growing shell, as shown by the dashed line, forming
a disconnected path in violation of the model. In contrast,
a given protein configuration can occur with different RNA
layouts [see, e.g., Figs. 1(e) and 1(f)]. Since these need to be
treated as different assembly intermediates, this leads to an
increased ensemble of assembly intermediates. Therefore, the
complexity of the problem increases when RNA interactions
are taken into account. As a result, modeling assembly via
kinetic equations and numerically solving the differential
equations for the concentrations of the assembly intermediates
is no longer practicable here. We therefore introduce an
algorithm, based on the Gillespie algorithm [32] and a variation
used by Schwartz and co-workers [26,27], to examine an
assembly of empty capsids, that is capable of handling the
additional complexity that arises from considering coat protein
interactions with the RNA. The details of the algorithm are
discussed in the following section. The rationale underlying
this approach is to create an algorithm that is able to avoid
calculating the ensemble of possible assembly intermediates
(which we will show increases by many orders of magnitude
due to the RNA) yet still be able to consider all possible
intermediates during assembly without the need to neglect
higher-energy, more unstable intermediates [33]. Using this
approach we show that different distributions of packaging
signal strengths across the genome result in significantly
different assembly efficiency, illustrating their crucial roles
in the assembly process.

III. THE RNA VIRUS COASSEMBLY MODEL BASED
IN A GILLESPIE FRAMEWORK

In contrast to previous models that treat RNA as a
homogeneous polyelectrolyte [21–25], we treat the RNA as a
heterogeneous structure containing 12 binding sites as shown
in Fig. 2(a), where the RNA-protein complexes between the
RNA and capsid proteins have different lifetimes, depending
on their location (denoted by −6, . . . ,6 from left to right,
reflecting central symmetry in the absence of nucleotide
information) in the RNA. We model capsid assembly following
insights from recent experiments [15]. Initially, capsid proteins
bind to and unbind from the RNA, until a nucleation event
around a strong packaging signal leads to the ordered addition
of coat protein according to the local-rule model described
above. To accomplish this, we keep track of the binding and
unbinding of coat proteins to and from different parts of the

RNA and, in addition, monitor capsid intermediates and the
different RNA configurations possible for each, as shown in
Figs. 1(e) and 1(f).

In order to contrast our algorithm with previous work,
we briefly discuss traditional kinetic or stochastic assembly
models. In traditional kinetic models of capsid assembly, one
first determines all possible capsid intermediates [2,4] (or a
reduced set [33]) that can be formed during assembly and
then infers all possible reactions between these intermediates.
These reactions are typically of the form

Ci + Cj ⇀↽ Ck, (1)

where Ci denote the assembly intermediates. In traditional
protein-centric approaches one then derives a set of N coupled
differential equations for the concentrations of the assembly
intermediates,

dCi

dt
= kbCk − kf CiCj + · · · , (2)

where kf and kb represent forward and backward rates for the
reactions. These are integrated, e.g., via Runge-Kutta 45 [16],
to obtain a plot of the concentrations Ci(t) for each of the
intermediates.

For our dodecahedral study system, we have determined the
complete list of assembly intermediates for the capsid with and
without RNA to illustrate the drastic increase in complexity
that occurs upon inclusion of RNA-protein binding events.
For each intermediate containing n ∈ {1, . . . ,12} pentamers,
Table I shows the number of unique intermediates for the
capsid protein-only case (total of 73) and how this increases
when the RNA is included (total of 85 376). For larger systems,
the complexity of the number of intermediates increases
dramatically. Even for a T = 1 structure formed from 30
dimers rather than 12 pentamers, the number of intermediates
for the capsid alone exceeds 2.4 × 106, with over 35.6 × 106

reactions (both backward and forward) between them. For
slightly larger capsids, such as the T = 3 capsid of MS2
built from 90 dimers, the total number of unique assembly
intermediates (again for the protein-only case) is estimated to
be in the range of 1012, with ≈1015 possible reactions between
them. Although the number of dimers has only tripled between
these two scenarios, this is sufficient to make the calculation of
all intermediates and reactions essentially impossible without
a significant increase in computational power. Indeed, for the
more complex assembly scenario in the presence of genomic
RNA, the construction of the protein intermediates plus RNA
layouts, followed by application of the integration step in
Eq. (2), is not practicable. Traditional methods to circumvent
this problem rely on intermediate pruning, i.e., keeping only
the more stable intermediates in order to reduce the size
and complexity. For example, Endres et al. [33] suggested
that reducing the ensemble of intermediates considered in the
model to about 15%–20% of the energetically most stable ones
would be sufficient to account for capsid assembly kinetics.

We use here a method that does not require explicit
construction of any intermediate list and hence allows the addi-
tional complexity of RNA binding events to be incorporated,
even in large viral capsids. In particular, we use a Gillespie
stochastic simulation algorithm within an object-oriented
programming paradigm that allows for the simultaneous
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FIG. 2. Possible assembly reactions in the model. (a) The RNA is modeled as containing 12 packaging signals of varying affinity,
numbered from −6 to 6. Binding can occur at any of the unoccupied sites at any time in the simulation. (b) Protein pentamers
and RNAs react via two different types of events: the second-order reaction of a protein-RNA association (vertical arrows) where
coat proteins bind and unbind to RNA or a first-order reaction where protein-protein interactions (horizontal arrows) are formed or
broken.

modeling of thousands of individual RNAs, each containing
a potentially unique distribution of packaging signals. In
particular, we construct a class (see a generic pseudocode for
the class object in the Appendix) that contains information
about the configuration of the RNA, and partially formed
capsid intermediates bound to it, for every RNA present in
solution. This class only requires a small amount of computer
memory to be able to store the configuration of the partially
formed capsid as well as a simple description of the RNA con-
figuration. Additionally, the class contains subroutines that can
calculate the set of reactions available to the RNA and partially
formed capsid, depending on its current configuration. Thus
each RNA-capsid (RC) intermediate in the simulation and its
possible reactions are monitored via a unique class object.
This algorithm extends similar algorithms for empty capsid
assembly, such as the queuing-based algorithm of Schwartz
and co-workers [26,27], to the situation where RNA or other
polymers will cooperatively coassemble with the capsid.

Our procedure works as follows. One first calls the class
subroutine that calculates the reactions available to each RC
intermediate α, where α ranges from 1 to the number of RNAs

in the simulation. The subroutine calculates the set of all
Mα reactions available to the RC intermediate, the reaction
probability for each, and the total probability that any of
these reactions will occur. The reaction probabilities aμ(α),
with μ = 1, . . . ,Mα , for each reaction available to the RC
intermediate are estimated from the forward and backward
rates of the reaction and the number of capsid building
blocks (in this case pentameric units) present in solution. For
example, the forward part of the reaction [Eq. (1) above] has a
probability aμ(α) = ninjκ

1, where ni and nj are the number
of intermediates Ci and Cj present and κ1 is a probabilistic rate
with units of s−1. For a well mixed volume V , the probabilistic
rate can be estimated from the kinetic rate kf and the volume
of the system as kf = V κ1. The total probability that any
reaction will occur a0(α) is computed as the sum of all reaction
probabilities aμ(α), i.e.,

a0(α) =
Mα∑

μ=1

aμ(α). (3)
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TABLE I. Number of intermediates in the dodecahedron system with and without RNA. The number of unique intermediates for the
dodecahedron with and without RNA is shown for each number of pentamers in the partially formed capsid (1–12). (a) The RNA organizations
are the number of different RNA arrangements for all of the unique protein intermediates containing a given number of pentamers [column (d)].
Examples of two RNA organizations for n = 4 are shown in Figs. 1(e) and 1(f). (b) The number of RNA binding configurations is given by∑

M=0,NPS
NPS!/(NPS − M)!M! and is the combinatorial number of different RNA-CP complexes that can occur, given the number of available

packaging signals NPS. For the case when n = 10, there are only two PSs remaining in the RNA that are not in complex with a capsid with
four possible binding configurations, one where both PSs are bound to CP, one where both are free, and two where only one PS is CP-free.
(c) The number of unique RNA-capsid intermediates considered in our algorithm when RNA is present. This is the product of columns (a) and
(b). (d) The number of intermediates in the RNA-free case. This column is equivalent to the number of dodecahedral intermediates modeled in
Zlotnick’s approach [2,3].

RNA RNA binding RNA-capsid Protein
Pentamers in organizations configurations intermediates intermediates
capsid intermediate (a) (b) (c) (d)

1 1 4096 4096 1
2 1 1024 1024 1
3 4 512 2048 2
4 14 256 3584 5
5 46 128 5888 9
6 142 64 9088 20
7 396 32 12672 13
8 948 16 15168 12
9 1832 8 14656 5

10 2672 4 10688 3
11 2600 2 5200 1
12 1264 1 1264 1
Total 85376 73

After calculation of the possible reactions and their probabili-
ties, our procedure operates by randomly selecting one of the
M = ∑

α Mα reactions to fire at a random time in the future
according to the probability function [32]

P (τ,μ,α) = aμ(α)e−ā0τ , (4)

where ā0 = ∑
α a0(α) is the sum of total reaction probabil-

ities for each RC intermediate. The probability in Eq. (4)
corresponds to the probability that one of the Mα individual
reactions μ = 1, . . . ,Mα available to the RNA-capsid inter-
mediate α will occur within a time τ from the current time.
After the reaction μ and the RC intermediate α is selected for
firing, the configuration of the RC intermediate α is changed
appropriately, the time is updated by τ , and the procedure
repeats.

There are two types of basic reactions available to any
given RC intermediate, depending on its configuration. First,
capsid protein can bind to or unbind from any of the PSs in the
RNA with on and off rates of κ1

R(i) and κ2
R(i), respectively, as

depicted by the vertical arrows in Fig. 2(b). Note that each PS
i, with i ∈ {±1, . . . ,±6}, is allowed to have a unique rate in
the simulation. Second, CP in complex with RNA can bind to
the growing capsid shell via protein-protein interactions with
on and off rates of κ1

P and κ2
P , respectively, as depicted by the

horizontal arrows in Fig. 2(b). The RNA-CP complexes are
confined to binding at the edges adjacent to the last RNA-CP
complex added to the growing capsid shell, consistent with
the local-rule model discussed above [see Figs. 1(d)–1(f)].
As a result, the path followed by the RNA as it makes
contact with the protein shell forms a Hamiltonian path in
the fully assembled capsid [5,30,34], where the graph for

the Hamiltonian path can be represented by a (hypothetical)
polyhedron with vertices at the binding sites.

In the example discussed here, the RNA-protein contacts are
modeled as being located at the fivefold axes of icosahedral
symmetry, defining an icosahedron as the overall (icosahe-
drally averaged) layout of the RNA in contact with capsid.
This is consistent with experimental evidence for a number
of RNA viruses, for which icosahedrally averaged cryo-EM
has revealed a polyhedral shell organization for the genomic
RNA in contact with capsid protein [31,35–37]. Hamiltonian
paths label the different possibilities in which these averaged
densities can be realized by the packaged genomic RNA.
Different RNA organizations in our dodecahedron model
hence correspond to the different possible Hamiltonian paths
on the icosahedron. There are 1264 such Hamiltonian paths for
the icosahedron, each labeling a different assembly outcome.
Our stochastic approach can be used to predict the relative
multiplicity of occurrence of these different configurations,
hence providing predictive information on the tertiary structure
of the RNA in contact with the capsid shell in the fully
assembled particles.

IV. RESULTS

We have used the approach outlined above to analyze
the assembly of the 12 pentamers in the dodecahedral study
system both with and without an RNA containing 12 packaging
signals. We consider an ensemble of 3000 RNAs and 36 000
pentamers that satisfies the stoichiometry of the dodecahedral
capsid. In the RNA coassembly simulations, RNAs recruit
pentamers and assemble capsids according to the reactions
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illustrated in Fig. 2 and RNA-protein contacts are assumed
to take place at the center of each of the pentamers in the
dodecahedral capsid.

A. Choice of model parameters

We use the following formulas to determine on and off rates
in our simulations:

κ1
P

κ2
P

= Ce−β�GP , (5)

κ1
R(i)

κ2
R(i)

= Ce−β�GR (i),

(6)
κ1

P

κ2
P

= e−β�GP ,

where C in Eqs. (5) and (6) is a dimensionless factor. Equation
(5) is used in the RNA-free case, where protein-protein
interactions are of second order, while Eq. (6) is used in
the RNA coassembly model, where RNA must recruit CP
in a second-order reaction before protein-protein associations
occur via a first-order reaction. In the RNA-free case, we
use the diffusion-limited kinetic rate kf = 106 M−1 s−1, the
value used by Zlotnick [4] for protein capsid assembly, to
approximate the on rate using the relation κ1

P = 106/V =
0.0024 s−1, where V = 0.7 μm3 is an estimate of the volume
of a small bacterial cell. The factor C in Eq. (5) is adjusted
such that favorable capsid assembly occurs around �GP =
−2 kcal M−1, consistent with estimates of protein-protein
association energies in capsids. In the RNA coassembly model,
the RNA must first recruit CP via a second-order PS binding
event. We use the same on rate as in the protein-only situation,
i.e., κ1

R(i) = 0.0024 s−1, and estimate the range of values for
the free energy of binding possible for RNA-CP interactions,
�GR(i), from stopped-flow kinetic measurements of RNA
stem-loop binding to coat proteins in bacteriophage MS2
[38]. These measurements determine the upper limit on
RNA-CP binding, because they correspond to the strongest
packaging signal in the experiment, giving a value of �GR =
−12 kcal M−1. Finally, we use on rates of κ1

P = 100 or 106

s−1 for the first-order protein-protein association reactions.
Simulations using a single processor usually take less than a
minute of computer time to reach 1000 s of simulation time.

B. The RNA-free assembly versus assembly
in the presence of RNA

We start by comparing assembly kinetics in the absence and
presence of RNA. Figure 3 shows plots of the percentage of
capsid assembled in thermodynamic equilibrium (capsid yield,
solid black curve), given the available number of pentamers,
and the time (T90, dashed red curve) until 90% of this
yield value is reached for different choices of protein-protein
association energies. The plot in Fig. 3(a) for the RNA-free
case reveals a range of �GP , shown delimited via dashed lines,
for which assembly yield and speed are simultaneously high.
In vivo, the need to achieve a high yield of stable capsids in a
relatively short time would confine protein-protein association
energies to this limited range of values.
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FIG. 3. (Color online) Comparison of the effects of protein
association energies on assembly yield with and without RNA inter-
actions. (a) Percentage of capsid assembled from available pentamers
(solid black curve) and time to reach 90% of the maximum amount of
capsid assembled (dashed red line) at thermodynamic equilibrium
for a protein-only assembly scenario. Vertical lines indicate an
optimal window of �GP values that result in efficient assembly,
i.e., high yield and speedy assembly reaction. (b) Percentage of
capsid assembled in the presence of RNA for κ1

P = 100 s−1 shows
that weaker protein-protein association energies can increase the
yield at the expense of overall capsid stability. Data points (dots)
in (a) and (b) are averaged over 100 assembly simulations. Data
for the percentage of capsid assembled are taken at t = 1000 s,
which is thermal equilibrium for all points except those lower than
|�GP | = 2.5 kcal M−1 in (b), where the slow annealing occurs.

In contrast, Fig. 3(b) shows simulations in the presence
of an RNA containing 12 PSs of identical CP affinity of
−12 kcal M−1 and with the capsid nucleation site at po-
sition −4. For this scenario of a coassembly process, the
percentage of capsid assembled is always low compared to the
protein-only case. Moreover, it exhibits a principally different
assembly behavior: Capsid yield is higher at lower values
of |�GP |, contrary to the RNA-free case. For high values
of |�GP |, the assembly reactions follow sigmoid kinetics
and achieve equilibrium quickly (∼100 s). Since we are
able to track each assembling RNA via our method, we are
able to assess in molecular terms the mechanism of capsid
buildup in this scenario. An analysis of these data reveals
that under these conditions the majority of the RNAs form
partial, aberrant capsid-like structures, in which both ends of
the RNA are trapped, i.e., in which both ends are surrounded
by pentamers containing an RNA contact and thus cannot
move to a nearest-neighbor pentamer that is unoccupied as
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required by the local-rule model. For low values of |�GP |
(<2.5 kcal M−1), assembly occurs in two phases, a rapid phase
of sigmoidal kinetics, followed by an extremely slow annealing
phase where the partially formed aberrant structures slowly
anneal to form closed capsids. Figure 3 suggests that reducing
the protein-protein association energy could be a vehicle
to achieve higher capsid yield. However, such an assembly
scenario is likely to be inefficient due to this slow annealing
phase. Moreover, the decrease in capsid yield for more negative
protein-protein association energies suggests that in order for
an ssRNA virus to achieve a high capsid yield, capsid stability
must be sacrificed. Since this is most certainly nonviable
in vivo, we instead explore alternative ways of increasing
assembly efficiency by adjusting the PS affinities, the position
of the packaging signal where nucleation starts, and the on
rates. We note that the inhibitory effects of the RNA described
above are, at first sight, counterintuitive. However, in biology
inhibitory effects are often seen in systems where regulation
of activity is important. We therefore examine in the following
if the packaging signal affinities and the location of the
assembly-initiating packaging signal impact on capsid yield.

C. Dependence of assembly efficiency on the position
of the strong packaging signal

We explore first the dependence of assembly kinetics on
the position of the high-affinity packaging signal that initiates
assembly. Indeed, the position of this assembly initiation
site may vary widely for different viruses. For example, the
genome of bacteriophage MS2 contains a single high-affinity
packaging signal TR, located near the center of the 3569-
nucleotide-long genomic RNA at nucleotide 1754 [19], while
for other ssRNA viruses, such as the plant virus Turnip yellow
mosaic virus, the high-affinity PS is positioned towards the
5′ end at nucleotide 18 [39]. Therefore, we explore whether
capsid geometry favors a specific location of the high-affinity
packaging signal that nucleates assembly. For this, we use a
protein-protein association energy of �GP = −2.5 kcal M−1

and vary the position of the high-affinity signal across the
12 possible binding sites, keeping all other packaging signal
affinities fixed at a weaker value of −2 kcal M−1. Figure 4
summarizes the result. The percentage of capsid assembled
from available pentamers and RNAs varies significantly
depending on the location of the strong packaging signal, with
positions −5 and −4 (and 4 and 5 by symmetry) resulting
in the highest assembly yields for this choice of �GP . This
suggests that the position of the high-affinity PS should have
an impact on assembly efficiency.

D. Dependence of assembly efficiency on packaging
signal affinities

Given the impact of the position of the strong PS on
assembly efficiency, we next examine how varying the binding
affinities of the remaining 11 PSs further affects the assembly
process. An advantage of our object-oriented algorithm is that
it allows the binding affinities of all 12 packaging signals to
be specified for each RNA in the simulation without adding
to the complexity. In Ref. [9] we have identified multiple,
lower-affinity PSs in the genome of bacteriophage MS2. In
order to investigate the implications of a genome containing
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FIG. 4. Assembly efficiency depends on the location of the high-
affinity packaging signal. The percentage of capsid assembled for
κ1

P = 100 s−1 from available RNA and pentamers is illustrated for
different locations of the strong packaging signal, i.e., the assembly
initiation point, in the RNA. The highest yield of completed capsid
is achieved when the strong packaging signal is placed at positions
−4 and −5 (or the symmetric positions 4 and 5). Data points (dots)
are averaged over 100 simulations and splined to produce the curve
shown.

multiple PSs of varying affinity on capsid protein assembly
kinetics, we explore the impact of different choices for the
binding affinities of the remaining 11 PSs in our dodecahedron
model. For an RNA containing 12 PSs that can be varied
in increments of 0.1 kcal M−1, there would be 12012 > 1024

possible packaging signal configurations, making a systematic
exploration of the PS phase space unfeasible. However, even
though it is not possible to explore the entire phase space
of all possible combinations of PS affinities due to the
complexity of the problem, it is possible to randomly sample
different RNA configurations from this phase space of RNA
configurations to obtain a simplified picture of how varying
PS affinities affects capsid yield. For this we have randomly
selected 300 RNAs from the ensemble of possible packag-
ing signal configurations, i.e., for each RNA we randomly
chose affinities for each of its 12 PSs between −0.1 and
−11.9 kcal M−1, fixing the strong packaging signal that
nucleates assembly at position −4 at −12 kcal M−1. For
each of these RNAs, we have computed the capsid yield
(i.e., percentage of capsid assembled at equilibrium) using
a protein-protein association energy �GP = −2.5 kcal M−1

and an on rate for protein-protein association of κ1
P = 100 s−1.

The left peak in Fig. 5(a) illustrates the range of capsid
yield for this ensemble of 300 RNAs given κ1

P = 100 s−1

(horizontal axis) and the probability of finding an RNA in this
ensemble that assembles with this yield (vertical axis). The
figure demonstrates that the few rare RNAs at the upper limit of
the distribution reach a maximum capsid yield of around 66%.
This suggests that for this choice of the on rates, high yields
close to 100% as in the RNA-free case are highly unlikely,
either because such RNAs are extremely rare and have not
been sampled or because there is no distribution of PSs that
will achieve a high yield without additional adjustment of other
parameters.

We therefore explore next the effect of varying the on
rates. Estimates for the on rate of RNA-CP binding κ1

R(i) are
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FIG. 5. (Color online) Exploring the effect of κ1
P and packaging signal distribution on capsid assembly. (a) Distribution of capsid yields

for an ensemble of 300 RNAs with a random distribution of packaging signals. The distribution shows the probability of finding an RNA in
the ensemble of 300 that achieves a given yield of capsid. The leftmost peak is computed for κ1

P = 100 s−1, while the rightmost peak is for
κ1

P = 106 s−1, illustrating the effect of the parameter on capsid assembly. (b) Capsid yield for the case of a homogeneous RNA containing
12 PSs with identical affinities. For κ1

P = 100 s−1, the yield of the capsid is roughly independent of the PS affinities, while for κ1
P = 106 s−1

there exists an optimal value of PS affinity at −3.0 kcal M−1 in which capsid yield achieves a maximum of about 92%. (c) Percentage of capsid
assembled for four RNAs at values of κ1

P = 106 s−1 and �GP = −2.5 kcal M−1. The RNA1 is a high-yield RNA chosen from the ensemble
of 300 RNAs, while RNA2–RNA4 contain a uniform distribution of PS affinities. Although RNA1 and RNA2 have similar yields, RNA1 is
more efficient at the coassembly scenario when compared to the homogeneous RNAs. Statistical data for the assembly curves were collected
over 100 assembly simulations.

available from experiment [38] and we therefore keep these
values fixed. Experimental estimates for κ1

P , however, are un-
known. Here κ1

P corresponds to the rate at which neighboring
proteins, once bound to the RNA at the neighboring PS, will
associate. Once two proteins are in these positions, they are
already in close proximity and the rate will mainly correspond
to the refolding of the small RNA portion between these
neighboring PS, which is typically of the order of microsec-
onds. Therefore, a rate of κ1

P = 106 is more realistic for RNA
viruses. Results for the parameter of κ1

P = 100 illustrate how
the packaging of materials more rigid than ssRNA would affect
the assembly outcome. The second, shifted peak in Fig. 5(a)
shows the outcome for the same ensemble of 300 RNAs, now
assembled with an on rate κ1

P of 106 s−1 (keeping the protein-
protein association energy fixed at �GP = −2.5 kcal M−1).
For this value of κ1

P , the space of possible RNA configurations,
i.e., of possible distributions of PS affinities, now contains a
few rare RNAs that achieve a capsid yield similar to that of
the RNA-free case. Similarly, as shown in Fig. 5(b), the capsid

yield for homogeneous RNAs containing 12 identical PSs in-
creases with κ1

P . Interestingly, for higher values of κ1
P (e.g., 106

s−1) capsid yield is dependent on the RNA-CP affinity, while at
lower rates (e.g., κ1

P = 100 s−1) affinity has no significant im-
pact. In particular, when κ1

P = 106 s−1, a narrow peak emerges
around a weak RNA-CP affinity of �GR(i) = −3.0 kcal M−1

at which capsid yield is maximal at around 92%. This result
is consistent with Brownian dynamics simulations of capsid
assembly around homogeneous RNAs [22], which showed that
capsid yield varies according to RNA-CP affinity, with weak
interactions being important to ensure a high yield of capsid.

To contrast the difference between capsid assembly around
a homogeneous RNA containing 12 identical PSs and an inho-
mogeneous RNA containing 12 different PSs, Fig. 5(c) shows
a high-yield RNA with an inhomogeneous PS affinity distri-
bution from the ensemble in Fig. 5(a) (RNA1) in comparison
with three homogeneous RNAs containing 12 identical PSs for
the case of κ1

P = 106 s−1 and �GP = −2.5 kcal M−1. When
averaged over 100 simulations, RNA1 assembles 2913 ± 9
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viruses out of 3000 RNAs, or 97.1% ± 0.3%, while the best
homogeneous RNA [containing 12 weak PSs with binding
affinity of −3.0 kcal M−1 each (RNA2)] assembles 2776 ±
12 viruses, or 92.5% ± 0.4%. The other two homogeneous
RNAs [containing 12 medium affinity PSs of −6.0 kcal M−1

each (RNA3) and 12 strong affinity PSs of −12.0 kcal M−1

each (RNA4)] assemble significantly less capsid in the same
amount of time. Interestingly RNA1, which outperforms all the
others, contains two high-affinity packaging signals next to the
strongest packaging signal at position −4, suggesting that a
cluster of higher-affinity PSs around the strong PS that initiates
assembly could aid nucleation. Indeed, a similar situation
was observed in the genome of bacteriophage MS2, where
two additional high-affinity PSs are located a few nucleotides
away from TR [9]. As can be seen from Figs. 5(a) and 5(c),
a variation in packaging signal affinity can have a dramatic
effect on capsid yield and the PS affinity distribution has a
regulatory effect on assembly efficiency.

E. Tertiary structure prediction of RNA in contact
with the capsid

The PS affinity distribution moreover determines the
assembly pathways because it impacts on the position at
which protein subunits are recruited to a growing capsid

intermediate. Since different assembly pathways result in
different organizations of the packaged RNA genome in
the fully assembled viruses, our approach provides infor-
mation on how the genome is likely to be organized in
proximity to the capsid surface. In particular, it predicts
how the RNA molecule fits asymmetrically into the RNA
density in contact with capsid proteins observed in cryo-EM
experiments [37].

We illustrate this here for the four cases (RNA1–RNA4)
shown in Fig. 5(c). In the fully assembled capsids, the RNA
connects the centers of the pentagonal faces in such a way
that the RNA forms a Hamiltonian path on the inscribed
icosahedron (cf. Fig. 1), i.e., it forms a connected path between
the icosahedral vertices, visiting each pentagon precisely once
as it does so. There are 1264 possible such paths and we
investigate here the distribution of these in the assembly
of protein around RNA1–RNA4. For this, we simulate the
assembly of 3000 copies of each of these RNAs, repeating
this process 100 times in order to generate an ensemble of
roughly 200 000–300 000 fully assembled particles (note
that the number is smaller than 300 000 as the yield is not
100%). These particles are then analyzed to determine the
Hamiltonian path organization of their packaged genomes, i.e.,
the asymmetric organization of the RNA in contact with capsid
protein.

FIG. 6. (Color online) Examining the Hamiltonian path organizations of different RNAs. (a) Probability that an RNA in a capsid will be
observed in one of the 1264 Hamiltonian paths. The probabilities are calculated using roughly 300 000 assembled capsids containing RNA1,
a high-yield scenario with an inhomogeneous PS affinity distribution, and 300 000 assembled capsids containing RNA2, a high-yield scenario
with a homogeneous PS affinity distribution. For both RNAs, there is a clear bias towards a subset of paths. Roughly 250 paths account for 75%
of particles containing RNA1, while about 300 paths account for 75% of particles containing RNA2. The geometric origin of this bias is shown
below the plot where 94% of RNAs pass through the two most stable intermediates with four pentamers. (b) Probability that an assembled
capsid containing the low-yield homogeneous RNA3 or RNA4 will be observed in one of the 1264 Hamiltonian paths. The probability for each
path is roughly 1 in a 1000, illustrating that each path is roughly equally likely. In contrast to (a) only 80% of the RNAs will pass through the
two most stable intermediates with four pentamers, showing a propensity for the higher-yield RNA1 and RNA2 to bias assembly along these
more stable intermediates.
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Figure 6(a) illustrates the probability of occurrence of
the 1264 different possible Hamiltonian paths for assembly
scenarios with the high-yield inhomogeneous (RNA1) and
homogeneous (RNA2) RNAs. Interestingly, there is a strong
bias towards only a subset of the 1264 possible paths, with
about 250 paths occurring in about 75% of particles in the case
of RNA1 and about 300 paths in about 75% of particles for
RNA2. By contrast, Fig. 6(b) shows that there is no significant
preference for specific organizations of the packaged genomes
in the lower yield cases of RNA3 and RNA4, for which
all Hamiltonian paths occur with roughly equal probability
(i.e., each path has a probability of occurrence of about 1
in a 1000). This suggests that there are principally different
assembly behaviors for higher- and lower-yield scenarios,
independent of whether the distribution of packaging signal
affinities is inhomogeneous or homogeneous. The geometric
reason for this difference is demonstrated in Figs. 6(a)
and 6(b) in the bottom row, which shows the most abundant
on-pathway assembly intermediates with four pentamers in
the two scenarios. For RNA1 and RNA2, the two most stable
configurations (by number of protein-protein bonds) make
up 94% of all intermediates containing four pentamers, in
contrast with the lower-yield cases shown in Fig. 6(b), where
these two intermediates make up only about 80% of the
total. Moreover, in the latter case the third intermediate, with
significant probability of occurrence, has only four, as opposed
to five, interpentamer bonds and is hence less favorable from
a protein-protein interaction point of view. These examples
suggest that RNAs that assemble with high fidelity are biased
towards energetically more favorable geometries at the protein
level.

Finally, we note that this selection of specific assembly
pathways and genome organizations in the high-yield cases is
consistent with previous experimental and theoretical results.
In particular, a prediction of the contact map between capsid
protein and RNA in the tertiary structure of the packaged
genomes of bacteriophages MS2 and GA [9] shows a bias
towards a defined conformation of the packaged genome
in proximity to the capsid. Moreover, both cryo-EM re-
constructions of MS2 [30,37] and an asymmetric structure
determination using tomography [40] reveal that the tertiary
structure of the packaged genome is highly constrained and
possibly unique. Our results here suggest that this may be a
consequence of selective pressures that triggered evolution of
a packaging signal distribution that ensures higher capsid yield
in the coassembly process, biasing the RNA to package with
a more defined conformation when compared with random
nonevolved RNAs.

V. CONCLUSION

The recent discovery of multiple degenerate weak pack-
aging signals in ssRNA viruses from both bacterial and
eukaryotic hosts, in addition to the small number of strong
signals known to initiate capsid assembly, has opened up a
new view of the assembly process in this important class
of pathogens. It supports a paradigm shift away from the
traditional protein-centric view of assembly to one that
recognizes the full spectrum of the vital cooperative roles
played by the genomic RNA. Since ssRNA viruses contain

a disproportionate number of human diseases and agricultural
pests affecting crops and livestock, theoretical models and
experiments that contribute to a better understanding of
the mechanisms underlying their formation are important
for the development of novel antiviral strategies against
them.

Unlike their DNA viral counterparts, which first assemble
an empty capsid (procapsid) and subsequently use a terminase
(packaging motor) to package their genomic material into
this structure, ssRNA viruses use a sophisticated coassembly
process where the RNA genome interacts with the cap-
sid proteins during assembly. Hence assembly models that
are entirely reliant on protein-protein association [2–4] are
suitable only to describe the formation of empty capsids,
where the cooperative roles of nucleic acids or scaffolding
proteins are negligible. First attempts to incorporate capsid-
RNA interactions into assembly models were based on the
electrostatics between the negatively charged RNA and the
positively charged capsid [21–24]. While it is possible to
identify a choice of parameters in our model that yield a high
amount (about 92%) of assembled capsid when the RNA is
modeled as homogeneous, our results show that allowing the
PSs to vary introduces a much more complex range of capsid
yields that depend on the distribution of PSs affinities to coat
protein. In electrostatic models, where the RNA is treated
as homogeneous and the important interactions are between
the negatively charged phosphodiester backbone of the RNA
and the positively charged N -terminal arms of the capsid, both
nonviral RNAs and viral genomes of the same length would be
expected to package with equal efficiency [41]. By introducing
multiple PSs with varying affinity to coat protein, our model
creates a complex phase space of packaging signals that
can plausibly explain the experimentally observed differences
between the assembly efficiency of nonviral RNAs and native
cognate genomes for a variety of viruses [15]. Indeed, this
observation is consistent with our recent work on the locations
of packaging signals in bacteriophage MS2, which revealed
a wide distribution of packaging signal affinities with a
significant proportion of signals having weak affinities [9].
The analysis presented here suggests that a distribution of
widely varying packaging signal affinities to coat protein could
be the result of calibrating capsid yield and assembly speed
during viral evolution, conferring a selective advantage to
RNAs containing an optimal distribution of packaging signals
with defined affinities that had previously been overlooked.
Although a difference of about 5% in yield may seem too small
to confer an advantage to a virus, 5% makes a huge difference
in an evolutionary context. Assuming all else equal, the 97%
yield RNA1 would be assembling more viral particles than
the 92% yield RNA2. Although this difference is small in the
first infection cycle (RNA2 producing, e.g., 92 viruses versus
RNA1 producing 97 viruses), in subsequent infection cycles
this difference grows exponentially. As a result, it requires only
a few infection cycles (after approximately 50 cycles, 93%
of all progeny virus contain RNA1) for the vast majority of
progeny viruses to contain RNA1 instead of RNA2. Given the
short replication cycles of RNA viruses, these small differences
in yields are relevant and important to viral evolution.

The results presented here show that ssRNA virus assembly
can only be fully understood if the roles of the packaging
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signals are incorporated into the model. The important
message of this paper is that yield and speed of assembly
can be tuned by the RNA, and optimized, by multiple
packaging signals with varying affinities. Moreover, our
simulations reveal that nearly any generic RNA will as-
semble some completed capsids, explaining why assembly
of noncognate RNAs can be observed in experiment. How-
ever, in the parameter ranges explored here, these scenar-
ios generally result in lower yields than inhomogeneous
packaging signal distributions. The mechanisms underlying
the assembly of ssRNA can hence only be fully under-
stood if the crucial roles of the packaging signals are
appreciated.

The existence of larger classes of packaging signals with
weaker capsid protein affinities and their potential roles during
capsid assembly have long been overlooked. Searching for
these packaging signals has largely been unsuccessful, as they
share only short common sequence preference motifs and
secondary structures rather than defined nucleotide sequences.
An approach combining SELEX experiments, which provide
information on RNA sequences with affinity to capsid protein,
with functional variation experiments and a new bioinformat-
ics approach designed to search for common structural motifs
has identified such distributions of weaker packaging signals
in a number of viruses [8,9]. The analysis presented here
provides an explanation for their occurrence, demonstrating
the importance of multiple weak packaging signals for yield
and speed of assembly. This result paves the way for in
silico experiments that analyze selective pressures, such as the
need for efficient capsid assembly, on the evolution of viral
RNA genomes. First results along these lines, studying how
the evolution process may result in tuning of the packaging
signal affinities across a viral genome, are under way via
a genetic algorithm that alters packaging signals according
to a fitness function defined in terms of assembly efficiency.
Such studies will provide new insights into the constraints on
the evolution of RNA viruses, in addition to the requirement
of coding for gene products, which may ultimately open
up the possibility of predicting the outcomes of RNA virus
evolution.
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APPENDIX

We present here a brief description and pseudocode for the
class used in our object-oriented approach. The basic class
construct is given by the following:

Class RC_Intermediate

INTEGER protein(12)
INTEGER rna(12)

REAL psaffinity(12)

CONTAINS

SUBROUTINE getreactions

SUBROUTINE firereactions

End Class.
The integer array protein ranges from one to the number

of capsid building blocks, here 12 pentamers. This array is a
bookkeeping device that keeps track of which pentamers are
present in the protein layer. The array rna stores information
on which RNA-protein binding sites are in complex with
coat protein and whether the RNA-CP complex on that site
is associated with, or detached from, the growing capsid.
Finally, the array psaffinity contains the on and off rates for
capsid proteins to associate with each RNA site. This feature
allows us to model RNAs with different packaging signal
affinities within a competitive assembly scenario, allowing
the possibility to evolve RNAs using assembly efficiency
as a fitness function. The function getreactions uses the
information contained in the arrays protein and rna to
compute the possible reactions available to the partially formed
capsid, while firereaction chooses one of these reactions
to fire according to the probability functions in Eq. (4).
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