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ABSTRACT

An Order (N) technique, the phonon functional method, for the study of the low
frequency mechanical modes of large molecular systems is developed where the displacement
patterns are modeled with atomic detail. The method is based on ideas from electronic
structure theory and uses an energy functional to find the lowest frequency phonon states
of a classical dynamical matrix below a pseudo-Fermi level. The resulting method is iterative
and requires only the operation of the dynamical matrix on a set of vectors.

An analysis of the low frequency motions of three viral capsids, the satellite tobacco
necrosis virus, the cowpea chlorotic mottle virus, and the M13 bacteriophage are calculated
using the technique. The Raman spectra of the viral capsids are calculated using the
atomistic displacement patterns and an empirical bond polarizability model. In addition,
the mechanical modes and Raman spectra of the M13 bacteriophage are also found with
continuum elastic theory and an amorphous isotropic bond polarizability model which are
then compared with the atomistic calculations.

The mechanical modes of an adenosine triphosphate binding cassette are also calcu-
lated using the phonon functional method. The results indicate two clear modes that are
responsible for the transport process. Based on the two normal modes a transport cycle is
hypothesized.

The possibility of viron destruction through a resonant excitation of its capsids
mechanical modes is examined next. A recent impulsive stimulated Raman scattering ex-
periment of the M13 bacteriophage capsid is theoretically modeled using classical molecular
dynamics. The results are analyzed with a simple driven harmonic oscillator approach and
indicate the existence of an “amplitude threshold” which causes the virus capsid to break

apart once reached.
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Finally, the activation relaxation technique is extended to atomistic systems with
explicit water. A test of the extension is performed on a small single amino acid protein.

The results reveal difficulty extending the technique to systems with explicit water.
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CHAPTER 1
INTRODUCTION

I. BACKGROUND AND MOTIVATION

The computational simulation of biological systems is a diverse and challenging field
that involves modeling on nearly all length and time scales. On the nanoscale level, molec-
ular dynamics has been a popular method for the computational simulation of biological
processes. The molecular dynamics algorithm is quite simple, using Newtons equations to
form a trajectory of the system over time. However, there are a variety of problems with
molecular dynamics that have been difficult to overcome. For example, many biochemical
processes in the cell, such as protein folding and enzymatic activities, can take place on
the order of microseconds to milliseconds and often involve hundreds of thousands or even
millions of atoms. Since a small time step of about 1 fs is required due to the fast hydrogen
motions of the system, a molecular dynamics simulation will require 10? steps to reach the
microsecond time range of many biochemical processes.

The proliferation of supercomputing centers has helped with the molecular dynamics
time scale issue to some extent. For example, Freddolino et al. have recently performed a
short 50 ns molecular dynamics simulation of an entire organism [1], the satellite tobacco
mosaic virus. Yet, despite advances in computational power, molecular dynamics has yet
to reach the time scale of milliseconds for large systems.

An alternative to molecular dynamics is normal mode analysis. Tama and Sane-
jouand [2] have noted that there is experimental evidence that the functional and enzymatic
activity of most biological molecules can be explained by a few of the lowest frequency me-
chanical modes computed from a harmonic analysis. Sometimes a single low frequency
normal mode is sufficient to describe nearly all of the functional motion. Normal mode

analysis has had much success in recent years. For example, normal mode analysis has



successfully determined large scale motions of citrate synthase [3] that are involved in its
enzymatic activity. A similar study of the mechanics of citrate synthase using molecular
dynamics may require several microseconds of simulation time. This makes normal mode
analysis a very attractive tool for the study of the mechanical motions of large biological
molecules.

One of the key problems with using a normal mode analysis to study large molecules
is that it requires the formation and diagonalization of an 3N x 3N matrix (the dynamical
matrix). The diagonalization typically scales as Order (N?3) while the computer memory
required to store the dynamical matrix scales as Order (N?). As a result, the number of
atoms that can be treated with a direct formation and diagonalization of the dynamical
matrix is on the order of a few thousand atoms at the present time.

In order to overcome the memory issue, most normal mode analysis employ coarse
graining techniques [4, 5, 6]. In a coarse graining normal mode analysis, individual atomic
motions are replaced by group motions such as the movement of a single protein in a large
virus [7]. This reduces the dynamical matrix to a smaller size that is reasonable for storage
in computer memory. The eigenvectors of the smaller dynamical matrix are then used to
construct vibrational mode patterns using the smaller set of group motions. The result of the
coarse graining procedure is that the fine detail of the vibrational mode patterns are muted
and their corresponding frequencies approximate. Generally this approach works well for
describing the low frequency modes of large molecules since these are likely to involve large
groups of atoms moving in unison; and this is were the method is typically used. However,
there are cases were atomic detail in the low frequency vibrational mode patterns of large
molecules is useful, if not essential. For example, Babincova et al. [8] have suggested that

the vibrational modes of viruses, such as HIV, can be resonantly excited through a hyper



sound or ultrasound excitation to produce damage. The theoretical study of such ideas
requires an atomic level description of the vibrational modes in order to properly account
for coupling to external probes.

The main work of this dissertation develops a low frequency normal mode analysis
technique for large atomic systems (> 10* atoms) where the vibrational mode patters are
modeled with atomic detail. The technique is based on Order (N) electronic structure
methods and can be used to determine a subset of the lowest eigenvalues and eigenvectors
of the full 3NV x 3N dynamical matrix. As discussed above, an atomistic normal mode
analysis for large systems can be important for certain situations, but the work presented
in this dissertation will show that their are numerous other applications were an atomistic
normal mode analysis can be quite useful.

II. DISSERTATION OUTLINE

The presentation of material in this dissertation is broken into two parts; theoretical
development and applications. The next four chapters (Chapters 2 - 5) present theoretical
models and computational techniques that are used in specific applications that are dis-
cussed in Chapters 6 - 8. Readers comfortable with the theories presented in Chapters 2
through 5 may skip to Chapter 6 for an analysis of various applications.

In order to model biological systems using techniques other than molecular dynam-
ics, the Saguaro biological simulation package was developed based on classical empirical
potential energy models [9, 10, 11]. All of the calculations performed in this dissertation
were done using the Saguaro package. Chapter 2 gives a general overview of the types of
simulations that Saguaro is capable of as well as detailed descriptions of the molecular me-

chanical energy models used and the molecular dynamics integrator. Two methods used to



calculate electrostatic interactions, the particle mesh Ewald method [12] and the generalized
Born model [13, 14], are discussed in detail.

Chapter 3 presents a necessary review of group theory which is needed for later
chapters when symmetry operators for the icosahedral point group of viruses are used. In
addition, a method for determining the group theory irreducible representation matrices
and the character table from only the rotation matrices for the group is described. The
advantage of this technique is that the irreducible representation matrices and basis vectors
can be constructed using a simple computer algorithm.

In Chapter 4, a new method for the determination of low frequency vibrational
modes called the phonon functional method is discussed. The method which is based on
ideas from electronic structure theory [15, 16, 17, 18] is capable of finding the low frequency
mode patterns of large molecules atomistically. This is in contrast to the usual methods of
continuum theories or coarse graining were a reduced basis is used to construct approximate
mode patterns for the molecule. The phonon functional method presented in Chapter 4
constructs vibrational displacement patterns from the full Cartesian basis of three degrees
of freedom for each atom and will produce the correct displacement pattern. The method
is discussed from both theoretical and computational standpoints.

Chapter 5 presents some additional theories that have been developed for specific
applications. These include continuum elastic theory for vibrations of an isotropic material,
formulas to predict Raman intensities, and an equation describing the coupling of light to
the mechanical modes of a molecule for use in classical molecular dynamics simulations.

Chapter 6 begins the presentation and discussion of various applications. In Chapter
6, the mechanical modes of various viral capsids of two varieties, icosahedral and tubular,

are calculated using the phonon functional method. The types of capsids studied include



the icosahedral satellite tobacco necrosis virus, the cowpea chlorotic mottle virus, and the
tubular M13 bacteriophage. Comparisons of the phonon functional method with other
models such as the elastic network model [4] are made whenever possible. Raman spectra
predictions of all three viral capsids are made using an empirical bond polarizability model
[19, 20, 21]. The Raman spectra predictions can be useful in determining which modes will
couple to external probes the strongest and therefore may produce the most damage from
a pulsed laser source.

Next in Chapter 7, the mechanical modes of large molecules and complex molecular
assemblies are discussed. Though there are many large molecules that can be studied
with a harmonic normal mode analysis only one family of large molecules, periplasmic
binding proteins and adenosine triphosphate binding cassettes, will be examined. These
molecules belong to a group of proteins that are responsible for the transport of nutrients
(toxins) into (out) of the cell membrane. Understanding the conformational changes of
these molecules can help to develop novel nano devices such as biosensors [22] that sense
very small concentrations of chemicals, or the biochemical mechanisms involved in Human
diseases such as cystic fibrosis [23, 24].

In Chapter 8, miscellaneous applications are presented. First, a molecular dynamics
simulation of the M13 bacteriophage in the presence of a light source is discussed. The
simulation is a classical theoretical investigation of impulsive stimulated Raman scattering
experiments that have been performed on the phage [25, 26, 27]. Next, the activation
relaxation technique (ART) [28, 29] is presented as a possible method of exploring the
conformational states of peptides. Two ways of using ART are discussed. The first explores

the ART method with a fully atomistic molecule and implicit water. The second examines



the ART method using explicit water. The conformational states of a small peptide, alanine
dipeptide, are studied as an example.
In the last chapter, Chapter 9, the results and theories presented in this dissertation

are concluded and summarized.



CHAPTER 2
SAGUARO SIMULATION PACKAGE

I. INTRODUCTION

The projects presented in this dissertation all require an atomistic classical energy
model describing the various interactions between atoms. A typical classical empirical
energy model that is used in molecular dynamics simulation packages such as AMBER [9]
and CHARMM [10] is often the first choice when choosing an energy model (force field)
that is atomistic in its description of forces. The difference between the AMBER and
CHARMM force field is in the parametrization of the various terms in the energy equation
(e.g. the point charges that are assigned to each atom of a molecule in order to describe its
electrostatic potential).

While the AMBER and CHARMM packages are capable of calculating the energy
and forces necessary for some of the projects presented in later chapters, the editing of
the computer code that would be required to perform the specific calculations that are of
interest would be difficult and time consuming. In addition, available molecular dynamics
simulation packages are often limited to a single force field model. For these reasons, the
Saguaro simulation package was developed for the specific applications described in this
dissertation.

In this chapter, the Saguaro simulation package and its capabilities are discussed.
First, the classical atomistic energy model used in Saguaro is discussed followed by a pre-
sentation of the particle mesh Ewald [12, 30] and generalized Born solvation model [13] used
to calculate electrostatic interactions. Finally, each of the various simulations available in

Saguaro are briefly described.



II. CLASSICAL FORCE FIELD MODEL
The general form used in nearly all classical atomistic molecular dynamics simula-

tions is given by [9, 11]

Vri,r,...) = Z kb(r—?“eq)Q-i- Z ka(H—Heq)Q

bonds angles
Up 1 qiq; A B
+ d-z ?[1+cos(n¢—7)]+§Z(€r tET 6 (2.1)
thedrals i

The parameters kg, k,, v, along with the van der Walls coefficients A and B are determined
empirically from experimental data from various molecules such as benzene. The ¢; are the
partial charges that are given to each atom in the molecule to reproduce its electrostatic
potential. These are usually determined by fitting the electrostatic potential made by the
system of point charges to the potential obtained from a quantum chemistry calculation [9].

The bonded interactions (bonds, angles and dihedrals) provide a classical description
of the stretching of a bond, the bending between two bonds, or rotation about a single bond.
The stretching, bending and rotating is illustrated in Figure 1. The stretching and bending
is considered to be small and thus can be represented to a first approximation as a harmonic
potential with spring constants k; and k,. The dihedral term describes a rotation about
the bond and is given by a Fourier expansion. Typically, only one or two terms are needed
to reproduce the potential energy. For example, the rotation about the C-C bond in CoHg
can be described by 1+ cos (3¢). A plot of the dihedral energy as a function of the dihedral
angle ¢ for CoHg is shown in Figure 2. The potential energy maxima correspond to the
positions where the hydrogens (on opposite sides of the C-C bond) are aligned with each
other. This occurs three times on the interval [0,27]. For CoHg, there are a total of nine

unique paths (H-C-C-H) between a single hydrogen on one side to another hydrogen on



=0 =90

FIG. 1. Tllustration of the three different types of bonded interactions used in a classical
molecular mechanical force field. (a) Harmonic stretching of a bond. (b) Harmonic bending
between two bonds. (c) A rotation about a single bond. Dihedral angles of ¢ = 0 and
¢ = 90° are shown.
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Dihedral Energy (C-C)

FIG. 2. A plot of the dihedral energy of ethane as a function of the dihedral angle ¢. Here,
the dihedral energy is given by the single Fourier term E(¢) = vs[1 + cos (3¢)] /2. There
are three energy maxima which correspond to the alignment of hydrogens on either side of
the bond.

the other. To prevent over counting, the total dihedral energy of the bond (v,) is equally
divided among all bond paths.

The non-bonded interactions contain two terms that describe the electrostatics of
the system, the Coulomb term and the van der Waals term. The non-bonded interactions
extend over all atoms with two exceptions. The first corresponds to the situation when
atoms in the same molecule are separated by, at most, two bonds. These interactions are
completely excluded. The second exception is for two atoms separated by exactly three

bonds. In this case, both the Coulomb and van der Waals interactions are then reduced by
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a scaling factor, mimicking a weak dielectric. Typical scaling factors used for Coulomb and
van der Waals interactions are 1/1.2 and 1/2.0 respectively.

The non-bonded terms have the most computational expense since they scale as
Order (N?), where N is the number of atoms in the system. A cutoff can be used for both
the Coulomb and van der Waals terms reducing the computational expense to Order (V).
Generally though, the Coulomb interactions are only truncated when using an implicit
solvent model such as the generalized Born model [13] where there is a strong dielectric
screening. For periodic systems however, the Coulomb sum is conditionally convergent and
an Ewald sum [31] must be used. The calculation of a standard Ewald sum scales as N2
but through the use of the particle mesh Ewald method [12, 30] the Coulomb part of the
non-bonded interactions can be computed in Order (N log (NN)) operations.

III. PARTICLE MESH EWALD METHOD FOR COULOMB SUMS
For periodic boundary conditions, the Coulomb electrostatic energy of the unit cell

is given by

E(Flaf%' T ZZ QZQJ (22)

7 —7”3+R

where R, is a lattice vector of the crystal and the prime denotes that terms with Ry =0
and 7 = j are excluded. The lattice vectors can be written in terms of the primitive lattice
vectors @y, do, and d3 as, ﬁn = n1d1 + n2ds + n3ds. The summation in Equation (2.2) can
not be truncated due to its slow convergence.

In 1921, Ewald [31] published a paper which showed that slowly converging sums
with 1/r dependence could be rewritten in terms of two rapidly converging sums. The first
term is a sum of the “direct” lattice vectors (ﬁn) and is thus called the direct sum. The
second term is a sum over the reciprocal lattice vectors ém = mlgl + mggg + m353, where

l_;i are the primitive lattice vectors of the reciprocal unit cell. The direct sum, Eg;., takes



12

the form
/ gig;erfc — 7+ ﬁn
Egiy = Z Z ( - D (2.3)
n g,j=1 Tz - Tj + Rn‘
while the reciprocal sum, FE,.., is given by
1 ex |G (32 - -
Erec = Z p( ‘ m‘ / ) (Gm)s(_Gm)' (2-4>

2nV m#0 |Gm |2

The total Coulomb energy of the unit cell is then the sum of the direct term and the
reciprocal term. Both Equation (2.3) and (2.4) can be truncated due to the fast convergence
of the complementary error function and the Gaussian. The term S(G,y,) in Equation (2.4)

is the structure factor defined by
N
S(Gm) =" qjexp (2miGy, - 7). (2.5)
j=1
The term ( present in the direct and reciprocal sums can be chosen to be nearly any value.
Larger values of g will force the reciprocal sum to extend over more reciprocal lattice vectors
ém, while smaller values will cause an increase in the number of neighbor pairs to sum over
in the direct energy term. The direct sum is easily calculated in Order (V) operations with
an appropriate choice of 3. The reciprocal sum however will then be of Order (N?) since
the structure factor must be calculated for each reciprocal lattice vector and the reciprocal
sum will approximately extend over N vectors.
The goal of the particle mesh method [12, 30] is to calculate the reciprocal energy
term in the Ewald summation in Order (N log (N)) steps by interpolating the exponential in

the structure factor at equally spaced points (mesh points) in the primitive (not reciprocal)

cell using a Cardinal B-spline [32]. The structure factor can then be written in the form

Ki—-1Ko—1K3z—1

3 miky m2]€2 msks
S(Gn) = Z Z Z Q(k1, ks, k3) exp {2772( X, % + %, )]
k1=0 ko=0 k3=

= F(Q)(k1, k2, k3), (2.6)
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where F(Q) denotes the discrete three dimensional Fourier transform of the array . The
numbers K; correspond to the number of mesh points that the primitive cell is broken up
into along each lattice vector. In general, the more mesh points used, the more accurate

will be the interpolation and the final answer for E,... The K7 x Ko x K3 array @,

N
Q(k1, ko ks) = Y > qiMy(ui —ky —mKy)

1=1mn1,n2,n3
X Mn(UQZ — kg — ngKQ)Mn(’u,gi — k?g — ngKg), (27)
is calculated in Order (N) steps by evaluating the Cardinal B-splines (M,,) at the scaled
atomic positions uy; = dy - 75, ug; = ds - 73, etc. A simple formula describes the Cardinal
B-spline functions and is given by

1 n n!

(n—1)! Z(_l)kk!(n —k)!

k=0 ’

My (u) = (u— k)1, (2.8)

where n is an integer that denotes the order of the spline and the + operator is defined as
u4+ = max(u,0). A spline order of n = 4 is typically used in most particle mesh applications.
Since the Cardinal B-spline functions are non-zero in the range 0 < u < n, only a finite
number of lattice vector coefficients n; in Equation (2.7) will contribute to Q.

The reciprocal energy term [Eq. (2.4)] takes the final form

Ki1—-1Ks—1K3—1

Erec:% Z Z Z 9*Q(ml,mg,mg)Q(ml,mg,mg), (29)

m1=0 mo2=0m3=0

where 6 x () denotes the convolution operation, § = F(B - ('), and B and C are constant

K; x Ky x K3 arrays given by

B(mi,ma,mgz) = [bi(ma)[* - [ba(ma)[?,-|b3(m3)|?

1 exp (—72|Gnl?/6%)
C(m1,mao,m = — — . 2.10
) = T Ep .

The value of C(0,0,0) is set to zero in order to properly exclude the m # 0 term in

Equation (2.4). For the other m values, the reciprocal lattice vector is defined by G =



14
m’ll;l + m’ll;l + m’lgl with m, = m; for 0 < m; < K;/2 and m, = m; — K, otherwise. The
factors by (my) are determined by
bi(m;) = exp(2mi(n —1)m;/K;)
n—2 -1
x| Y My(k+1)exp (2mimik/K;)| (2.11)
k=0
where n is the order of the Cardinal B-spline.

The particle mesh procedure to evaluate the Coulomb energy of a periodic unit cell
can now be described as follows. Using Equation (2.10) the constant array B - C' is formed
and permanently stored. Then for each energy evaluation, the array @ is calculated using
Equation (2.7) and inverse fast Fourier transformed to obtain F~!(Q). Multiplying by the
array B-C = F~1(f) and fast Fourier transforming, the convolution (% Q) is formed. Once
the convolution (0 Q) is computed, the reciprocal energy term is calculated with Equation
(2.9). This procedure takes NN log (V) operations; N to form the @ array and perform the
reciprocal sum, and N log (N) to form the convolution. The direct energy term is then
easily calculated in Order (N) operations since the sum can be truncated.

IV. GENERALIZED BORN MODEL

Often in the simulation of large molecules (the solute), a disproportionate amount
of time is spent on the calculation of solvent-solute and solvent-solvent interactions. This
is due to the amount of solvent that is needed to place the solute in a periodic box of
appropriate size so that electrostatic interactions of the solute with its periodic images are
negligible.

A different route that is sometimes taken for very large molecules is to use an implicit
solvation model for the solute-solvent interactions. This greatly reduces the size of the

problem by removing the explicit solvent molecules from the simulation. There are many
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methods for the treatment of solvation effects. The method that is used here is based on
the Born model for solvation of ions [33], first published in 1920 and later developed into
the generalized Born model by Bashford, Case, Still, and Tsui [13, 14, 34].

Born considered a charged ion with radius a (the intrinsic Born radius) and calcu-
lated the energy required to place the ion in a dielectric e. The displacement field for the
ion can be approximated as D~ q7/r?. This is sometimes referred to as the Coulomb field
approximation [13]. For an ion, this approximation should be very good and the resulting

energy of the ion in the dielectric is [35]

w o= L / D Bav
8w €
1 q2 1 q2
= dV + — dV. 2.12
8T /zn T4€in * 8T /ea: T4€ex ( )

The integral has been split into two regions; the interior region of the charged ion (r < a)
where the dielectric is €;,, and the exterior region where the dielectric is €.,. The solvation
energy is the amount of energy required to move the charged ion from vacuum where €., = 1
to the solvent where €., = €5. Assuming that the interior dielectric remains constant as the
ion is moved from vacuum to solvent, the solvation free energy due to the polarization of

the solvent becomes

AF, pol — Wsolvent — Woacuum

1 1 ¢
= —(1—-—— —dV. 2.13
s < 63) /ea: rd ( )

For an ion with intrinsic Born radius a, the integral is calculated as

1 >~ 1
/ex ﬁdV == /a ﬁdV

= 4ral, (2.14)
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and the solvation free energy for a single ion becomes

1 1\ ¢?
AFpo = —3 (1 - —) €. (2.15)

€s/) a
Equation (2.15) gives the energy required to move a charged ion from vacuum to a solvent
of dielectric e5. For a system of charged spheres (or point charges) separated by large
distances, the total Coulomb energy in the dielectric is the sum of solvation energies for the

ions [Eq. (2.15)] plus the Coulomb interaction energy in the dielectric medium,

/
Bt = %Z%—% (1—;)22—2 (2.16)
i\ i
where the prime denotes terms with ¢ = j are excluded from the sum. The intrinsic Born
radius a is usually chosen such that the experimental free energy of solvation is the same
as Equation (2.15).

For general cases where the system of charges are closely spaced and essentially form
a cavity in the dielectric, Equation (2.16) is no longer valid and must be adjusted. Figure 3
(a) and (b) illustrates the formation of a cavity (with dielectric €;,) in the dielectric medium.
As a result, the displacement field is no longer radial and the Coulomb field approximation
is no longer valid requiring an adjustment to the intrinsic Born radii. In addition, the cavity
also introduces a distance dependent dielectric, so that the interaction energy between two
charges in the molecule is no longer simply given by g;q;/es7;.

The generalized Born model [13, 34] attempts to fix these problems by introducing

a function fgp which replaces the distance between two atoms, i.e. 1/r;; — 1/fgp. The

function is given by [34]
1
fap = (r% + a0 exp (—Tfj/4aiaj)) o (2.17)

where «; are “effective” Born radii (described below). The generalized Born function at-

tempts to “extrapolate” between two extremes; short distances where the dielectric is less
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FIG. 3. Ilustration of the effects of placing a single molecule of CoHg into a dielectric
medium of dielectric €5 > 1. (a) A single molecule of CoHg in vacuum. (b) The placement
of CoHg into the dielectric forms a cavity of weaker dielectric €;,. The displacement field is
no longer radial. (c) Approximating the cavity using overlapping spheres with radii a;, the
intrinsic Born radii.
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than that of the medium, and long distances where the interaction is essentially g;q;/esri;.
The generalized Born function gives approximately the Onsager result for a dipole in a
spherical cavity [34, 36] for the case when oppositely charged particles are separated by a
short distance.

The effective Born radii (;) used in Equation (2.17) are approximated as

1
o t=at - / dv, (2.18)

i ‘ in T4
where again a; are the intrinsic Born radii. The integral can be computed in many ways.
One method developed by Hawkins et al. [37] involves using the intrinsic Born radii to
approximate the cavity as a system of overlapping spheres. The integral in Equation (2.18)
can then be calculated analytically in terms of nearest neighbor spheres that overlap. Figure
3 (c) shows the cavity approximated as overlapping spheres of radius a; centered at the
individual atomic positions.

The solvation energy of the molecule due to polarization effects is then given by

1 1 i
APy = =3 <1 - —> 945 (2.19)
68 i,j fGB

Since AF,y is the amount of energy that is required to move the molecule from vacuum
to solvent, the total Coulomb energy in the dielectric is the sum of the vacuum Coulomb

energy plus AF,,,

Ecoul = FEyoe + AF})ol

1 a.0:
= - S L9 L AFy. (2.20)
i

Tij
The summation in Equation (2.19) includes terms i = j as these terms give the solvation
energy of the ion itself but the vacuum summation does not (hence the prime). Both terms

are calculated simultaneously during an energy evaluation.
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In short, the generalized Born model provides a simple approximation for the solva-

tion effects for a large solute molecule without having to calculate the numerous Coulomb
interactions between the atoms in solute with those in the solvent.

V. MOLECULAR DYNAMICS SIMULATION

One of the simulations that the Saguaro simulation package is capable of is molecu-
lar dynamics using a classical force field, specifically the force field obtained using Equation
(2.1). A classical molecular dynamics simulation of a system of N atoms begins by inte-
grating the equations of motion,

oV
87“m

= mﬁ:ia, (221)

where oo = x,y, z and i is the atom and the potential V is calculated using Equation (2.1).

A simple velocity Verlet algorithm [38],

At?
Tia(tO + At) = Tia(tO) + f‘ia(to)At + Tmﬂa(to)
. . At
Fia(to + At) = Tia(to) + 5 — (Fia(to) + Fia(to + At)) (2.22)

with appropriate time step (At ~ 1 fs) can be used to integrate Equation (2.21) providing
a trajectory of the system of atoms as a function of time.

The corresponding trajectory samples the microcanonical ensemble of states where
the number of atoms, volume, and energy are constant (NVE). In most molecular dynamics
(MD) simulations one often desires the trajectory to sample other ensembles, such as the
canonical ensemble, where the temperature is held constant (NVT).

There is a rich history of the development of methods to perform MD simulations
in the various thermodynamic ensembles. Two examples are the extended systems method

developed by Anderson, Nosé, Klein, Hoover, et al. [39, 40, 41, 42, 43] and the weak
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coupling method developed by Bernsden et al. [44]. The weak coupling algorithm is a very
popular choice since it is quite easy to implement in a MD algorithm when compared to the
extended systems method which requires integration of complicated equations of motion.
However unlike the extended systems method, the weak coupling method will sample the
correct conformational space only for large number of atoms. For this reason the extended
systems method is used in the Saguaro simulation package.

The Extended System Method for the isobaric-isoenthalpic ensemble (NPH) was
originally derived by Anderson [39] to simulate a unit cell under the influence of a constant
hydrostatic pressure. The resulting equations of motion allowed the unit cell to adjust
isotropically, maintaining the cells shape. Parrinello and Rahman [45] extended this idea
to the case where the unit cell is adjusted anisotropically. Further work done by Nosé and
Klein, [43] extended the Parrinello and Rahman method to the isobaric-isothermal ensemble
(NPT). By using the Nosé-Klein method, Saguaro allows for (NVE), (NVT), (NPH), and
(NPT) simulations to be performed.

The Nosé-Klein method begins with the following Lagrangian for the system,

1 . .
L = Z imiSZUz‘aGaﬂuiﬁ -V
i,

1 . - 1 .
+ > §WH§@ — P.,Det(H) + §Q52 — NyikpTopLn(s), (2.23)
o

where u;,, are the fractional coordinates of the atom in the unit cell (75 :EI ;) and s is the
dynamical variable describing the heat coupling. Since the total energy of the Lagrangian
is constant, s is essentially an “extended” variable that can absorb and release energy to

the other degrees of freedom, thus mimicking an NVT simulation. The 3 x 3 matrix 8 is

<—>T<—> >

defined as 5: H H, where H is the 3 x 3 matrix of unit cell vectors placed in the columns.

R

The determinant of the unit cell vector matrix, Det(H), is then equivalent to the volume of
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the unit cell V.. The variables W and @) are effective masses that can be used to adjust the
fluctuations of the pressure and temperature of the system respectively. The constants Ny
and k; are the number of spatial degrees of freedom and Boltzmann’s’ constant. Finally,
P., and T, are the pressure and temperature of the external environment. The remaining
discussion will now become quite technical as a set of equations that are capable of describing
various thermodynamical ensembles is derived. A ten point summary of how the equations
are used in the Saguaro molecular dynamics algorithm is given at the end of the section.

The Hamiltonian is obtained from Equation (2.23) [46] giving

M miaCapTis |y s~ Map popon T N g 2.24
—iaﬁW‘F +§‘;W+ ex €(H)+@+ fhyTeaIn(s), (2.24)

where 7;,11,43, and 7, are the canonical momentum. Einsteins’ summation convention will
now be used for the remainder of this section unless otherwise noted. Applying Hamilton’s

[46] equations of motion to Equation (2.24), the following equations of motion are obtained:

. . G;éﬂiﬁ
tio = m;s?
. 2%
Tiaw = Ba 8Tiﬂ7 (225)
. Ts
5§ = —=
Q7
—1
, TiaGogTif  NikpTey
= - 2.26
s mis?’ S ’ ( )
- I
H.,; = _V;ﬂ
ﬂaﬁ = (Ea’y - Pexfsa'y) 0~g3- (2.27)

Here, d,~ is the Kronecker delta and the tensors =,3 and 0,3 are given by

— 1 1 _ _ \%
Eag = ——= <—H'ya17ri7Hpﬂl7riM - —(H uz)ﬁ> ,
Det(H)

oap = Det(H)Hg,. (2.28)
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Nosé showed [41, 42] that with a scaling of the time such that, sdt’ = dt, the

coordinates and momentum in time ¢'; given by

ria(t') = Hapuig,
H_lﬂ'g
pialt) = (2:29)

will sample the isothermal-isobaric ensemble with an average total kinetic energy of
NykyT,,/2 and average pressure P.,. Taking the derivative of 7o (t') and pi(t') with

respect to ¢’ and using Equations (2.25)-(2.28) gives

d’l”' dH 3 du-ﬁ
ar = ap et sHas g
o dHoz'y —1 Dia
and
-1
dt’ dt’ s Bor g2 gy Bo gy
_ _ngwa1 _ dLn(s) ov (2.31)

a habio T gy e T

Equations (2.30) and (2.31) can now be put into a simpler form. With the definitions

¢ = dLn(s)
Cdr
-
Naf = W(:M_Pewéa“f) 048, (2.32)

and simplifications of Equation (2.28) to

= _ 1 piapig OV
ap = = — 5 "B
Det(H) m; Tia
0ap = Det(H)H;!, (2.33)

the equations of motion take the following form

Dia
9
mg

Tia = Aagrig+
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) oV
Piaw = _8”& - (Aﬁa + féaﬁ) Pig,
: 1 ralia
Hag = €Hag+ 52as. (2.34)

Here, the 3 x 3 matrix A has elements Ang = Hon H ;ﬁl All of the dots in Equation (2.34)
refer to the total derivative with respect to time ¢’. Since t’ is essentially a dummy index
at this point, the time will be simply referred to as t and not ¢ henceforth.

So far the equations of motion [Eqs. (2.32)-(2.34)] describe a system where the unit
cell is allowed to change shape and volume. The equations of motion become modified for
isotropic or anisotropic fixed angle scaling of the unit cell. The isotropic scaling allows only
the lengths of the unit cell vectors to change at the same rate. The fixed angle scaling allows
the lengths to change at different rates. The equations of motion for both types of scaling
remain of the same form as Equations (2.32)-(2.34), but with 7,3 modified. For isotropic

scaling 7,3 becomes

>

Det(H)

B WL2 TT(E _Pex I)7 (2.35)

Nap = Ha
where T'r denotes the trace and L is from the relation H,g = gogL where g,g is a constant
tensor. The value L is somewhat of a free choice, since its purpose is to merely scale the
unit cell vectors uniformly. A simple choice is L = |d| where @ is any primitive unit cell

vector. Similarly, for anisotropic fixed angle scaling, 7,3 becomes

Det(H) [T o o emIT
Tap = Haﬂ% (H (E _Pex I) H ) ; (236)
B 8B

where Lg is from the relation Hog = gogLp (no sum on ). Again a simple choice is for L
is Lﬁ = ‘(iﬁ‘
In a Saguaro molecular dynamics simulation, the Equations (2.32)-(2.34) are inte-

grated using a velocity Verlet algorithm [38]. The resulting trajectory will then sample
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both momentum and position space in the isobaric-isothermal (NPT) ensemble. These
equations reduce to the equations of motion for the isobaric-isoenthalpic ensemble (NPH)
when £(t) = 0 and s(¢) = 1 for all time t. Likewise, by setting H,s = 0 and H,s = 0 for
all time ¢, the equations of motion reduce to the Nosé-Hoover equations and the trajectory
will sample the isohoric-isothermal (NVT) ensemble of states [40, 41, 42]. In this fashion,
Saguaro can perform an MD simulation in any of the ensembles (NVE) (NVT) (NPH) and
(NPT) by an appropriate choice of the variables &, s, Hag, and Hag.

The velocity Verlet integration scheme however can pose problems due to the extra
integration of £ and/or H,g that is required. The Saguaro velocity Verlet integration scheme
integrates { and H,g to the same order in the time step as the velocities and coordinates,
which yields an iterative procedure for their integration. With some work, Equations (2.32)-

(2.34) can be formed into a velocity Verlet like form

At o At)?
alt 4 A1) = pap(Ora(0) + pia(0) - + (FE(0) + Aagis) 2
m; 2m;
At
Pia(t + A1) = pia(t) + o (Fg (t + At) + Fi' (1)), (2.37)
where p is the scaling matrix with elements given by
. . (At)? _1
,ua@(t) = Haﬁ+HaﬁAt+HaﬁT Ha,ﬁ’
A Hoy(t+ AtV H 5 (1), (2.38)
and ngt is the total force,
ov
(20

that includes the forces of constraint from the external pressure and external temperature

coupling.
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The trajectories for Haﬁ,Hag, Ln(s) and £ can also be calculated using the velocity

Verlet scheme as follows:

Hos(t+ At) = Hos(t) + Hag(t) AL+ Hap(t) (A;)Q ,
Haﬁ(t + At) = Haﬁ(t) + T(Haﬁ(t + At) + Haﬁ(t»v (2'40)
2
Lnfs|(t+ At) = Lnfs](t) + £()At + £() (A;) ,
Et+At) = £(b)+ %(é(t + At) +£(1)). (2.41)

However, since F*** depends on the momenta, integration of the velocity Verlet equations
[Egs. (2.37), (2.40), (2.41)] is no longer simple. The problem is that the new momenta at
time ¢t + At in Equation (2.37) depend on £ at time t + A¢ which in turn depends on the
momenta at time ¢t + At [see Eq. (2.34)]. This can be fixed by using an iterative method

for the integration of the momentum equations. The Saguaro integration algorithm begins

ov

OTia

by using the current momenta (computed using Fj, = — ) to calculate £&. New momenta
are then formed by scaling with & (pjo — pia/(1 + £At/2)). The procedure continues until
& converges. Typically only two or three iterations need to be performed to achieve a good
convergence for . A similar problem also exists for the H,3 equations of motion [see Eq.
(2.32)-(2.34) and Eq. (2.40)] and can be fixed using a iteration procedure similar to that of
£.

To summarize, the following algorithm implemented in Saguaro follows the velocity

Verlet technique and is capable of implementing either (NVE), (NVT), (NPH), or (NPT)

simulations with an appropriate setting of a flag.
1. Calculate H,p(t + At) and S(t + At) using Equations (2.40) and (2.41).

2. Form 71) matrix and scale positions.
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3. Calculate positions r;qo(t + At) using Equation (2.37)

4. Calculate new forces Fj, (t + At) = —8‘2,‘;

5. Obtain approximate momenta, kinetic energy and temperature using Equation (2.37)

and the force Fj,.
6. Calculate £(t + At) and H,ps using the iteration procedure.

7. Fix momenta, kinetic energy and temperature using converged values of (¢ + At) and

H,pg.
8. Compute total force FIo" = Fio — (Aga + £0ap)Pis
9. Output any desired data
10. REPEAT

VI. ACTIVATION RELAXATION TECHNIQUE

The activation relaxation technique (ART) [28] is a method used in the Saguaro
package to locate the many conformations of a molecule or a configuration of atoms by
examining the energy landscape. The ART method was developed by Mousseau and col-
leagues and one of its first applications was to search for the various conformations that
amorphous silicon can make using a Lennard Jones 6-12 potential [28, 29]. The ART algo-
rithm was later applied to the study of aggregation formation in a four amino acid segment
of Alzheimer’s beta amyloid protein [47], and of the folding mechanisms of a few amino
acids [48, 49].

The ART algorithm involves three basic steps: activation of the molecule along a

random direction, location of a saddle point in the energy, and relaxation to a new local
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minimum. Starting from a local minimum, the first step of ART, shown in Figure 4 (a),
moves the molecule or configuration of atoms along a random direction (the activation
direction), “activating” it by slowly moving away from the current local minimum in a
series of small steps. During the activation procedure, the force is minimized perpendicular
to the activation direction. Periodically the Hessian matrix ®;4;3 (with 7,7 = [1, N]| and

a, 3 = x,y, z) whose elements are given by

o0*V

P g
OriaOrip’

iajf = (2.42)

is calculated and diagonalized. If the diagonalization of the Hessian results in a negative
eigenvalue, then the corresponding eigenvector gives the direction to a local saddle point,
shown in Figure 4 (b). At this point, step two of the ART procedure begins by following
the eigenvector corresponding to the largest negative eigenvalue. During step two, the force
perpendicular to the eigenvector is minimized as in step one. Eventually, the total force
is zero and the molecule has converged to a local saddle point. The third and final ART
step moves the molecule over the saddle point, shown in Figure 4 (c), and the molecule is
minimized to a new local minimum.

If desired, the Metropolis criterion can then be used to accept or reject the new
structure based on the energy difference between the old local minimum and the new local
minimum. Decreases in energy are always excepted while increases in energy are accepted
randomly with probability e #*F. The addition of the Metropolis step has the effect of
forcing the molecule into a set of native states that will tend to be accessible at a given
temperature.

The ART procedure is very adaptable since nearly any conformational space can
be used to generate activation directions and search for new local minimums. The Saguaro

simulation package implements the ART procedure using two different sampling techniques.
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(a) (b) 0<0

(c)

FIG. 4. The three steps of the activation relaxation technique. (a) Step one. The molecule
is moved along a random direction, the activation direction, in small steps. After each step,
the force is minimized perpendicular to the activation direction. Periodically, the Hessian
matrix is calculated and diagonalized. (b) Step two. A negative eigenvalue of the Hessian is
found and the activation direction is reset to follow the corresponding eigenvector which is
a direction of negative curvature in the energy landscape. The forces perpendicular to the
activation direction are still minimized after each activation step. (c) Step three. A saddle
point is located when the total force vanishes. The molecule is perturbed away from the
saddle point and a full relaxation is performed. The final result is that the molecule resides
in a new local minimum of the energy landscape.
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The first technique samples the conformational space of a molecule by moving individual
atoms. The second sampling technique is used to locate conformations of peptide chains by
searching the Ramachandran space of the peptide. The ART method and two applications
involving a simple peptide are discussed in detail in Chapter 8.

VII. FREE ENERGY PERTURBATION

The goal of a free energy perturbation calculation is to find the free energy difference
between two conformations of a molecule. Here, the word conformation is used very broadly
since the variety of free energy calculations that can be performed is quite large. For
example, the simplest of free energy perturbation calculations is the free energy of solvation
which seeks to find the change in free energy of a molecule when the molecule is moved
from vacuum to an aqueous solution (usually water). An example of a more complicated
free energy perturbation calculation is the problem of finding the binding free energy of
a molecule where a small molecule docks into a specific region of a much larger molecule
resulting in a change in free energy due to the docking.

The free energy perturbation method used in Saguaro calculates the free energy
difference between conforms by using a thermodynamic integration technique [50, 51]. From
a classical perspective, the free energy difference between two states of a molecule (state 0

and state 1) is given by

—BH1 g1
—B(F1—Fpy) _ f€
B(F1—Fo) _ fig—ﬂHOdI" (2.43)

e
where H is the Hamiltonian of the molecule in state 0 and H; is the Hamiltonian in state 1.
Equation (2.43) results directly from the free energy relation F' = —kT In (Z). The phase

space of the molecule (both position and momentum) is denoted by I'. Equation (2.43) can

be rewritten in the form

e BF1—Fo) _ feiﬁveiﬂHOdF

G (2.44)
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where V is the difference between the two Hamiltonians, V' = H; — Hy. Typically the
number of degrees of freedom in each state are the same so that Equation (2.44) can be

written in terms of an ensemble average
e A=) — (=AY (2.45)

The notation ()¢ denotes the ensemble average of the quantity x in state 0. If the difference

V' is small, then both exponentials can be expanded to first order so that
(Fl — Fo) ~ <V>0 (246)

In general the free energy difference is not small enough to be approximated by
Equation (2.46). The thermodynamic integration procedure calculates the free energy dif-
ference, F1 — Fy, by creating intermediate states A, where 0 < A < 1. These intermediate
states can be described by a Hamiltonian Hy. The intermediate states make the difference
between successive Hamiltonians, V) = Hy;qx — H), small allowing Equation (2.46) to be
used to calculate the free energy differences between intermediate states AF\ = F)\ gy — F).
The total free energy difference is then just the sum of the smaller free energy differences
between intermediate states AF). As the number of intermediate states goes to infinity,

the sum over AF) takes the form of an integral,
1

E—ﬂ:/ﬂ@w& (2.47)
0

where V), = 0H) /OX and the free energy difference is now exact.

The intermediate states can be made to follow any path between states 0 and 1
since the free energy is a function of state. A very simple path is Hy = Hg + AV, with
V = H;— Hyp. This path takes state 0 to state 1 linearly. This is the current implementation

in Saguaro. The number and location of points that the integrand can be evaluated at is
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chosen by the user. The integral can then be done by any integration scheme. However,
Hummer and Szabo [50] show that the calculation of the free energy difference can be
improved upon by choosing specific locations to evaluate the integrand.

VIII. FULLY ATOMISTIC VIBRATIONAL ANALYSIS

The last type of calculation that Saguaro is capable of is a fully atomistic vibrational
analysis of a large molecule, where each degree of freedom (x,y, z for each atom) is used to
construct the vibrational patterns. The “standard” procedure for a vibrational or normal
mode analysis (NMA) of a molecule of N atoms requires the formation and diagonalization
of a 3N x 3N matrix equation. Unlike molecular dynamics simulations where computational
cost scales roughly linearly with the number of atoms simulated, a NMA will scale cubically
with the number of atoms since the cost of diagonalizing a square matrix goes as the cube
of the dimension of the matrix. But more importantly, the computer memory required to
store the matrix increases quadratically with the number of atoms. As a result, even a few
thousand atoms will require hundreds of Gigabytes (10?) of computer memory far exceeding
the few Gigabytes of memory available on most machines. Thus, as parallelization and
supercomputer centers have allowed molecular dynamics time scales to proceed into the
microsecond realm, similar progress for NMA has been limited.

In the majority of large molecule NMA, it is the low frequency vibrational modes
that are of the most interest since these will most likely exhibit the large global motion of
the molecule that give rise to large conformational changes of the molecule. The Saguaro
package exploits this by implementing an iterative procedure where only the few lowest
frequency mode patterns need to be stored in computer memory [52]. A detailed discussion
on the vibrational analysis method is given in Chapter 4 and applications to specific systems

such as viral capsids and large protein complexes can be found in later chapters.



CHAPTER 3
GROUP THEORY

I. INTRODUCTION AND MOTIVATION

Molecules and macromolecular complexes often exhibit symmetry amongst their
constituent atoms. For example, viral capsids are large molecules that are built from a
set of proteins by assembling them in a symmetrical fashion to construct a tube (helical
symmetry) or spherical shell (icosahedral symmetry). Viral capsids are enormous in terms
of the number of atoms that they contain (N > 10%) which have made studies of their
vibrational frequencies and mode patterns extremely difficult using standard techniques.
Utilization of symmetry properties from group theory can allow for significant reductions in
the size of the dynamical matrix by breaking the problem up into separate (but equivalent)
problems based on the irreducible representations of the symmetry group of the molecule.

Group theory has been used by van Vlijmen and Karplus in the study of viral capsids
[53, 54]. The reduction in the size of the dynamical matrix however is still insufficient
without the use of a reduced basis set [53] so that the total number of degrees of freedom
is significantly less than the full Cartesian set of 3NV variables. The basis set chosen by
van Vlijmen and Karplus in their studies of Polio virus [54] consisted of only dihedral
rotations which reduced the number of basis vectors from 24,252 (full Cartesian basis) to
3,438 (dihedral motions only).

For the study of low frequency modes of viral capsids or other molecules having
symmetry, the phonon functional method, which is discussed in detail in Chapter 4, should
be capable of solving for the few lowest frequency modes using a full Cartesian basis.
However, the use of group theory can dramatically speed up the calculation of the low
frequency mode patterns by decreasing the size of the dynamical matrix while providing

useful insights into symmetry related motions. But as the resulting smaller dynamical
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matrix is still too large to store in computer memory, the operation of the matrix on a
vector must be computed in a way that does not require its explicit storage.

The main purposes of this chapter is to provide the reader with a basic review of
group theory and to prepare the necessary theoretical framework that will be needed for the
calculation of the group theory dynamical matrix (group dynamical matrix) operating on a
vector. The notation that will be used is similar to notation used in Group Theory in Physics
[55]. After a brief review of some basic principals in group theory, a computational method
to construct group theory basis vectors from only the rotation matrices is described. For
the reader that is familiar enough with group theory, this chapter may be skipped. Those
needing a detailed review of group theory should consult a group theory textbook.

II. REVIEW OF BASIC GROUP THEORY

Consider a molecule with N atoms which are located at equilibrium positions R;.
The complete vector for the equilibrium positions, of length 3N, will be denoted by |R).
Suppose that this molecule has symmetry properties of a finite group G with elements T'eG
and that the total number of elements in the group is ng. Each of the elements describe a
basic operation such as a rotation about an axis or reflection through a plane that, when
applied to the molecule, leave it identical to its original structure.

A two-dimensional example of a simple finite group, cs,, is shown in Figure 5. In the
figure, the group of three identical atoms form an equilateral triangle with sides of length
a. When the system of atoms are operated on by one of the ny, = 6 elements of the group
(E, A, B, C, Cs,, ngl), the new system that results is indistinguishable from the first. The
element E is the identity, A, B, and C are the reflection operators and Cs,, ngl are the

rotation operators.
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FIG. 5. The three identical atoms shown represent the finite group cs,. There are a total of
six group elements T' that describe the group. Each atom is a distance of a from the other
two atoms. The reflection planes are shown as dashed lines and each atom site is numbered
s = [1,3]. The coordinates listed are the equilibrium positions of each atom.

The system of three atoms in Figure 5 can be constructed by applying three of the
six group operators to just one atom. For some molecules, it is possible to construct the full
molecule from a basis of N, atoms by applying the group operators @(T) to the equilibrium
positions of the N basis atoms. Thus, the full molecule of N atoms can be thought of
as Np atoms copied N times (N = NpNs), where Ny is the number of unique atom sites.
For example, Cgp has symmetry of the group I; which has a total of ny, = 120 group
elements. Only 60 of the group elements are needed to construct the full Cgy molecule with
60 atoms. Thus, Cgg has one basis atom and 60 unique sites (N, = 1,Ns = 60). This type
of interpretation is needed for spherical viruses (icosahedral symmetry group, I) since they

are constructed from 60 copies of one or more proteins that contain many atoms. Figure 6

shows an illustration of two basis atoms (N, = 2) placed at the sites of the original triangle
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FIG. 6. Diagram showing two basis atoms (one red, one blue) placed at the sites (vertexes)
of the equilateral triangle. The resulting set of six atoms has symmetry of the group cs,
which can be easily verified. The two atoms are numbered as 1 and 2 and the three sites
are labeled s = [1, 3]. The reflection planes are drawn with dashed lines.
structure (shown in Figure 5). The two basis atoms need not be identical to have the
symmetry of cs,. The description of a symmetrical molecule being composed of N, atoms
repeated Ny times will be used henceforth.

Each of the ng elements T' can be denoted by the operators &(T) which perform a

rotation and permutation of the set of atoms in the molecule. A mathematical formulation

of the invariance of the molecule to one of the group elements is written as
®(T)|R) = |R). (3.1)

Again, |R) is the vector of length 3N (3 dimensions times /N atoms) that gives the equilib-
rium coordinates of the atoms. Equation (3.1) is satisfied for every element T of the group.

. —D
The ®(T') operators can instead be represented as 3N x 3N matrices I' (T") which are the
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>

direct product of a 3 x 3 rotation matrix R (T') and a N x N permutation matrix P (T),

T (1) =B (D)o P (T). (3.2)

As an example, the reflection operation about the plane A for the three identical
atoms in Figure 5 can be represented in two dimensions by a 2 x 2 rotation matrix and a

3 x 3 permutation matrix given by

01 0
R (A) = , P(A)=11 0 0 (3.3)
0 1
00 1

T (4)= . (3.4)

0 0 0 0 -1 0

0 0 0 0 0 1

One can easily verify that the vector |R) of equilibrium coordinates,

3a
—aV3
—3a
—av3
0

2a\/3

D
operated on by the matrix I' (A) satisfies Equation (3.1).
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For a general molecule with symmetry of the group G and NV, basis atoms at N sites,
the ny 3N x 3N matrices <1:D (T') form a representation of the group G for the molecule
which Cornwell [55] calls the “displacement representation.” This representation of G has
the important property,

—Dt——D —
I DU (T)=D, (3.6)

for all TeG where B is the 3N x 3N dynamical matrix. Thus, the dynamical matrix is
invariant under a unitary transformation with any group operator.

There are many ways to form a matrix representation f: (T') of the group. Two
representations, T (T') and T‘J (T), are said to be equivalent if there exists a unitary trans-
formation 5 such that,

r (I)=vr(u, (3.7)

for every element 7. However, if there exists a unitary transformation 5 , such that 5 T?
(T) ﬁ is block diagonal for every element T', with each ? having the same block structure,
then the representation is said to be completely reducible. For every group there are a set of
irreducible representations of dimension d,, denoted by Fp (T), where p is the p*" irreducible
representation of G. These irreducible representations satisfy the powerful orthogonality

relation (“the grand orthogonality theorem”)

d "
LN TEA(T)TEL(T) = 6pg 5Okt (3.8)
g TeG

where the asterisk denotes the complex conjugate, j,k,s,t label the d% elements of the
irreducible representation, and d,, etc. are Kronecker deltas.
The number of irreducible representations of a group is equal to the number of unique

classes, which are distinguished by their character x (7). For a general matrix representation
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TABLE I. Character table for the group cs,. The three irreducible representations are
labeled Ay, Ay, and E. The numbers next to each of the three classes correspond to the
number of group elements that belong to the class.

E 2C3 3o,
Ay 1 1 1
Ay 1 1 -1
E 2 -1 0

>

of the group, T" (T'), the characters are defined as

X(T) =Tr (T (1)), (3.9)

where T'r denotes the trace operation. Every element in the group belongs to one and only
one of the unique classes and every element in the class has the same character. Since
the number of irreducible representations is equal to the number of classes, a square table
relating the classes and irreducible representations can be formed called the character table.
The entries of the character table are simply the characters x?(T") for a class of elements in
the pt" irreducible representation.

Table I shows the character table for the group cs,. There is a total of three unique
classes of elements. The first is the identity class which contains only the identity element
E. The next class is the class of threefold rotations, Cg, which contains the elements Cs,
and ngl. Finally the last class, o, is the class of reflections which contains the elements
A, B, and C.

=D
The representation ' is a reducible representation of the group that can be made

block diagonal for all elements T of G by applying a unitary transformation (17) to all ng
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—D —D
matrices I' (7). Applying the unitary transformation to I'  gives

v (T)v= . (3.10)

<P
The smaller matrices I" are the irreducible representations of G. Each of the irreducible
representations may occur more than once along the diagonal [as can be seen in Eq. (3.10)].
The number of times, n,, that the p'" irreducible representation occurs in a reducible

representation is given by

Z XPH(T (3.11)

ng TeG

where x(7T') corresponds to the character of element 7" in the reducible representation and
can be calculated using Equation (3.9). The characters for the irreducible representation,
XP(T), can either be obtained from x?(T") = Tr(Fp (T')) or the character table.

The matrix ; is a 3N x 3N orthogonal matrix formed from group theory basis

vectors |vb,) of the irreducible representations which have the property

T)lvh) = Z I, (T)Wh,). (3.12)

th row if the irreducible representation p.

It is usually said that |vP,) transforms as the m
Equation (3.10) can be easily verified through the use of Equation (3.12) and the orthogo-
nality of the columns of 17

In total, n,d, basis vectors can be constructed for the irreducible representation p;

<p
d,, vectors due to the dimension of I' times n), for each time the irreducible representation p

oD
appears in ' . Since the irreducible representation p will usually occur more than once, the
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group theory basis vectors will be denoted by the notation, |vP,,), where m corresponds to
the row number (m = 1,2, --,d,) that the basis vector transforms as, and a = 1,2,-- -, n,,.

The 3N x 3N dynamical matrix B can also be made block diagonal by performing

a similarity transform with the ¥ matrix of group theory basis vectors

V DV= : (3.13)

op

The D are smaller dynamical matrices (group dynamical matrices) of dimension n, x n,
for irreducible representation p and are repeated d,, times. Thus, the eigenvalue equation
for the full dynamical matrix,

D le(N)) = Ae(N)), (3.14)

can be broken up into smaller eigenvalue problems of size n, xn,, each satisfying the equation
<p
D |eP(N)) = AleP(N)). (3.15)

Equation (3.15) shows the power of group theory and why it is so important. From just the
symmetry properties of a molecule, group theory can be used to greatly reduce the size of
the eigenvector problem.

The eigenvectors of B are constructed from the group theory basis vectors and the
vectors |eP()N)) via

) = 3 Bl (), (3.16)
a=1

—p

where o labels the n, components of |e?(\)). Since D is repeated d, times, the eigenvalues
<p

A corresponding to the matrix D are d,, fold degenerate. T