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ABSTRACT

An Order (N) technique, the phonon functional method, for the study of the low

frequency mechanical modes of large molecular systems is developed where the displacement

patterns are modeled with atomic detail. The method is based on ideas from electronic

structure theory and uses an energy functional to find the lowest frequency phonon states

of a classical dynamical matrix below a pseudo-Fermi level. The resulting method is iterative

and requires only the operation of the dynamical matrix on a set of vectors.

An analysis of the low frequency motions of three viral capsids, the satellite tobacco

necrosis virus, the cowpea chlorotic mottle virus, and the M13 bacteriophage are calculated

using the technique. The Raman spectra of the viral capsids are calculated using the

atomistic displacement patterns and an empirical bond polarizability model. In addition,

the mechanical modes and Raman spectra of the M13 bacteriophage are also found with

continuum elastic theory and an amorphous isotropic bond polarizability model which are

then compared with the atomistic calculations.

The mechanical modes of an adenosine triphosphate binding cassette are also calcu-

lated using the phonon functional method. The results indicate two clear modes that are

responsible for the transport process. Based on the two normal modes a transport cycle is

hypothesized.

The possibility of viron destruction through a resonant excitation of its capsids

mechanical modes is examined next. A recent impulsive stimulated Raman scattering ex-

periment of the M13 bacteriophage capsid is theoretically modeled using classical molecular

dynamics. The results are analyzed with a simple driven harmonic oscillator approach and

indicate the existence of an “amplitude threshold” which causes the virus capsid to break

apart once reached.
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Finally, the activation relaxation technique is extended to atomistic systems with

explicit water. A test of the extension is performed on a small single amino acid protein.

The results reveal difficulty extending the technique to systems with explicit water.
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CHAPTER 1

INTRODUCTION

I. BACKGROUND AND MOTIVATION

The computational simulation of biological systems is a diverse and challenging field

that involves modeling on nearly all length and time scales. On the nanoscale level, molec-

ular dynamics has been a popular method for the computational simulation of biological

processes. The molecular dynamics algorithm is quite simple, using Newtons equations to

form a trajectory of the system over time. However, there are a variety of problems with

molecular dynamics that have been difficult to overcome. For example, many biochemical

processes in the cell, such as protein folding and enzymatic activities, can take place on

the order of microseconds to milliseconds and often involve hundreds of thousands or even

millions of atoms. Since a small time step of about 1 fs is required due to the fast hydrogen

motions of the system, a molecular dynamics simulation will require 109 steps to reach the

microsecond time range of many biochemical processes.

The proliferation of supercomputing centers has helped with the molecular dynamics

time scale issue to some extent. For example, Freddolino et al. have recently performed a

short 50 ns molecular dynamics simulation of an entire organism [1], the satellite tobacco

mosaic virus. Yet, despite advances in computational power, molecular dynamics has yet

to reach the time scale of milliseconds for large systems.

An alternative to molecular dynamics is normal mode analysis. Tama and Sane-

jouand [2] have noted that there is experimental evidence that the functional and enzymatic

activity of most biological molecules can be explained by a few of the lowest frequency me-

chanical modes computed from a harmonic analysis. Sometimes a single low frequency

normal mode is sufficient to describe nearly all of the functional motion. Normal mode

analysis has had much success in recent years. For example, normal mode analysis has
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successfully determined large scale motions of citrate synthase [3] that are involved in its

enzymatic activity. A similar study of the mechanics of citrate synthase using molecular

dynamics may require several microseconds of simulation time. This makes normal mode

analysis a very attractive tool for the study of the mechanical motions of large biological

molecules.

One of the key problems with using a normal mode analysis to study large molecules

is that it requires the formation and diagonalization of an 3N × 3N matrix (the dynamical

matrix). The diagonalization typically scales as Order (N3) while the computer memory

required to store the dynamical matrix scales as Order (N2). As a result, the number of

atoms that can be treated with a direct formation and diagonalization of the dynamical

matrix is on the order of a few thousand atoms at the present time.

In order to overcome the memory issue, most normal mode analysis employ coarse

graining techniques [4, 5, 6]. In a coarse graining normal mode analysis, individual atomic

motions are replaced by group motions such as the movement of a single protein in a large

virus [7]. This reduces the dynamical matrix to a smaller size that is reasonable for storage

in computer memory. The eigenvectors of the smaller dynamical matrix are then used to

construct vibrational mode patterns using the smaller set of group motions. The result of the

coarse graining procedure is that the fine detail of the vibrational mode patterns are muted

and their corresponding frequencies approximate. Generally this approach works well for

describing the low frequency modes of large molecules since these are likely to involve large

groups of atoms moving in unison; and this is were the method is typically used. However,

there are cases were atomic detail in the low frequency vibrational mode patterns of large

molecules is useful, if not essential. For example, Babincova et al. [8] have suggested that

the vibrational modes of viruses, such as HIV, can be resonantly excited through a hyper
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sound or ultrasound excitation to produce damage. The theoretical study of such ideas

requires an atomic level description of the vibrational modes in order to properly account

for coupling to external probes.

The main work of this dissertation develops a low frequency normal mode analysis

technique for large atomic systems (> 104 atoms) where the vibrational mode patters are

modeled with atomic detail. The technique is based on Order (N) electronic structure

methods and can be used to determine a subset of the lowest eigenvalues and eigenvectors

of the full 3N × 3N dynamical matrix. As discussed above, an atomistic normal mode

analysis for large systems can be important for certain situations, but the work presented

in this dissertation will show that their are numerous other applications were an atomistic

normal mode analysis can be quite useful.

II. DISSERTATION OUTLINE

The presentation of material in this dissertation is broken into two parts; theoretical

development and applications. The next four chapters (Chapters 2 - 5) present theoretical

models and computational techniques that are used in specific applications that are dis-

cussed in Chapters 6 - 8. Readers comfortable with the theories presented in Chapters 2

through 5 may skip to Chapter 6 for an analysis of various applications.

In order to model biological systems using techniques other than molecular dynam-

ics, the Saguaro biological simulation package was developed based on classical empirical

potential energy models [9, 10, 11]. All of the calculations performed in this dissertation

were done using the Saguaro package. Chapter 2 gives a general overview of the types of

simulations that Saguaro is capable of as well as detailed descriptions of the molecular me-

chanical energy models used and the molecular dynamics integrator. Two methods used to



4

calculate electrostatic interactions, the particle mesh Ewald method [12] and the generalized

Born model [13, 14], are discussed in detail.

Chapter 3 presents a necessary review of group theory which is needed for later

chapters when symmetry operators for the icosahedral point group of viruses are used. In

addition, a method for determining the group theory irreducible representation matrices

and the character table from only the rotation matrices for the group is described. The

advantage of this technique is that the irreducible representation matrices and basis vectors

can be constructed using a simple computer algorithm.

In Chapter 4, a new method for the determination of low frequency vibrational

modes called the phonon functional method is discussed. The method which is based on

ideas from electronic structure theory [15, 16, 17, 18] is capable of finding the low frequency

mode patterns of large molecules atomistically. This is in contrast to the usual methods of

continuum theories or coarse graining were a reduced basis is used to construct approximate

mode patterns for the molecule. The phonon functional method presented in Chapter 4

constructs vibrational displacement patterns from the full Cartesian basis of three degrees

of freedom for each atom and will produce the correct displacement pattern. The method

is discussed from both theoretical and computational standpoints.

Chapter 5 presents some additional theories that have been developed for specific

applications. These include continuum elastic theory for vibrations of an isotropic material,

formulas to predict Raman intensities, and an equation describing the coupling of light to

the mechanical modes of a molecule for use in classical molecular dynamics simulations.

Chapter 6 begins the presentation and discussion of various applications. In Chapter

6, the mechanical modes of various viral capsids of two varieties, icosahedral and tubular,

are calculated using the phonon functional method. The types of capsids studied include
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the icosahedral satellite tobacco necrosis virus, the cowpea chlorotic mottle virus, and the

tubular M13 bacteriophage. Comparisons of the phonon functional method with other

models such as the elastic network model [4] are made whenever possible. Raman spectra

predictions of all three viral capsids are made using an empirical bond polarizability model

[19, 20, 21]. The Raman spectra predictions can be useful in determining which modes will

couple to external probes the strongest and therefore may produce the most damage from

a pulsed laser source.

Next in Chapter 7, the mechanical modes of large molecules and complex molecular

assemblies are discussed. Though there are many large molecules that can be studied

with a harmonic normal mode analysis only one family of large molecules, periplasmic

binding proteins and adenosine triphosphate binding cassettes, will be examined. These

molecules belong to a group of proteins that are responsible for the transport of nutrients

(toxins) into (out) of the cell membrane. Understanding the conformational changes of

these molecules can help to develop novel nano devices such as biosensors [22] that sense

very small concentrations of chemicals, or the biochemical mechanisms involved in Human

diseases such as cystic fibrosis [23, 24].

In Chapter 8, miscellaneous applications are presented. First, a molecular dynamics

simulation of the M13 bacteriophage in the presence of a light source is discussed. The

simulation is a classical theoretical investigation of impulsive stimulated Raman scattering

experiments that have been performed on the phage [25, 26, 27]. Next, the activation

relaxation technique (ART) [28, 29] is presented as a possible method of exploring the

conformational states of peptides. Two ways of using ART are discussed. The first explores

the ART method with a fully atomistic molecule and implicit water. The second examines
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the ART method using explicit water. The conformational states of a small peptide, alanine

dipeptide, are studied as an example.

In the last chapter, Chapter 9, the results and theories presented in this dissertation

are concluded and summarized.



CHAPTER 2

SAGUARO SIMULATION PACKAGE

I. INTRODUCTION

The projects presented in this dissertation all require an atomistic classical energy

model describing the various interactions between atoms. A typical classical empirical

energy model that is used in molecular dynamics simulation packages such as AMBER [9]

and CHARMM [10] is often the first choice when choosing an energy model (force field)

that is atomistic in its description of forces. The difference between the AMBER and

CHARMM force field is in the parametrization of the various terms in the energy equation

(e.g. the point charges that are assigned to each atom of a molecule in order to describe its

electrostatic potential).

While the AMBER and CHARMM packages are capable of calculating the energy

and forces necessary for some of the projects presented in later chapters, the editing of

the computer code that would be required to perform the specific calculations that are of

interest would be difficult and time consuming. In addition, available molecular dynamics

simulation packages are often limited to a single force field model. For these reasons, the

Saguaro simulation package was developed for the specific applications described in this

dissertation.

In this chapter, the Saguaro simulation package and its capabilities are discussed.

First, the classical atomistic energy model used in Saguaro is discussed followed by a pre-

sentation of the particle mesh Ewald [12, 30] and generalized Born solvation model [13] used

to calculate electrostatic interactions. Finally, each of the various simulations available in

Saguaro are briefly described.
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II. CLASSICAL FORCE FIELD MODEL

The general form used in nearly all classical atomistic molecular dynamics simula-

tions is given by [9, 11]

V (~r1, ~r2, . . .) =
∑

bonds

kb(r − req)
2 +

∑

angles

ka(θ − θeq)
2

+
∑

dihedrals

vn
2

[1 + cos (nφ− γ)] +
1

2

∑

ij

(

qiqj
ǫr

+
A

r12
− B

r6

)

. (2.1)

The parameters kb, ka, vn along with the van der Walls coefficients A and B are determined

empirically from experimental data from various molecules such as benzene. The qi are the

partial charges that are given to each atom in the molecule to reproduce its electrostatic

potential. These are usually determined by fitting the electrostatic potential made by the

system of point charges to the potential obtained from a quantum chemistry calculation [9].

The bonded interactions (bonds, angles and dihedrals) provide a classical description

of the stretching of a bond, the bending between two bonds, or rotation about a single bond.

The stretching, bending and rotating is illustrated in Figure 1. The stretching and bending

is considered to be small and thus can be represented to a first approximation as a harmonic

potential with spring constants kb and ka. The dihedral term describes a rotation about

the bond and is given by a Fourier expansion. Typically, only one or two terms are needed

to reproduce the potential energy. For example, the rotation about the C-C bond in C2H6

can be described by 1+cos (3φ). A plot of the dihedral energy as a function of the dihedral

angle φ for C2H6 is shown in Figure 2. The potential energy maxima correspond to the

positions where the hydrogens (on opposite sides of the C-C bond) are aligned with each

other. This occurs three times on the interval [0, 2π]. For C2H6, there are a total of nine

unique paths (H-C-C-H) between a single hydrogen on one side to another hydrogen on
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FIG. 1. Illustration of the three different types of bonded interactions used in a classical
molecular mechanical force field. (a) Harmonic stretching of a bond. (b) Harmonic bending
between two bonds. (c) A rotation about a single bond. Dihedral angles of φ = 0 and
φ = 90◦ are shown.
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FIG. 2. A plot of the dihedral energy of ethane as a function of the dihedral angle φ. Here,
the dihedral energy is given by the single Fourier term E(φ) = v3 [1 + cos (3φ)] /2. There
are three energy maxima which correspond to the alignment of hydrogens on either side of
the bond.

the other. To prevent over counting, the total dihedral energy of the bond (vn) is equally

divided among all bond paths.

The non-bonded interactions contain two terms that describe the electrostatics of

the system, the Coulomb term and the van der Waals term. The non-bonded interactions

extend over all atoms with two exceptions. The first corresponds to the situation when

atoms in the same molecule are separated by, at most, two bonds. These interactions are

completely excluded. The second exception is for two atoms separated by exactly three

bonds. In this case, both the Coulomb and van der Waals interactions are then reduced by



11

a scaling factor, mimicking a weak dielectric. Typical scaling factors used for Coulomb and

van der Waals interactions are 1/1.2 and 1/2.0 respectively.

The non-bonded terms have the most computational expense since they scale as

Order (N2), where N is the number of atoms in the system. A cutoff can be used for both

the Coulomb and van der Waals terms reducing the computational expense to Order (N).

Generally though, the Coulomb interactions are only truncated when using an implicit

solvent model such as the generalized Born model [13] where there is a strong dielectric

screening. For periodic systems however, the Coulomb sum is conditionally convergent and

an Ewald sum [31] must be used. The calculation of a standard Ewald sum scales as N2

but through the use of the particle mesh Ewald method [12, 30] the Coulomb part of the

non-bonded interactions can be computed in Order (N log (N)) operations.

III. PARTICLE MESH EWALD METHOD FOR COULOMB SUMS

For periodic boundary conditions, the Coulomb electrostatic energy of the unit cell

is given by

E(~r1, ~r2, · · · , ~rN ) =
1

2

′
∑

n

∑

i,j

qiqj
∣

∣

∣~ri − ~rj + ~Rn
∣

∣

∣

, (2.2)

where ~Rn is a lattice vector of the crystal and the prime denotes that terms with ~R0 = 0

and i = j are excluded. The lattice vectors can be written in terms of the primitive lattice

vectors ~a1, ~a2, and ~a3 as, ~Rn = n1~a1 + n2~a2 + n3~a3. The summation in Equation (2.2) can

not be truncated due to its slow convergence.

In 1921, Ewald [31] published a paper which showed that slowly converging sums

with 1/r dependence could be rewritten in terms of two rapidly converging sums. The first

term is a sum of the “direct” lattice vectors (~Rn) and is thus called the direct sum. The

second term is a sum over the reciprocal lattice vectors ~Gm = m1
~b1 +m2

~b2 +m3
~b3, where

~bi are the primitive lattice vectors of the reciprocal unit cell. The direct sum, Edir, takes
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the form

Edir =
1

2

′
∑

n

N
∑

i,j=1

qiqjerfc
(

β
∣

∣

∣~ri − ~rj + ~Rn
∣

∣

∣

)

∣

∣

∣~ri − ~rj + ~Rn
∣

∣

∣

, (2.3)

while the reciprocal sum, Erec, is given by

Erec =
1

2πV

∑

m6=0

exp (−π2| ~Gm|2/β2)

| ~Gm|2
S( ~Gm)S(− ~Gm). (2.4)

The total Coulomb energy of the unit cell is then the sum of the direct term and the

reciprocal term. Both Equation (2.3) and (2.4) can be truncated due to the fast convergence

of the complementary error function and the Gaussian. The term S( ~Gm) in Equation (2.4)

is the structure factor defined by

S( ~Gm) =
N
∑

j=1

qj exp (2πi ~Gm · ~rj). (2.5)

The term β present in the direct and reciprocal sums can be chosen to be nearly any value.

Larger values of β will force the reciprocal sum to extend over more reciprocal lattice vectors

~Gm, while smaller values will cause an increase in the number of neighbor pairs to sum over

in the direct energy term. The direct sum is easily calculated in Order (N) operations with

an appropriate choice of β. The reciprocal sum however will then be of Order (N2) since

the structure factor must be calculated for each reciprocal lattice vector and the reciprocal

sum will approximately extend over N vectors.

The goal of the particle mesh method [12, 30] is to calculate the reciprocal energy

term in the Ewald summation in Order (N log (N)) steps by interpolating the exponential in

the structure factor at equally spaced points (mesh points) in the primitive (not reciprocal)

cell using a Cardinal B-spline [32]. The structure factor can then be written in the form

S( ~Gm) =
K1−1
∑

k1=0

K2−1
∑

k2=0

K3−1
∑

k3=0

Q(k1, k2, k3) exp

[

2πi

(

m1k1

K1
+
m2k2

K2
+
m3k3

K3

)]

= F (Q)(k1, k2, k3), (2.6)
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where F (Q) denotes the discrete three dimensional Fourier transform of the array Q. The

numbers Ki correspond to the number of mesh points that the primitive cell is broken up

into along each lattice vector. In general, the more mesh points used, the more accurate

will be the interpolation and the final answer for Erec. The K1 ×K2 ×K3 array Q,

Q(k1, k2, k3) =
N
∑

i=1

∑

n1,n2,n3

qiMn(u1i − k1 − n1K1)

× Mn(u2i − k2 − n2K2)Mn(u3i − k3 − n3K3), (2.7)

is calculated in Order (N) steps by evaluating the Cardinal B-splines (Mn) at the scaled

atomic positions u1i = ~a1 · ~ri, u2i = ~a2 · ~ri, etc. A simple formula describes the Cardinal

B-spline functions and is given by

Mn(u) =
1

(n− 1)!

n
∑

k=0

(−1)k
n!

k!(n− k)!
(u− k)n−1

+ , (2.8)

where n is an integer that denotes the order of the spline and the + operator is defined as

u+ = max(u, 0). A spline order of n = 4 is typically used in most particle mesh applications.

Since the Cardinal B-spline functions are non-zero in the range 0 < u < n, only a finite

number of lattice vector coefficients ni in Equation (2.7) will contribute to Q.

The reciprocal energy term [Eq. (2.4)] takes the final form

Erec =
1

2

K1−1
∑

m1=0

K2−1
∑

m2=0

K3−1
∑

m3=0

θ ⋆ Q(m1,m2,m3)Q(m1,m2,m3), (2.9)

where θ ⋆ Q denotes the convolution operation, θ = F (B · C), and B and C are constant

K1 ×K2 ×K3 arrays given by

B(m1,m2,m3) = |b1(m1)|2 · |b2(m2)|2, ·|b3(m3)|2

C(m1,m2,m3) =
1

πV

exp (−π2| ~Gm|2/β2)

| ~Gm|2
. (2.10)

The value of C(0, 0, 0) is set to zero in order to properly exclude the m 6= 0 term in

Equation (2.4). For the other m values, the reciprocal lattice vector is defined by ~Gm =
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m′
1
~b1 +m′

1
~b1 +m′

1
~b1 with m′

i = mi for 0 ≤ mi ≤ Ki/2 and m′
i = mi −Ki otherwise. The

factors b1(m1) are determined by

bi(mi) = exp (2πi(n − 1)mi/Ki)

×
[

n−2
∑

k=0

Mn(k + 1) exp (2πimik/Ki)

]−1

, (2.11)

where n is the order of the Cardinal B-spline.

The particle mesh procedure to evaluate the Coulomb energy of a periodic unit cell

can now be described as follows. Using Equation (2.10) the constant array B ·C is formed

and permanently stored. Then for each energy evaluation, the array Q is calculated using

Equation (2.7) and inverse fast Fourier transformed to obtain F−1(Q). Multiplying by the

array B ·C = F−1(θ) and fast Fourier transforming, the convolution (θ⋆Q) is formed. Once

the convolution (θ ⋆Q) is computed, the reciprocal energy term is calculated with Equation

(2.9). This procedure takes N log (N) operations; N to form the Q array and perform the

reciprocal sum, and N log (N) to form the convolution. The direct energy term is then

easily calculated in Order (N) operations since the sum can be truncated.

IV. GENERALIZED BORN MODEL

Often in the simulation of large molecules (the solute), a disproportionate amount

of time is spent on the calculation of solvent-solute and solvent-solvent interactions. This

is due to the amount of solvent that is needed to place the solute in a periodic box of

appropriate size so that electrostatic interactions of the solute with its periodic images are

negligible.

A different route that is sometimes taken for very large molecules is to use an implicit

solvation model for the solute-solvent interactions. This greatly reduces the size of the

problem by removing the explicit solvent molecules from the simulation. There are many
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methods for the treatment of solvation effects. The method that is used here is based on

the Born model for solvation of ions [33], first published in 1920 and later developed into

the generalized Born model by Bashford, Case, Still, and Tsui [13, 14, 34].

Born considered a charged ion with radius a (the intrinsic Born radius) and calcu-

lated the energy required to place the ion in a dielectric ǫ. The displacement field for the

ion can be approximated as ~D ≈ qr̂/r2. This is sometimes referred to as the Coulomb field

approximation [13]. For an ion, this approximation should be very good and the resulting

energy of the ion in the dielectric is [35]

W =
1

8π

∫ ~D

ǫ
· ~DdV

=
1

8π

∫

in

q2

r4ǫin
dV +

1

8π

∫

ex

q2

r4ǫex
dV. (2.12)

The integral has been split into two regions; the interior region of the charged ion (r < a)

where the dielectric is ǫin, and the exterior region where the dielectric is ǫex. The solvation

energy is the amount of energy required to move the charged ion from vacuum where ǫex = 1

to the solvent where ǫex = ǫs. Assuming that the interior dielectric remains constant as the

ion is moved from vacuum to solvent, the solvation free energy due to the polarization of

the solvent becomes

∆Fpol = Wsolvent −Wvacuum

= − 1

8π

(

1 − 1

ǫs

)∫

ex

q2

r4
dV. (2.13)

For an ion with intrinsic Born radius a, the integral is calculated as

∫

ex

1

r4
dV =

∫ ∞

a

1

r4
dV

= 4πa−1, (2.14)
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and the solvation free energy for a single ion becomes

∆Fpol = −1

2

(

1 − 1

ǫs

)

q2

a
. (2.15)

Equation (2.15) gives the energy required to move a charged ion from vacuum to a solvent

of dielectric ǫs. For a system of charged spheres (or point charges) separated by large

distances, the total Coulomb energy in the dielectric is the sum of solvation energies for the

ions [Eq. (2.15)] plus the Coulomb interaction energy in the dielectric medium,

Ecoul =
1

2

′
∑

i,j

qiqj
ǫsrij

− 1

2

(

1 − 1

ǫs

)

∑

i

q2i
ai
, (2.16)

where the prime denotes terms with i = j are excluded from the sum. The intrinsic Born

radius a is usually chosen such that the experimental free energy of solvation is the same

as Equation (2.15).

For general cases where the system of charges are closely spaced and essentially form

a cavity in the dielectric, Equation (2.16) is no longer valid and must be adjusted. Figure 3

(a) and (b) illustrates the formation of a cavity (with dielectric ǫin) in the dielectric medium.

As a result, the displacement field is no longer radial and the Coulomb field approximation

is no longer valid requiring an adjustment to the intrinsic Born radii. In addition, the cavity

also introduces a distance dependent dielectric, so that the interaction energy between two

charges in the molecule is no longer simply given by qiqj/ǫsrij .

The generalized Born model [13, 34] attempts to fix these problems by introducing

a function fGB which replaces the distance between two atoms, i.e. 1/rij → 1/fGB . The

function is given by [34]

fGB =
(

r2ij + αiαj exp (−r2ij/4αiαj)
)

1

2 , (2.17)

where αi are “effective” Born radii (described below). The generalized Born function at-

tempts to “extrapolate” between two extremes; short distances where the dielectric is less
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FIG. 3. Illustration of the effects of placing a single molecule of C2H6 into a dielectric
medium of dielectric ǫs > 1. (a) A single molecule of C2H6 in vacuum. (b) The placement
of C2H6 into the dielectric forms a cavity of weaker dielectric ǫin. The displacement field is
no longer radial. (c) Approximating the cavity using overlapping spheres with radii ai, the
intrinsic Born radii.
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than that of the medium, and long distances where the interaction is essentially qiqj/ǫsrij .

The generalized Born function gives approximately the Onsager result for a dipole in a

spherical cavity [34, 36] for the case when oppositely charged particles are separated by a

short distance.

The effective Born radii (αi) used in Equation (2.17) are approximated as

α−1
i = a−1

i −
∫

in

1

r4
dV, (2.18)

where again ai are the intrinsic Born radii. The integral can be computed in many ways.

One method developed by Hawkins et al. [37] involves using the intrinsic Born radii to

approximate the cavity as a system of overlapping spheres. The integral in Equation (2.18)

can then be calculated analytically in terms of nearest neighbor spheres that overlap. Figure

3 (c) shows the cavity approximated as overlapping spheres of radius ai centered at the

individual atomic positions.

The solvation energy of the molecule due to polarization effects is then given by

∆Fpol = −1

2

(

1 − 1

ǫs

)

∑

i,j

qiqj
fGB

. (2.19)

Since ∆Fpol is the amount of energy that is required to move the molecule from vacuum

to solvent, the total Coulomb energy in the dielectric is the sum of the vacuum Coulomb

energy plus ∆Fpol,

Ecoul = Evac + ∆Fpol

=
1

2

′
∑

i,j

qiqj
rij

+ ∆Fpol. (2.20)

The summation in Equation (2.19) includes terms i = j as these terms give the solvation

energy of the ion itself but the vacuum summation does not (hence the prime). Both terms

are calculated simultaneously during an energy evaluation.
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In short, the generalized Born model provides a simple approximation for the solva-

tion effects for a large solute molecule without having to calculate the numerous Coulomb

interactions between the atoms in solute with those in the solvent.

V. MOLECULAR DYNAMICS SIMULATION

One of the simulations that the Saguaro simulation package is capable of is molecu-

lar dynamics using a classical force field, specifically the force field obtained using Equation

(2.1). A classical molecular dynamics simulation of a system of N atoms begins by inte-

grating the equations of motion,

Fiα = − ∂V

∂riα

= mir̈iα, (2.21)

where α = x, y, z and i is the atom and the potential V is calculated using Equation (2.1).

A simple velocity Verlet algorithm [38],

riα(t0 + ∆t) = riα(t0) + ṙiα(t0)∆t+
∆t2

2mi
Fiα(t0)

ṙiα(t0 + ∆t) = ṙiα(t0) +
∆t

2mi
(Fiα(t0) + Fiα(t0 + ∆t)) , (2.22)

with appropriate time step (∆t ≈ 1 fs) can be used to integrate Equation (2.21) providing

a trajectory of the system of atoms as a function of time.

The corresponding trajectory samples the microcanonical ensemble of states where

the number of atoms, volume, and energy are constant (NVE). In most molecular dynamics

(MD) simulations one often desires the trajectory to sample other ensembles, such as the

canonical ensemble, where the temperature is held constant (NVT).

There is a rich history of the development of methods to perform MD simulations

in the various thermodynamic ensembles. Two examples are the extended systems method

developed by Anderson, Nosé, Klein, Hoover, et al. [39, 40, 41, 42, 43] and the weak
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coupling method developed by Bernsden et al. [44]. The weak coupling algorithm is a very

popular choice since it is quite easy to implement in a MD algorithm when compared to the

extended systems method which requires integration of complicated equations of motion.

However unlike the extended systems method, the weak coupling method will sample the

correct conformational space only for large number of atoms. For this reason the extended

systems method is used in the Saguaro simulation package.

The Extended System Method for the isobaric-isoenthalpic ensemble (NPH) was

originally derived by Anderson [39] to simulate a unit cell under the influence of a constant

hydrostatic pressure. The resulting equations of motion allowed the unit cell to adjust

isotropically, maintaining the cells shape. Parrinello and Rahman [45] extended this idea

to the case where the unit cell is adjusted anisotropically. Further work done by Nosé and

Klein, [43] extended the Parrinello and Rahman method to the isobaric-isothermal ensemble

(NPT). By using the Nosé-Klein method, Saguaro allows for (NVE), (NVT), (NPH), and

(NPT) simulations to be performed.

The Nosé-Klein method begins with the following Lagrangian for the system,

L =
∑

i,αβ

1

2
mis

2u̇iαGαβ u̇iβ − V

+
∑

αβ

1

2
WḢ2

αβ − PexDet(
↔
H) +

1

2
Qṡ2 −NfkbTexLn(s), (2.23)

where uiα are the fractional coordinates of the atom in the unit cell (~ri =
↔
H ~ui) and s is the

dynamical variable describing the heat coupling. Since the total energy of the Lagrangian

is constant, s is essentially an “extended” variable that can absorb and release energy to

the other degrees of freedom, thus mimicking an NVT simulation. The 3 × 3 matrix
↔
G is

defined as
↔
G=

↔
H
T ↔
H, where

↔
H is the 3× 3 matrix of unit cell vectors placed in the columns.

The determinant of the unit cell vector matrix, Det(
↔
H), is then equivalent to the volume of
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the unit cell Vc. The variables W and Q are effective masses that can be used to adjust the

fluctuations of the pressure and temperature of the system respectively. The constants Nf

and kb are the number of spatial degrees of freedom and Boltzmann’s’ constant. Finally,

Pex and Tex are the pressure and temperature of the external environment. The remaining

discussion will now become quite technical as a set of equations that are capable of describing

various thermodynamical ensembles is derived. A ten point summary of how the equations

are used in the Saguaro molecular dynamics algorithm is given at the end of the section.

The Hamiltonian is obtained from Equation (2.23) [46] giving

H =
∑

i,αβ

πiαG
−1
αβπiβ

2mis2
+ V +

∑

αβ

Π2
αβ

2W
+ PexDet(

↔
H) +

π2
s

2Q
+NfkbTexLn(s), (2.24)

where πiα,Παβ , and πs are the canonical momentum. Einsteins’ summation convention will

now be used for the remainder of this section unless otherwise noted. Applying Hamilton’s

[46] equations of motion to Equation (2.24), the following equations of motion are obtained:

u̇iα =
G−1
αβπiβ

mis2
,

π̇iα = −Hβα
∂V

∂riβ
, (2.25)

ṡ =
πs
Q
,

π̇s =
πiαG

−1
αβπiβ

mis3
− NfkbTex

s
, (2.26)

Ḣαβ =
Παβ

W
,

Π̇αβ = (Ξαγ − Pexδαγ)σγβ . (2.27)

Here, δαγ is the Kronecker delta and the tensors Ξαβ and σαβ are given by

Ξαβ =
1

Det(
↔
H)

(

1

mis2
H−1
γα πiγH

−1
µβ πiµ −

∂V

∂riα
(
↔
H ui)β

)

,

σαβ = Det(
↔
H)H−1

βα . (2.28)
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Nosé showed [41, 42] that with a scaling of the time such that, sdt′ = dt, the

coordinates and momentum in time t′, given by

riα(t
′) = Hαβuiβ,

piα(t
′) =

H−1
βαπiβ

s
, (2.29)

will sample the isothermal-isobaric ensemble with an average total kinetic energy of

NfkbTex/2 and average pressure Pex. Taking the derivative of riα(t
′) and piα(t

′) with

respect to t′ and using Equations (2.25)-(2.28) gives

driα
dt′

=
dHαβ

dt′
uiβ + sHαβ

duiβ
dt

=
dHαγ

dt′
H−1
γβ riβ +

piα
mi

(2.30)

and

dpiα
dt′

=
dH−1

βα

dt′
πiβ
s

−H−1
βα

πiβ
s2

ds

dt′
+H−1

βα

dπiβ
dt

= −dHβγ

dt′
H−1
γα piβ −

dLn(s)

dt′
piα − ∂V

∂riα
. (2.31)

Equations (2.30) and (2.31) can now be put into a simpler form. With the definitions

ξ =
dLn(s)

dt′
,

ηαβ =
1

W
(Ξαγ − Pexδαγ) σγβ, (2.32)

and simplifications of Equation (2.28) to

Ξαβ =
1

Det(
↔
H)

(

piαpiβ
mi

− ∂V

∂riα
riβ

)

,

σαβ = Det(
↔
H)H−1

βα , (2.33)

the equations of motion take the following form

ṙiα = Aαβriβ +
piα
mi

,
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ṗiα = − ∂V

∂riα
− (Aβα + ξδαβ) piβ,

ξ̇ =
1

Q

(

piαpiα
mi

−NfkbTex

)

,

Ḧαβ = ξḢαβ + s2ηαβ . (2.34)

Here, the 3 × 3 matrix
↔
A has elements Aαβ = ḢαγH

−1
γβ . All of the dots in Equation (2.34)

refer to the total derivative with respect to time t′. Since t′ is essentially a dummy index

at this point, the time will be simply referred to as t and not t′ henceforth.

So far the equations of motion [Eqs. (2.32)-(2.34)] describe a system where the unit

cell is allowed to change shape and volume. The equations of motion become modified for

isotropic or anisotropic fixed angle scaling of the unit cell. The isotropic scaling allows only

the lengths of the unit cell vectors to change at the same rate. The fixed angle scaling allows

the lengths to change at different rates. The equations of motion for both types of scaling

remain of the same form as Equations (2.32)-(2.34), but with ηαβ modified. For isotropic

scaling ηαβ becomes

ηαβ = Hαβ
Det(

↔
H)

WL2
Tr(

↔
Ξ −Pex

↔
I ), (2.35)

where Tr denotes the trace and L is from the relation Hαβ = gαβL where gαβ is a constant

tensor. The value L is somewhat of a free choice, since its purpose is to merely scale the

unit cell vectors uniformly. A simple choice is L = |~a| where ~a is any primitive unit cell

vector. Similarly, for anisotropic fixed angle scaling, ηαβ becomes

ηαβ = Hαβ
Det(

↔
H)

WL2
β

(

↔
H
T

(
↔
Ξ −Pex

↔
I )

↔
H

−1T
)

ββ
, (2.36)

where Lβ is from the relation Hαβ = gαβLβ (no sum on β). Again a simple choice is for L

is Lβ = |~aβ|.

In a Saguaro molecular dynamics simulation, the Equations (2.32)-(2.34) are inte-

grated using a velocity Verlet algorithm [38]. The resulting trajectory will then sample
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both momentum and position space in the isobaric-isothermal (NPT) ensemble. These

equations reduce to the equations of motion for the isobaric-isoenthalpic ensemble (NPH)

when ξ(t) = 0 and s(t) = 1 for all time t. Likewise, by setting Ḧαβ = 0 and Ḣαβ = 0 for

all time t, the equations of motion reduce to the Nosé-Hoover equations and the trajectory

will sample the isohoric-isothermal (NVT) ensemble of states [40, 41, 42]. In this fashion,

Saguaro can perform an MD simulation in any of the ensembles (NVE) (NVT) (NPH) and

(NPT) by an appropriate choice of the variables ξ, s, Ḧαβ, and Ḣαβ.

The velocity Verlet integration scheme however can pose problems due to the extra

integration of ξ and/orHαβ that is required. The Saguaro velocity Verlet integration scheme

integrates ξ and Hαβ to the same order in the time step as the velocities and coordinates,

which yields an iterative procedure for their integration. With some work, Equations (2.32)-

(2.34) can be formed into a velocity Verlet like form

riα(t+ ∆t) = µαβ(t)riβ(t) + piα(t)
∆t

mi
+ (F totiα (t) +Aαβpiβ)

(∆t)2

2mi
,

piα(t+ ∆t) = piα(t) +
∆t

2
(F totiα (t+ ∆t) + F totiα (t)), (2.37)

where µ is the scaling matrix with elements given by

µαβ(t) =

(

Hαβ + Ḣαβ∆t+ Ḧαβ
(∆t)2

2

)

H−1
αβ

≈ Hαγ(t+ ∆t)H−1
γβ (t), (2.38)

and F totiα is the total force,

F totiα = − ∂V

∂riα
− (Aβα + ξδαβ)piβ, (2.39)

that includes the forces of constraint from the external pressure and external temperature

coupling.



25

The trajectories for Hαβ,Ḣαβ, Ln(s) and ξ can also be calculated using the velocity

Verlet scheme as follows:

Hαβ(t+ ∆t) = Hαβ(t) + Ḣαβ(t)∆t+ Ḧαβ(t)
(∆t)2

2
,

Ḣαβ(t+ ∆t) = Ḣαβ(t) +
∆t

2
(Ḧαβ(t+ ∆t) + Ḧαβ(t)), (2.40)

Ln[s](t+ ∆t) = Ln[s](t) + ξ(t)∆t+ ξ̇(t)
(∆t)2

2
,

ξ(t+ ∆t) = ξ(t) +
∆t

2
(ξ̇(t+ ∆t) + ξ̇(t)). (2.41)

However, since F tot depends on the momenta, integration of the velocity Verlet equations

[Eqs. (2.37), (2.40), (2.41)] is no longer simple. The problem is that the new momenta at

time t + ∆t in Equation (2.37) depend on ξ at time t + ∆t which in turn depends on the

momenta at time t + ∆t [see Eq. (2.34)]. This can be fixed by using an iterative method

for the integration of the momentum equations. The Saguaro integration algorithm begins

by using the current momenta (computed using Fiα = − ∂V
∂riα

) to calculate ξ. New momenta

are then formed by scaling with ξ (piα → piα/(1 + ξ∆t/2)). The procedure continues until

ξ converges. Typically only two or three iterations need to be performed to achieve a good

convergence for ξ. A similar problem also exists for the Hαβ equations of motion [see Eq.

(2.32)-(2.34) and Eq. (2.40)] and can be fixed using a iteration procedure similar to that of

ξ.

To summarize, the following algorithm implemented in Saguaro follows the velocity

Verlet technique and is capable of implementing either (NVE), (NVT), (NPH), or (NPT)

simulations with an appropriate setting of a flag.

1. Calculate Hαβ(t+ ∆t) and S(t+ ∆t) using Equations (2.40) and (2.41).

2. Form
↔
µ matrix and scale positions.
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3. Calculate positions riα(t+ ∆t) using Equation (2.37)

4. Calculate new forces Fiα(t+ ∆t) = − ∂V
∂riα

5. Obtain approximate momenta, kinetic energy and temperature using Equation (2.37)

and the force Fiα.

6. Calculate ξ(t+ ∆t) and Ḣαβ using the iteration procedure.

7. Fix momenta, kinetic energy and temperature using converged values of ξ(t+∆t) and

Ḣαβ.

8. Compute total force F totiα = Fiα − (Aβα + ξδαβ)piβ

9. Output any desired data

10. REPEAT

VI. ACTIVATION RELAXATION TECHNIQUE

The activation relaxation technique (ART) [28] is a method used in the Saguaro

package to locate the many conformations of a molecule or a configuration of atoms by

examining the energy landscape. The ART method was developed by Mousseau and col-

leagues and one of its first applications was to search for the various conformations that

amorphous silicon can make using a Lennard Jones 6-12 potential [28, 29]. The ART algo-

rithm was later applied to the study of aggregation formation in a four amino acid segment

of Alzheimer’s beta amyloid protein [47], and of the folding mechanisms of a few amino

acids [48, 49].

The ART algorithm involves three basic steps: activation of the molecule along a

random direction, location of a saddle point in the energy, and relaxation to a new local



27

minimum. Starting from a local minimum, the first step of ART, shown in Figure 4 (a),

moves the molecule or configuration of atoms along a random direction (the activation

direction), “activating” it by slowly moving away from the current local minimum in a

series of small steps. During the activation procedure, the force is minimized perpendicular

to the activation direction. Periodically the Hessian matrix Φiαjβ (with i, j = [1,N ] and

α, β = x, y, z) whose elements are given by

Φiαjβ =
∂2V

∂riα∂rjβ
, (2.42)

is calculated and diagonalized. If the diagonalization of the Hessian results in a negative

eigenvalue, then the corresponding eigenvector gives the direction to a local saddle point,

shown in Figure 4 (b). At this point, step two of the ART procedure begins by following

the eigenvector corresponding to the largest negative eigenvalue. During step two, the force

perpendicular to the eigenvector is minimized as in step one. Eventually, the total force

is zero and the molecule has converged to a local saddle point. The third and final ART

step moves the molecule over the saddle point, shown in Figure 4 (c), and the molecule is

minimized to a new local minimum.

If desired, the Metropolis criterion can then be used to accept or reject the new

structure based on the energy difference between the old local minimum and the new local

minimum. Decreases in energy are always excepted while increases in energy are accepted

randomly with probability e−β∆E . The addition of the Metropolis step has the effect of

forcing the molecule into a set of native states that will tend to be accessible at a given

temperature.

The ART procedure is very adaptable since nearly any conformational space can

be used to generate activation directions and search for new local minimums. The Saguaro

simulation package implements the ART procedure using two different sampling techniques.
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FIG. 4. The three steps of the activation relaxation technique. (a) Step one. The molecule
is moved along a random direction, the activation direction, in small steps. After each step,
the force is minimized perpendicular to the activation direction. Periodically, the Hessian
matrix is calculated and diagonalized. (b) Step two. A negative eigenvalue of the Hessian is
found and the activation direction is reset to follow the corresponding eigenvector which is
a direction of negative curvature in the energy landscape. The forces perpendicular to the
activation direction are still minimized after each activation step. (c) Step three. A saddle
point is located when the total force vanishes. The molecule is perturbed away from the
saddle point and a full relaxation is performed. The final result is that the molecule resides
in a new local minimum of the energy landscape.
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The first technique samples the conformational space of a molecule by moving individual

atoms. The second sampling technique is used to locate conformations of peptide chains by

searching the Ramachandran space of the peptide. The ART method and two applications

involving a simple peptide are discussed in detail in Chapter 8.

VII. FREE ENERGY PERTURBATION

The goal of a free energy perturbation calculation is to find the free energy difference

between two conformations of a molecule. Here, the word conformation is used very broadly

since the variety of free energy calculations that can be performed is quite large. For

example, the simplest of free energy perturbation calculations is the free energy of solvation

which seeks to find the change in free energy of a molecule when the molecule is moved

from vacuum to an aqueous solution (usually water). An example of a more complicated

free energy perturbation calculation is the problem of finding the binding free energy of

a molecule where a small molecule docks into a specific region of a much larger molecule

resulting in a change in free energy due to the docking.

The free energy perturbation method used in Saguaro calculates the free energy

difference between conforms by using a thermodynamic integration technique [50, 51]. From

a classical perspective, the free energy difference between two states of a molecule (state 0

and state 1) is given by

e−β(F1−F0) =

∫

e−βH1dΓ
∫

e−βH0dΓ
, (2.43)

where H0 is the Hamiltonian of the molecule in state 0 and H1 is the Hamiltonian in state 1.

Equation (2.43) results directly from the free energy relation F = −kbT ln (Z). The phase

space of the molecule (both position and momentum) is denoted by Γ. Equation (2.43) can

be rewritten in the form

e−β(F1−F0) =

∫

e−βV e−βH0dΓ
∫

e−βH0dΓ
, (2.44)
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where V is the difference between the two Hamiltonians, V = H1 − H0. Typically the

number of degrees of freedom in each state are the same so that Equation (2.44) can be

written in terms of an ensemble average

e−β(F1−F0) = 〈e−βV 〉0. (2.45)

The notation 〈x〉0 denotes the ensemble average of the quantity x in state 0. If the difference

V is small, then both exponentials can be expanded to first order so that

(F1 − F0) ≈ 〈V 〉0. (2.46)

In general the free energy difference is not small enough to be approximated by

Equation (2.46). The thermodynamic integration procedure calculates the free energy dif-

ference, F1 − F0, by creating intermediate states λ, where 0 ≤ λ ≤ 1. These intermediate

states can be described by a Hamiltonian Hλ. The intermediate states make the difference

between successive Hamiltonians, Vλ = Hλ+dλ −Hλ, small allowing Equation (2.46) to be

used to calculate the free energy differences between intermediate states ∆Fλ = Fλ+dλ−Fλ.

The total free energy difference is then just the sum of the smaller free energy differences

between intermediate states ∆Fλ. As the number of intermediate states goes to infinity,

the sum over ∆Fλ takes the form of an integral,

F1 − F0 =

∫ 1

0
〈Vλ〉λdλ, (2.47)

where Vλ = ∂Hλ/∂λ and the free energy difference is now exact.

The intermediate states can be made to follow any path between states 0 and 1

since the free energy is a function of state. A very simple path is Hλ = H0 + λV , with

V = H1−H0. This path takes state 0 to state 1 linearly. This is the current implementation

in Saguaro. The number and location of points that the integrand can be evaluated at is
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chosen by the user. The integral can then be done by any integration scheme. However,

Hummer and Szabo [50] show that the calculation of the free energy difference can be

improved upon by choosing specific locations to evaluate the integrand.

VIII. FULLY ATOMISTIC VIBRATIONAL ANALYSIS

The last type of calculation that Saguaro is capable of is a fully atomistic vibrational

analysis of a large molecule, where each degree of freedom (x, y, z for each atom) is used to

construct the vibrational patterns. The “standard” procedure for a vibrational or normal

mode analysis (NMA) of a molecule of N atoms requires the formation and diagonalization

of a 3N×3N matrix equation. Unlike molecular dynamics simulations where computational

cost scales roughly linearly with the number of atoms simulated, a NMA will scale cubically

with the number of atoms since the cost of diagonalizing a square matrix goes as the cube

of the dimension of the matrix. But more importantly, the computer memory required to

store the matrix increases quadratically with the number of atoms. As a result, even a few

thousand atoms will require hundreds of Gigabytes (109) of computer memory far exceeding

the few Gigabytes of memory available on most machines. Thus, as parallelization and

supercomputer centers have allowed molecular dynamics time scales to proceed into the

microsecond realm, similar progress for NMA has been limited.

In the majority of large molecule NMA, it is the low frequency vibrational modes

that are of the most interest since these will most likely exhibit the large global motion of

the molecule that give rise to large conformational changes of the molecule. The Saguaro

package exploits this by implementing an iterative procedure where only the few lowest

frequency mode patterns need to be stored in computer memory [52]. A detailed discussion

on the vibrational analysis method is given in Chapter 4 and applications to specific systems

such as viral capsids and large protein complexes can be found in later chapters.



CHAPTER 3

GROUP THEORY

I. INTRODUCTION AND MOTIVATION

Molecules and macromolecular complexes often exhibit symmetry amongst their

constituent atoms. For example, viral capsids are large molecules that are built from a

set of proteins by assembling them in a symmetrical fashion to construct a tube (helical

symmetry) or spherical shell (icosahedral symmetry). Viral capsids are enormous in terms

of the number of atoms that they contain (N > 105) which have made studies of their

vibrational frequencies and mode patterns extremely difficult using standard techniques.

Utilization of symmetry properties from group theory can allow for significant reductions in

the size of the dynamical matrix by breaking the problem up into separate (but equivalent)

problems based on the irreducible representations of the symmetry group of the molecule.

Group theory has been used by van Vlijmen and Karplus in the study of viral capsids

[53, 54]. The reduction in the size of the dynamical matrix however is still insufficient

without the use of a reduced basis set [53] so that the total number of degrees of freedom

is significantly less than the full Cartesian set of 3N variables. The basis set chosen by

van Vlijmen and Karplus in their studies of Polio virus [54] consisted of only dihedral

rotations which reduced the number of basis vectors from 24,252 (full Cartesian basis) to

3,438 (dihedral motions only).

For the study of low frequency modes of viral capsids or other molecules having

symmetry, the phonon functional method, which is discussed in detail in Chapter 4, should

be capable of solving for the few lowest frequency modes using a full Cartesian basis.

However, the use of group theory can dramatically speed up the calculation of the low

frequency mode patterns by decreasing the size of the dynamical matrix while providing

useful insights into symmetry related motions. But as the resulting smaller dynamical



33

matrix is still too large to store in computer memory, the operation of the matrix on a

vector must be computed in a way that does not require its explicit storage.

The main purposes of this chapter is to provide the reader with a basic review of

group theory and to prepare the necessary theoretical framework that will be needed for the

calculation of the group theory dynamical matrix (group dynamical matrix) operating on a

vector. The notation that will be used is similar to notation used in Group Theory in Physics

[55]. After a brief review of some basic principals in group theory, a computational method

to construct group theory basis vectors from only the rotation matrices is described. For

the reader that is familiar enough with group theory, this chapter may be skipped. Those

needing a detailed review of group theory should consult a group theory textbook.

II. REVIEW OF BASIC GROUP THEORY

Consider a molecule with N atoms which are located at equilibrium positions ~Ri.

The complete vector for the equilibrium positions, of length 3N , will be denoted by |R〉.

Suppose that this molecule has symmetry properties of a finite group G with elements TǫG

and that the total number of elements in the group is ng. Each of the elements describe a

basic operation such as a rotation about an axis or reflection through a plane that, when

applied to the molecule, leave it identical to its original structure.

A two-dimensional example of a simple finite group, c3v , is shown in Figure 5. In the

figure, the group of three identical atoms form an equilateral triangle with sides of length

a. When the system of atoms are operated on by one of the ng = 6 elements of the group

(E, A, B, C, C3z, C−1
3z ), the new system that results is indistinguishable from the first. The

element E is the identity, A, B, and C are the reflection operators and C3z, C−1
3z are the

rotation operators.
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FIG. 5. The three identical atoms shown represent the finite group c3v . There are a total of
six group elements T that describe the group. Each atom is a distance of a from the other
two atoms. The reflection planes are shown as dashed lines and each atom site is numbered
s = [1, 3]. The coordinates listed are the equilibrium positions of each atom.

The system of three atoms in Figure 5 can be constructed by applying three of the

six group operators to just one atom. For some molecules, it is possible to construct the full

molecule from a basis of Nb atoms by applying the group operators Φ̂(T ) to the equilibrium

positions of the Nb basis atoms. Thus, the full molecule of N atoms can be thought of

as Nb atoms copied Ns times (N = NbNs), where Ns is the number of unique atom sites.

For example, C60 has symmetry of the group Ih which has a total of ng = 120 group

elements. Only 60 of the group elements are needed to construct the full C60 molecule with

60 atoms. Thus, C60 has one basis atom and 60 unique sites (Nb = 1,Ns = 60). This type

of interpretation is needed for spherical viruses (icosahedral symmetry group, I) since they

are constructed from 60 copies of one or more proteins that contain many atoms. Figure 6

shows an illustration of two basis atoms (Nb = 2) placed at the sites of the original triangle
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FIG. 6. Diagram showing two basis atoms (one red, one blue) placed at the sites (vertexes)
of the equilateral triangle. The resulting set of six atoms has symmetry of the group c3v

which can be easily verified. The two atoms are numbered as 1 and 2 and the three sites
are labeled s = [1, 3]. The reflection planes are drawn with dashed lines.

structure (shown in Figure 5). The two basis atoms need not be identical to have the

symmetry of c3v . The description of a symmetrical molecule being composed of Nb atoms

repeated Ns times will be used henceforth.

Each of the ng elements T can be denoted by the operators Φ̂(T ) which perform a

rotation and permutation of the set of atoms in the molecule. A mathematical formulation

of the invariance of the molecule to one of the group elements is written as

Φ̂(T )|R〉 = |R〉. (3.1)

Again, |R〉 is the vector of length 3N (3 dimensions times N atoms) that gives the equilib-

rium coordinates of the atoms. Equation (3.1) is satisfied for every element T of the group.

The Φ̂(T ) operators can instead be represented as 3N × 3N matrices
↔
Γ
D

(T ) which are the
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direct product of a 3 × 3 rotation matrix
↔
R (T ) and a N ×N permutation matrix

↔
P (T ),

↔
Γ
D

(T ) =
↔
R (T )⊗

↔
P (T ). (3.2)

As an example, the reflection operation about the plane A for the three identical

atoms in Figure 5 can be represented in two dimensions by a 2 × 2 rotation matrix and a

3 × 3 permutation matrix given by

↔
R (A) =









−1 0

0 1









,
↔
P (A) =



















0 1 0

1 0 0

0 0 1



















. (3.3)

Using Equation (3.2), these two matrices can be combined into the 6 × 6 matrix

↔
Γ
D

(A) =













































0 0 −1 0 0 0

0 0 0 1 0 0

−1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 −1 0

0 0 0 0 0 1













































. (3.4)

One can easily verify that the vector |R〉 of equilibrium coordinates,

|R〉 =
1

6













































3a

−a
√

3

−3a

−a
√

3

0

2a
√

3













































, (3.5)

operated on by the matrix
↔
Γ
D

(A) satisfies Equation (3.1).
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For a general molecule with symmetry of the group G and Nb basis atoms at Ns sites,

the ng 3N × 3N matrices
↔
Γ
D

(T ) form a representation of the group G for the molecule

which Cornwell [55] calls the “displacement representation.” This representation of G has

the important property,

↔
Γ
D†↔
D

↔
Γ
D

(T ) =
↔
D, (3.6)

for all TǫG where
↔
D is the 3N × 3N dynamical matrix. Thus, the dynamical matrix is

invariant under a unitary transformation with any group operator.

There are many ways to form a matrix representation
↔
Γ (T ) of the group. Two

representations,
↔
Γ (T ) and

↔
Γ
′
(T ), are said to be equivalent if there exists a unitary trans-

formation
↔
U such that,

↔
Γ
′
(T ) =

↔
U

†↔
Γ (T )

↔
U, (3.7)

for every element T . However, if there exists a unitary transformation
↔
U , such that

↔
U

†↔
Γ

(T )
↔
U is block diagonal for every element T , with each

↔
Γ having the same block structure,

then the representation is said to be completely reducible. For every group there are a set of

irreducible representations of dimension dp denoted by
↔
Γ
p

(T ), where p is the pth irreducible

representation of G. These irreducible representations satisfy the powerful orthogonality

relation (“the grand orthogonality theorem”)

dp
ng

∑

TǫG

Γp∗jk(T )Γqst(T ) = δpqδjsδkt, (3.8)

where the asterisk denotes the complex conjugate, j, k, s, t label the d2
p elements of the

irreducible representation, and δpq etc. are Kronecker deltas.

The number of irreducible representations of a group is equal to the number of unique

classes, which are distinguished by their character χ(T ). For a general matrix representation
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TABLE I. Character table for the group c3v . The three irreducible representations are
labeled A1, A2, and E. The numbers next to each of the three classes correspond to the
number of group elements that belong to the class.

E 2C3 3σv
A1 1 1 1
A2 1 1 -1
E 2 -1 0

of the group,
↔
Γ (T ), the characters are defined as

χ(T ) = Tr
(↔
Γ (T )

)

, (3.9)

where Tr denotes the trace operation. Every element in the group belongs to one and only

one of the unique classes and every element in the class has the same character. Since

the number of irreducible representations is equal to the number of classes, a square table

relating the classes and irreducible representations can be formed called the character table.

The entries of the character table are simply the characters χp(T ) for a class of elements in

the pth irreducible representation.

Table I shows the character table for the group c3v. There is a total of three unique

classes of elements. The first is the identity class which contains only the identity element

E. The next class is the class of threefold rotations, C3, which contains the elements C3z

and C−1
3z . Finally the last class, σv, is the class of reflections which contains the elements

A, B, and C.

The representation
↔
Γ
D

is a reducible representation of the group that can be made

block diagonal for all elements T of G by applying a unitary transformation (
↔
V ) to all ng
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matrices
↔
Γ
D

(T ). Applying the unitary transformation to
↔
Γ
D

gives

↔
V

†↔
Γ
D

(T )
↔
V=



























↔
Γ

1
(T )

↔
Γ

1
(T )

↔
Γ

2
(T )

. . .



























. (3.10)

The smaller matrices
↔
Γ
p

are the irreducible representations of G. Each of the irreducible

representations may occur more than once along the diagonal [as can be seen in Eq. (3.10)].

The number of times, np, that the pth irreducible representation occurs in a reducible

representation is given by

np =
1

ng

∑

TǫG

χp∗(T )χ(T ), (3.11)

where χ(T ) corresponds to the character of element T in the reducible representation and

can be calculated using Equation (3.9). The characters for the irreducible representation,

χp(T ), can either be obtained from χp(T ) = Tr(
↔
Γ
p

(T )) or the character table.

The matrix
↔
V is a 3N × 3N orthogonal matrix formed from group theory basis

vectors |vpm〉 of the irreducible representations which have the property

Φ̂(T )|vpn〉 =

dp
∑

m=1

Γpmn(T )|vpm〉. (3.12)

It is usually said that |vpm〉 transforms as the mth row if the irreducible representation p.

Equation (3.10) can be easily verified through the use of Equation (3.12) and the orthogo-

nality of the columns of
↔
V .

In total, npdp basis vectors can be constructed for the irreducible representation p;

dp vectors due to the dimension of
↔
Γ
p

times np for each time the irreducible representation p

appears in
↔
Γ
D

. Since the irreducible representation p will usually occur more than once, the
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group theory basis vectors will be denoted by the notation, |vpmα〉, where m corresponds to

the row number (m = 1, 2, · · · , dp) that the basis vector transforms as, and α = 1, 2, · · · , np.

The 3N × 3N dynamical matrix
↔
D can also be made block diagonal by performing

a similarity transform with the
↔
V matrix of group theory basis vectors

↔
V

†↔
D

↔
V=



























↔
D

1

↔
D

2

↔
D

2

. . .



























. (3.13)

The
↔
D
p

are smaller dynamical matrices (group dynamical matrices) of dimension np × np

for irreducible representation p and are repeated dp times. Thus, the eigenvalue equation

for the full dynamical matrix,

↔
D |e(λ)〉 = λ|e(λ)〉, (3.14)

can be broken up into smaller eigenvalue problems of size np×np each satisfying the equation

↔
D
p
|ep(λ)〉 = λ|ep(λ)〉. (3.15)

Equation (3.15) shows the power of group theory and why it is so important. From just the

symmetry properties of a molecule, group theory can be used to greatly reduce the size of

the eigenvector problem.

The eigenvectors of
↔
D are constructed from the group theory basis vectors and the

vectors |ep(λ)〉 via

|e(λ)〉 =

np
∑

α=1

|vpmα〉epα(λ), (3.16)

where α labels the np components of |ep(λ)〉. Since
↔
D
p

is repeated dp times, the eigenvalues

λ corresponding to the matrix
↔
D
p

are dp fold degenerate. The degenerate eigenvectors can

be constructed using basis vectors that transform as a different row m in Equation (3.16).
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Hence, it is only necessary to use group theory basis vectors that transform as a single

row for the construction of
↔
D
p

with Equation (3.13). However, in order to calculate the

operation of the group dynamical matrix on a general vector, all of the basis vectors for

the irreducible representation will be needed. A method to construct these basis vectors is

discussed in the next section.

III. CONSTRUCTION OF BASIS VECTORS

Group theory basis vectors have special properties with respect to the rotation op-

erators Φ̂(T ) [see Eq. (3.12)] that allow for the block diagonalization of the displacement

representation
↔
Γ
D

(T ). As such, they are required for the calculation of the group dynam-

ical matrix operating on a general vector. The basis vectors that will be required for the

group dynamical matrix operating on a vector are basis vectors for the point group where

Nb = 1. This section provides a computational method to construct them, which can then

be used in an automated fashion on any biomolecule with symmetry. Since the symmetry

properties of a biomolecule are typically listed in the protein data bank file (PDB), this pro-

cedure will be of great use. An explicit derivation of the group dynamical matrix operating

on a vector will be left until Chapter 4 Section VII.

The construction of basis vectors for the case Nb = 1 can be done quite simply by

operating the projection operator

P̂p
mn =

dp
ng

∑

TǫG

Γp∗mn(T )Φ̂(T ), (3.17)

on a random vector |r〉 which has a length of 3Ns when Nb = 1. The rotation operator

Φ̂(T ) can be written as a 3Ns × 3Ns matrix [see Eq. 3.2]. Typically only the rotation

operators and number of group elements are known and one must find the irreducible

representation matrices in a table [56]. The projector uses a linear combination of rotations
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of the random vector to construct a basis vector of the irreducible representation p. The

projection operator P̂p
mm projects the random vector onto the mth row of the irreducible

representation p whereas P̂p
mn takes a basis vector transforming as row n and generates its

orthogonal partner, a basis vector transforming as row m.

Using Equation (3.17), one can easily construct the np basis vectors transforming as

row 1 in two steps. First, apply the projector P̂p
11 to a set of np random vectors. Second, use

a orthogonalization procedure such as Gram Schmidt to obtain an orthogonal set of basis

vectors that span the space of vectors transforming as row 1. The orthogonal partners of

the row 1 basis vectors can then be easily obtained by applying the projector P̂p
m1 to each

of the row 1 basis vectors.

The use of Equation (3.17) however requires that all ng matrices for the irreducible

representation p are known. Typically, one can find a detailed table of the ng matrices

for all irreducible representations of a particular group in a reference book or other source

[56, 57]. The tables for the irreducible representations can be cumbersome to work with

from a computational standpoint since the matrices must be imported into the computer

in some fashion. For somewhat large groups such as I or Ih, this can be time consuming.

Instead, it would be very useful to be able to construct the matrices Γpmn(T ) from a com-

puter algorithm where only a small amount of information is needed. Blokker and Dixon

[58, 59] both describe computational methods to construct the characters and irreducible

representation matrices. Here, a much simpler method is employed that only requires the

rotation operators of the group. As these are easy to construct, the character table and

irreducible representation matrices can be computed for nearly any point group allowing

the basis vectors to be constructed using Equation (3.17).
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A naive method to construct the irreducible representation matrices would be to

first project a random vector onto a single irreducible representation using the character

projector

P̂p =
dp
ng

∑

TǫG

χp∗(T )Φ̂(T ). (3.18)

The group characters are easy to work with (as they are single numbers) which makes this an

attractive idea. This method assumes that the projected vector can be chosen to transform

as a single row of the irreducible representation, thereby allowing the matrix elements Γp∗mn

to be computed by applying the rotation operators Φ̂(T ) and using Equation (3.12). The

problem with this method is that the number of basis vectors transforming as row 1 is

usually greater than one (np > 1). Thus, the rotation operators often generate more than

dp orthogonal vectors since ng > dp. Another method to construct a vector transforming

as row 1 must be developed as this clearly violates Equation (3.12).

In general, a random vector of length 3Ns can be expanded in terms of the complete

set of group theory basis vectors |vpmα〉 as

|r〉 =
∑

p

np
∑

α=1

dp
∑

m=1

Cpmα|vpmα〉. (3.19)

Of course the set of vectors |vpmα〉 is not by any means unique. In particular, there is a set

of basis vectors for which the coefficients Cpmα have the following “orthogonality” property

for all irreducible representations p,

np
∑

α=1

Cp∗mαC
p
nα = Cpmδmn, (3.20)

where Cpm is a constant given by
∑

α |Cpmα|2. The reason for using this set of basis vectors

will be apparent shortly. However, it is not obvious that a set of basis vectors with this

property exists.
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To show that a set of basis vectors with this property indeed exists, consider the

example system of three atoms in two-dimensions shown in Figure 5 which have symmetry

of the group c3v. The number of times that the irreducible representation E (see Table I)

occurs in the displacement representation can be calculated using Equation (3.11) and is

nE = 2. The E representation has dimension 2 and since this representation appears twice,

there are a total of 4 orthogonal basis vectors of length 6 that can be made. These basis

vectors can be denoted by the set |vEmα〉, where m is the row number that the basis vector

transforms as and α = 1, 2 labels the basis vector number. This simply corresponds to the

number of times the E representation appears in
↔
Γ
D

.

This set of 4 orthogonal vectors spans the space of all basis vectors for the irreducible

representation E that exist in the displacement representation. In addition, any unitary

transform of the vectors i.e,


























u11 u12 u13 u14

u21 u22 u23 u24

u31 u32 u33 u34

u41 u42 u43 u44





















































|vE11〉

|vE12〉

|vE21〉

|vE22〉



























=



























|wE11〉

|wE12〉

|wE21〉

|wE22〉



























, (3.21)

will form a set of basis vectors |wEmα〉 that span the same space. Clearly the coefficients

CEmα must also satisfy a similar equation of the form



























u11 u12 u13 u14

u21 u22 u23 u24

u31 u32 u33 u34

u41 u42 u43 u44





















































CE11

CE12

CE21

CE22



























=



























DE
11

DE
12

DE
21

DE
22



























, (3.22)

where DE
mα = 〈wEmα|r〉. It is now apparent that there must exist a set of basis vectors for

the irreducible representation such that Equation (3.20) is satisfied.
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So far it has been shown that a random vector can be expanded in terms of a set of

basis vectors such that Equation (3.20) is satisfied. The reason for choosing this set of basis

vectors can be seen by examining the operation of the projector [Eq. (3.17)] on a random

vector expanded in the basis,

P̂p
mn|r〉 =

∑

q

nq
∑

α=1

dq
∑

s=1

CqsαP̂p
mn|vqsα〉

=

np
∑

α=1

Cpnα|vpmα〉. (3.23)

The property (see Cornwell [55] page 94)

P̂p
mn|vqsα〉 = δpqδns|vpmα〉, (3.24)

has been used to simplify Equation (3.23). Taking the inner product of two projected

vectors, |P̂p
mnr〉, one obtains

〈P̂q
str|P̂p

mnr〉 =
∑

αβ

Cq∗tβC
p
nα〈vqsβ|vpmα〉

= δpqδsm
∑

α

Cp∗tαC
p
nα. (3.25)

Exploiting Equation (3.20) and rewriting the left hand side using Equation (3.17), Equation

(3.25) becomes

∑

ij

Γqst(Ti)〈Φ̂(Ti)r|Φ̂(Tj)r〉Γp∗mn(Tj) = δpqδsmδtn

(

ng
dp

)2

Cpt . (3.26)

One can see that using basis vectors which satisfy Equation (3.20) forces all of the vectors

P̂p
mn|r〉 to be orthogonal.

Equation (3.26) shows that the ng × ng matrix 〈Φ̂(Ti)r|Φ̂(Tj)r〉 is diagonalized by

the orthogonal elements of the irreducible representation matrices. Since there are a total

of ng unique projectors, (d2
p per representation) the eigenvectors are simply given by
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(

dp
ng

) 1

2



























Γp∗mn(T1)

Γp∗mn(T2)

...

Γp∗mn(Tng )



























. (3.27)

The factor of
√

dp/ng ensures that the vector is normalized and can be verified with the

grand orthogonality theorem. The eigenvalues of the eigenvector in Equation (3.27) are

Cpnng/dp. There are dp eigenvectors that will have this eigenvalue corresponding to the dp

different m values that can be used. Thus, there will be a total of dp eigenvectors that are

dp fold degenerate for each irreducible representation p.

A procedure for generating a set of group theory basis vectors from only the rotation

matrices can now be described. First, the overlap matrix, 〈Φ̂(Ti)r|Φ̂(Tj)r〉, is formed using

a random vector |r〉 and the ng rotation operators. Next, the overlap matrix is diagonalized.

Any eigenvector of the overlap matrix with non-zero eigenvalue can be used to generate a

vector transforming as row 1 of an irreducible representation by taking a linear combina-

tion of rotated vectors Φ̂(T )|r〉 and normalizing. The irreducible representation matrices

can then be calculated by rotating the new vector and using Equation (3.12). Once the

irreducible representation matrices are formed, Equation (3.17) can be used to generate

basis vectors for the representation and the characters can be calculated. The procedure is

repeated (after first orthogonalizing the random vector to any basis vectors generated) until

a complete set of basis vectors for all irreducible representations is formed. In practice, the

procedure takes less than a second on a single desktop processor and the computer code

required is approximately 500 lines of fortran code. The only input required for the proce-

dure is the set of rotation operators which are easily found (often as BIOMT operators in

a protein data bank file).



CHAPTER 4

VIBRATIONAL ANALYSIS OF LARGE MOLECULES

I. INTRODUCTION

One of the standard routes for the study of vibrational mode patterns of a molecule

and their corresponding frequencies ω is through the use of the harmonic approximation.

The harmonic approximation describes the potential energy of the molecule as completely

harmonic in nature, allowing the motions of the atoms to be described as a superposition

of harmonic oscillators that vibrate independently of each other at various frequencies.

There are well known problems with this approximation, mainly relating to the lack

of higher order energy terms that describe the anharmonicity which can couple the harmonic

oscillators to each other. But one of the major problems with the harmonic approximation

is that the calculation of the vibrational modes and frequencies scales as Order (N3) (where

N is the number of atoms) since a diagonalization of a 3N × 3N matrix (the dynamical

matrix) is required. In addition, the dynamical matrix can become quite difficult to store

in computer memory since its storage typically scales as N2. Even if the storage require-

ment for the dynamical matrix could be reduced by only including interactions within a

finite range, the diagonalization procedure requires an N2 workspace to store the resulting

eigenvectors. Because of these issues, calculation of the vibrational modes and frequencies

of molecules using the harmonic approximation has not extended beyond a few thousand

atoms despite the development of faster computers. For large molecules or macromolecu-

lar complexes such as viruses which can have N > 105, calculating the vibrational modes

and corresponding frequencies by forming a 3N × 3N matrix and diagonalizing it is clearly

unfeasible at the present time.

The goal of many vibrational problems is to study large scale motions of the molecule

in its native state. These large scale motions allow one to obtain insights into the mechanical
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motion involved in enzymatic activity of a protein, the binding of substrates, or the coupling

of light scattering to large scale vibrational modes. As such, only information about the

low frequency motion is wanted since these motions give the large globular movements that

are sought.

Methods such as the rotation translation block (RTB) method [6], which is based

upon on the elastic network model (ENM) [4], have been developed to predict these low

frequency motions of large molecules by coarse graining. Often this coarse graining can be

quite extensive. For example, the coarse graining procedure in the RTB method considers

groups of atoms to form a ridged block with only six degrees of freedom. For large macro-

molecular complexes such as virus capsids, the ridged block is formed from a single protein

unit [7] which often consists of several thousand atoms. This scheme was used by Tama et al.

to study the vibrational modes of a plant virus [60] where each protein consisted of roughly

2500 atoms. In addition, the energy model used in the ENM is purely phenomenological.

The model attaches springs of identical spring constants between any two atoms that are

separated by a distance less than a specified cutoff, usually 8-10 Å. While some advances

[5, 7] have been made in the study of low frequency vibrations of very large molecules, there

is much opportunity for improvement.

In this chapter, a theory for determining the lowest frequency vibrational modes of a

large molecule is developed called the phonon functional method. As will be seen, the theory

extends well known ideas in electronic structure theory to the study of phonons. Instead of

an explicit calculation of the complete dynamical matrix followed by its diagonalization, the

method only requires the repeated operation of the dynamical matrix on a set of vectors.

Sections VI and VII show how the operation can be done in Order (N) steps. In addition,

since only the low frequency states are calculated, the storage of the full displacement
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patterns in computer memory for each mode becomes feasible. The method developed in

this chapter improves upon the ENM and RTB methods in two ways. First, it provides a

description of the vibrational pattern that is entirely atomistic. Second, it uses an energy

model typically used in molecular dynamics simulations for the calculation of the dynamical

matrix elements. Thus, the theory is capable of providing a greatly improved assessment of

vibrational mode patterns and their corresponding frequencies.

II. HARMONIC APPROXIMATION

In the harmonic approximation, the dynamics of a molecule is represented by a set of

harmonic oscillators which perform small oscillations about a stable minimum (equilibrium

position). Each of the harmonic oscillators move the atoms in the molecule along specific

directions called the normal modes. The small oscillation approximation allows the potential

energy of a molecule V (which is a function of only atomic positions) to be written as a

Taylor series expanded to second order about the equilibrium position of each atom,

V (~r1, ~r2, . . .) = V0 +
∑

iα

∂V

∂riα

∣

∣

∣

∣

r=R
(riα −Riα)

+
1

2

∑

iα,jβ

∂2V

∂riα∂rjβ

∣

∣

∣

∣

∣

r=R

(riα −Riα)(rjβ −Rjβ). (4.1)

The indices i and j label the atom number (i, j = 1, 2, · · · ,N) while α, β = x, y, z. The term

V0 is the energy of the molecule at equilibrium and can be neglected. Since the second term

in the expansion vanishes for each atom at the minimum, Equation (4.1) takes the form

V (~r1, ~r2, · · ·) =
1

2

∑

iα,jβ

∂2V

∂riα∂rjβ

∣

∣

∣

∣

∣

r=R

qiαqjβ, (4.2)

where qiα is the displacement of the atom from its equilibrium position (qiα = riα −Riα).

The kinetic energy of the molecule,

T =
1

2

∑

iα

miq̇
2
iα, (4.3)
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along with Equation (4.2) for the potential energy can be used to form the Lagrangian,

L = T − V

=
∑

iα

1

2
miq̇

2
iα − 1

2

∑

iα,jβ

∂2V

∂riα∂rjβ

∣

∣

∣

∣

∣

r=R

qiαqjβ. (4.4)

The Lagrangian along with Euler’s equations [46] yield the following set of 3N coupled

equations of motion,

−miq̈iα =
∑

jβ

∂2V

∂riα∂rjβ

∣

∣

∣

∣

∣

r=R

qjβ. (4.5)

The solution to Equation (4.5) is given by

qiα = Aηiαe
−iωt, (4.6)

where A is an amplitude constant. Substitution of Equation (4.6) into Equation (4.5) gives

miω
2ηiα =

∑

jβ

∂2V

∂riα∂rjβ

∣

∣

∣

∣

∣

r=R

ηjβ. (4.7)

If the following definitions are made:

eiα =
√
miηiα,

Diαjβ =
1

√
mimj

∂2V

∂riα∂rjβ

∣

∣

∣

∣

∣

r=R

,

λ = ω2, (4.8)

then Equation (4.7) takes the familiar form of an eigenvector equation,

↔
D |e(λ)〉 = λ|e(λ)〉. (4.9)

There are 3N distinct solutions (denoted by λ) of Equation (4.9), each one providing

a unique mass weighted displacement pattern |e(λ)〉 for each frequency ω. The matrix
↔
D is

the real, symmetric, dynamical matrix formed from the second derivatives of the potential

energy function for the molecule. The 3N solutions of
↔
D form a complete orthonormal set
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that span the space of all possible displacements of the molecule. While Equation (4.9) is

easy to solve for small molecules, it becomes a challenge for large molecular complexes such

as viral capsids. In order to study the vibrational patterns of large molecules atomistically,

new techniques must be developed to solve Equation (4.9).

III. BAND-STRUCTURE ENERGY FOR ELECTRONS

A typical problem encountered in electronic structure theory (ES) pertains to the

calculation of the band-structure energy. In general, the band-structure energy G is given

by (neglecting spin)

G =
∑

i

ǫi, (4.10)

where the sum is over occupied energy states ψi satisfying Ĥψi = ǫiψi and Ĥ is the Hamil-

tonian operator. Instead of summing over only the occupied states, the sum can instead

be changed to included all states by writing Equation (4.10) as a trace over any complete

orthonormal basis,

G = Tr(Hf), (4.11)

where β = 1/kbT and f(Ĥ, µ) is the Fermi function defined by

f(Ĥ, µ) =
1

eβ(Ĥ−µ) + 1
. (4.12)

Equation (4.11) is cumbersome to work with computationally due to the difficulty in ap-

plying the Fermi function on a general state ψ. In addition, Equation (4.11) requires a

complete basis set of states which can be quite large.

However, at room temperature the Fermi energy (Ef ) of most materials is much

larger than kbT and the electrons essentially only occupy the the lowest lying energy levels.

The Fermi function then becomes a step function with values of f(ǫ, µ) = 1 when ǫ <

µ (occupied) and f(ǫ, µ) = 0, when ǫ > µ (unoccupied). This allows for a functional
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minimization to be introduced in place of Equation (4.11) of the form

G = Min{TrM (H )}. (4.13)

The minimization is preformed over the M occupied basis states of the Hamiltonian. This

choice for G is not without some problems. These are easily seen by examining the energy

functional in Equation (4.13) for a one level Hamiltonian,

G = 〈ψ|Ĥ |ψ〉

= −ǫ0〈ψ|ψ〉. (4.14)

Figure 7 shows a plot of Equation (4.14) as the norm of ψ changes. Clearly Equation (4.14)

has no minimum and any attempt to minimize it will force the norm to infinity, 〈ψ|ψ〉 → ∞.

Equation (4.13) is essentially ignorant of the Pauli exclusion principal and basis states must

be kept orthonormal by other means during the minimization process (e.g. Gram Schmidt

orthogonalization).

A much simpler solution presented by Ordejon, Drabold, Martin, and Grumbach

(ODMG) [17], is to instead add a harmonic potential centered around the value 〈ψ|ψ〉 = 1.

The ODMG functional given by

G = Min{TrM (H + H (1 − S ))}, (4.15)

creates an “energy penalty” for states ψ that are not normalized and orthogonal to all others.

This type of method is often referred to as orderN electronic structure methods as the

operation of the Hamiltonian on a state can be computed in Order (N) steps. The ODMG

energy functional is just one example of many [15, 16, 18] that enforce the orthonormality

requirements.
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FIG. 7. Plots of the energy functional G = Tr(H) = −ǫ0〈ψ|ψ〉 and the ODMG energy
functional G = −ǫ0 + ǫ0(1 − 〈ψ|ψ〉)2 for a single state Hamiltonian. No minimum occurs
in the energy functional Tr(Ĥ) since the condition 〈ψ|ψ〉 = 1 is not enforced. The ODMG
functional enforces 〈ψ|ψ〉 = 1 by placing a harmonic potential about 〈ψ|ψ〉 = 1 creating a
stable minimum.
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For the case of the one level Hamiltonian, Equation (4.15) can be written as

G = −ǫ0 + ǫ0(1 − 〈ψ|ψ〉)2. (4.16)

A plot of Equation (4.16) is shown in Figure 7. The effect of Equation (4.16) is to place the

harmonic potential +ǫ0(1 − 〈ψ|ψ〉)2 at the proper norm of 〈ψ|ψ〉 = 1 then shift it so that

the correct value of Tr(H) is given at the minimum.

It should be noted that the curvature of the harmonic potential (+ǫ0) is affected

by the sign of the eigenvalues of Ĥ. As such, only eigenvalues of Ĥ that are strictly

negative will produce a minimum. Positive eigenvalues will invert the curvature causing

a maximum to occur at the proper norm. This is easily fixed by introducing the “shifted

Hamiltonian”, Ĥs = Ĥ − ǫLÎ, where ǫL is the largest positive eigenvalue of Ĥ. This forces

the entire spectrum of Ĥ to be negative. The states ψ will be unaffected by the shift in the

Hamiltonian.

A final examination of the properties of the ODMG energy functional is made using

a two level Hamiltonian. The Hamiltonian matrix,

H =









1 −1

−1 1









, (4.17)

has eigenvalues of ǫ = 0, 2 with eigenvectors,

|ψ±〉 =
1√
2









1

±1









. (4.18)

The energy landscape of Equation (4.15) for this Hamiltonian can now be examined for one

occupied state (M = 1) given by

|φ〉 =









C1

C2









. (4.19)
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The state vector |φ〉 can be varied by the two coefficients C1 and C2 allowing a plot of the

energy landscape to be formed.

Equation (4.15) for this Hamiltonian can be written as G = 〈φ|Ĥ |φ〉(2 − 〈φ|φ〉).

A three-dimensional plot of G is shown in Figure 8 (a). Since both eigenvalues are

greater than or equal to zero, maxima occur at (C1, C2) = (1/
√

2,−1/
√

2) and (C1, C2) =

(−1/
√

2, 1/
√

2). Both of these maxima correspond to the largest eigenvalue of ǫ = 2. It

is clear from Figure 8 (a) that a Hamiltonian with a positive spectrum cannot be used.

Instead, the Hamiltonian matrix is shifted by ǫL = 2, giving new elements: H11 = −1,

H12 = H21 = −1, and H22 = −1. The three-dimensional plot for the shifted Hamil-

tonian is shown in Figure 8 (b). Two minima occur at (C1, C2) = (1/
√

2, 1/
√

2) and

(C1, C2) = (−1/
√

2,−1/
√

2) which both correspond to the lowest eigenvalue of ǫ = 0. For

this example one can see that using a shifted Hamiltonian creates a global minimum in the

ODMG functional at the lowest energy state.

IV. EFFECTIVE BAND-STRUCTURE ENERGY FOR PHONONS

Typically in the course of a vibrational analysis of a molecule, the low frequency

phonon states are usually of great interest. This is especially true for large molecules or

macromolecular complexes such as viruses, as these low frequency phonon states give a

detailed description of the large global motions of the molecule or complex.

The standard method of studying the phonon states of a molecule using a full basis

set (where the individual displacements of each atom are accounted for) was outlined in

Chapter 4 Section II. This procedure required the formation and diagonalization of the

dynamical matrix [Eq. (4.9)]. As such, the full phonon spectrum was calculated and stored

in memory. This can be seen as quite wasteful on both computer memory and time as
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FIG. 8. Plots of the ODMG energy functional for a two level Hamiltonian with one oc-
cupied state. (a) A three-dimensional plot of the ODMG functional using the unshifted
Hamiltonian Ĥ. Two maxima are created both corresponding to the eigenfunction of the
largest eigenvalue of Ĥ. (b) Same as (a) except the shifted Hamiltonian Ĥs = Ĥ − ǫLÎ is
used where ǫL is the largest eigenvalue of Ĥ. Two minima are produced both corresponding
to the eigenfunction of the smallest eigenvalue of Ĥ.
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the high frequency phonon states, which are usually due to localized bond stretching or

bending, must be calculated in addition to the low frequency ones.

Most linear algebra packages such as LAPACK [61] have routines that can solve for

eigenvalues and eigenvectors below a certain cutoff reducing computational time. However,

the memory requirement for these routines increases quadratically with the number of

atoms because the matrix elements of the dynamical matrix must be stored. For a large

molecule that has, as an example, ten thousand atoms; storage of the matrix elements (or all

eigenvectors) can require several gigabytes of computer memory. This is clearly unfeasible

at the present time for widespread use. Thus, a method that does not require explicit

storage of the dynamical matrix is necessary.

One alternative technique that does not require the explicit storage of the dynamical

matrix, only the operation of the matrix on a vector, is the Lanczos iteration method

(see the p-q algorithm in Applied Analysis [62]). The Lanczos scheme uses the iterative

operation of a matrix on a random vector to quickly amplify the extreme eigenvalues.

However, the method does have some problems and should be used with caution. In the

Lanczos procedure, a random vector must be repeatedly multiplied by the matrix. This

has the tendency to produce “clones” where a previously found eigenvector is found again

despite an initial orthogonalization at the beginning of the Lanczos procedure [63]. A large

biomolecule may also have frequencies that range from as low as 0.4 cm−1 to as high as

4000 cm−1, which means the ratio of the smallest eigenvalue to the largest is on the order

of 108. This produces an ill conditioned dynamical matrix that is particularly sensitive to

numerical round off. This makes the small eigenvectors and eigenvalues particularly difficult

to find with the Lanczos method even with matrix shifting schemes.
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Instead a different route is taken here based on the electronic band-structure prob-

lem. If low (high) frequency states are thought of as an “occupied” (“unoccupied”) set

of phonon states below (above) a pseudo-Fermi level, an effective band-structure energy

functional for phonons can be introduced. By treating phonons as Fermions (from a purely

mathematical perspective), a subspace of states spanning the lowest states of the dynamical

matrix can be found. Figure 9 illustrates the “occupied” and “unoccupied” phonon states

for a general molecule. Unlike the electron problem, the number of occupied states M can

be chosen to be any number. Since the density of states is small at low frequencies, M will

be quite small compared with the dimension of the dynamical matrix making the storage

of the M state vectors in memory feasible. Minimization of this functional can also be

designed to be iterative since only the operation of the dynamical matrix on the set of M

“occupied” basis states are needed in order to compute the local gradient of the energy

functional (see Chapter 4 Section V).

The effective band-structure energy function for phonons, Gp, can be formed from

Equation (4.15) by defining M ×M “Hamiltonian” and overlap matrices in terms of basis

vectors |ui〉 as

Hij = 〈ui|D̂s|uj〉,

Sij = 〈ui|uj〉. (4.20)

The phonon energy functional then takes the form

Gp = Min{TrM (H + H (1 − S ))}

= 2
∑

i

〈ui|D̂s|ui〉 −
∑

ij

〈ui|uj〉〈uj |D̂s|ui〉. (4.21)

The operator D̂s = D̂ − λLÎ is the shifted dynamical matrix operator which must be used

in order to insure Gp has a minimum. The largest eigenvalue of D̂, λL, is calculated quite
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FIG. 9. An illustration of the phonon states of a general molecule. The value ωf is the
pseudo-Fermi level for the phonon states. Phonon states at or below ωf are a set of wanted
(“occupied”) states of the dynamical matrix. Those states above the pseudo-Fermi level
are unwanted (“unoccupied”).
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easily with an iterative scheme such as the Lanczos p-q algorithm [62] where the calculation

of the large eigenvalues of an ill conditioned matrix pose no problems.

TheM basis vectors |ui〉 have length equal to the dimension of the dynamical matrix.

This set of basis vectors can be chosen initially at random and do not need to be orthogonal

or normalized as the energy functional will enforce orthonormality at the minimum. Once

the phonon energy functional is minimized, the final basis vectors |ui〉 form an orthonormal

set of vectors that span the space of the lowest M eigenvectors of the dynamical matrix. At

this point the basis vectors |ui〉 are not necessarily the true eigenvectors of the dynamical

matrix. The true eigenvectors of the dynamical matrix, |e(λ)〉, are obtained by taking a

linear combination of the minimized basis vectors |ui〉,

|e(λ)〉 =
∑

j

Cj(λ)|uj〉. (4.22)

Operating on Equation (4.22) with the shifted dynamical matrix operator gives

D̂s|e(λ)〉 =
∑

j

Cj(λ)D̂s|uj〉. (4.23)

Using the relation D̂s|e(λ)〉 = (λ − λL)|e(λ)〉 = λ′|e(λ)〉 along with Equation (4.22) for

|e(λ)〉, Equation (4.23) can be written as

∑

j

Cj(λ)D̂s|uj〉 = λ′|e(λ)〉

= λ′
∑

j

Cj(λ)|uj〉. (4.24)

Multiplying by 〈uk| and making use of Equations (4.20), the small M ×M matrix equation

relating the basis vectors |ui〉 to the eigenvectors |e(λ)〉 is obtained,

HC(λ) = λ′SC(λ). (4.25)

Equation (4.25) must be diagonalized in order to determine the true eigenvectors, however,
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the matrix to be diagonalized is quite small (e.g. 200 × 200). Since the eigenvectors are

unaffected by the shift in the dynamical matrix, the resulting eigenvalue of |e(λ)〉 will be λ.

By minimizing the phonon energy functional [Eq. (4.21)] for a set of M basis vectors

|ui〉, one can [using Eq. (4.22) and Eq. (4.25)] form the lowest M phonon states of the

dynamical matrix
↔
D. Since the operation of the dynamical matrix on a vector can be

computed in Order (N) steps (for finite ranged interactions), the calculation of a small set

of low frequency states of a large biomolecule is approximately an Order (N) procedure.

The method will be referred to as the phonon functional method henceforth.

V. MINIMIZATION OF THE PHONON ENERGY FUNCTIONAL

In general, the phonon energy functional [Eq. (4.21)] can be optimized by any mini-

mization procedure. A very common minimization scheme that is used for the minimization

of multi-dimensional functions is the method of conjugate gradients (CG) [64]. There are

many flavors of CG, including the “traditional” Flecher-Revees method and the method of

Polak and Ribiere to name two. Though the Flecher-Revees procedure is more efficient on

memory requirements, the Polak and Ribiere method often provides a much faster rate of

convergence (as is the case with phonon energy functional).

The Polak-Ribiere CG minimization of Equation (4.21) begins with a set of M

vectors |u0
k〉 with k = 1, 2 . . .M . At each minimization step n, the vectors |unk〉 are used to

construct the gradient of Equation (4.21) for each vector |unk〉 which is given by

|gnk 〉 = 4D̂s|unk〉 − 2
∑

i

D̂s|uni 〉〈uni |unk 〉 − 2
∑

i

|uni 〉〈uni |D̂s|unk〉. (4.26)

The gradient is then used to construct search directions |pnk〉 for each of the M vectors,

|pnk〉 = −|gnk 〉 + βn|pn−1
k 〉, (4.27)
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where βnk is the Polak-Ribiere CG coefficient [64] given by

βn =

∑

k

[

〈gnk |gnk 〉 − 〈gnk |gn−1
k 〉

]

∑

k〈gn−1
k |gn−1

k 〉
. (4.28)

The updated vectors |un+1
k 〉 are then found by line minimization of the phonon energy

functional along the search directions |pnk〉,

|un+1
k 〉 = |unk 〉 + δn|pnk〉, (4.29)

where δn is step size determined from the line minimization. Since each vector takes the

same step size (due to the CG algorithm) the line minimization can be done analytically.

Substituting Equation (4.29) into the phonon energy functional [Eq. (4.21)], Gp at

step n+ 1 can be written in terms of δn as

Gn+1
p = Gnp −

A

4
(δn)4 − B

3
(δn)3 − C

2
(δn)2 −D(δn), (4.30)

where the coefficients A, B, C, and D are given by (using Einstein summation):

A = 4〈pni |pnj 〉〈pnj |D̂s|pni 〉

B = 3〈pni |D̂s|pnj 〉
[

〈pnj |uni 〉 + 〈unj |pni 〉
]

+ 3〈pni |pnj 〉
[

〈pnj |D̂s|uni 〉 + 〈unj |D̂s|pni 〉
]

C = −4〈pni |D̂s|pni 〉 + 2
[

〈pni |D̂s|unj 〉 + 〈uni |D̂s|pnj 〉
] [

〈pnj |uni 〉 + 〈unj |pni 〉
]

+ 2〈pni |D̂s|pnj 〉〈unj |uni 〉 + 2〈uni |D̂s|unj 〉〈pnj |pni 〉

D = −4〈pni |D̂s|uni 〉 + 〈uni |D̂s|unj 〉
[

〈pnj |uni 〉 + 〈unj |pni 〉
]

+ 〈uni |unj 〉
[

〈pnj |D̂s|uni 〉 + 〈unj |D̂s|pni 〉
]

. (4.31)

Taking the derivative of Equation (4.30) and setting the result equal to zero yields a cubic

equation in terms of δn. The cubic equation has either one real solution and two imaginary

solutions or three real solutions. In the case where there are three real solutions to the cubic

equation, the δn which decreases Gp by the largest amount is used.
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Thus, the Polak-Ribiere CG procedure requires the following sets of M vectors be

stored in memory (for a total of 5M vectors): |uni 〉, |gn−1
i 〉, |gni 〉, D̂s|uni 〉, and D̂s|pni 〉. If the

basis vectors |uni 〉 and the vectors D̂s|uni 〉 are updated via

|un+1
i 〉 = |uni 〉 + δn|pni 〉,

D̂s|un+1
i 〉 = D̂s|uni 〉 + δnD̂s|pni 〉, (4.32)

then only M dynamical matrix operations on the vectors |pni 〉 are required for each CG

step.

VI. CALCULATION OF THE DYNAMICAL MATRIX OPERATING ON A

VECTOR

As shown in the previous section, the key calculation required for the minimization of

Equation (4.21) is the operation of the dynamical matrix on a vector. Since the dynamical

matrix can not be explicitly stored in memory when studying large molecules, the dynamical

matrix operating on a vector must be calculated in a way that does not require storage of

the matrix.

Generally classical potential energy models used to study molecules can be written

as a sum of individual energy terms that depend on the distances between two or more

atoms. This is true of the classical potential energy models used in molecular dynamics

calculations (see Chapter 2 Section II), where the potential energy is given by

V (~r1, ~r2, . . .) =
∑

bonds

kb(r − req)
2 +

∑

angles

ka(θ − θeq)
2

+
∑

dihedrals

vn
2

[1 + cos (nφ− γ)] +
1

2

∑

ij

(

qiqj
ǫr

+
A

r12
− B

r6

)

. (4.33)

The Coulomb, van der Waals, and bond terms are “two center” energy terms that depend

only on the distance between two atoms. The angle and dihedral terms are “three center”
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and “four center” energy terms respectively, since they depend on the distances between

either three or four atoms.

Since the potential energy is a sum of individual energy terms, the contribution to

the vector D̂|u〉 = |D̂u〉 can be computed term by term in the same fashion that the total

force on each atom is calculated during a molecular dynamics simulation. In the force

calculation, the first derivatives of the energy are calculated one energy term at a time and

are added into the total force vector. The calculation of the dynamical matrix operating

on a vector is done analytically and can also proceed one energy term at a time. For

each energy term, the second derivatives, which contribute to a specific set of dynamical

matrix elements, are calculated. These derivatives are then multiplied by the appropriate

components of the vector |u〉 and the result is added in to the appropriate components of

the vector |D̂u〉.

As an example of how the accumulation of the vector |D̂u〉 proceeds, consider just

one of the energy terms in the potential energy of a molecule; a Coulomb energy term

between atoms i and j. The second derivative of the Coulomb terms, as well as the other

energy terms in Equation (4.33), are calculated analytically. The second derivative of the

Coulomb term is

∂2

∂rmα∂rnβ

(

qiqj
ǫr

)

=
3qiqj
ǫr3

∂r

∂rmα

∂r

∂rnβ
− qiqj
ǫr3

δαβ(δmi − δmj)(δni − δnj), (4.34)

where δαβ etc. are Kronecker deltas. The derivative of r = |~ri − ~rj | is given by

∂r

∂rmα
=

(~ri − ~rj)α
r

(δmi − δmj). (4.35)

Since the Coulomb term is a “two center” energy term, it will contribute to 36

dynamical matrix elements of
↔
D, more specifically the terms Dmα,nβ with α, β = x, y, z and

m = i, j and n = i, j. The contribution of this one Coulomb term to the dynamical matrix
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is written in matrix form as



































...
...

· · ·
↔
Dii · · ·

↔
Dij · · ·

...
...

· · ·
↔
Dji · · ·

↔
Djj · · ·

...
...



































, (4.36)

where the
↔
Dmn are 3 × 3 matrices with elements Dmα,nβ . All other elements in Equation

(4.36) are zero. The contribution of this one Coulomb term to the elements Dumα of the

vector |D̂u〉 is simply,

Dumα =
∑

nβ

Dmα,nβunβ. (4.37)

The total number of bond, angle, and dihedral terms in Equation (4.33) all scale

roughly linearly with the number of atoms in the molecule. Though the Coulomb and van

der Waals terms scale as the number of atoms squared, a cutoff can be used for both (espe-

cially in the presence of a dielectric) reducing the scaling to Order (N). For the test case

of the ubiquitin protein, the introduction of a cutoff for the electrostatic terms resulted in

negligible errors to the calculated frequencies and vibrational displacement patterns (see

Section VIII). Thus, the total calculation of the dynamical matrix operating on a vector

scales linearly with the number of atoms in the molecule. Since the vector |D̂u〉 is accumu-

lated term by term in the same fashion as the total force vector in a molecular dynamics

simulation, each dynamical matrix operation on a vector is approximately equivalent to a

single molecular dynamics step. This description helps in making estimates of running time

since it allows vibrational calculations to be thought of in terms of a molecular dynamics

run of a certain time.
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VII. GROUP DYNAMICAL MATRIX OPERATING ON A VECTOR

In this section, a method to calculate the operation of the group dynamical matrix

on a vector is developed. The group dynamical matrix is the matrix that results after group

theory and symmetry properties of the molecule have been used to reduce the size of the

full dynamical matrix. For molecules with no symmetry, which includes single proteins, this

step is not necessary. The remaining portion of the section assumes that the reader has

a basic understanding of group theory. Chapter 3 or a group theory textbook should be

referred to if a review of group theory is needed.

The operation of the group dynamical matrix,
↔
D
p
, on a vector |up〉 of length np

can be calculated in a similar fashion to that of the regular dynamical matrix operating

on a vector. The dimension of the group dynamical matrix, np, is the number of times

that irreducible representation p occurs in the displacement representation. The dynamical

matrix in group theory for the irreducible representation p (see Chapter 3 Section II) is

given by

↔
D
p
=

↔
V
p†↔
D

↔
V
p
, (4.38)

where
↔
V
p

is the 3N×np matrix formed from the np group theory basis vectors for irreducible

representation p placed in the columns. Only a set of basis vectors transforming as a single

row of the irreducible representation are needed for the construction of
↔
V
p
. Thus, vectors

transforming as the first row will be used.

In Chapter 3 Section II, the full molecule was described as Nb atoms copied to Ns

unique sites for a total of N = NbNs atoms (see Figure 6). This allows the np orthogonal

basis vectors to be constructed from n′p = np/Nb basis vectors for the case when only one

atom is at each unique site, i.e. Nb = 1. A method for constructing these vectors using the

rotation operators was presented in Chapter 3 Section III. The basis vectors for the case of
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one atom at each site (Nb = 1) will have a total length of 3Ns. They can be written in terms

of Ns vectors of length 3 (one at each site s) as ~vps,mα. Here, s = 1 · · ·Ns labels the site

number, m = 1 · · · dp labels the row that the basis vector transforms as, and α = 1 · · · n′p is

the basis vector number.

To construct
↔
V
p
, the basis vectors ~vps,mα are applied to each atom individually for

each α = 1 · · · n′p. This will form an orthogonal set of np = n′pNb basis vectors that transform

according to Equation (3.12). A vector for the full molecule will have 3N components. The

first 3Nb components correspond to atoms at site 1. The next 3Nb components correspond

to atoms at site 2 and so forth. Using this notation, the matrix of basis vectors for the full

molecule,
↔
V
p
, takes the form

↔
V
p
=





























































~vp1,11 ~vp1,12 · · · ~vp1,1n′

p
0

0 0 0 ~vp1,11 · · ·

0 0 0 0

...
...

...
...

~vp2,11 ~vp2,12 · · · ~vp2,1n′

p
0

0 0 0 ~vp2,11 · · ·

0 0 0 0

...
...

...
...





























































. (4.39)

The first n′p columns of
↔
V
p

have the vectors ~vps,mα applied to only atom 1 at each site. The

next n′p columns have the vectors ~vps,mα applied to only atom 2 at each site and so forth.
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The components of the vector |up〉, which is of length np, can be labeled as

|up〉 =





















































up11

...

upn′

p1

up12

...

upn′

p2

...





















































. (4.40)

The first set of n′p elements correspond to atom 1 and the second set to atom 2 and so forth.

For a general element upαi, α labels the basis vector number and i labels the atom number.

When |up〉 is operated on by
↔
V
p
, the result is a vector of length 3N which can be written

in terms of Ns vectors |zs,1〉 of length 3Nb as

↔
V
p
|up〉 =



































|z1,1〉
...

|zs,1〉
...

|zNs,1〉



































. (4.41)

The individual components of |zs,1〉 for atom i (a vector of length 3) are

~zs,1i =

n′

p
∑

α=1

~vps,1αu
p
αi, (4.42)

where the 1 denotes that the vector |zs,1〉 is formed from row 1 basis vectors ~vps,1α.
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FIG. 10. A diagram illustrating the interaction between the various sites of a symmetric
molecule with symmetry of the group c3v. The interactions between sites i and j contribute

to the dynamical matrix
↔
Dij . The dynamical matrices

↔
Dii describe interactions of atoms

at site i with other atoms at site i.

The full dynamical matrix of the entire molecule can be thought of in the following

form

↔
D=



























↔
D11

↔
D12 · · ·

↔
D1Ns

↔
D21

↔
D22

...
. . .

↔
DNs1

↔
DNsNs



























, (4.43)

where the matrix
↔
Dij is 3Nb× 3Nb and describes the interaction of the basis atoms at site i

with the basis atoms at site j. In general, only the coordinates of the basis atoms at a single

site (arbitrarily assigned as site 1) are given and this information is sufficient to calculate

the operation of the matrices
↔
D1i=

↔
D

†

i1 on a vector in exactly the same method as described

in Chapter 4 Section VI. Figure 10 shows a schematic diagram of the interaction of site 1

with sites i for the group c3v .
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However, the vector
↔
V
p
|up〉 has components that will operate on matrices other than

↔
D1i which can be seen in Equation (4.41). To alleviate this problem, the vector

↔
V
p
|up〉 is

broken up in the following fashion,

↔
V
p
|up〉 =
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According to Equation (4.42), |zs,1〉 is formed from a linear combination of basis vectors

that transform as row 1. This implies that

Φ̂(Ts→1)
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, (4.45)

where the operator Φ̂(Ts→1) rotates site s to site 1. The components of |z1,m〉 can be

calculated using basis vectors that transform as row m in Equation (4.42). The vector in

Equation (4.45) will now only be affected by the matrices
↔
Di1. Exploiting the invariance of

the dynamical matrix to rotation operators [see Eq. (3.6)] i.e.,

↔
D= Φ̂†(Ts→1)

↔
D Φ̂(Ts→1), (4.46)

the vector
↔
D

↔
V
p
|up〉 can be written as
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↔
D

↔
V
p
|up〉 =

Ns
∑

s=1

dp
∑

m=1

Γpm1(Ts→1)Φ̂
†(Ts→1)
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. (4.47)

In general, there may be more than one element T that rotates atoms at site s to

the first site. Since an element that takes site s to the first site occurs the same number of

times for each site, ng/Ns times, Equation (4.47) can be written as a sum over all group

elements as

↔
D

↔
V
p
|up〉 =

Ns

ng

∑

TǫG

dp
∑
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Γpm1Φ̂
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. (4.48)

The dp vectors |z1,m〉 are of length 3Nb and have components defined by Equation (4.42).

Multiplying Equation (4.48) by
↔
V
p†

, Equation (4.48) becomes the group dynamical

matrix operating on vector |up〉,

D̂p|up〉 =
Ns

ng

∑

TǫG

dp
∑

m=1

Γpm1

[

Φ̂(T )
↔
V
p
]†
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

. (4.49)

After a bit of algebra and applying the grand orthogonality theorem discussed in Chapter

3 Section II [Eq. (3.8)], the np components of
↔
D
p
|up〉 are obtained,

Dupβi =
Ns

dp

dp
∑

m=1

Ns
∑

s=1

~vps,mβ · ~w
p
s,mi. (4.50)



72

The vector of length 3, ~wps,mi, are the components for atom i of the vector of length 3Nb,

|ws,m〉 = D̂s1|z1,m〉. (4.51)

Though the mathematics to get to this point were involved and quite complicated,

the procedure to calculate D̂p|up〉 can now be described in a simple three step process. First,

the dp vectors of length 3Nb, |z1,m〉, are computed using Equation (4.42). For example, the

icosahedral group would have one vector for irreducible representation A, three for T2 etc.

Second, the operation of the dynamical matrices
↔
Ds1 on the vectors |z1,m〉 are computed

term by term in the same fashion for the regular dynamical matrix and the vectors of length

3Nb, |ws,m〉 are determined. Each energy term in Equation (4.33) will contribute to only one

of the various matrices
↔
Ds1 and is easily kept track of through a neighbor map. In the third

and final step, the dot product with the basis vectors ~vps,mβ is taken and the components of

D̂p|up〉 are determined using Equation (4.50).

The overall operation of D̂p on a vector approximately scales as Order (dpNb) op-

erations, much smaller than the Order (NsNb) operations that would be required for the

calculation of the full dynamical matrix on a vector. Some computational tricks can be

applied so that only 2dp vectors of length 3Nb need to be stored during the calculation.

VIII. LOW FREQUENCY ANALYSIS OF UBIQUITIN

Computation of the low frequency mode patterns and frequencies using the phonon

functional method developed in Section IV is essentially exact from a mathematics stand-

point. However, when the procedure is implemented on a computer, finite precision math-

ematics can introduce round off errors compromising the final answer. This is especially

true for iterative procedures.
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FIG. 11. The ubiquitin protein drawn as a trace of the protein backbone. Alpha helices are
colored red, beta sheets yellow, and random coils white.

There are two possible sources for errors that can arise when determining the low

frequency vibrational modes using the phonon functional method that should be examined.

The first corresponds to the electrostatic cutoff approximation used to calculate the dy-

namical matrix operating on a vector in Order (N) steps. The second corresponds to errors

that can be introduced from only a partial minimization of Equation (4.21).

To test the phonon functional method for calculating low frequency vibrational

modes, the full dynamical matrix for the small protein ubiquitin, which consists of 1231

atoms, is calculated and diagonalized using standard techniques. A picture of the ubiquitin

protein, drawn by tracing the backbone, is shown in Figure 11. The coordinates for the

protein were obtained from the protein data bank (PDB code UBQ).

The parameters required in Equation (4.33) for the potential energy were obtained

from the AMBER 94 force field model [9]. Interactions of the protein with water were

modeled using the Generalized Born model for implicit solvation [13, 14, 37]. The protein

was minimized to a RMS force of 0.001 eV/Å using a 10 Å cutoff for the electrostatic
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TABLE II. Comparison of approximate Frequencies ω̄ and overlaps 〈ē|e〉 of ubiquitin cal-
culated with varying electrostatic cutoff distance. The values ω and |e〉 correspond to the
frequencies and eigenvectors for a cutoff of 60 Å where all possible electrostatic interactions
are accounted for. Data for the lowest 10 frequencies are shown. All frequencies and eigen-
vectors were calculated by a standard diagonalization using LAPACK routines. Frequencies
are listed in cm−1.

ω̄
(〈ē|e〉)

ω 10 Å 15 Å 20 Å 25 Å

2.61695 1.77359 2.36610 2.54437 2.60925
(0.99465) (0.99875) (0.99978) (0.99999)

3.89102 3.66105 3.82239 3.84144 3.88511
(0.99821) (0.99969) (0.99993) (0.99999)

5.61328 5.44633 5.55615 5.59091 5.61335
(0.99761) (0.99977) (0.99996) (0.99999)

6.48471 6.26527 6.40495 6.46261 6.48497
(0.99700) (0.99971) (0.99995) (0.99999)

7.38389 6.99979 7.25301 7.35471 7.37703
(0.99446) (0.99887) (0.99995) (0.99999)

8.42460 7.96745 8.18604 8.23867 8.25354
(0.85766) (0.95572) (0.99700) (0.99993)

8.25679 8.15373 8.29575 8.37212 8.40900
(0.85778) (0.95624) (0.99685) (0.99991)

8.84597 8.63655 8.77978 8.82538 8.84432
(0.98905) (0.99959) (0.99987) (0.99999)

9.70602 9.58659 9.66414 9.69292 9.70453
(0.99892) (0.99992) (0.99996) (0.99999)

10.30379 9.95376 10.21614 10.27663 10.30137
(0.99563) (0.99961) (0.99990) (0.99999)
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TABLE III. Convergence of the frequencies ω̄, overlaps 〈ē|e〉, and residual magnitudes

|r| = |
↔
D |ē〉 − ω̄2|ē〉| for the 10 lowest frequencies of the ubiquitin protein using a 10 Å

cutoff. The approximate frequencies and eigenvectors (denoted with a bar) were calculated
by minimizing the phonon energy functional [Eq. (4.21)] until a final gradient of magnitude
|g| =

∑

k〈gk|gk〉 = 0.1 or 0.01 was reached. The exact frequencies ω and eigenvectors |e〉
were calculated by diagonalizing the dynamical matrix with LAPACK routines at a 10 Å
cutoff. Frequencies are listed in cm−1.

|g| = 0.1 |g| = 0.01
ω ω̄ 〈ē|e〉 |r| ω̄ 〈ē|e〉 |r|

1.77359 3.31796 0.83751 0.00140 1.78593 0.99998 0.00061
3.66105 4.37188 0.97038 0.00142 3.66637 0.99999 0.00056
5.44633 5.82843 0.99621 0.00136 5.44932 0.99999 0.00048
6.26527 6.74868 0.99003 0.00139 6.26835 0.99999 0.00037
6.99979 7.37614 0.99392 0.00135 7.00227 0.99999 0.00049
7.96745 8.23958 0.95989 0.00135 7.96957 0.99999 0.00036
8.15373 8.56683 0.94914 0.00142 8.15625 0.99999 0.00036
8.63655 8.93564 0.98849 0.00142 8.63841 0.99999 0.00041
9.58659 9.85912 0.99626 0.00140 9.58853 0.99999 0.00050
9.95376 10.1502 0.99871 0.00136 9.95545 0.99999 0.00047

interactions. Since the protein was not exactly minimized to an RMS force of zero, negative

eigenvalues may appear in the frequency spectrum. The purpose of this study however is

to compare the quality of the low frequency modes predicted by minimizing the phonon

energy functional to those predicted from a standard diagonalization of
↔
D. Hence any low

frequency spectrum of the molecule should be sufficient for this purpose.

To determine how the electrostatic cutoff will effect the frequencies and vibrational

patterns, the dynamical matrix can be calculated and diagonalized for various cutoffs using

a fixed structure for the protein. Since the ubiquitin molecule has a diameter of 55 Å,

an electrostatic cutoff of 60 Å was used to calculate the frequencies ω and eigenvectors

|e〉 where all interactions are accounted for. These frequencies and eigenvectors were then

compared with calculations which used cutoffs that ranged from 10 Å to 25 Å. The data
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in Table II shows good agreement between the frequencies and eigenvectors calculated with

the much smaller cutoffs of 10 - 25 Å compared with those calculated with a 60 Å cutoff

that includes all electrostatic interactions. Somewhat surprisingly, the smallest cutoff of 10

Å reproduces the eigenvectors and eigenvalues rather well.

The convergence properties of the phonon energy functional can be tested by stop-

ping the minimization procedure once a specified non-zero tolerance for the magnitude of

the gradient [Eq. (4.26)] is reached. Overlaps between the computationally exact eigenvec-

tors (|e〉) computed with a diagonalization of the dynamical matrix and the approximate

eigenvectors (|ē〉) formed using Equation (4.25) can be used to determine the quality of the

approximate eigenvector. Another quantity, the residual vector |r〉 =
↔
D |ē〉− ω̄2|ē〉, can also

be used to access the quality of the approximate eigenvector |ē〉 with approximate eigen-

value ω̄2. An analysis of Table III shows excellent agreement between the eigenvectors and

frequencies calculated by minimizing the phonon energy functional [Eq. (4.21)] and those

computed with a standard diagonalization routine typically found in LAPACK [61].



CHAPTER 5

MISCELLANEOUS MODELS

I. INTRODUCTION

In this chapter, various additional theoretical models are presented. These models

are used to calculate mechanical vibrations of an elastic isotropic material, predict the

relative Raman intensity of vibrational modes, and determine the force exerted from a

pulse light source on a molecule.

The first model that will be discussed is used to predict mechanical vibrations of a

continuous isotropic elastic material. Using elastic wave theory, analytic equations governing

the displacement of the material are derived for the specific case of a cylindrical shell. This

model will be used to predict mechanical modes of the M13 bacteriophage (see Chapter

6 Section II). Next, the bond polarizability model [19, 20] of Cardona, Snoke and Go is

presented. The bond polarizability model is used to derive the change in susceptibility of a

molecule due to a phonon excitation. In the following section, the bond polarizability model

is extended to the case of a continuum amorphous isotropic material (amorphous isotropic

bond polarizability model). The amorphous isotropic bond polarizability model allows for

the prediction of relative Raman intensities (by calculating the change in susceptibility of

the material) when little or no information about the location and orientation of the bonds

in a molecule is known.

A general model for the calculation of the average relative Raman spectra of many

molecules in solution is presented next. The model was derived for the case of molecules in

solution due to a specific application to viral particles where its structure must be stabi-

lized in a solution. With the change in susceptibility calculated with one of the two bond

polarizability models, a Raman spectra for the molecule emerges.
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Finally in the last section, a theoretical model is developed based on the bond

polarizability model to predict the force on the individual atoms in a molecule from a

pulsed laser source. The theory can then be used in a molecular dynamics simulation where

a molecule is probed by an external pulsed laser source. A brief discussion on predictions

for the total energy that can be delivered from the laser source to the molecule concludes

the chapter.

II. CONTINUUM ELASTIC THEORY OF VIBRATIONS

Continuum elastic theory is a simple way to model the vibrational mode patterns of

isotropic elastic materials. When applied to such “materials” as a virus capsid, the resulting

mode patterns can give a simple description of the types of vibrations that are possible,

along with an estimate of their corresponding frequencies.

The continuum theory for vibrations, or elastic wave theory (EWT), allows for a

general analytic solution to the mode patters and frequencies for certain symmetric geome-

tries (e.g a cylindrical shell). Some of the first derivations of the analytic solutions of elastic

waves in materials of various geometries was done by Graff [65]. Following Graff’s work,

Balandin and Fonoberov [66] applied the EWT to two cylindrical viral capsids, the M13

bacteriophage and the tobacco mosaic virus. In this section, the analytic formulas for wave

motion in an elastic cylindrical shell in the absence of external forces are reproduced for

use with cylindrical shell viral capsids. In Chapter 6, the EWT will be applied to the M13

bacteriophage, a virus with a cylindrical shell shaped capsid and compared with predictions

from other models.

In EWT, one considers a general displacement per unit length ~u of an elastic material

at particular location ~r within the material. With this information at each location within

the material, any deformation of the elastic material can be described completely. These
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deformations of the material obey Hook’s Law and according to elastic theory [67], the

equations of motion can be obtained from the equation

(λ+ µ)~∇(~∇ · ~u) + µ∇2~u = ρ~̈u, (5.1)

where λ and µ are the Lamé coefficients and ρ is the density of the material. Taking the

divergence of Equation (5.1) gives

∇2△ =
1

c2l

∂2△
∂t2

, (5.2)

where cl is the longitudinal speed of sound in the material and is related to the Lamé

coefficients via

c2l =
λ+ 2µ

ρ
. (5.3)

The symbol △ denotes the divergence of the displacement ~u, △ = ~∇ · ~u. Similarly, taking

the curl of Equation (5.1) results in

∇2~ω =
1

c2t

∂2~ω

∂t2
, (5.4)

where ct is the transverse speed of sound in the material given in terms of the Lamé coeffi-

cients as

c2t =
µ

ρ
. (5.5)

The vector ~ω in Equation (5.4) is defined in terms of the curl of the displacement ~u, ~ω =

~∇× ~u.

Since transverse and longitudinal displacements obey the following relations:

~∇ · ~ut = 0,

~∇× ~ul = 0, (5.6)
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Equations (5.2) and (5.4) describe the wave motions for longitudinal and transverse waves

respectively and their speed of propagation in the elastic medium is given by cl and ct. In

general, the equations of motion can be simplified by introducing gauge invariant scalar and

vector potentials Φ and ~H. This allows the displacement ~u to be written in the form

~u = ~∇Φ + ~∇× ~H. (5.7)

Using the gauge such that ~∇ · ~H = 0 and substituting Equation (5.7) into Equation (5.1)

gives the result

~∇
[

(λ+ 2µ)∇2Φ − ρΦ̈
]

+ ~∇×
[

µ∇2 ~H − ρ ~H
]

= 0. (5.8)

This equation will only be satisfied if each bracketed term vanishes separately. Thus, the

following scalar and vector wave equations for an elastic medium are obtained from Equation

(5.8):

∇2Φ =
1

c2l

∂2Φ

∂t2
,

∇2 ~H =
1

c2t

∂2 ~H

∂t2
. (5.9)

At this point, the scalar and vector wave equations are completely general and can

be used for any elastic material with any geometry by applying appropriate boundary

conditions. Equations (5.9) can also be solved numerically for non symmetrical geometries.

For an elastic cylindrical shell of inner radius a and outer radius b (see Figure 12), which

is the specific case of interest here, the wave equations can be solved analytically to obtain

the displacement patterns ~u as a function of position and time.

Working in cylindrical coordinates, the scalar wave equation becomes

1

c2l

∂2Φ

∂t2
=
∂2Φ

∂r2
+

1

r

∂Φ

∂r
+

1

r2
∂2Φ

∂θ2
+
∂2Φ

∂z2
. (5.10)



81

Using the following relations for derivatives of the unit direction vectors:

∂êr
∂θ

= êθ,

∂êθ
∂θ

= −êr, (5.11)

and combining like terms, the vector wave equation takes the form

1

c2t

∂2 ~H

∂t2
=

[

∇2Hr −
Hr

r2
− 2

r2
∂Hθ

∂θ

]

êr

+

[

∇2Hθ −
Hθ

r2
+

2

r2
∂Hr

∂θ

]

êθ + ∇2Hzêz. (5.12)

The scalar and vector wave equations can be written as the product of purely radial, angular

and axial functions, i.e. solutions of the form

Φ = f(r)Θφ(θ) exp (ikz − iwt),

Hr = hr(r)Θr(θ) exp (ikz − iwt),

Hθ = hθ(r)Θθ(θ) exp (ikz − iwt),

Hz = hz(r)Θz(θ) exp (ikz − iwt). (5.13)

Plugging the Φ solution into the scalar wave equation yields

[

∂2f

∂r2
+

1

r

∂f

∂r

]

Θφ exp (ikz − iwt) +
1

r2
∂2Θφ

∂θ2
f exp (ikz − iwt) − k2Φ = −w

2

c2l
Φ. (5.14)

Multiplying by r2/Φ and rearranging results in the separable equation,

[

r2
∂2f

∂r2
+ r

∂f

∂r

]

1

f
+ α2r2 = −∂

2Θφ

∂θ2

1

Θφ
, (5.15)

where α2 = w2/c2l − k2. Setting each side of Equation (5.15) equal to a constant, the

following ordinary differential equations are obtained:

−∂
2Θφ

∂θ2

1

Θφ
= n2,

∂2f

∂r2
+

1

r

∂f

∂r
+

(

α2 − n2

r2

)

f = 0. (5.16)



82

The Θφ equation is the trigonometric differential equation with solution,

Θφ(θ) = A cos(nθ) +B sin(nθ). (5.17)

Applying the boundary condition Θ(0) = Θ(2π) requires that n be an integer. Furthermore,

later requirements that the boundary conditions be satisfied for all θ will require that either

A = 0 or B = 0. Here, the solutions for the displacement will be derived for the case

B = 0. The additional solutions for the case A = 0 can be obtained by replacing cos (nθ)

for sin (nθ) and sin (nθ) for − cos (nθ) in the final displacement formulas [see Eq. (5.28)].

The additional solutions are a direct result of the symmetry of the cylindrical shell. For

n > 0, a rotation of a displacement pattern by π/4 about the shell axis results in another

displacement pattern that is orthogonal to the first.

Since n is required to be an integer, the differential equation for f(r) in Equation

(5.16) is the cylindrical Bessel equation with solution,

f(r) = AφJn(αr) +BφYn(αr), (5.18)

where Jn and Yn are the cylindrical Bessel functions of first and second kind respectively.

At this point it is important to point out that for certain k vectors it is possible for α to

be imaginary. In this situation, the solution for f(r) becomes

f(r) = AφIn(|α|r) +BφKn(|α|r), (5.19)

where In and Kn are modified cylindrical Bessel equations of the first and second kind

respectively. To account for both possibilities, the function f(r) is written in the form

f(r) = AφZn(α1r) +BφWn(α1r). (5.20)

The functions Zn and Wn represent the regular cylindrical Bessel functions when α2 > 0
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and the modified cylindrical Bessel functions α2 < 0. In either case α is required to be real,

thus α1 = |α| is used to enforce this requirement.

Examining the vector wave equation, Equation (5.12), the z component of the vector

field satisfies a wave equation similar to the scalar field, but with cl replaced with ct. Thus,

the solution for Hz is the same as Φ but with α2 replaced by β2 = w2/c2t − k2. However,

the requirement that later boundary conditions be satisfied at all θ requires the Θz solution

to take the form

Θz(θ) = B sin(nθ). (5.21)

The solutions for Hr and Hθ are slightly more complicated due to the coupling of

the radial differential equations for hr(r) and hθ(r). Once again, boundary conditions on θ

will require that the Θr and Θθ functions be written as

Θr(θ) = B sin(nθ),

Θθ(θ) = A cos(nθ). (5.22)

Writing the two coupled radial differential equations hr and hθ as

∂2hr
∂r2

+
1

r

∂hr
∂r

+

(

β2 − n2 + 1

r2

)

hr +
2n

r2
hθ = 0,

∂2hθ
∂r2

+
1

r

∂hθ
∂r

+

(

β2 − n2 + 1

r2

)

hθ +
2n

r2
hθ = 0, (5.23)

then adding and subtracting them yields the following two equations:

[

∂2

∂r2
+

1

r

∂

∂r
+ β2 − (n − 1)2

r2

]

(hr + hθ) = 0,

[

∂2

∂r2
+

1

r

∂

∂r
+ β2 − (n + 1)2

r2

]

(hr − hθ) = 0. (5.24)

Since the scalar and vector fields are gauge invariant, one can choose the gauge such that

hr = −hθ while still satisfying ~∇ · ~H = 0. The solution for hr(r) in this gauge will be

hr(r) = ArZn+1(β1r) +BrWn+1(β1r), (5.25)
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with β1 = |β| and Zn+1, Wn+1 denote either regular or modified cylindrical Bessel functions

depending on the sign of β2.

The solution to the scalar and vector field equations for a cylindrical shell now take

the final form

Φ = f(r) cos(θ) exp (ikz − iwt),

Hr = h(r) sin(θ) exp (ikz − iwt),

Hθ = −h(r) cos(θ) exp (ikz − iwt),

Hz = hz(r) sin(θ) exp (ikz − iwt), (5.26)

where the radial functions f(r),hr(r), and hz(r) are given by

f(r) = AφZn(α1r) +BφWn(α1r),

hr(r) = ArZn+1(β1r) +BrWn+1(β1r),

hz(r) = AzZn(β1r) +BzWn(β1r). (5.27)

Using Equation (5.7), the components of the displacement are formed and simplified through

the use of Equations (5.26) and (5.27) to give

ur(r, θ, z, t) =

[

f ′ +
n

r
hz + ikhr

]

cos(nθ) exp (ikz − iwt),

uθ(r, θ, z, t) =

[

−n
r
f + ikhr − h′z

]

sin(nθ) exp (ikz − iwt),

uz(r, θ, z, t) =

[

ikf − n+ 1

r
hr − h′r

]

cos(nθ) exp (ikz − iwt). (5.28)

The prime notations (f ′,h′r, etc.) denote the derivative of the function with respect to the

radial component.

Boundary conditions can now be applied for the case of a cylindrical shell of inner

radius a and outer radius b. A diagram is shown in Figure 12 to illustrate the geometry.
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FIG. 12. A simple diagram of an elastic cylindrical shell with inner and outer radii a and
b. The axis of the shell is located along the ẑ axis. Analytic solutions for the propagating
waves in the elastic shell can be determined from elastic wave theory.

Enforcement of the boundary conditions on the shell will determine the frequencies ω and

the six coefficients Aφ, Bφ, Ar, Br, Az, and Bz that can be used in Equations (5.27) and

(5.28) to predict the displacement patterns. For the case where no external forces are

applied to the shell, the boundary conditions require that the radial components of the net

force on the inner and outer surfaces of the shell must vanish in order to satisfy Newton’s

second law. This requires that σrr = σrθ = σrz = 0, where σij is the ij component of the

stress tensor matrix. The stress tensor can be derived from the free energy per unit volume

of an elastic medium [67],

σij =
∂f

∂uij
, (5.29)

where the free energy per unit volume, f , and the strain tensor uij are defined as

f =
λ

2

(

∑

i

uii

)2

+ µ
∑

ij

u2
ij ,

uij =
1

2

(

∂ui
∂xj

+
∂uj
∂xi

)

. (5.30)
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Here, i, j = r, θ, z while xj denotes a specific variable (r, θ, z). Likewise, ui is the displace-

ment along the direction i (r, θ, z).

The required radial stress elements can be written in cylindrical coordinates as

σrr = λ~∇ · ~u+ 2µurr,

σrθ = 2µurθ,

σrz = 2µurz, (5.31)

where λ and µ are the lamé constants. Similarly, the strain tensor elements uij in cylindrical

coordinates are

urr = ∂ur

∂r , uθθ = 1
r
∂uθ

∂θ + ur

r ,

uzz = ∂uz

∂z , 2urθ = 1
r
∂ur

∂θ + ∂uθ

∂r − uθ

r ,

2urz = ∂uz

∂r + ∂ur

∂z , 2uθz = 1
r
∂uz

∂θ + ∂uθ

∂z .

(5.32)

Requiring the three stress elements [Eq. (5.31)] to vanish at the inner and outer radii a

and b yields the following six boundary conditions (three each for both the inner and outer

radii):
[

−λ(α2 + k2)f + 2µ

{

f ′′ +
n

r

(

h′z −
hz
r

)

+ ikh′r

}]

r=a,b
= 0, (5.33)

[

−2n

r

(

f ′ − f

r

)

− (2h′′z + β2hz) − ik

(

n+ 1

r
hr − h′r

)]

r=a,b
= 0, (5.34)

[

2ikf ′ − n

r

(

n+ 1

r
hr + h′r

)

+ (β2 − k2)hr + ik
n

r
hz

]

r=a,b
= 0. (5.35)

These six equations can be written in matrix form,
↔
C ~A = 0, where ~A is the column

vector of radial function coefficients, ~A = (Aφ, Ar, Az , Bφ, Br, Bz). The following recurrence

relations for the regular and modified cylindrical Bessel functions [68],

Cn+1(z) =
2n

z
Cn(z) − Cn−1,

C′
n(z) = Cn−1(z) −

n

z
Cn,



87

Ln+1(z) = −2n

z
Ln(z) + Ln−1,

L′
n(z) = Ln−1(z) −

n

z
Ln, (5.36)

where Cn denotes either Jn or Yn and Ln denotes either In or einπKn. The prime denotes

the derivative of the function with respect to argument z. These can be used to simplify

the final matrix equation. The matrix elements Cij [Eq. (5.37)] are explicitly written for

the first three rows. The last three rows are easily obtained from the first three by simply

replacing a with b.

C11 =
{

2n(n− 1) − (β2 − k2)a2
}

Zn(α1a) + 2λαα1aZn+1(α1a)

C12 = 2ikβ1a
2Zn(β1a) − 2ika(n + 1)Zn+1(β1a)

C13 = 2n(n− 1)Zn(β1a) − 2λβnβ1aZn+1(β1a)

C14 =
{

2n(n− 1) − (β2 − k2)a2
}

Wn(α1a) + 2α1aWn+1(α1a)

C15 = 2λβikβ1a
2Wn(β1a) − 2ika(n + 1)Wn+1(β1a)

C16 = 2n(n− 1)Wn(β1a) − 2nβ1aWn+1(β1a)

C21 = −2n(n− 1)Zn(α1a) + 2λαnα1aZn+1(α1a)

C22 = ikβ1a
2Zn(β1a) − 2ika(n + 1)Zn+1(β1a)

C23 = −
{

2n(n− 1) − β2a2
}

Zn(β1a) − 2λβnβ1aZn+1(β1a)

C24 = −2n(n− 1)Wn(α1a) + 2nα1aWn+1(α1a)

C25 = λβikβ1a
2Wn(β1a) − 2ika(n + 1)Wn+1(β1a)

C26 = −
{

2n(n− 1) − β2a2
}

Wn(β1a) − 2nβ1aWn+1(β1a)

C31 = −2nkaZn(α1a) + 2λαkα1a
2Zn+1(α1a)

C32 = −inβ1aZn(β1a) + (β2 − k2)ia2Zn+1(β1a)

C33 = −knaZn(β1a)
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C34 = −2nkaWn(α1a) + 2kα1a
2Wn+1(α1a)

C35 = −λβinβ1aWn(β1a) + (β2 − k2)ia2Wn+1(β1a)

C36 = −knaWn(β1a) (5.37)

Again, α1 = |α| and the coefficient λα is defined as

λα =















1 α2 ≥ 0

−1 α2 ≤ 0

, (5.38)

with a similar definitions for β1 and λβ.

The frequencies are determined from the matrix equation
↔
C ~A = 0. Since a non

trivial solution is required, i.e. ~A 6= 0, the determinant of the matrix
↔
C must vanish for a

given frequency ω. This frequency and the corresponding non zero eigenvector correspond

to a natural vibrational mode for the cylindrical shell. The displacement pattern can be

obtained by substitution of the eigenvector coefficients into Equation (5.27) to produce the

radial functions f(r), hr(r), and hz(r) needed in the displacement formulas [Eq. (5.28)].

III. BOND POLARIZABILITY MODEL

The main purpose of the bond polarizability model is to calculate the change in

susceptibility of the medium due to distortions. Once this is calculated, it can be used to

predict the inelastic (Raman) scattered light intensity, or as will be seen in Section VI, the

force on the individual atoms in a molecule from a light source. The bond polarizability

model can be thought of in simple terms as representing the polarizability of a single bond

to first order in an expansion about the bonds equilibrium position. The bond polarizability

model was first described by Cardona, Go and Blitz [19, 20] for the purpose of reproducing

the experimental Raman spectra of C60. Later, the work was extended by Guha, Menendez,

Page, and Adams [21].
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In general, the polarizability of each bond is dependent on the charge density dis-

tribution surrounding it, hence a bonds polarizability will be dependent on the relative

position of each atom in the crystal or molecule. As such, the ability of the bond polariz-

ability model to reproduce exact Raman spectra for molecules other than C60 may be poor.

However, the bond polarizability model can be used as a first approximation to obtain a

fairly good picture of the vibrational modes of the molecule that are either strongly or

weakly Raman active, or Raman silent due to near or exact symmetries.

Assuming that the polarizability of each bond behaves roughly linearly with respect

to the bond distance, the polarizability for a given bond can be written to first order in the

bond distance l as

↔
α (l + dl) =



















α⊥ + α′
⊥dl 0 0

0 α⊥ + α′
⊥dl 0

0 0 α‖ + α′
‖dl



















, (5.39)

where the bond has been assumed to be orientated along the z axis. The model parametrizes

two main coefficients. The first, (denoted α′
‖), describes an induced polarization due to a

stretching of the bond along the axis while the second, (denoted α′
⊥), describes an induced

polarization due to a shearing of the bond. The polarizability of the bond is often referred

to as the bond polarizability ellipse. A schematic picture illustrating the polarization ellipse

of a single bond is shown in Figure 13.

The coefficients α′
⊥ and α′

‖ represent the directional derivatives of the polarizability

tensor,
↔
α, perpendicular and parallel to the bond axis for a given bond length l. Thus, the

induced polarizability (or change in polarization) due to a small displacement of the atoms
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FIG. 13. Schematic picture of the polarization ellipse. The parameter α′
⊥ is the induced

polarization of the bond perpendicular to the bond axis resulting from a stretching of the
bond. Likewise, α′

‖ is the induced polarization of the bond along the axis of the bond.

along the bond direction is given by

∆
↔
α=



















α′
⊥∆l 0 0

0 α′
⊥∆l 0

0 0 α′
‖∆l



















. (5.40)

The total induced susceptibility ∆
↔
χ for the molecule is found by summing over all bonds

in the molecule, taking into account the orientation of each bond.

In reality, each bond should have its own unique α′
‖ and α′

⊥ associated with it in order

to achieve the best results. However, for the purposes of simplifying the model, the set of α′

is reduced to one or two unique types. This is the approach taken here. It should be noted

that the main goal of any bond polarizability calculation in this dissertation is to reproduce

approximate Raman spectra that predict strong, weak, and silent Raman modes, not to

reproduce accurate experimental measurements (i.e. intensity measurements). Only a

“rough” prediction of the Raman profile is desired. For these reasons, the bond polarizability
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parameters are chosen to be identical for all bonds. The parameters chosen are intended to

reflect an “average” or “reasonable” bond in biological molecules, carbon.

Cardona and Snoke [20] calculate bond polarizability parameters for single and dou-

ble bonds in C60. The parameters used for calculations in the continuum model are as

follows: (α′
‖ − α′

⊥)/d2 = 1.2, (2α′
‖ + α′

⊥)/d2 = 1.7, and (α‖ − α⊥)/d3 = 0.5. The units of

α‖ and α⊥ are in Å3, and the derivatives α′
‖ and α′

⊥ have units of Å2. Later, specifically

in atomistic approaches, the parameters of Guha et al. [21] given by (α′
‖ − α′

⊥) = 2.3 Å2,

(2α′
‖ + α′

⊥) = 2.3 Å2, and (α‖ − α⊥) = 1.28 Å3 have also been used.

IV. AMORPHOUS ISOTROPIC BOND POLARIZABILITY MODEL

The bond polarizability model (BP) discussed in Section III is microscopic, taking

into account each bond and its orientation with respect to every other bond in the molecule.

When one uses the bond polarizability model, the position of each atom in the molecule is

required.

The amorphous isotropic bond polarizability model (AIBP) is an extension of the

traditional BP model to situations where the atomic detail of a medium is either unknown

or much too large to be taken fully into account. A macroscopic treatment of the BP

model results in an induced polarizability per unit volume of the material, which when

integrated over the entire volume, gives the total induced susceptibility. The AIBP model

further assumes that the material is a network of randomly orientated bonds (an amorphous

material) which is then applicable to proteins and protein structures such as viral capsids

where the individual bonds tend to be more randomly orientated. Here, a specific equation

for the polarizability per unit volume is derived in terms of the strain tensor uij which can

then be used directly with elastic wave theory.
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The AIBP model begins by consider a macroscopic volume which is sufficiently large

such that all bond orientations are equally likely. The quantity sought is then the average

induced polarization per unit volume due to a small elastic deformation of the material.

This can be calculated by averaging the orientations of a single bond. The polarizability
↔
α

of a single bond can be written in terms of the 3 × 3 projection operator matrix,

P̂ = |d̂〉〈d̂|, (5.41)

where d̂ is the unit direction vector of the bond. This projection operator will then give

the component of any vector along the bond axis. In terms of the projection operator, the

polarizability tensor for a bond can be written as

↔
α= α‖P̂ + α⊥(Î − P̂ ), (5.42)

where the parallel and perpendicular polarizabilities, α‖ and α⊥, depend on the length of

the bond distance d. A small change in polarization can occur in two ways; by stretch-

ing or squishing the bond, or by changing the bond direction. Taking into account both

possibilities, the induced polarizability of the bond takes the form

∆
↔
α= ∆α‖P̂ + ∆α⊥(Î − P̂ ) + (α‖ − α⊥)∆P̂ . (5.43)

The terms ∆α‖ and ∆α⊥ describe changes in the parallel and perpendicular polarizabilities

respectively due to a change in bond length. The term ∆P̂ describes the change in the

projection operator that occurs due to a change in direction of the bond. Averaging Equa-

tion (5.43) over all bond orientations then dividing by the average volume of a bond will

yield the induced polarizability per unit volume in the AIBP model. Since the final goal

is a formula which can be used with elastic theory, the terms ∆α‖, ∆α⊥ and ∆P̂ must be

represented in terms of the elastic strain tensor uij.
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The quantities ∆α‖ and ∆α⊥ can be written to linear order in ∆d as

∆α‖ = α′
‖∆d,

∆α⊥ = α′
⊥∆d, (5.44)

where α′
‖ and α′

⊥ are constants. In terms of the strain, a small change in the bond distance

can be represented as [see Eq. (5.30)]

(d+ ∆d)2 ≈ d2
∑

ij

(δij + 2uij)d̂id̂j , (5.45)

where the second order term (∆d)2 has been neglected. The notation d̂i represents the ith

component of the unit direction vector for the bond. Solving for ∆d in Equation (5.45) and

only keeping terms to linear order in the strain gives

∆d = d



1 + 2
∑

ij

uij d̂id̂j





1

2

− d

≈ d
∑

ij

uij d̂id̂j . (5.46)

Combining Equation (5.46) with Equation (5.44) gives the change in polarizabilities (∆α‖

and ∆α⊥) in terms of the strain tensor.

The change in the projection operator ∆P̂ also needs to be written in terms of

the strain tensor. Using d̂′ to describe the orientation of a bond after a deformation, ∆P̂

becomes

∆P̂ = |d̂′〉〈d̂′| − |d̂〉〈d̂|. (5.47)

Writing d̂′ in terms of the strain tensor operator Û ,

|d̂′〉 =
(Î + Û)|d̂〉

√

〈d̂|(Î + Û)(
↔
I +Û)|d̂〉

, (5.48)

and keeping terms to linear order in strain tensor yields a simplified formula for |d̂′〉,

|d̂′〉 =
[

1 − 〈d̂|Û |d̂〉Î
]

|d̂〉 + Û |d̂〉. (5.49)
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Substitution of Equation (5.49) into Equation (5.47) and again keeping terms to linear order

in the strain tensor gives the following result for ∆P̂ ,

∆P̂ = |d̂〉〈d̂|Û + Û |d̂〉〈d̂| − 2〈d̂|Û |d̂〉|d̂〉〈d̂|. (5.50)

The fact that the strain tensor is symmetric and real has been used for simplification of the

formula.

Now with a form for the induced polarization of a single bond in terms of the local

deformation of the material i.e. the strain, the macroscopic induced polarization per unit

volume can now be found by averaging Equation (5.43) over the solid angle Ω,

〈∆α〉Ω = (α′
‖ − α′

⊥)〈P̂∆d〉Ω + α′
⊥〈∆d〉Ω + (α‖ − α⊥)〈∆P̂ 〉Ω. (5.51)

A specific component of Equation (5.51) is given by

〈∆αij〉Ω = d(α′
‖ − α′

⊥)
∑

mn

umn〈d̂id̂j d̂md̂n〉Ω + δijdα
′
⊥

∑

mn

umn〈d̂md̂n〉Ω

+ (α‖ − α⊥)
∑

m

(

ujm〈d̂id̂m〉Ω + uim〈d̂j d̂m〉Ω
)

− 2(α‖ − α⊥)
∑

mn

umn〈d̂id̂j d̂md̂n〉Ω. (5.52)

Equation (5.52) is now dependent on only the average of bond orientations. Using polar

coordinates for the bond directions, one can easily show that the only surviving averages

are

〈d̂id̂j〉Ω = δij
1

3
,

〈d̂2
i d̂

2
j 〉Ω = δij

1

5
+ (1 − δij)

1

15
. (5.53)

As a result, Equation (5.52) simplifies to

〈∆αij〉Ω =
2

15
d(α′

‖ − α′
⊥)

(

uij +
1

2
Tr(Û)δij

)

+
1

3
dα′

⊥Tr(Û)δij

+
2

5
(α‖ − α⊥)

(

uij −
1

3
Tr(Û)δij

)

. (5.54)
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Defining the shear (αs) and compressional (αc) polarizability constants as

αs =
2

5

(

d(α′
‖ − α′

⊥)

3
+ (α‖ − α⊥)

)

,

αc =
d

9
(α′

‖ + 2α′
⊥), (5.55)

and using the shear stress tensor,

Ûs = Û − 1

3
Tr(Û)Î , (5.56)

the final result for the average induced polarizability of a single bond is

∆
↔
α= αsÛs + αcTr(Û)Î . (5.57)

Assuming that each bond occupies an average volume of Vb, the formula for the induced

polarizability per unit volume is then

∆
↔
α=

αs
Vb
Ûs +

αc
Vb
Tr(Û)Î . (5.58)

Equation (5.58) can now be used with elastic wave theory (see Section II) to cal-

culate the total induced susceptibility of a elastic isotropic material treated as a network

of randomly orientated bonds. Combined with the Raman intensity formula which will be

derived in Section V, Equation (5.58) provides a simple means to approximate the Raman

spectra of a material, such as a viral capsid, without knowing explicit atomic positions.

V. RAMAN INTENSITY FOR PARTICLES IN SOLUTION

Interaction of a polarizable medium with an oscillating electric field (light for ex-

ample) produces radiation. The polarization field produced by the electric field is given in

terms of the susceptibility tensor
↔
χ as

~P =
↔
χ ~E. (5.59)
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If the susceptibility of the medium remains unchanged in the presence of the electric field

then the radiation produced by the resulting oscillating dipole also has frequency ωL. This is

elastic scattering of light or Raleigh scattering. If however the susceptibility of the medium

changes due to a rearrangement of the atoms as the result of a vibration of the medium at

frequency ω, then the resulting radiation produced will oscillate at frequencies ωL−ω (Stokes

shift) and ωL + ω (anti-Stokes shift). This type of scattering is inelastic light scattering or

Raman scattering as the light adds (or subtracts for anti-Stokes) energy to the medium via

a phonon. A basic illustration of Raleigh and Raman scattering of light by a medium is

shown in Figure 14.

A general Raman experimental setup is shown in Figure 15. The angle shown (Θ)

is the polar angle with respect to the ẑ axis. Not shown in the figure is the azimuthal angle

Φ which is the standard angle in the x-y plane. The light is emitted (assumed unpolarized)

with respect to the laboratory frame of reference along the ẑ axis. The light then interacts

with the sample and is scattered in all directions. The detector located at angles Φ and

Θ then receives a portion of the scattered light. A general formula for the relative Raman

intensity as a function of detector location (i.e. cross section) is sought.

The first step in calculating the relative Raman intensity is to consider the polariza-

tion field as a function of time. Using Equation (5.59) and considering an electric field that

oscillates with frequency ωL, one finds that the polarization field is given by

~P =
↔
χ ~E0 cos(ωLt). (5.60)

If the medium vibrates, then the susceptibility of the medium will oscillate at the natural

frequency of the vibration ω, producing an induced polarization field,
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FIG. 14. Diagram illustrating elastic Raleigh scattering and inelastic Raman scattering. (a)
Raleigh scattering of a sample. The incident light is elastically scattered by the medium. As
a result, the frequency of the incident and scattered light is the same. (b) Raman scattering
of a sample that results in the creation of a phonon of frequency ω. The frequency of the
scattered light is shifted (Stokes shift) to ωL − ω as a result. (c) Raman scattering of a
sample that results in the annihilation of a phonon of frequency ω. The frequency of the
scattered light is shifted (anti-Stokes shift) to ωL + ω as a result.
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FIG. 15. The setup of a general Raman experiment. The incident light is emitted along
the laboratory ẑ axis then scattered by the sample. The detector, placed at arbitrary polar
angles of Θ and Φ, receives a portion of the scattered light.

∆~P = ∆
↔
χ ~E0 cos(ωLt) cos(ωt)

=
1

2
∆

↔
χ ~E0 [cos((ωL + ω)t) + cos((ωL − ω)t)] . (5.61)

The induced polarization field will radiate electromagnetic radiation with an intensity I.

The intensity can be written as [20]

I ∝ 1

ω

∣

∣

∣d̂s · ∆~P
∣

∣

∣

2
, (5.62)

where d̂s is the direction of the electric field for the scattered light. For the Raman intensity

being calculated here, the sample consists of many particles in a solution that are randomly

orientated with respect to each other. As such, the final Raman intensity formula must be

averaged over all possible orientations of the particles in the sample.

Two frames of reference must be considered for the derivation, the laboratory frame

of reference (unprimed frame) where light is emitted and received, and the frame of reference
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for individual particles in the sample (primed frame). These two frames are connected via a

simple rotation matrix (x̂′ =
↔
R x̂) which can be written as the function of three angles θ, φ,

and ψ. For simplicity θ, φ, and ψ can be chosen to be the Euler angles [46]. This rotation

matrix is then capable of describing any orientation of a particle in the sample with respect

to the Lab frame.

Substitution of Equation (5.61) into Equation (5.62) and time averaging over one

period of ωL results in

I ∝ 1

ω

∣

∣

∣d̂′s∆
↔
χ d̂′i

∣

∣

∣

2
, (5.63)

where d̂′s and d̂′i are the electric field directions of the scattered and incident light in the

particle frame of reference. It is important to note that the directions vectors must be

written in terms of the particle’s frame of reference since the induced susceptibility
↔
χ is

calculated with respect to the particle. In addition, there are two possible polarizations for

the scattered light corresponding to the two mutually orthogonal directions (d̂s1 and d̂s2)

in the plane perpendicular to the direction of propagation. Taking this into account, the

total scattered intensity is

I ∝ 1

ω

∣

∣

∣d̂′s1∆
↔
χ d̂′i

∣

∣

∣

2
+

1

ω

∣

∣

∣d̂′s2∆
↔
χ d̂′i

∣

∣

∣

2
. (5.64)

The induced susceptibility tensor ∆
↔
χ describes the maximum change in the susceptibility

of the particle due to a vibrational mode. There are many ways to calculate the tensor.

Regardless, the relative Raman intensity can be worked out for general ∆
↔
χ.

The electric field direction vector for the incident light is considered to be unpolar-

ized, thus the general direction of the electric field can be written in terms of x and y unit

directions in the Laboratory frame as

d̂i = cos θix̂+ sin θiŷ. (5.65)



100

The scattered light propagates along a direction in the laboratory frame given by the spher-

ical polar angles Φ and Θ. Two mutually orthogonal directions perpendicular to the prop-

agation direction can be written in the Laboratory frame as

d̂s1 = cos Φ cos Θx̂+ sin Φ cos Θŷ − sin Θẑ,

d̂s2 = − sinΦx̂+ cos Φŷ. (5.66)

The coordinate axis of the Laboratory frame (x̂, ŷ, ẑ) can be written in terms of the

Fiber frame axis (x̂′, ŷ′,ẑ′) by applying the Euler rotation matrix. The result is

x̂ = (cosφ cosψ − cos θ sinφ sinψ)x̂′

+ (sinφ cosψ + cos θ cosφ sinψ)ŷ′

+ (sin θ sinψ)ẑ′, (5.67)

ŷ = (− cosφ sinψ − cos θ sinφ cosψ)x̂′

+ (− sinφ sinψ + cos θ cosφ cosψ)ŷ′

+ (sin θ cosψ)ẑ′, (5.68)

ẑ = sin θ sinφx̂′ − sin θ cosφŷ′ + cos θẑ′. (5.69)

For simplicity, these will be written in the following short hand notation:

x̂ = x1x̂
′ + x2ŷ

′ + x3ẑ
′,

ŷ = y1x̂
′ + y2ŷ

′ + y3ẑ
′,

ẑ = z1x̂
′ + z2ŷ

′ + z3ẑ
′. (5.70)

All that remains is to calculate the average intensity,

Iavg = 〈I〉 =

∫

P (φ, θ, ψ, θi)IdΩ, (5.71)
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where φ, θ, and ψ are the Euler angles that give the orientation of a particle in the sample

with respect to the Laboratory frame and θi is the angle that describes the polarization

of the incident light [see Eq. (5.65)]. Since all angles are equally likely, the probability

must be given by a constant, P (φ, θ, ψ, θi) = 1/16π3, with the integration angle given by

dΩ = sin θdθdφdψdθi.

Combining Equations (5.64) through (5.66) and using the short hand notation for

the Euler coefficients [Eq. (5.70)] the average intensity formula yields terms of the following

forms

〈cos2 θiaibmxjxn〉,∆χij∆χmn,

〈cos θi sin θiaibmxjyn〉∆χij∆χmn,

〈sin2 θiaibmyjyn〉∆χij∆χmn. (5.72)

The variables ai and bi denote any of the Euler coefficients xi, yi, or zi. The second of

the three terms vanishes when integrated over θi. In addition, one can show that the only

surviving averages 〈aibmxjxn〉 are

〈aiaiaiai〉 =
1

5
,

〈aiaiajaj〉 =
1

15
,

〈aiaibibi〉 =
1

15
,

〈aiaibjbj〉 =
2

15
,

〈aiajbibj〉 =
−1

30
. (5.73)

After a bit of algebra, one can obtain the average intensity,
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ωIavg ∝
(

cos2 Θ cos2 Φ + sin2 Φ
)

∑

ijmn

∆χij∆χmn [〈xixmxjxn〉 + 〈xixmyjyn〉]

+
(

cos2 Θ sin2 Φ + cos2 Φ
)

∑

ijmn

∆χij∆χmn [〈yiymxjxn〉 + 〈yiymyjyn〉]

+
(

cos2 Θ sin2 Φ + sin2 Φ
)

∑

ijmn

∆χij∆χmn [〈zizmxjxn〉 + 〈zizmyjyn〉] . (5.74)

Utilizing the averages in Equation (5.73) and assuming that the susceptibility tensor is

symmetric, Equation (5.74) simplifies to

ωIavg ∝
[

16 − 4 sin2 Θ
] (

|∆χxx|2 + |∆χyy|2 + |∆χzz|2
)

+
[

4 − 6 sin2 Θ
]

(∆χxx∆χyy + ∆χxx∆χzz + ∆χyy∆χzz)

+
[

14 − sin2 Θ
] (

|∆χxy|2 + |∆χxz|2 + |∆χyz|2
)

. (5.75)

Finally, this equation can be simplified into a form similar to the elastic free energy of a

material with Lamé constants λR and µR,

Iavg ∝
1

2

λR
ω

[

Tr(∆
↔
χ)
]2

+
µR
ω
Tr

(

[

∆
↔
χ
]2
)

. (5.76)

The Raman Lamé coefficients λR and µR are dependent only on the azimuthal angle Θ and

are given by

λR ≡
[

14 − sin2 Θ
]

,

µR ≡
[

4 − 6 sin2 Θ
]

. (5.77)

VI. IMPULSIVE STIMULATED RAMAN SCATTERING

When pulsed laser light is used to excite phonon vibrations in a medium though

stimulated scattering, the electric field of the laser applies a force on the medium which

drives the vibration. When the duration of the pulse is short, the driving force is impulsive

(like the force from a hammer driving a nail into a wall). The use of short pulses from a laser

source to excite vibrational modes in a molecule or medium is called impulsive stimulated
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Raman scattering (ISRS). Yan, Gamble and Nelson [69] present a theoretical discussion of

the ISRS method and the types of spectroscopy that can be performed.

Yan, Gamble, and Nelson’s work argues that properly time delayed pulses can be

used to amplify certain vibrational modes of a molecule. The ISRS method is then of great

interest as a possible method to resonantly pump the low frequency mechanical modes

of viruses to produce damage [25]. From a theoretical standpoint, a detailed molecular

mechanical simulation of a virus being probed by ISRS can provide key insights into its

vulnerabilities. This section develops a model to calculate the coupling of light to a viral

particle (or any general molecule) necessary for a theoretical ISRS simulation.

The bond polarizability model [19, 20] can be used to predict the atomistic coupling

of light to molecular vibrations, since the model predicts the susceptibility of the molecule

from individual atomic positions. This allows individual impulsive forces for each atom and

overall amplitudes of vibrational modes to be calculated. Both will be discussed in this

section. In addition, an estimate of the total energy delivered to all vibrational modes in a

molecule resulting from ISRS is also presented.

In the bond polarizability model (see Section III and Section IV) the susceptibility

of the medium is calculated from a sum over the polarizabilities of individual atomic bonds,

↔
χ=

∑

bonds

↔
α, (5.78)

where the bond polarizability for a single bond
↔
α is given by Equations (5.41) and (5.42).

Treating the molecule as a network of polarizable bonds, the potential energy of the bond

network in the presence of an electric field (from the generalization of −~p · ~E for a non-

induced dipole) is given by

V (t) = −1

2

∑

~E(t)· ↔α · ~E(t). (5.79)
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In ISRS, the electric field comes from a light source in which its duration is short (i.e. short

pulse). The electric field from such a light source, propagating along the ẑ axis, can be

represented in the form of a Gaussian wave packet,

~E(t) = ~E0e
−(t−zn/c)2/2τ2

L cos [ωL(t− zn/c)]

≈ ~E0e
−t2/2τ2

L cos [ωLt] , (5.80)

where the electric field amplitude is given by ~E0 and the dimensions of the molecule have

been assumed to be small so that retardation effects can be dropped. Taking the derivative

with respect to atomic position of Equation (5.79) gives the force on an individual atom

due to the electric field of the light,

FLiα(t) =
1

2

∑

~E(t) · ∂
↔
α

∂riα
· ~E(t). (5.81)

Here, i represents the atom number and α one of the directions x,y, or z.

The derivative of the polarizability tensor for a single bond
↔
α is non-zero only if the

bond contains atom i. If this is the case, the resulting derivative is

∂
↔
α

∂riα
=

∂d

∂riα

[

α′
‖P̂ + α′

⊥(Î − P̂ )
]

+ (α‖ + α⊥)
∂P̂

∂riα
. (5.82)

Small bond oscillations have been assumed so that the polarizability constants are evaluated

at the equilibrium length of the bond d. The components of the projection operator P̂ are

P̂βγ = d̂β d̂γ , where d̂β is the β component of the unit direction vector for the bond. Using

the relation

∂d̂β
∂riα

= −1

d

∂d

∂riα
d̂β +

δαβ
d
, (5.83)

followed by some algebra, one obtains (using Einstein summation)

∂
↔
α

∂riα
=

[

α′
‖P̂ + α′

⊥(Î − P̂ ) − 2

d
(α‖ − α⊥)P̂

]

d̂α + (α‖ − α⊥)

[

δαγ
d
d̂β +

δαβ
d
d̂γ

]

. (5.84)
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Taking the dot product with the electric field, the final result for the force of the light on

atom i resulting from a single bond is

FLiα(t) =
[

fdd̂α + fEÊα
]

|E0|2e−t
2/τ2

L cos2(ωLt), (5.85)

where the variables fd and fE are defined as

fd =
(Ê0 · d̂)2

2

[

α′
‖ − α′

⊥ −
2(α‖ − α⊥)

d

]

+
α′
⊥

2
,

fE = (α‖ − α⊥)
(Ê0 · d̂)

d
. (5.86)

Using Equation (5.85), the force on each atom can be calculated for a given electric

field strength and direction. The resulting force can be used in an atomistic molecular

dynamics simulation (along with the the standard molecular forces) to provide a real time

simulation of the interaction of the molecule with light.

The pulse width of the light τL will determine the frequency of the vibrational modes

that are stimulated by the impulsive force. Short pulse widths will deliver the most energy

to high frequency phonons while longer pulses will give more energy to the low frequency

phonons. To understand why this is, consider the driven harmonic oscillator with normal

coordinate Q,

Q̈i + ω2Qi = FQi
(t). (5.87)

The force FQi
(t) describes the force on vibrational mode i due to the light source and is

the component of the total force due to the light along the vibrational displacement. Using

the notation I0 = |E0|2 where I0 is proportional to the peak laser intensity I (Watts/cm2),

the force on mode i becomes

FQi
(t) = 〈ηi|FL〉I0e−t

2/τ2

L cos2(ωLt), (5.88)
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where |ηi〉 =
↔
M

− 1

2 |ei〉 and |FL〉 is a column vector with components for each atom deter-

mined by the terms in the square bracket in Equation (5.85). Thus the force on mode i

depends on the displacement pattern of the mode determined from the dynamical matrix.

The solution to Equation (5.87) can be found by using the Greens’ function method,

Qi(t) =

∫ t

−∞
Gi(t, t

′)FQi
(t)dt′, (5.89)

where the Greens’ function for the harmonic oscillator is

Gi(t, t
′) =















0 t < t′

1
ω sin(ω [t− t′]) t > t′.

(5.90)

Looking at long times after the initial pulse has passed (i.e. t → ∞) and assuming that

ω << ωL, the normal coordinate of mode i is given by

Qi(t) = 〈ηi|FL〉I0
√
πτL
2ω

e−ω
2τ2

L
/4 sin(ωt). (5.91)

The resulting amplitude of vibration for mode i is given by

Ai = 〈ηi|FL〉I0
√
πτL
2ω

e−ω
2τ2

L
/4. (5.92)

The pulse width dependence on the vibrational amplitudes can now be seen. If 〈ηi|FL〉

is assumed roughly constant for all modes (at least over some frequency range), then the

maximum amplitude occurs when τL =
√

2T/2π ≈ T/4, where T is the period of the

molecular vibration.

The energy delivered to the molecule can be estimated using the above driven har-

monic oscillator approach. Again 〈ηi|FL〉 will be assumed roughly constant over all modes.

When the molecule is stimulated with a short laser pulse, the electric field will excite many

vibrational modes of the molecule, each with an amplitude determined from Equation (5.92).
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The energy of mode i is then

Ei =
ω2

2
A2
i

= (〈ηi|FL〉)2I2
0

πτ2
L

4
e−ω

2τ2

L
/2. (5.93)

Approximating the density of states for the molecule as D(ω) ∝ ω2, the total energy deliv-

ered to the molecule (TED) can be estimated as

TED ∝
∫

ω2E(ω)dω

∝ (〈ηi|FL〉)2
I2
0

τL
. (5.94)

Equation (5.94) gives a qualitative understanding of how the TED scales with the intensity

and pulse width of the laser light. A simple interpretation shows that the delivered energy

increases approximately as the intensity of light squared and decreases as the pulse width

increases. The term 〈ηi|FL〉 contains information of the polarizability of the system [see

Eq. (5.85)] and its coupling to individual modes. This term will effect the TED to some

unknown extent. In Chapter 8 Section II, the effects of the 〈ηi|FL〉 term on the TED will

be examined in more detail by examining data from a molecular dynamics simulation of

impulsive stimulated Raman scattering on an M13 bacteriophage capsid.

A plot of ω2E(ω) for various pulse widths is shown in Figure 16. Though the density

of states for a molecule is not exactly proportional to ω2 and there will be some dependence

on the term 〈ηi|FL〉, the TED calculation provides a basic interpretation of the energy

delivered to a molecule by excitation of its vibrational modes using the ISRS scheme.
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FIG. 16. Energy density ω2E(ω) for vibrational modes probed with light of various pulse
widths τL. The energy density for four different pulse widths of τL = 1, 10, 100, and 1000fs
are shown.



CHAPTER 6

MECHANICAL MODES OF VIRAL CAPSIDS

I. INTRODUCTION

Viruses, having dimensions on the order of a few tens or hundreds of nanometers,

are one of the smallest living creatures. They are incredibly simple, consisting of a protein

coat (capsid) which takes a specific structure and genetic material. They infect bacteria,

animal, and plant cells, commandeering the host cells metabolism in order to replicate.

Although the structure of viral capsids is diverse, a majority can be categorized into four

main types. In each of the four structural types, a set of one or more protein building blocks

are assembled into the viral capsid. The purpose of the capsid is to encapsulate and protect

the genetic material which can be either single or double stranded DNA or RNA.

The first structural type is constructed from one or more protein building blocks

which assemble into a long hollow cylindrical tube. The inside of the tube houses the

viruses genome and protects it. A well known example of a tubular virus is the tobacco

mosaic virus which infects tobacco plants causing a yellow mosaic on the leaves of the plant.

Another type of tubular virus, which will be studied in Section IV, is the M13 bacteriophage

which infects the E. coli bacterium. Figure 17 (a) shows a general diagram of a tubular

virus capsid.

The second type of a viral capsid structure is the spherical icosahedral capsid. This

type of virus capsid is assembled from 60 copies of one or more protein building blocks.

The structure of the icosahedral virus capsid is analogous to the C60 molecule. The set of

proteins building blocks form a basis of atoms that, when placed on the icosahedral surface,

form the full icosahedral capsid. The number of protein building blocks that are used to

construct the basis of atoms is called the T number. The T number varies widely from

1,3,4,7· · ·13 or even hundreds. Examples of icosahedral viruses include the satellite tobacco
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FIG. 17. Diagram of four types of viral structures and their capsids. (a) The structure of
a tubular virus. Protein building blocks assemble in a helical fashion around the viruses
genome. (b) The structure of an icosahedral virus. A T=1 capsid constructed from 60
copies of one protein building block is shown. (c) The structure of an enveloped virus with
icosahedral capsid. Both icosahedral and tubular capsids can be enveloped. (d) Schematic
of the tailed phage φ 29 consisting of an icosahedral head bound to a tail.
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necrosis virus, hepatitis B, polio, and the cowpea chlorotic mottle virus. An illustration of

the naked capsid icosahedral virus is shown in Figure 17 (b). Two icosahedral viruses, the

satellite tobacco necrosis virus and cowpea chlorotic mottle virus, are studied in detail in

Sections II and III.

The last two types of viral capsids, which will not be studied here, are enveloped

and complex viruses (tailed phages). The enveloped virus is usually formed from either an

icosahedral or tubular capsid, which surrounds the genetic material, and an additional lipid

bilayer which surrounds the capsid itself. The lipid bilayer serves as additional protection for

the genetic material and is acquired as the virus exits the host cell. Examples of enveloped

viruses include influenza and HIV (icosahedral capsids), and the deadly Ebola virus (tubular

capsid). A diagram of an enveloped virus can be seen in Figure 17 (c).

The structure of a tailed phage on the other hand consists of an icosahedral protein

capsid (head) which is connected to a filamentous tube. In some instances, such as the T4

phage, the end of the tube has fibrous like legs attached to it. Tailed phages typically infect

bacteria and their diversity has led to ingenious ways in which they infect their hosts. The

most well known tailed phages are the T4, λ, and φ29 phages. A diagram of one type of

tailed phage (the φ29 phage) is shown in Figure 17 (d).

A normal mode analysis (NMA) of viral capsids can offer important insights into the

types of conformational changes that the protein coat is capable of, thus providing a possible

description of how viruses infect the host cell. For example, it has been suggested [70] that

the Rhino virus infects a host cell by injecting its genetic material with a “puckering” of its

icosahedral capsid. It has also been suggested that the polio virus uses a similar method

to enter the host cell [71]. In Section III, an analysis of the normal modes of the cowpea

chlorotic mottle virus will reveal possible motions that lead to a reversible swelling of the
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capsid that is induced by a either a loss of calcium ions or an increase in pH. It has been

hypothesized that the virus uses the swelling processes to remove its genome from the capsid

during infection [60].

The mechanical modes of viral capsids are of particular interest here since it may

be possible to excite them using a laser or other type of probe. Theoretically this would

result in mechanical resonances that may damage the capsid shell rendering it inactive

or even destroyed. This is an interesting idea since each viral capsid will have a set of

unique frequencies and mode patterns due to the shape and composition of its capsid. The

hypothesis is that this can allow viruses to be selectively destroyed while leaving the host cell

(with different resonant frequencies) undamaged. Such an idea has been explored recently

in the ASU laboratory of Prof. K.-T. Tsen [25, 26, 27] using impulsive stimulated Raman

scattering (ISRS) [69] on M13 bacteriophages and other pathogens. In one experiment,

M13 phages were subjected to short pulses of visible (or infrared) light which resulted in

there inactivation. So far the experimental evidence suggests that the M13 phages were

inactivated through resonant excitation of their capsids mechanical modes. In order to fully

explore this idea, a theoretical understanding of the mechanical modes and their coupling

to light at the atomic level is necessary.

In the past, mechanical modes of viral capsids have been studied using coarse grain-

ing procedures since the full dynamical matrix (of size 3N × 3N where N is the number of

atoms) is too large to be directly diagonalized. Each of the various coarse graining proce-

dures varies in the level of atomic description ranging from none at all (continuum elastic

theory [66, 72]) to a reduced description (elastic network model [4] and rotation translation

block method [6]). For example, the rotation translation block procedure (RTB) usually

treats an entire protein building block (1 of 60 for a T = 1 icosahedral virus) as a rigid block
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that is capable of only rotational and translational motions [6, 7]. This reduces the number

of degrees of freedom from 105 or more to a mere 360 for a T = 1 virus (3 translations plus

3 rotations, times 60). Another coarse graining procedure reduces the number of degrees

of freedom by considering only dihedral motions [54] (for a diagram of a dihedral motion

see Figure 1 c). This will reduce the number of degrees of freedom by a factor of roughly

30. For any of the coarse graining procedures, the reduction in the number of degrees of

freedom may cause some of the low frequency modes to be missed resulting in an incomplete

picture of the mode patterns and frequencies.

In this chapter, a detailed analysis of the mechanical modes of three viral capsids,

the satellite tobacco necrosis virus, cowpea chlorotic mottle virus, and M13 bacteriophage,

are examined using the fully atomistic phonon functional method (see Chapter 4 Section

IV for a detailed description of the method) with an empirical energy model. Since the

phonon functional method takes into account all 3N degrees of freedom, a complete picture

the low frequency normal modes of the viral capsid will emerge. In addition, the Raman

spectra of all three viruses (in solution) are predicted using an empirical bond polarizability

model [19, 20, 21] (see Chapter 5 Section III for details of the model). The Raman spectra

predictions can be used to estimate which modes will couple the strongest to light.

II. SATELLITE TOBACCO NECROSIS VIRUS

In this section, the mechanical modes and frequencies of the icosahedral T = 1 satel-

lite tobacco necrosis virus are examined with atomistic detail using the phonon functional

method. With a detailed atomistic description of the displacement patterns of the viral

capsid, an estimate of the low frequency Raman spectra of virus particle in solution is made

using the bond polarizability model and Raman intensity formula derived in Chapter 5.
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The satellite tobacco necrosis virus (STNV) is a particularly small virus having a

diameter of roughly 16 nm. It is called a “satellite” virus because it requires another virus

(a helper virus) to initiate the entrance into the host cell and replicate its genome. Satellite

viruses tend to exacerbate the symptoms exhibited by the host that result from infection

with the helper virus. The STNV is a satellite of the tobacco necrosis virus (TNV) which

infects the tobacco plant. The STNV genome consists of single stranded RNA with a length

of 1239 base pairs [73]. The ss-RNA has an encoding region of roughly 600 base pairs that

codes for a single protein, the capsid coat. The STNV genome is particularly simple since

all of the enzymes needed for replication are contained in the genome of the TNV which

STNV uses.

Since STNV is a T = 1 icosahedral virus, the capsid is constructed from a single

protein building block copied 60 times to form a spherical shell. Inside the capsid shell

lies the ss-RNA genome of the virus. The structure of the STNV capsid was determined

by X-ray crystallography [74]. In addition to the 60 proteins, the X-ray experiment also

found calcium ions and water molecules present in the crystallized capsid. The full capsid

structure contains a total of 198824 atoms (including hydrogen). Out of the 198824 atoms,

a total of 170820 atoms are from the 60 proteins, 27912 atoms are from water molecules,

and 92 atoms are from calcium ions. Out of the 92 calcium ions, 12 were located directly

on the C5 symmetry axes, 20 directly on the C3 symmetry axes, and 60 slightly away from

the C3 axis. Some of the water molecules were found to accompany each calcium ion to

form an octahedral like structure on the C3 axis with each positively charged calcium ion

surrounded by water oxygens which have a slight negative charge. The C5 axis on the other

hand has a single calcium ion surrounded by two water oxygens. Due to the placement of

calcium ions with water directly on the C3 and C5 symmetry axises, the virus capsid will
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not have icosahedral symmetry. This is because of the water molecule which lacks both

five-fold and three-fold symmetry.

An illustration of the calcium ion and two water molecules on the C5 axis is shown

in Figure 18 (a) from two viewpoints. It is quite clear that this arrangement will lack

icosahedral symmetry. For the NMA, a capsid with icosahedral symmetry is desirable as

this greatly reduces the size of the problem. One way to force the capsid into icosahedral

symmetry is to create extra calcium ions and water molecules at the C3 and C5 axes and

energy minimize the structure; taking into account interactions from neighboring icosahedral

sites using the group rotation operators. The final minimized capsid structure will then have

the appropriate symmetry. It is expected that this procedure will effect the frequencies only

slightly. An alternative is to simply remove the water molecules since the generalized Born

method will be used to model solvent interactions with the virus. However, this procedure

results in a capsid structure that cannot be described as Nb basis atoms copied Ns = 60

times. This is due to the calcium ions on the C5 axis which only generate 12 atoms with

the group rotation operators instead of 60. In order to handle such situations, substantial

changes to the group theory dynamical matrix operator algorithm would be necessary. Thus,

removal of the water was avoided. In the future, a more robust group dynamical matrix

operator algorithm will be developed that can handle such situations. A diagram of the C5

symmetry axis after the energy minimization is shown in Figure 18 (b) from the same two

viewpoints as in (a). A similar situation exists for the C3 symmetry axes and is fixed in

the same manner as the C5 axes.

A single protein building block of STNV is shown in Figure 19 (a). The locations

of the three calcium ions are indicated by green dots. The locations of water molecules

are not shown in the figure although they are apart of the building block. The lines with
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FIG. 18. Illustration showing the structure of calcium ions located at the C5 symmetry
axes before and after energetic minimization. (a) The structure before minimization. The
water molecules above and below the calcium ions breaks the icosahedral symmetry of the
virus. (b) The structure after minimization. Additional calcium ions and water molecules
are placed on the C5 symmetry axes to force the virus capsid into icosahedral symme-
try. Energetic minimization of the structure adjusts the relative positions to a favorable
conformation.
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FIG. 19. The structure of the satellite tobacco necrosis virus. (a) The structure of a single
icosahedral site of the virus (1 of 60). The protein is drawn as a backbone trace. The green
dots indicate the positions of Ca2+ ions. The lines show the approximate directions of the
C3 and C5 symmetry axes with respect to the protein. Water molecules that are present
in the structure are not shown. (b) The icosahedral surface for a T = 1 virus. The protein
building block in (a) consisting of protein, calcium ions, and water are copied to each cell
(in red) for a total of 60 copies. (c) The full virus structure.

labels C3 and C5 indicate the approximate direction of the symmetry axes with respect to

the protein. Coordinates for STNV atoms were obtained from the protein data bank (PDB

code 2BUK). The coordinate file 2BUK contained 3324 atoms (including hydrogen). The

full virus structure is obtained by copying all 3324 atoms in the PDB file 2BUK 60 times

using the rotation operators of the regular icosahedral group (group I). A diagram showing

the icosahedral surface for a T = 1 virus which illustrates the placement of individual

protein units is shown in Figure 19 (b). The full virus structure is shown in Figure 19 (c).



118

In Chapter 3, a symmetric molecule was described as a set of Nb basis atoms copied

Ns times. The satellite tobacco necrosis virus can be described in the same manner i.e. as

Nb = 3324 basis atoms copied Ns = 60 times. The coordinates for the 3324 basis atoms at a

single icosahedral site were energetically minimized by allowing atoms to move energetically

downhill due to forces (power quench method). The forces were calculated using the AM-

BER 94 force field [9] taking into account interactions from neighboring icosahedral sites

using the group rotation operators. The interactions of the viral capsid with water were

modeled using the Generalized Born [13, 14, 37] implicit solvent model. Generalized Born

and van der Waals parameters for the calcium ions were obtained from Babu et al. [75]. A

cutoff of 10 Å was used for the Coulomb and van der Waals interactions. The minimization

was performed until a root mean square (RMS) force of 0.001 eV/Å was achieved. This

minimization procedure is consistent with other work [76] where the goal is to keep RMS

deviations of the final optimized structure within 1 Å of the X-ray structure. The resulting

RMS deviation from the original X-ray structure was 0.7 Å. Since the RMS force was not

exactly zero to machine precision, negative eigenvalues (ω2 < 0) of the dynamical matrix

can occur. However, analysis of any resulting negative eigenvalues showed that they were

small in magnitude and the corresponding displacement pattern was highly localized on a

few atoms, usually a single water molecule or the atoms of a single amino acid side chain.

As such, they were physically irrelevant to the low frequency modes and can be ignored.

Once a single icosahedral site of STNV was energetically minimized, the optimized

structure was used to predict the lowest 100 frequency modes of each irreducible represen-

tation of the regular icosahedral group using the phonon functional method (see Chapter

4 Sections IV-VII for details on the procedure). Including all representaions, this resulted

in a total of 1600 low frequency modes of STNV being found. Table IV lists the irre-
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TABLE IV. Character table for the group I. The five irreducible representations are labeled
A, T1, T2, G, and H. The numbers next to each of the five classes (E, C5 etc.) correspond
to the number of group elements that belong to the class. The number τ is the golden mean
defined as τ = (1 +

√
5)/2.

E 12C5 12C2
5 20C3 15C2

A 1 1 1 1 1
T1 3 τ 1 − τ 0 -1
T2 3 1 − τ τ 0 -1
G 4 -1 -1 1 0
H 5 0 0 -1 1

ducible representations of the regular icosahedral group along with the group characters.

For STNV, the sizes of the reduced dynamical matrices (group dynamical matrices) for the

irreducible representations A, T1, T2, G, and H were 9972, 29916, 29916, 39888, and 49860

respectively. For each irreducible representation, approximately 3000 conjugate gradient

steps were performed on the phonon energy functional [Eq. (4.21)].

After minimization of the phonon energy functional, Equation (4.25) was used to

construct the final eigenvectors of the group dynamical matrices. The eigenvectors of the

full dynamical matrix can then be found by taking a linear combination of group theory

basis vectors using Equation (3.16). Since minimization on a computer is never exact, the

eigenvectors and eigenvalues calculated with the phonon energy functional are approximate.

One way that the quality of the eigenvectors and eigenvalues can be assessed is by calculating

the magnitude of the residual vector, |rp〉 = D̂p|ēp〉 − ω̄2|ēp〉 where ω̄2 and |ēp〉 are the

approximate eigenvalues and eigenvectors found with Equation (4.25). The index p is

the usual notation that denotes one of the irreducible representations. The magnitude

of the residual vectors where found to be approximately 10−4. In the test case of ubiquitin

(Chapter 4 Section VIII), it was found that the errors in the eigenvalues were around 0.01
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cm−1 for residual magnitudes on the order of 5 × 10−4. Thus it is expected that the error

in the eigenvalues should be similar here as well.

The lowest five frequency modes corresponding to each of the irreducible representa-

tions A, T1, T2, G, and H are listed in Table V. The value Wλ for each mode λ corresponds

to the participation number for the mode. A small value for Wλ indicates that very few

atoms participate in the displacement and that the mode is localized. A large value on the

other hand indicates that the mode involves the displacement of many atoms and is a global

mode. The formula for Wλ is given by

Wλ = eSλ

Sλ = −
∑

i

Pi(λ) ln [Pi(λ)], (6.1)

where Sλ is the informational entropy of the mode and Pi(λ) is the probability for atom i

in mode λ defined by

Pi(λ) = ~ηi(λ) · ~ηi(λ). (6.2)

The displacement pattern ~ηi for atom i is calculated from the eigenvector of the dynamical

matrix via |η(λ)〉 =
↔
M

1

2 |e(λ)〉. Here the displacement vector |η(λ)〉 is normalized instead of

the eigenvector |e(λ)〉 in order to have a properly normalized probability. If the displacement

is uniformly distributed over each atom, as in a translation, then the participation is equal

to the number of atoms. For STNV, Wλ computed in Equation (6.1) is divided by 60 so

that the participation number is per site. Full participation for STNV in this case is 3324.

Examination of Table V shows that some of the low frequency modes are localized

on a few atoms. For instance, the second lowest frequency mode of the irreducible repre-

sentation A located at 4.73 cm−1 has only 142 atoms participating. The mode is located

on the floppy alpha helix “tail” of the protein that points inward along the C3 axis (see
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TABLE V. The five lowest frequency modes and their corresponding participation num-
ber W per site of the satellite tobacco necrosis virus by irreducible representation. The
frequencies are given in cm−1.

ω1 ω2 ω3 ω4 ω5

(W1) (W2) (W3) (W4) (W5)

A 2.41 4.73 5.29 6.08 7.10
(2610) (142) (1607) (1752) (104)

T1 2.89 3.57 3.60 4.70 4.89
(2689) (457) (603) (834) (562)

T2 2.02 3.42 3.43 3.84 4.30
(2741) (1714) (2460) (497) (616)

G 2.38 2.60 3.55 3.95 4.14
(2605) (2523) (2802) (848) (412)

H 1.95 2.39 2.86 3.57 3.82
(2857) (2951) (2065) (1210) (543)

Figure 19 a). Since the phonon energy functional uses the full Cartesian basis to construct

the normal modes, low frequency localized states can be found. Such modes are difficult to

predict with coarse graining procedures such as the rotation translation block method [6]

since the modes are constructed from small basis sets such as the set of uniform rotations

and translations of the protein building blocks.

The first of the low frequency A modes at 2.41 cm−1 corresponds to the breathing

mode of the virus. This mode can be described as an expansion/contraction of the viral

capsid along the radial direction. Unlike the RTB method which treats the entire protein

as rigid, the fully atomistic phonon functional method predicts rigid and floppy sections of

the protein. This results in sections of the protein that have very small displacements and

other regions that exhibit most of the motion that results in the breathing of the capsid.

Figure 20 (a) shows the individual displacements of each backbone atom (N, Cα, C) of a

single protein for the breathing mode. A short arrow indicates a small relative displacement

of the atom about its equilibrium site whereas a long arrow indicates a large displacement.
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FIG. 20. Three low frequency modes of the satellite tobacco necrosis virus that have sym-
metry of the A irreducible representation. Displacements of the backbone atoms (N, Cα,
C) of one protein of the capsid are shown. Each of the four β sheets in the protein are
colored differently (green-red-blue-red) for clarity. The yellow and teal areas correspond to
alpha helical regions of the protein. Short (long) arrows indicate a small (large) relative
displacement of the atom from its equilibrium position. (a) The breathing mode at 2.41
cm−1. (b) The rotational mode at 5.29 cm−1. (c) The puckering mode at 6.08 cm−1.
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FIG. 21. Three low frequency modes of the satellite tobacco necrosis virus that have sym-
metry of the A irreducible representation. The full virus capsid composed of all 60 protein
building blocks is shown. The arrows represent the direction of the center of mass motion
for each protein building block and are not relative. (a) The breathing mode at 2.41 cm−1.
(b) The rotational mode at 5.29 cm−1. (c) The puckering mode at 6.08 cm−1.
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The figure shows that atoms near the C5 axis have very small displacements and form a

rigid region. Figure 21 (a) illustrates the breathing mode for the entire capsid with each

protein building block drawn as a trace of the backbone. The arrows indicate the center of

mass motion of each protein building block.

Two more important A modes are shown in Figures 20 (b) and (c) and 21 (b) and

(c). The low frequency mode at 5.29 cm−1 corresponds to a rotation of the protein building

blocks about each of the C5 symmetry axes. The motion can be described as the “gliding”

of the four beta sheet structures past each other. This is illustrated in Figure 20 (b). The

displacements of all 60 protein building blocks for the rotational mode are shown in Figure

21 (b). Finally the low frequency mode at 6.08 cm−1 corresponds to a “puckering” of the

proteins around the C5 symmetry axes. Figure 20 (c) shows the displacements for the

individual backbone atoms of a single protein while Figure 21 (c) gives the displacements

for all proteins.

The lowest modes from the remaining irreducible representations T1, T2, G, and

H are depicted in Figures 22 and 23. Figure 22 shows the lowest modes of the T1, T2,

and G representations while Figure 23 depicts the three lowest H modes. All of the modes

are represented by a full virus capsid and the direction of the center of mass motion for

each protein of the capsid is shown using arrows. The individual backbone displacements

are not illustrated since they are different for each protein as a result of the symmetry of

the irreducible representation. However, an examination of any one of the protein building

blocks for the T1, T2, G, and H low frequency modes reveals similar floppy and rigid sections

of the protein similar to the A modes.

Finally, the relative Raman spectra for satellite tobacco necrosis virus capsids in

solution is calculated using the bond polarizability model [19, 20, 21] to predict the total
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FIG. 22. The lowest frequency modes of the satellite tobacco necrosis virus that have
symmetry of the irreducible representations T1, T2, and G. The full virus capsid composed
of all 60 protein building blocks is shown. The arrows represent the direction of the center
of mass motion for each protein building block and are not relative. (a) The lowest T1
mode at 2.89 cm−1. (b) The lowest T2 mode at 2.02 cm−1. (c) The lowest G mode at 2.38
cm−1.
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FIG. 23. The three lowest frequency modes of the satellite tobacco necrosis virus that
have symmetry of the irreducible representation H. The full virus capsid composed of all 60
protein building blocks is shown. The arrows represent the direction of the center of mass
motion for each protein building block and are not relative. (a) The lowest H mode at 1.95
cm−1. (b) The second lowest H mode at 2.39 cm−1. (c) The third lowest H mode at 2.86
cm−1.
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susceptibility of the virus capsid. The susceptibility tensor can then be used in Equation

(5.76) to give the relative Raman intensity of the viral capsids in solution. The bond

polarizability model requires polarizability parameters α′
‖, α

′
⊥, α‖, and α⊥ in order to

predict relative Raman intensities. Although each bond will in general have a unique set of

polarizability parameters, the main goal here is to reproduce relative Raman intensities that

will enable a qualitative understanding of which modes will be most stimulated by Raman

scattering. As such, it should be sufficient to use the same polarizability parameters for each

bond in the capsid. Future work will utilize a more diverse set of polarizability parameters.

The polarizability parameters for carbon, a common element in polypeptides, will be used

to estimate the Raman intensity of the capsid. The specific parameters used come from

Snoke and Cardona [20] for single carbon-carbon bonds (see page 91).

The only Raman active modes are those from the irreducible representations A and

H. The modes from the other irreducible representations have zero Raman intensity due

to their symmetry. The relative Raman spectra of STNV in solution is given in Figure 24

for a detector angle of Θ = 90◦ (see Figure 15). The Raman spectra for the A modes are

drawn with a solid line and the H modes with a dashed line. Since the H modes are five fold

degenerate, the intensity of a single mode can be expected to be roughly five times greater

than that of an A mode. A large difference in Raman intensity for the A and H modes is

clearly seen in the figure. Thus it is expected that the H modes will likely be excited the

strongest from inelastic Raman scattering experiments such as ISRS.

Since no other methods are known to have been used to predict the low frequency

modes of the satellite tobacco necrosis virus, a direct comparison to the phonon functional

method cannot be made. However, the phonon functional method has revealed a fairly

complicated picture of the low frequency motions of STNV.
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FIG. 24. Relative Raman spectra prediction for the satellite tobacco necrosis virus capsid
in solution with a detector angle of Θ = 90◦. A broadening of 0.75 cm−1 was applied
to the intensity predictions. The Raman active modes have symmetry of the irreducible
representations A and H. All others are Raman silent. The solid line indicates the relative
Raman intensity of the modes having symmetry of the irreducible representation A. The
dashed line indicates the relative Raman intensity for the H modes. The five fold degeneracy
of the H modes has been included in the spectra predictions.
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III. COWPEA CHLOROTIC MOTTLE VIRUS

The study of icosahedral viruses is continued in this section with the examination of

the low frequency modes and relative Raman spectra of the cowpea chlorotic mottle virus

(CCMV) using the phonon functional method. The cowpea chlorotic mottle virus is a small

to medium sized plant virus with a capsid diameter of approximately 26 nm. It is a T = 3

icosahedral virus constructed from 180 copies of a single protein.

The CCMV capsid is of particular interest in theoretical and experimental studies

because of its ability to swell when calcium ions are removed from the capsid at neutral pH

[77]. For CCMV, the swelling occurs due to the repulsion of acidic residues in the vicinity

of the calcium binding sites that commences once the stabilizing calcium ions are removed

[78]. The swelling process results in the formation of 60 pores in the capsid structure.

Experimentally, the swelling is usually accomplished by adjusting the pH instead of the

calcium concentration. Since the calcium deficient CCMV capsid is stable in the unswollen

form at low pH (around 5), a simple adjustment of the pH results in a reversible unswollen

to swollen transition.

The ability to open pores in the CCMV capsid by a simple change in pH has presented

the possibility of using CCMV as vector for the delivery of chemical agents. So far, nano-

particles and organic compounds have been successfully loaded into empty CCMV capsids

using the swelling procedure [77]. Such experiments pave the way for drug or gene therapies

that are delivered by viral capsids that have been engineered to swell to allow for the efficient

“loading” of the capsid cargo.

Although the mechanism that causes swelling of the CCMV capsid is somewhat

understood, a detailed swelling pathway has yet to be formed. Recently some work on the

subject has been done by Tama and Brooks [60]. Using NMA with the elastic network
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and RTB models, Tama and Brooks constructed a series of capsid structures representing

a proposed swelling pathway. Starting with the unswollen CCMV capsid, the eigenvectors

from the NMA were used to predict intermediary structures. These intermediary structures

were obtained by moving the capsid structure along the eigenvector that had the greatest

overlap with a single vector constructed by taking the difference in the Cα positions between

the intermediary and final swollen CCMV capsid structures. One of the main problems

with calculating a proposed swelling pathway in this manner is that the elastic network

model uses a phenomenological treatment of the potential, i.e. identical springs connecting

atoms, which cannot properly account for calcium ion interactions in a NMA. The phonon

functional method on the other hand is capable of using an empirical energy model and a

full basis set to construct the eigenvectors. This may provide better detail in the types of

atomic reconstructions that initiate the swelling process and will be explored later.

The CCMV has a range of plants that it infects which includes beets and soybeans.

Infection of a plant with CCMV requires a vector which is able to pass the virus directly

into a host cell. An example of a vector would be an insect, such as an aphid, which carries

the virus and infects the plant as it feeds. Once a plant is infected, the virus is systemic,

moving throughout the tissues of the plant. The most noticeable indication that a plant is

infected with CCMV is the appearance of necrotic lesions and streaks on the leaves of the

plant.

The genome of CCMV consists of ss-RNA with an approximate length of 8.444 kilo

bases [79]. The genome is split into three distinct segments which are labeled RNA1, RNA2,

and RNA3. The three segments contain a total of four genes. Each RNA segment codes for

one enzyme labeled 1a, 2a, and 3a according to the respective RNA segment that contains
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the encoding region for the enzyme. In addition to coding for the 3a enzyme, the RNA3

segment also codes for the single protein that makes the capsid.

The structure of the CCMV capsid protein is shown in Figure 25 (a). This single

protein forms a trimer of units A, B, and C shown in Figure 25 (b). The trimer is then placed

on the icosahedral surface using the rotation operators for the regular icosahedral group.

Since the CCMV capsid is constructed from a trimer of proteins using the 60 icosahedral

rotation operators, the capsid is referred to as a T = 3 capsid. A diagram of the T = 3

icosahedral surface for the CCMV capsid is illustrated in Figure 25 (c). Red cells correspond

to the A proteins, blue cells to the B proteins, and green cells to the C proteins of the trimer

depicted in (b). The full capsid structure is shown in Figure 25 (d).

The structure of the CCMV capsid was determined from X-ray crystallography [80].

In addition to the 180 proteins, the X-ray experiment also found calcium ions and small

segments of ss-RNA bound to capsid proteins. The RNA-capsid interactions are believed to

help stabilize the capsid shell in addition to the calcium. The full capsid structure contained

a total of 451200 atoms (including hydrogen). Out of the 451200 atoms, 432120 atoms are

from the 180 proteins, 18900 atoms are from the ss-RNA, and 180 atoms are calcium ions.

Using the nomenclature developed in Chapter 3, the CCMV capsid consists of Nb = 7520

basis atoms copied Ns = 60 times. The basis atoms include the trimer of coat proteins

(units A, B and C) as well as three short ss-RNA chains and three calcium ions. The three

calcium ion binding sites are illustrated by green dots in Figure 25 (b). The calcium ions

are not located around the exact C3 axis but a local pseudo C3 axis. The binding site

coordinates for the calcium ions were obtained from the X-ray structure [80].

A single icosahedral site of the CCMV capsid consisting of Nb = 7520 basis atoms

(protein, ss-RNA, and calcium ions) was energetically minimized using the AMBER 94 force
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FIG. 25. Structure of the cowpea chlorotic mottle virus. (a) The structure of a single
protein that makes up the capsid. The protein is drawn as a backbone trace. (b) A trimer
of proteins that make up one icosahedral site (1 of 60) of the virus. The three Ca2+ ions
that stabilize the trimer are drawn as green dots. The proteins are labeled A, B, and C.
The RNA segments that bind to the capsid are not shown (c) The icosahedral surface for a
T = 3 virus. The full virus is obtained by placing the A, B, and C proteins along with one
calcium ion in the appropriate cells (see text for a description of the placement). (d) The
structure of the full virus.
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field [9], taking into account neighboring atoms using the icosahedral rotation operators.

Interactions of the capsid with water were modeled with the generalized Born implicit

solvent model [13, 14, 37]. The generalized Born and van der Waals parameters for the

calcium ions were obtained from Babu et al. [75]. After energy minimization was performed,

the final RMS force was 6.6 × 10−5 eV/Å and the RMS deviation from the original X-ray

structure was approximately 3.7 Å. At this RMS force value, only two negative eigenvalues

in the T1 T2 G, and H representations were found. All were highly localized on the same

atoms (approximately 80) in a few side chains in the B subunit, away from the calcium

binding sites. As such, they are physically irrelevant to the low frequency normal modes

and can be ignored.

Using group theory for the regular icosahedron, the full dynamical matrix is reduced

to the five smaller dynamical matrices corresponding to the irreducible representations A,

T1, T2, G, and H. The group dynamical matrices for each of these representations have sizes

of 22560 for A, 67680 for T1 and T2, 90240 for G, and 112800 for H. Using the optimized

structure for a single icosahedral site, the lowest 100 eigenvectors and eigenvalues for each

irreducible representation were found by applying 6000 conjugate gradient steps to the

phonon energy functional [Eq. (4.21)]. This resulted in a total of 1600 low frequency modes

of CCMV being found.

Using Equation (4.25) the final eigenvectors of the group dynamical matrices were

constructed for each irreducible representation. The eigenvectors of the full dynamical

matrix can then be found by taking a linear combination of group theory basis vectors

using Equation (3.16). Since the eigenvectors and eigenvalues calculated using Equation

(4.25) are approximate, a calculation of the residual vector |rp〉 = D̂p|ēp〉 − ω̄2|ēp〉, was

used to estimate the quality of the eigenvectors and eigenvalues. The magnitude of the
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TABLE VI. The five lowest frequency modes and their corresponding participation num-
ber W per site for the cowpea chlorotic mottle virus by irreducible representation. The
frequencies are given in cm−1.

ω1 ω2 ω3 ω4 ω5

(W1) (W2) (W3) (W4) (W5)

A 1.18 2.14 2.58 3.17 3.26
(7168) (5585) (5152) (816) (903)

T1 1.35 1.56 1.77 2.29 2.40
(7169) (6628) (6350) (6356) (6775)

T2 0.89 1.46 1.66 2.23 2.43
(6950) (6187) (6955) (5654) (5014)

G 0.91 1.16 1.54 1.94 1.99
(6706) (6792) (6591) (5059) (6137)

H 0.71 1.04 1.24 1.45 1.74
(7381) (7364) (7183) (6672) (6825)

residual vectors were found to be approximately 10−4. Thus, the errors in the eigenvalues

are expected to be consistent with ubiquitin at around 0.01 cm−1 (see Table III).

Table VI lists the five lowest frequencies and their participation numbers Wλ for

each mode λ which were calculated using Equation (6.1). For CCMV, a mode that has

full participation, such as a translation, would have a participation value of 7520 (per site).

The lowest frequency mode listed in Table VI is at 0.71 cm−1 and is of the H irreducible

representation. Nearly all of the modes are global, having at least 5000 atoms participating.

However, the A irreducible representation modes at 3.17 cm−1 and 3.26 cm−1 have less than

a thousand atoms participating in the mode. These are modes that are localized on just

one of the A, B, C units of the trimer.

The lowest frequency mode of the A irreducible representation, located at 1.18 cm−1,

is the breathing mode of the virus capsid. The next lowest frequency A mode at 2.14 cm−1

corresponds to the “puckering” mode of the virus. Unlike the puckering mode for the STNV

were each protein on the C5 axis expands out, the CCMV puckering mode has sections that
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expand outward while other sections expand inward towards the center of the capsid. The

sections that expand outward are the A units of the protein trimer on the C5 axis while

the sections expanding inwards are the B and C units on the C3 axis. The third lowest

frequency A mode at 2.58 cm−1 is the rotational mode. For the CCMV rotational mode,

the A units of the trimer on the C5 axis rotate in one direction while the B and C units

on the C3 axis rotate in the opposite direction. Essentially the CCMV rotation mode has

the pentagons and hexagons of the capsid rotating in opposite directions. The breathing,

puckering, and rotation modes are illustrated in Figure 26 (a), (b), and (c) respectively.

Each arrow in Figure 26 represents the center of mass motion of one of the 180 proteins.

The lowest frequency modes of the T1, T2, and G irreducible representations are

shown in Figure 27. Again, the center of mass motions of each protein are represented as

an arrow. The lowest frequency T1 mode can be characterized as a dipole like motion and

is illustrated in Figure 27 (a). The lowest frequency T2, and G modes are illustrated in

Figures 27 (b) and (c) respectively. Finally Figure 28 illustrates the three lowest H modes.

One mode in particular, the second lowest frequency H mode at 1.04 cm−1, can be described

as the upper and lower hemispheres of the virus rotating in opposite directions.

The CCMV normal modes have also been analyzed in other studies with the RTB

method [7] and with a method which used the reduced basis set of dihedral angles [54]. The

phonon functional predictions for the CCMV frequencies compare quite well with those

calculated with the dihedral angle basis set. In that study, the lowest frequency mode

was also an H mode with frequency 0.80 cm−1. The RTB method however tends to yield

frequencies that are several times higher [54]. In general it seems that reduced basis sets

result in higher frequency predictions.
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FIG. 26. Three low frequency modes of the cowpea chlorotic mottle virus that have sym-
metry of the A irreducible representation. The full virus capsid composed of all 180 protein
building blocks is shown. The arrows represent the direction of the center of mass motion
for each protein building block and are not relative. (a) The breathing mode at 1.18 cm−1.
(b) The puckering mode at 2.14 cm−1. (c) The rotational mode at 2.58 cm−1.
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FIG. 27. The lowest frequency modes of the cowpea chlorotic mottle virus that have sym-
metry of the irreducible representations T1, T2, and G. The full virus capsid composed of
all 180 protein building blocks is shown. The arrows represent the direction of the center of
mass motion for each protein building block and are not relative. (a) The lowest T1 mode
at 1.35 cm−1. (b) The lowest T2 mode at 0.89 cm−1. (c) The lowest G mode at 0.91 cm−1.



138

FIG. 28. The three lowest frequency modes of the cowpea chlorotic mottle virus that have
symmetry of the irreducible representation H. The full virus capsid composed of all 180
protein building blocks is shown. The arrows represent the direction of the center of mass
motion for each protein building block and are not relative. (a) The lowest H mode at 0.71
cm−1. (b) The second lowest H mode at 1.04 cm−1. (c) The third lowest H mode at 1.24
cm−1.
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FIG. 29. Relative Raman spectra prediction for the cowpea chlorotic mottle virus capsid
in solution with a detector angle of Θ = 90◦. A broadening of 0.75 cm−1 was applied
to the intensity predictions. The Raman active modes have symmetry of the irreducible
representations A and H. All others are Raman silent. The solid line indicates the relative
Raman intensity of the modes having symmetry of the irreducible representation A. The
dashed line indicates the relative Raman intensity for the H modes. The five fold degeneracy
of the H modes has been included in the spectra predictions.

The relative Raman intensity of the CCMV capsid in solution was calculated using

the bond polarizability model discussed in Chapter 5 Section III and Equation (5.76).

Polarizability parameters for single carbon-carbon bonds (see page 91) were used to predict

the induced susceptibility due to a vibrational mode. The final result is shown in Figure

29. The Raman active A modes are indicated by the solid line and the Raman active H

modes by a dashed line. The H modes contribute to most of the intensity creating a broad

plateau with a peak at 3.5 cm−1.
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Finally, the swelling process of CCMV is examined by calculating the normal modes

of the optimized structure while ignoring interactions with the calcium ions. The optimized

structure was obtained by minimizing with calcium interactions accounted for (see above).

Since the swelling process is initiated by the removal of the stabilizing calcium ions, the

NMA should reveal unstable modes, i.e. modes that have negative eigenvalues. This pro-

cedure is well suited for the phonon functional method because these negative modes will

automatically become the lowest in the CCMV spectrum.

The 50 lowest modes were calculated for each irreducible representation using the

optimized structure and no calcium interactions by minimizing the phonon energy func-

tional as described above. Interestingly, unstable modes appear in each of the irreducible

representations A, T1, T2, G, and H and have frequencies that range from −0.35 cm−1 to

−92.66 cm−1. While most of the modes are very localized in the calcium binding regions

(see Figure 25 b) there are roughly four or five modes that have several thousand atoms par-

ticipating in the motion. Two of these modes, an A mode at −2.12 cm−1 with 1717 atoms

participating and a T2 mode at −0.72 cm−1 with 1978 atoms participating are shown in

Figure 30. Both modes are particularly interesting because they describes a restructuring

of the trimer of proteins that is preferential to the AC interface. Overall, the results provide

fresh evidence that the swelling process is much more complex than a simple expansion and

may involve multiple stages.

IV. M13 BACTERIOPHAGE

The last virus examined in this chapter is the tubular M13 bacteriophage virus.

The M13 bacteriophage is a filamentous virus were the capsid takes the shape of a long,

cylindrical tube. It has a particularly simple structure which makes theoretical studies

of the mechanical modes of its capsid easy using continuum models [66, 72]. Here, the
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FIG. 30. Two unstable modes of the calcium ion free cowpea chlorotic mottle virus. Dis-
placements of the protein backbone atoms at a single icosahedral site are shown along with
the center of mass motion of each protein in the full virus. (a) The relative displacements
of the protein backbone atoms (N, Cα, C) for the unstable A mode at −2.12 cm−1. Short
(long) arrows represent small (large) relative displacements of the atom. (b) The displace-
ments for the full virus structure for the unstable A mode at −2.12 cm−1. The arrows
represent the direction of the center of mass motion for each protein building block and are
not relative. (c) Same as (a) except for the unstable T2 mode at −0.72 cm−1. (d) Same as
(b) except for the unstable T2 mode at −0.72 cm−1.
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mechanical modes and relative Raman spectra of the bacteriophage are studied from both

the continuum and fully atomistic perspectives and a comparison between the two is made.

The genome of M13 consists of single stranded circular DNA with an approximate

length of 6000 base pairs. The M13 genome encodes for a total of 11 proteins [81], of which

five; P3, P6, P7, P9, and P8, are used to create the M13 capsid. The major coat protein,

P8, is 50 amino acids in length and forms an alpha helix structure that makes up the tubular

body of the M13 phage. The remaining four proteins make small “caps” that cover the ends

of the helical tube. The proteins P3 and P6 cover one end of the tube while P7 and P9

cover the other end. The P3 protein is required for entrance into the host cell, in this case

the E. coli bacterium. Once infected, the host cell will replicate M13 clones indefinitely.

This is due to new M13 capsids being constructed at the outer membrane surface of the

host cell which allows it to remain intact without rupturing [81].

The structure of the major coat protein, shown in Figure 31 (a), was determined

by X-ray diffraction [82]. The small alpha helix proteins assemble into a tubular capsid

of roughly 850 nm in length. The final resulting capsid will have helical symmetry and a

diameter of approximately 6 nm. The M13 capsid also has translational symmetry along

the tube axis. A periodic segment of the capsid can be constructed by assembling 50 of the

protein building blocks. The periodic unit, shown in Figure 31 (b), has a unit cell length

along the tube axis of 161.5 Å.

In Chapter 5 Section II, elastic wave theory was used to develop a set of equations

that described the mechanical modes of an isotropic elastic cylindrical shell. These equations

can be used to predict the mechanical mode patterns and corresponding frequencies of the

M13 capsid. The model requires only four parameters, the inner and outer radius of the M13

capsid, and the transverse and longitudinal speeds of sound. The inner and outer radius
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FIG. 31. The structure of the M13 bacteriophage capsid. (a) Structure of the major coat
protein P8. The protein is drawn as a backbone trace. (b) One periodic segment of the M13
capsid constructed from 50 alpha helix building blocks shown in figure (a). The resulting
segment has translational symmetry along the tube axis. The length of the periodic segment
is 161.5 Å.

can be approximated from the molecular structure predicted from X-ray crystallography.

Orientating the capsid structure along the ẑ axis and averaging over the distances between

atoms in the x-y plane yields an inner radius of 1.9 and 3.4 nm respectively. The transverse

and longitudinal speeds of sound can be approximated from experimental speeds of sound in

proteins. The lysozyme protein has an experimentally measured transverse and longitudinal

speed of sound of 915 and 1817 m/s respectively [83].

Equations (5.27) and (5.28) determine the mode patterns of the capsid shell in

continuum theory. The coefficients Aφ, Bφ etc. required in Equation (5.27) are determined

by solving the 6 × 6 eigenvalue equation,

↔
C ~A = 0. (6.3)

The coefficients of the matrix
↔
C, determined from Equation (5.37), are dependent on the
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FIG. 32. Frequency dispersion curves for the M13 bacteriophage capsid predicted with
continuum elastic theory. Dispersion curves for n = 0, 1, 2 with n denoting the cosine/sine
dependence (cos (nθ)) are shown. (a) Dispersion curve for n = 0. (b) Dispersion curve for
n = 1. (c) Dispersion curve for n = 2.

frequency ω and will only satisfy Equation (6.3) for certain values of ω. A solution to

Equation (6.3) is found by varying ω in steps, producing a unique matrix
↔
C at each step.

At each step, the eigenvalues and eigenvectors of
↔
C are calculated. Once a zero eigenvalue

of
↔
C is found, the value of ω used to construct

↔
C corresponds to a natural frequency of

the capsid shell. The eigenvector associated with the zero eigenvalue gives the coefficients

~A = (Aφ, Ar, Az, Bφ, Br, Bz) required in Equation (5.27) to predict the mode patterns.

Frequency dispersion relations, ω(k), are shown in Figure 32 for the M13 capsid shell.

The n values of n = 0, 1, 2 correspond to the n value of the cosine/sine term in Equation



145

TABLE VII. The low frequency modes of the M13 bacteriophage predicted using continuum
elastic theory. Frequencies of the capsid shell were determined for k = 0, with parameters
a = 1.9 nm, b = 3.4 nm, ct = 915 m/s, and cl = 1817 m/s. The first five lowest frequency
modes for n = 0, 1, 2 are shown along with the mode type of either axial (A), radial (R), or
radial-torsional (RT). The frequencies are given in cm−1.

ω1 ω2 ω3 ω4 ω5

(Type) (Type) (Type) (Type) (Type)

n = 0 3.29 10.29 10.78 20.40 20.47
(R) (A) (A) (A) (R)

n = 1 1.85 4.23 10.48 11.54 19.47
(A) (RT) (A) (RT) (RT)

n = 2 1.22 3.68 6.33 11.03 13.38
(RT) (A) (RT) (A) (RT)

(5.28). As discussed in Chapter 5, solutions with n > 0 will be two fold degenerate due to

the additional solutions that can be obtained by swapping cos (nθ) for sin (nθ). The Raman

active vibrational modes of the M13 capsid shell will have k ≈ 0 due to the relatively long

wavelength of light (≈ 500 nm) that is used in Raman experiments [84, 85]. At k = 0,

the matrix
↔
C can be factored into 2 × 2 and 4 × 4 matrices. The 2 × 2 matrix determines

the axial modes of the capsid. These modes have ur = uθ = 0 and uz 6= 0. The 4 × 4

matrix determines the radial and radial-torsional modes. These modes have uθ = uz = 0

and ur 6= 0 or uz = 0 with ur 6= 0 and uθ 6= 0.

Table VII shows the frequencies and mode types for the first few lowest frequency

modes. The three lowest modes at 1.22, 1.85, and 3.29 cm−1 are illustrated in Figure 33.

The continuum model predicts the capsid breathing mode at 3.29 cm−1, an axial shearing

mode at 1.85 cm−1, and a compressional mode at 1.22 cm−1.

Using the amorphous isotropic bond polarizability model (AIBP) derived in Chapter

5 Section IV specifically for continuum elastic theory, the relative Raman intensity of the

modes can be predicted. The susceptibility for a single M13 bacteriophage capsid can be
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FIG. 33. Three low frequency displacement patterns of the M13 capsid predicted with
continuum elastic theory. (a) A radial n = 0 breathing mode at 3.29 cm−1. (b) An n = 1
axial shearing mode at 1.85 cm−1. (c) An n = 2 radial-torsional mode at 1.22 cm−1.
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calculated via

∆
↔
χ=

∫

∆
↔
α dV, (6.4)

where the integral is computed over the entire capsid volume and the induced polarization

per unit volume, ∆
↔
α, is calculated using Equation (5.58). The strain tensor elements

required for the AIBP model can be obtained from Equation (5.32). Integrating Equation

(6.4) over the cylindrical shell and taking into account the degeneracy factor for modes with

n > 0 produces the following non-zero susceptibility elements (in Cartesian coordinates) for

n = 0, 1, 2:

∆χxx = ∆χyy = −παs
Vb

(

1

3
+ 2

αc
αs

)

Γ0 for n = 0,

∆χxz = ∆χzx = −παs
Vb

Γ1 for n = 1,

∆χxx = ∆χyy = −π
2

αs
Vb

Γ2 for n = 2. (6.5)

The constants αc and αs are the compressional, and shear polarizabilities defined in Equa-

tion (5.55) and the constant Vb is the average volume of a single bond. The quantities Γn

are integrals of cylindrical Bessel functions given by

Γ0 ≡
∫ b
a α

2rfdr,

Γ1 ≡
∫ b
a r
[(

2
r2 − β2

2

)

hr + h′r
r

]

dr,

Γ2 ≡
∫ b
a r
[

3
r (f

′ + h′z) + 4
r2 (f + hz) − α2f − β2hz

]

dr.

(6.6)

The radial functions f , hr, and hz are defined in Equation (5.27). Using Equation (5.76),

a closed form solution for the relative Raman intensity for each n value is obtained:

I ∝ (2λR+µR)
ω

[

1
3 + 2αc

αs

]2
Γ2

0 for n = 0,

I ∝ 2µR

ω Γ2
1 for n = 1,

I ∝ (2λR+µR)
ω

Γ2

2

2 for n = 2.

(6.7)
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FIG. 34. Relative Raman spectra predictions for the M13 bacteriophage capsid in solution
using the AIBP model with a detector angle of Θ = 90◦. (a) Relative Raman spectra for
active n = 0 radial modes. (b) Relative Raman spectra for active n = 1 axial modes.
(c) Relative Raman spectra for active n = 2 radial-torsional modes. (d) Total combined
relative Raman spectra for n = 0, 1, 2. A broadening of 5.0 cm−1 is used to account for
experimentally observed broadening.

Since at k = 0 the axial and radial-torsional solutions separate, continuum elastic theory

predicts that only n = 1 axial modes and n = 0, 2 radial modes will be Raman active.

To predict the relative Raman intensity of the M13 bacteriophage in solution, Equa-

tion (6.7) requires the polarizability constants αc and αs. A reasonable expectation is that

the majority of the bonds in the M13 capsid are carbon like since the majority of bonds in

peptides contain carbon. Using Equation (5.55) and polarizability parameters from Snoke

and Cardona for carbon (see page 91) gives a ratio of αc/αs = 0.52. The resulting relative
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Raman intensity predicted by the continuum elastic model is shown in Figure 34. Figures

(a) - (c) show the Raman intensity for n = 0, 1, 2. The total combined Raman intensity

for all three n values is shown in (d). A broadening of 5.0 cm−1 was used for the total

Raman intensity prediction to account for the experimentally observed broadening [84, 85]

(a broadening of 0.75 cm−1 was used in all other Raman intensity examples presented in

this dissertation).

Comparison of the theoretical Raman intensity with experiment [84, 85] shows an

anomalous peak at 20.4 cm−1 due to a single radial mode. It is important to note that no

damping of the M13 phage from the surrounding water has been considered. A reasonable

expectation is that radial modes will be heavily damped when compared to axial modes.

This is due to the increased surface area that can interact with the water when the capsid

expands radially outward. If this hypothesis is valid, then the intensity for the 20.4 cm−1

mode should be significantly reduced resulting in a single peak at 10.4 cm−1. Thus, it is

expected that the mode at 10.4 cm−1 will produce the most damage to the capsid from

ISRS stimulation.

Although continuum elastic theory can be used to predict the mechanical mode pat-

terns, frequencies, and relative Raman intensities of the M13 capsid, the phonon functional

method will provide a more detailed picture of the mechanical modes. To study the me-

chanical modes of the M13 bacteriophage capsid using the phonon functional method, 50

protein building blocks (Figure 31 a) were assembled to create a periodic tubular structure

aligned along the ẑ axis (shown in Figure 31 b) with a unit cell length of 161.5 Å. The

resulting tubular structure contained a total of 37050 atoms.

Although the M13 capsid is finite in length, periodic boundary conditions can be used

to treat the tubular segment as a infinite cylindrical tube. Unit cell vectors of ~a1 = 100x̂,
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~a2 = 100ŷ, and ~a3 = 161.5ẑ were chosen. The x-y lattice constants were chosen to elimi-

nate interactions of one infinite tube with its nearest neighbors. Using periodic boundary

conditions, the unit cell was energetically minimized using the AMBER 94 force field [9].

Interactions with water were modeled using the generalized Born implicit solvent model

[13, 14, 37] using a cutoff of 10 Å for the electrostatic interactions. Since the generalized

Born method introduces a dielectric screening, no Ewald summation was needed for the

Coulomb interactions although periodicity exists. Thus, only a direct sum was used in the

computation of electrostatic interactions which extended only slightly into neighboring cells.

The final optimized structure had a final RMS force of 0.001 eV/Å and an RMS deviation

from the original X-ray structure of 1.61 Å.

Using the optimized structure, the lowest 200 eigenvalues and eigenvectors of the

dynamical matrix were found by minimizing the phonon energy functional [Eq. (4.21)]

with 4000 conjugate gradient steps. Only modes with a k state vector of ~k = 0 are solved

for. Here ~k = 0 means that each cell performs the same motion. However, since the

cell is 161.5 Å in length, internal waves with that wavelength or integer divisions of that

wavelength can appear. Once the phonon functional was minimized, the final eigenvectors

and eigenvalues were obtained from Equation (4.25). Residual vectors were calculated using

the final eigenvectors and their magnitude was on the order of 10−4. It is expected that the

errors in the frequencies should be on the order of 0.01 cm−1 consistent with ubiquitin (see

Chapter 4 Section VIII).

Table VIII lists the 25 lowest frequencies in cm−1, the participation number for each

mode, and the percentage of the mode that is axial, radial, or torsional. To calculate the

percentage of the mode that is axial, radial, or torsional, the components of the normalized

displacement pattern for each mode λ and atom i were projected along the cylindrical unit
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TABLE VIII. The 25 lowest frequency modes of the M13 bacteriophage capsid calculated
with the phonon functional method. The participation number W and percentage radial,
torsional, and axial are also shown. The frequencies are given in cm−1.

ω W % R % T % A

1.45 10616 42.5 39.7 17.8
1.62 30496 39.3 47.6 13.1
1.74 34123 46.9 43.9 9.2
1.89 26039 45.6 42.9 11.5
2.20 6690 47.8 33.8 18.4
2.49 4224 39.6 39.7 20.7
2.67 24955 7.8 88.3 3.9
2.72 21293 18.3 73.1 8.6
3.15 18103 58.1 20.5 21.4
3.25 22763 68.8 20.8 10.4
3.28 20219 63.0 22.9 14.1
3.31 21853 58.0 22.9 19.1
3.36 23557 61.7 25.2 13.1
3.40 23112 58.8 25.4 15.8
3.54 24201 57.2 25.1 17.7
3.57 23408 54.3 25.6 20.1
3.60 17527 50.4 23.8 25.8
3.65 22527 55.6 24.4 20.0
3.72 19154 50.1 24.3 25.6
3.80 25295 40.4 23.4 36.2
3.82 23583 48.9 27.9 23.2
3.88 22497 43.9 31.3 24.8
3.97 23500 24.2 18.4 57.4
3.98 24860 28.7 21.4 49.9
4.02 22820 35.3 27.3 37.4
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directions êr, êθ, and êz. For example, the percentage of the displacement that is radially

directed is simply given by the sum,

% R =
∑

i

[~ηi(λ) · êr]2 , (6.8)

with similar definitions for the torsional and axial percentages.

The modes predicted using the atomistic phonon functional method show a much

richer spectrum of frequencies when compared with the continuum model. Also, the mode

patterns tend not to be orientated along a specific axial or radial direction. This is due

to the increased complexity of the capsid structure (when viewed atomistically) that tends

not to permit purely radial, torsional, or axial displacements except for the zero frequency

modes. However, a few of the lowest frequency modes compared quite well with continuum

elastic theory. It should be noted that some ~k = 0 modes in the atomistic model correspond

to k = 2π/16.15 nm = 0.38 nm−1 modes in the continuum model. This is due to the finite

cell length of 16.15 nm used in the atomistic model.

The four lowest frequency modes predicted by the phonon functional method are

located at 1.45, 1.62, 1.74, and 1.89 cm−1. These modes correspond to string modes of

the capsid. Figure 35 (a) and (b) shows two different ways that the string modes can

form on the M13 capsid. The arrows show the center of mass displacement of each of the

50 alpha helix building blocks in the unit cell. The two modes have have either cos (kz)

or sin (kz) dependence with their displacements along the x̂ axis the capsid. The two

remaining string modes have perpendicular displacement patterns along the ŷ axis. If

the capsid was isotropic (as it is treated in the continuum elastic theory) then these four

frequencies would be degenerate. Continuum elastic theory predicts that these string modes

will have a frequency of roughly 1.87 cm−1, very close to the highest frequency predicted in

the atomistic model. It is interesting to note that a quick estimate of the transverse speed



153

FIG. 35. Displacement patterns for the string and torsional modes of the M13 bacterio-
phage capsid predicted with the phonon functional method. These modes have approximate
cos (kz) or sin (kz) dependence and can be compared with continuum model predictions at
k = 0.38nm−1. The arrows represent the center of mass motion of a single alpha helix
building unit and are not relative. (a) String mode at 1.45 cm−1 with cos (kcz) dependence.
(b) String mode at 1.74 cm−1 with sin (kcz) dependence. (c) Torsional mode at 2.67 cm−1

with cos (kcz) dependence. (d) Torsional mode at 2.72 cm−1 with sin (kcz) dependence.
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of sound using ω = ck results in speeds of sound for the atomistic calculation that vary from

702.5 to 915.7 m/s. The value of 915.7 m/s is very close to the speed of sound that used in

the continuum model based on lysozyme experiments (915 m/s). However, it is clear that

possible problems may arise if a single value for the speeds of sound are used to model the

mechanical modes of virus capsids using continuum elastic theory.

The next set of modes that can be compared with continuum elastic theory are

located at 2.67 cm−1 and 2.72 cm−1. These modes are torsional modes that can be pictured

as a twisting of the ends of the capsid tube in opposite directions. The two modes are shown

in Figure 35 (c) and (d) and have either cos (kz) or sin (kz) dependence. Once again there

is a small splitting in the frequencies that is due to the non-uniform structure of the capsid.

In continuum theory, the predicted frequency for these modes is approximately 2.60 cm−1,

very close to the atomistic model prediction.

So far only modes in continuum theory with k 6= 0 have been compared with the

phonon functional method. The three lowest modes predicted by continuum elastic theory

for k = 0 (shown in Figure 33) can also be directly compared with the phonon functional

predictions. Figure 36 (a) shows the displacement pattern for the M13 breathing mode

calculated with the phonon functional method. The mode has a frequency of 5.22 cm−1,

slightly different from the continuum elastic theory frequency of 3.29 cm−1. Figure 36 (b)

illustrates the compression mode of the M13 capsid calculated with the phonon functional

method. A second mode can also be obtained by rotating the displacement pattern about

the ẑ axis by 45 degrees. The frequency of the two modes are 3.25 cm−1 and 3.28 cm−1.

Continuum elastic theory predicts a frequency of 1.22 cm−1 for both. Finally, Figure 36 (c)

shows an axial mode. A second axial mode can be obtained by rotating the displacement

pattern about the ẑ axis by 90 degrees. The predicted frequencies for these modes are 3.97
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FIG. 36. Displacement patterns for radial and axial modes of the M13 bacteriophage capsid
predicted with the phonon functional method. These modes have no cos (kz) or sin (kz)
dependence and can be compared with continuum model predictions at k = 0. The arrows
represent the center of mass motion of a single alpha helix building unit and are not relative.
(a) Breathing mode at 5.22 cm−1. (b) A compressional mode at 3.25 cm−1. (c) An axial
mode at 3.97 cm−1.

cm−1 and 3.98 cm−1, compared with the continuum models 1.85 cm−1 for both.

Finally, the relative Raman spectra of the M13 capsid in solution is calculated using

the atomistic bond polarizability model (Chapter 5 Section III). A detector angle of Θ = 90◦

was used in the Raman intensity formula. A broadening of 0.75 cm−1 was applied to the final

intensity predictions. The relative Raman intensity predicted from the atomistic calculation

is shown in Figure 37 and was calculated using bond polarizability parameters from Snoke

and Cardona as well as parameters from Guha et al. (see page 91 for parameters). The

atomistic calculation finds a single peak near 5.5 cm−1 which is very similar to experimental
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FIG. 37. Relative Raman spectra predictions for the M13 bacteriophage capsid in solution
using an atomistic model. The black line corresponds to the Raman spectra for M13 cal-
culated using bond polarizability parameters from Snoke and Cardona [20] while the red
line was calculated using parameters from Guha et al. [21]. A broadening of 0.75 cm−1 was
applied to the intensity predictions. A detector angle of Θ = 90◦ was used in the Raman
intensity formula.

measurements [84, 85]. In addition, the Raman profile calculated using parameters from

Snoke and Cardona is very similar to the profile calculated with parameters from Guha et

al. In the atomistic calculation, the modes that contribute the strongest Raman intensity

have radial-torsional dependence. This is in contrast to the arguments made above that

suggest that Raman intensities from radial modes are diminished due to dampening by

water. Reducing radial mode intensities to zero in the continuum calculation of the Raman

intensity may not be justified.
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Overall, the first few lowest mode patterns and frequencies predicted for the M13

phage by the continuum model compare rather well to those of the fully atomistic phonon

functional method. The Raman spectra predictions however highlight important differences

between the two methods.



CHAPTER 7

MECHANICAL MODES OF LARGE MOLECULES

I. INTRODUCTION

Many proteins in biological systems exhibit functional motion where the flexible

regions of the protein perform certain enzymatic or binding activity. Essentially these

flexible areas of the protein can give rise to large scale conformational changes that allow

for its function. Understanding the conformational changes involved can provide important

insights into how enzymes work from a mechanical perspective. There is evidence that most

of the conformational change can be described by a few of the molecules low frequency

vibrational modes [2]. Thus, from a theoretical standpoint, a normal mode analysis (NMA)

can provide important clues about the functional motions involved in the enzymatic or

binding processes of proteins.

There are numerous examples of problems in biology that have been addressed using

NMA. Valadie et al. have used NMA to explore the large conformational changes involved

in the opening of the transmembrane pore MscL in E. coli [86]. This protein pore opens and

closes in response to changes in tension of the cell membrane (turgor pressure). It has been

suggested that this mechanism provides the cell an “emergency valve” that prevents the cell

wall from rupturing as the result of high osmotic pressure [87]. Another example pertains

to the study of conformational changes in citrate synthase, an enzyme necessary for the

citric acid cycle and the production of adenosine triphosphate. Marques and Sanejouand

[3] used NMA to determine a first approximation of the conformational changes between

the open and closed structures of citrate synthase.

In both of these examples, the NMA was performed using a phenomenological energy

model, the Tirion potential [4]. In addition, a coarse graining procedure was also used to

decrease the size of the dynamical matrix. The coarse graining procedure amounts to using a
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subset of the full 3N Cartesian degrees of freedom (i.e. a reduced basis set) to construct the

displacement patterns. Often the coarse graining can be significant. For example, a common

coarse graining procedure for large proteins considers only the motions of Cα carbons [5].

While these studies have provided constructive information about the functional motions

of these large systems, a fully atomistic NMA will likely provide a more complete picture

of the functional motions of proteins.

In this chapter, the phonon functional method is used to perform a low frequency

NMA on a class of molecules and molecular complexes that are used in the transport of

substrates across cellular membranes. This class of molecules are called adenosine triphos-

phate binding cassette (ABC) transporters. At the present time, little is known about

the functional motions that are involved in the transport of diverse substrates across the

cellular membrane by these complex biological machines. In fact, only very recently have

the atomic structures of a few complete ABC transporters been found with X-ray crys-

tallography [88, 89, 90, 91]. With the atomic structures of several ABC transporters now

determined, a NMA may provide helpful clues as to how the transport process occurs.

The next section begins with a NMA of four periplasmic binding proteins. These

proteins bind to substrates in the periplasm of gram-negative bacteria and deliver them to

the ABC transporter for importation into the cytoplasm of the cell. A NMA of these proteins

will show similar functional motions that are believed to be responsible for substrate binding.

The following section examines a NMA of a complete ABC transporter, the molybdate ABC

transporter of the thermophilic bacteria A. fulgidus. It is hoped that a NMA will provide

the first theoretical insights into how a translocation pathway opens in the ABC structure

to allow for the transport of nutrients into a cell.
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II. PERIPLASMIC BINDING PROTEINS

Periplasmic binding proteins (PBP) are a class of proteins that are located between

the inner and outer membranes of gram-negative bacteria. They sense nutrients vital to

the cell and bind to them. Once the nutrient (substrate) is bound, the PBP delivers the

substrate to an ABC transporter located in the inner membrane. Although the different

substrates that PBP can bind to is diverse, their structure is remarkably similar. They

consist of two lobes and a handle which forms a connection between the two lobes. The

dynamic motions of the two lobes that allow for the substrate to bind are often referred to

as the “Venus flytrap” mechanism [92, 93].

The ability of PBP to sense molecules and bind to them has led some to propose us-

ing them for biosensing applications [22]. Since PBP undergo large conformational changes

when they are bound to their substrate, strategically placed fluorescent compounds on the

PBP can allow for the detection of chemical compounds by observing changes in the fluores-

cence spectroscopy. Theoretically, this would allow for chemical compounds to be detected

at extraordinarily small concentration levels. Techniques such as Raman spectroscopy may

also be a viable candidate for the detection process. As the substrate binds, the low fre-

quency modes of the PBP will shift to some degree, possibly allowing Raman scattering

experiments to distinguish between bound and unbound PBP. Thus, a detailed understand-

ing of the conformational and frequency changes that PBP undergo when bound to their

substrate is an important first step in developing novel biosensing tools.

Before a complete ABC transporter is considered, the phonon functional method

will first be used to find the low frequency mechanical modes of four periplasmic binding

proteins without their corresponding substrate. The four PBP that will be examined are the

E. coli vitamin B12 binding protein BtuF, the T. pallidum Zn2+ binding protein TroA, the
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FIG. 38. The structures of the four periplasmic binding proteins BtuF, TroA, PsaA, and
FhuD. Each protein is drawn as a backbone trace with yellow representing beta sheet
structures, red representing alpha helix structures, and white random coil. (a) Structure of
the periplasmic vitamin B12 binding protein BtuF. (b) Structure of the periplasmic Zn2+

binding protein TroA. (c) Structure of the periplasmic Mn2+ binding protein PsaA. (d)
Structure of the periplasmic ferrichrome binding protein FhuD.

S. pneumoniae Mn2+ binding protein PsaA, and the E. coli ferrichrome binding protein

FhuD. Figure 38 (a) - (d) depict all four PBP as a backbone trace and the similarity

of their structures can be readily seen. In past work, only the dynamics of the Venus

flytrap mechanism of these proteins were studied with molecular dynamics and/or the elastic

network model (ENM) [92]. Here, the frequencies will also be estimated as well.

Coordinates for the BtuF vitamin B12 binding protein were obtained from the pro-

tein data bank from the larger ABC transporter structure (PDB code 2QI9). The coordi-

nates for the remaining three PBP TroA, PsaA, and FhuD, were also obtained from the
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protein data bank (PDB codes 1K0F, 1PSZ, and 1EFD respectively). All structures were

determined from X-ray crystallography experiments [88, 94, 95, 96].

All four PBP were energetically minimized without their substrates using the AM-

BER 94 [9] force field. The interactions with solvent were modeled with the generalized

Born implicit solvent model [13, 14, 37]. A 10 Å cutoff was used for all electrostatic inter-

actions. Minimization was stopped when the root mean square (RMS) force was less than

10−4 eV/Å. At this RMS force value, only one negative eigenvalue (ω2 < 0) was found on

each of the PsaA and FhuD proteins. An examination of these negative eigenvalues showed

that they were highly localized on structures that were physically irrelevant to the Venus

flytrap mechanism. For example, the negative eigenvalue on the PsaA protein was located

on the floppy random coil loop that extends in front of the protein (see Figure 38 c). No

negative eigenvalues were found on the BtuF and TroA periplasmic binding proteins. The

final RMS deviation of the optimized coordinates from the original X-ray structure were

1.78, 1.23, 0.98, and 1.53 Å for BtuF, TroA, PsaA, and FhuD respectively.

Using the optimized coordinates, the phonon energy functional [Eq. (4.21)] was

minimized for 100 vectors using the conjugate gradient scheme described in Chapter 4

Section V for each PBP. Approximately 4000 conjugate gradient steps were applied to the

phonon energy functional in each case. The five lowest frequencies for each PBP are listed

in Table IX. The participation numbers Wλ, correspond to the average number of atoms

that participate in the mode λ. A global mode will have most atoms in the molecule

participating. A mode where all atoms participate in the motion (such as a translation)

will have the maximum possible participation number which is equal to the total number

of atoms in the molecule. For a detailed discussion of how Wλ is calculated, see Equations

(6.1) and (6.2) on page 120.
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TABLE IX. The five lowest frequency modes and their corresponding participation number
W for the four periplasmic binding proteins BtuF, TroA, PsaA, and FhuD. The number N
corresponds to the total number of atoms in each protein, i.e. the maximum participation
number. The frequencies are given in cm−1.

PBP ω1 ω2 ω3 ω4 ω5

(N) (W1) (W2) (W3) (W4) (W5)

BtuF 2.71 2.99 3.74 5.33 6.06
(3835) (2748) (2384) (2381) (1205) (218)
TroA 3.43 3.79 4.26 5.28 5.61
(4274) (2279) (2437) (2561) (322) (1815)
PsaA 3.27 4.35 4.97 5.13 6.05
(4541) (2745) (2545) (297) (2777) (1823)
FhuD 3.58 3.98 4.80 5.65 5.76
(4004) (2516) (2218) (2189) (1682) (1466)

Kandt et al. have provided both molecular dynamics simulations and normal mode

analysis (NMA) using the ENM for the BtuF periplasmic binding protein [92]. Their NMA

results find that the dynamics of the two lobes can be described by the two low frequency

modes. Interestingly, the ENM predicted the same two low frequency modes in the other

three PBP with nearly identical displacement patterns. One mode consisted of a shearing

of the lobes while the other consisted of the Venus flytrap mechanism. The reader should

refer to Ref. [92] for diagrams of the two modes.

In order to make a direct comparison of the ENM predictions with those of the

phonon functional method, the two mode types predicted by the ENM are identified (as

best as possible) in the phonon functional results. Figure 39 (a) - (d) shows the two identified

modes for BtuF. Figures 39 (a) and (b) show the lowest frequency mode of BtuF located

at 2.71 cm−1. Figure 39 (a) shows the displacements of the backbone atoms of the protein.

Long arrows represent large relative displacements of the atom from its equilibrium position

while small arrows represent small relative displacements. Figure 39 (b) gives a general idea
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FIG. 39. Two low frequency “cross-shearing” modes of the periplasmic binding protein
BtuF found with the phonon functional method as viewed from the front of the protein.
(a) Backbone displacements of the low frequency mode at 2.71 cm−1. Large (small) arrows
represent a large (small) relative displacement of the backbone atom. (b) Illustration of
the lobe displacements for the 2.71 cm−1 mode as viewed from the top of the protein. The
arrows only indicate the direction that each lobe moves and are not relative. (c) Similar to
(a) but for the mode at 2.99 cm−1. (d) Similar to (b) but for the mode at 2.99 cm−1.
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of the movement of the two lobes (represented by arrows). Figures 39 (c) and (d) are similar

to (a) and (b), but for the second lowest frequency mode at 2.99 cm−1.

The phonon functional results for the periplasmic binding proteins TroA, PsaA, and

FhuD are given in Figures 40, 41, and 42 respectively. The TroA PBP has the distinctive

shearing [Fig. 40 (a) and (b)] and Venus flytrap mode [Fig. 40 (c) and (d)] that were

found with the ENM. Likewise, the PsaA PBP also exhibits these same two mode patterns.

It is very interesting to note that the BtuF and FhuD PBP have “cross-shearing modes”

which are different from the shearing-flytrap modes of the TroA and PsaA PBP. This could

simply be an artifact of the harmonic approximation or the generalized Born model used

for the potential energy. However another possible explanation may have to do with the

size of the substrate that the PBP must bind. Both the BtuF and FhuD proteins with

cross-shearing modes bind rather large molecules (vitamin B12 for BtuF and ferrichrome

for FhuD) while both TroA and PsaA with shearing-flytrap modes bind small metal ions.

The difference in BtuF and FhuD modes may reflect a need for the binding pocket to open

up wide enough to allow these larger molecules to bind. A concerted motion of the two

cross-shearing modes may open the binding pocket wider. The molecular dynamics results

[92] offered little insight into this question but seemed to show an opening and closing of the

lobes that more closely resembled the Venus flytrap mode. The phonon functional results

suggest that this is the result of two modes simultaneously opening.

Overall, the low frequency modes predicted by the fully atomistic phonon functional

method compare quite well with those from the phenomenological ENM. However, the NMA

with the phonon functional method shows some discrepancies with the ENM calculations

regarding the exact opening and closing motions of the two lobes. These discrepancies il-

luminate the importance of reliable predictions for the opening and closing motions since
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FIG. 40. Two low frequency modes of the periplasmic binding protein TroA found with
the phonon functional method. All views are from the top of the protein. (a) Backbone
displacements of the low frequency shearing mode at 3.43 cm−1. Large (small) arrows
represent a large (small) relative displacement of the backbone atom. (b) Illustration of the
lobe displacements for the 3.43 cm−1 shearing mode. The arrows only indicate the direction
that each lobe moves and are not relative. (c) Similar to (a) but for the Venus flytrap mode
at 3.79 cm−1. (d) Similar to (b) but for the Venus flytrap mode at 3.79 cm−1.
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FIG. 41. Two low frequency modes of the periplasmic binding protein PsaA found with
the phonon functional method. All views are from the top of the protein. (a) Backbone
displacements of the low frequency shearing mode at 4.35 cm−1. Large (small) arrows
represent a large (small) relative displacement of the backbone atom. (b) Illustration of the
lobe displacements for the 4.35 cm−1 shearing mode. The arrows only indicate the direction
that each lobe moves and are not relative. (c) Similar to (a) but for the Venus flytrap mode
at 5.13 cm−1. (d) Similar to (b) but for the Venus flytrap mode at 5.13 cm−1.
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FIG. 42. Two low frequency “cross-shearing” modes of the periplasmic binding protein
FhuD found with the phonon functional method. (a) Backbone displacements of the low
frequency mode at 3.58 cm−1 as viewed from the front of the protein. Large (small) arrows
represent a large (small) relative displacement of the backbone atom. (b) Illustration of
the lobe displacements for the 3.58 cm−1 mode as viewed from the top of the protein. The
arrows only indicate the direction that the lobe moves and are not relative. (c) Similar to
(a) but for the mode at 3.98 cm−1. (d) Similar to (b) but for the mode at 3.98 cm−1.
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these motions will ultimately determine the placement of fluorescent chemicals on the lobes

for biosensing applications. With further NMA studies of the PBP bound with their sub-

strates, the feasibility of using other techniques, such as Raman spectroscopy, to detect

bound and unbound PBP can also be examined.

III. MOLYBDATE ABC TRANSPORTER

In the previous section, the low frequency vibrational modes of four periplasmic bind-

ing proteins (PBP) were studied using the phonon functional method. The PBP are a single

part of a much larger complex which includes the adenosine triphosphate binding cassette

(ABC) transporter. This molecular complex is involved in the transport of substrates (e.g.

nutrients) across the cellular membrane. There are two main types of ABC transporters,

importers and exporters. The PBP discussed in Section II are specific to gram-negative

bacteria ABC importers. The PBP binds to nutrients present in the periplasm and delivers

them to an appropriate ABC transporter complex, which embedded in the inner cellular

membrane, then transports the nutrient into the inner cytoplasm by hydrolyzing adenosine

triphosphate (ATP).

The ABC transporter consists of two transmembrane domains (TMD) and two nu-

cleotide binding domains (NBD). The TMD is composed of 10 or more transmembrane

helices which form a translocation pathway (pore) in the inner cellular membrane that al-

lows substrates to pass through. Most ABC importers have a gating region that effectively

blocks access to the translocation pathway until the substrate is ready to be imported into

the cytoplasm. The NBD is present in the cytoplasm and is responsible for the binding

and hydrolysis of ATP that provides the “power stroke” necessary for the transport of the

substrate. A diagram of the E. coli vitamin B12 transporter with the three domains is

shown in Figure 43. The lines in the drawing indicate the approximate edges of the lipid
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FIG. 43. Diagram of the E. coli vitamin B12 ABC transporter. The approximate location
of the lipid bilayer slab is indicated by the two solid lines. The TMD consists of 10 or more
alpha helices that penetrate the lipid bilayer to form a translocation pathway. The access to
the translocation pathway is typically blocked on either the periplasm of cytoplasm side of
the lipid bilayer by a gating region. Binding and/or hydrolysis of ATP by the NBD initiates
the opening of the gating region allowing the PBP to release its substrate cargo.
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bilayer slab. The two proteins that make up the TMD and NBD are colored differently

for clarity. Exactly how the ATP powers the transport of substrates remains an area of

research and controversy. Some have suggested [97, 98] that the hydrolysis of ATP provides

the principal energy to import/export substrates while others [99, 100] have suggested that

ATP binding alone facilitates the transport process. In summary, the ABC transporter

allows for the selective transport of substrates through a translocation pathway formed in

the inner cellular membrane by the two TMD by either binding and/or hydrolysis of ATP.

A wide variety of ABC transporters have been identified in nearly all organisms

and understanding their mechanics can help in drug design. For example, a class of ABC

exporters have been shown to have a role in the multi-drug resistance of cancer cells [101,

102]. In chemotherapy treatment of cancer, drugs are used to produce toxic conditions in

cancer cells. One way that cancer cells can adapt is by over expressing ABC exporters that

are capable of removing a variety of chemicals that are toxic to the cell [102]. Understanding

how ABC exporters function chemically and mechanically can help identify methods that

may make chemotherapy treatments more effective.

Another example of the clinical relevance of ABC transporters is cystic fibrosis.

In cystic fibrosis, mutations in the cystic fibrosis transmembrane conductance regulator

(CFTR) gene [103] results in an unstable transmembrane protein that typically degrades

before reaching the cellular membrane [24]. The transmembrane protein made by the CFTR

gene regulates the flow of chloride ions into and out of the apical membrane in epithelial

cells, effecting fluid and electrolyte secretions in the intestine, pancreas, and sweat glands.

The CFTR protein represents an example of an ion channel that is regulated by ATP

hydrolysis [23], and is classified as an ABC transporter.
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Many important questions about ABC transporters center around the transport

process. What does the translocation pathway look like? What conformational changes are

required to import (or export) substrates across the cell membrane? How do the various

domains interact with each other during the transport process? The experimental front

is pursuing some of these questions by crystallizing various ABC transporters at different

stages of the transport process. This process has led to some clues about the conformational

changes involved in the transport process which have been described by Locher et al. for

the E. coli ABC vitamin B12 importer [88, 89]. However, the experimental evidence as

yet to elucidate the specific coupling interactions between the three domains or detailed

descriptions of the conformational changes that occur during transport.

Theoretical modeling of the ABC transport process has been somewhat limited and

have involved, at most, the NBD and TMD [104, 105]. A lack of theoretical studies is

likely due to the fact that most of the atomic structures of ABC transporters have only just

recently been determined. Based on experimental evidence, the ABC transport process is

believed to involve large conformational changes of the NBD and TMD domains. In addi-

tion, these domains are believed to “communicate” with each other through conformational

changes that result from binding. For example, Davidson et al. have shown that the binding

of the PBP to the TMD increases ATP-ase activity [98], suggesting a signaling mechanism

between PBP, TMD and NBD domains.

In the past, large conformational changes of molecules and molecular structures

have been successfully determined by normal mode analysis (NMA) and tend to compare

well with experimental studies [2]. The phonon functional method presents an opportunity

to model the low frequency mechanical modes of a complete ABC transporter complex

consisting of TMD, NBD, and PBP domains with atomic detail. This is an advantage for
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the study of the transport process in ABC transporters since the individual motions of the

atoms involved in the gating region are likely to be critical in determining how the gating

region opens.

The ABC transporter chosen for a NMA with the phonon functional method is the

molybdate ABC importer from the thermophilic bacteria A. fulgidus. The structure of

the ABC complex was determined by X-ray crystallography [91] in March of 2007 and is

believed to represent a nucleotide free state before translocation of the substrate (in this

case molybdate) has occurred. A diagram of the molybdate ABC transporter is shown in

Figure 44. The full structure consisting of all three domains is illustrated in Figure 44 (a).

The two proteins that make up each NBD and TMD dimer are colored differently for clarity.

The lines indicate the approximate location of the lipid bilayer. The C-terminal “hinge” of

the NBD are also labeled. Figure 44 (b) shows the TMD looking down from the periplasm

side of the transporter. The two Phe 200 residues (one from each of the transmembrane

proteins) are drawn in van der Waals representation. The two phenyl rings are within their

van der Waals distance and act as gate, shielding the periplasmic side of the membrane

from access to the translocation pathway. Figure 44 (c) illustrates the ATP binding pocket

in detail. Half of the ATP binding pocket is formed from the Walker loop (colored red)

and the other half is formed from the LSGGQ motif (colored blue). Each half of the two

binding pockets come from one of the proteins that makes up the NBD dimer.

Coordinates for the molybdate ABC transformer were obtained from the protein

data bank (PDB code 2ONK). The X-ray structure contained two TMD, two NBD, and

one PBP with bound tungstate. Tungstate was used instead of molybdate in the crys-

tallization [91] and was removed to simplify the analysis. This should not appreciably

affect the normal modes or the frequencies. The final ABC transporter complex without
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FIG. 44. Structure of the A. fulgidus molybdate ABC transporter. (a) The full ABC
transporter complex consisting of PBP, TMD, and NBD. Each protein is colored differently
for clarity. The approximate location of the lipid bilayer is indicated by the two solid lines.
The residues involved in the gating region and ATP molecules are drawn in van der Waals
representation. The C labels on the NBD indicate the C-terminal ends of the two proteins.
(b) View of the TMD looking down from periplasmic side of the membrane. The two phenyl
rings, Phe 200, involved in the gating region are drawn in van der Waals representation. (c)
Detailed structure of a single ATP binding pocket. The binding pocket is formed from the
Walker loop (colored red) of one the NBD proteins and the LSGGQ motif (colored blue) of
the other NBD protein.
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TABLE X. The ten lowest frequency modes and their corresponding participation num-
ber W for the A. fulgidus molybdate ABC transporter. Full participation is 20667. The
frequencies are given in cm−1.

ω W ω W

0.73 15008 2.07 14286
0.94 14371 2.29 13749
1.15 15724 2.39 14062
1.77 14391 2.62 11676
1.86 9954 3.07 12314

the tungstate consisted of the two TMD and two NBD along with the PBP for a total of

20667 atoms. The complex was then energetically minimized using the AMBER 94 force

field [9]. Interactions of the transporter complex with water were taken into account using

the generalized Born implicit solvent model [13, 14, 37]. Since the generalized Born model

uses a dielectric screening methodology, a 10 Å cutoff was used for both van der Waals

and coulomb interactions. The minimization procedure was stopped once the root mean

square (RMS) force was less than 10−4 eV/Å. Since the RMS force was not exactly zero

to machine precision, negative eigenvalues of the dynamical matrix can occur. However,

none were found from the resulting NMA with the optimized coordinates. The final RMS

deviation of the optimized structure from the original X-ray structure was 1.75 Å.

Using the optimized coordinates, the lowest 100 phonon states of the ABC trans-

porter were found by minimizing the phonon energy functional [Eq. (4.21)] using the con-

jugate gradient scheme described in Chapter 4 Section V. Table X lists the ten lowest

frequency modes and corresponding participation numbers for the ABC transporter. A

mode with full participation, such as a translation, will have a participation value of 20667.

The first three lowest modes describe a rotation (about different axes) of the NBD

with respect to both the TMD and the PBP. This indicates a strong coupling of the three
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FIG. 45. Low frequency NBD rotational mode of the A. fulgidus molybdate ABC trans-
porter. The frequency of the mode is 1.15 cm−1. (a) Backbone displacements of the low
frequency mode. Large (small) arrows represent a large (small) relative displacement of the
backbone atom. (b) Illustrations of the displacements of the NBD, TMD, and PBP do-
mains. Atoms above the line are rotating clockwise while those below the line are rotating
counterclockwise.
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domains. Figure 45 illustrates one of these rotational modes, the third lowest, at 1.15

cm−1. Figure 45 (a) shows the relative displacements of the protein backbone atoms while

(b) illustrates the basic motion with arrows.

Chen et al. [97] have shown in a recent experiment that the dynamic motion of

the NBD involves a tweezers like motion with the NBD pivoting about the C-terminal

ends of the peptides. This motion is believed to be related to the transport process since

it closes the LSGGQ motif onto the Walker loop which begins the catalytic hydrolysis of

ATP. Theoretically, the NBD couples this motion to the TMD to open the translocation

pathway. Thus, the low frequency modes from the NMA which have the NBD moving in

this fashion should hopefully describe the conformational changes of the ABC transporter

that are involved in the translocation processes.

Out of the 100 low frequency phonon states found, the phonon functional method

found two low frequency modes of the ABC transporter (at 1.77 cm−1 and 2.62 cm−1) that

have the NBD expanding apart in the tweezers like motion. Examination of the two modes

revealed highly concerted motions of all three domains. Figure 46 shows a diagram of the

displacement pattern for the 1.77 cm−1 mode. The NBD couples its motion to the TMD

via the two alpha helix “handle bars” (colored red in the TMD region in Figure 46). As a

result, the PBP is forced directly into the TMD. However, the displacements that resulted

from this mode failed to move the two phenyl rings apart, leaving the pore closed.

The last tweezers like mode at 2.62 cm−1 can be described as a rotation of the

TMD/PBP interface about the vertical axis. This motion couples to the PBP to produce

a rotation of the left lobe (shown in purple) about an axis slightly out of plane. Similarly

the right lobe of the PBP (colored red) rotates about the same axis but in the opposite

direction. This motion is similar, but not identical, to the shearing modes which were



178

FIG. 46. The first low frequency mode of the A. fulgidus molybdate ABC transporter that
exhibits a tweezers like motion in the NBD. The frequency of the mode is 1.77 cm−1. (a)
Backbone displacements of the low frequency mode. Large (small) arrows represent a large
(small) relative displacement of the backbone atom. (b) Illustrations of the displacements
of the NBD, TMD, and PBP domains. The PBP is colored purple while the TMD/PBP
interface is colored green. The “handle bar” region of the TMD is colored red. Arrows
indicate the general motion of each domain and are not relative.
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FIG. 47. The second low frequency mode of the A. fulgidus molybdate ABC transporter
that exhibits a tweezers like motion in the NBD. The frequency of the mode is 2.62 cm−1. (a)
Backbone displacements of the low frequency mode. Large (small) arrows represent a large
(small) relative displacement of the backbone atom. (b) Illustrations of the displacements
of the NBD, TMD, and PBP domains. The two lobes of the PBP are colored red and
purple and the TMD/PBP interface is colored green. The “handle bar” region of the TMD
is colored red. The arrows indicate the general motion of each colored region and are not
relative. Based on the relative displacements from (a) the C-terminal region of the NBD is
predicted to be rigid.
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FIG. 48. Opening of the gating region of the A. fulgidus molybdate ABC transporter via
displacements of the 2.62 cm−1 low frequency mode. The two TMD proteins are colored blue
and yellow. The gating region is colored red. The two Phe 200 residues in the gating region
are drawn in van der Waals representation. (a) The ABC transporter in its equilibrium
position with gating region closed. (b) The ABC transporter after atoms in the structure are
displaced along the 2.62 cm−1 mode. The displacement amplitude was chosen to illustrate
the opening clearly.

described in Section II for the TroA and PsaA PBP. An illustration of the shearing motion

can be found in Figure 40 (c) and (d). Figure 47 diagrams the 2.62 cm−1 mode in detail.

Examination of the 2.62 cm−1 found a clear opening of the gating region that results

from a displacement of the atoms in the ABC structure along the 2.62 cm−1 mode pattern.

Figure 48 illustrates the opening of the gating region as viewed looking down onto the top

of the TMD. Only the TMD proteins are drawn in the figure for clarity. Figure 48 (a) shows

the TMD in its equilibrium position. Figure 48 (b) was constructed by moving the atoms

in the ABC structure along the displacement vector corresponding to the 2.62 cm−1 mode.

The amplitude used to construct Figure 48 (b) was chosen so as to clearly illustrate the

opening of the gating region.

Based on the two (1.77 cm−1 and 2.62 cm−1) tweezers like modes found with the

phonon functional method, a transport process can be hypothesized. The tweezers like

motion of the 2.62 cm−1 shows that the two Phe 200 residues are pushed apart as the
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NBD opens. This suggests that ATP hydrolysis provides the energy input and its energy

is directed to the tweezers like motion through the dissociation of ADP. Smith et al. [106]

have suggested just this type of reaction process. They suggest that after ATP hydrolysis,

the phosphate group may remain bound to the LSGGQ half of the ATP binding pocket

while the ADP molecule is bound the other half, the Walker loop. After hydrolysis, the

electrostatic repulsion of the negatively charged phosphate and ADP molecules would then

force the NBD apart in the tweezers like motion. Interestingly, this reaction hypothesis may

explain why the ATP binding pocket is formed from two NBD with the Walker loop coming

from one NBD while the LSGGQ motif coming from the other NBD. This formation of the

binding pocket allows the NBD to function as a hinge that is driven apart by electrostatic

repulsion of the hydrolysis products.

Although the low frequency 1.77 cm−1 tweezers like motion was unable to open the

gating region, it may still be important for the transport process. Experimental data from

Davidson et al. [98] suggested that the binding of PBP to the TMD is important for the

NBD to begin the hydrolysis cycle. In this light, the 1.77 cm−1 tweezers like motion may

serve a purpose in the transport cycle after all. Binding of the PBP to the TMD is likely

to push and pull on the TMD. These motions are similar to the 1.77 cm−1 tweezers like

motion. Thus, the binding of the PBP to the TMD may transmit a signal to the NBD via

the 1.77 cm−1 mode. Stimulation of this mode will cause the NBD to rock back and forth,

eventually closing the NBD. Once the NBD is closed, the hydrolysis of ATP takes place and

forces the NBD apart again, this time stimulating the 2.66 cm−1 mode. A detailed cartoon

of the transport process is illustrated in Figure 49.

In conclusion, the results of the NMA of the complete molybdate ABC transporter of

A. fulgidus with the phonon functional method has successfully revealed two low frequency
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FIG. 49. Hypothetical model of the A. fulgidus molybdate ABC transporter reaction cycle.
The model is based on a pair of low frequency modes found with the phonon functional
method. The molybdate, ATP, ADP, and phosphate molecules along with the two Phe 200
residues involved in the gating region are shown in van der Waals representation. A cartoon
describing the ATP hydrolysis cycle is also shown. (a) The PBP binding to the TMD while
two ATP molecules bind to the two NBD proteins. (b) The PBP pushes and pulls vertically
on the TMD during docking. This stimulates the 1.77 cm−1 mode and encourages closing
of the NBD. (c) One or both of the ATP molecules are hydrolyzed releasing energy. The
phosphate and ADP molecules repel forcing the NBD apart in the tweezers like motion.
This motion couples to the TMD and PBP via the 2.62 cm−1 mode to open the gating
region. (d) The molybdate molecule has passed through the translocation pathway and the
TMD returns to equilibrium closing the gating region.
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FIG. 49 (continued).
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modes that may be responsible for the conformational changes of the TMD required for the

transport of substrate into the cytoplasm. The resulting reaction cycle hypothesis based

on the two low frequency modes, illustrated in Figure 49, fits well with other experimental

evidence [97, 98]. Further normal mode analysis with other crystallized ABC transporters

as well as other theoretical modeling, such as molecular dynamics, will provide more in-

formation about the ABC transport process. The clues exposed here better define the

mechanisms at work in this enormously important protein complex.



CHAPTER 8

MISCELLANEOUS APPLICATIONS

I. INTRODUCTION

In this chapter, two theoretical studies are examined. In Section II, a classical

molecular dynamics simulation of the M13 bacteriophage capsid is studied. The purpose

of the simulation is to theoretically model and compare to a recent experiment performed

by K.-T. Tsen et al. [25] where impulsive stimulated Raman scattering (ISRS) [69] with

near infrared and visible light was used to inactivate M13 phages. The motivations and

implications of using ISRS as a means to inactivate viruses and other pathogens is discussed

followed by a presentation of the molecular dynamics simulation results.

Section III looks at generalizing the activation relaxation technique (ART) [28, 29] to

a fully atomistic energy model capable of incorporating explicit solvent. The ART method

was briefly discussed in Chapter 2 Section VI as a method for locating the many stable local

minima of a molecule or molecular structure. In past ART studies, simplified structures

such as the peptide bead structure of the OPEP energy model [107] were used to study

the protein folding problem [48, 108], or the aggregation of Aβ segments [47] believed by

some to be a key factor in Alzheimer’s disease [109]. In addition to a simplified peptide

structure, the OPEP energy model uses an implicit solvent model for the incorporation of

solvent effects.

One unanswered question in the protein folding problem is how denaturants seem

to force a peptide from existing in a single native state in water, to existing in an ensemble

of many disordered states [108]. This property of proteins was originally discovered by

Anfinsen’s Nobel prize winning work were ribonuclease was reversibly denatured/renatured

in a test tube [110]. A similar unanswered question also exists for Aβ proteins. What

physiological conditions contribute to Aβ aggregation that cause the plaques seen in brain
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biopsies of Alzheimer’s patients? The ART method presents a possible theoretical tool

to answer these questions. This is because the ART method is capable of locating other

minima in the energy landscape of a protein, outside of its native state [48], or predicting

the possible assembly pathways of aggregates [47]. However, the use of explicit solvent

models are crucial to properly study the effects that different solvents or chemicals may

have on the energy landscape of a protein or molecule.

Section III begins by first examining how the ART method can be extended to a

fully atomistic molecular structure. A test of the ART method using an atomistic molecular

structure with the AMBER empirical energy model is performed on the small peptide

alanine dipetide. Alanine dipeptide is a very well studied molecule [111, 112] and exists in

several stable structures in water solution; all with different energies. The test is performed

first for only a fully atomistic structure, i.e. the energy model used has either no water

(vacuum simulation) or an implicit solvent (generalized Born model [13]). Next, the ART

algorithm is extended to the case of explicit water. This extension of ART from the original

version of Mousseau et al. [28, 29] is called the Wet-ART method. The Wet-ART method

is then tested on the alanine dipeptide molecule with explicit water solvent surrounding

it. Finally, the potential problems of using atomistic molecular structures and/or explicit

solvent in the ART method are discussed.

II. IMPULSIVE STIMULATED RAMAN SCATTERING SIMULATION

Recently it has been suggested that viruses could be damaged or even destroyed

through an ultrasound or hyper sound excitation of their vibrational modes [8]; much like

a wine glass shatters when subjected to intense high frequency sound. Since the resonant

frequencies of a virus are dependent on its shape and composition, an ultrasound or hyper
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sound excitation of specific frequency would, theoretically, only affect the targeted virus,

leaving surrounding structures such as tissue undamaged.

The traditional treatment of infectious diseases such as viruses and bacteria has re-

lied on the use of chemicals (drugs/vaccines) to interfere with the biological processes of

the pathogen. For example, the treatment of the Human Immunodeficiency Virus (HIV)

involves the use of chemicals that target and bind to one of the virus’ nine proteins that are

made in an infected cell. As these chemicals bind to the various proteins, they prevent them

from performing their enzymatic activity, halting its reproduction cycle. The problem with

drug treatments is two fold. First, drug treatments often produce dangerous side effects in

the patient. Second, these chemicals create evolutionary pressure that results in mutations

to the proteins such that the drugs can no longer bind to them. For example, in the treat-

ment of HIV a patient typically is prescribed a combination of drugs (drug cocktail) that

block many HIV enzymes necessary for replication such as reverse transcriptase, protease,

and integrase. When the virus mutates and the drugs are no longer effective, patients must

switch to a different drug regimen that may be less effective and/or produce unwanted side

effects.

Using mechanical means to treat infectious disease has many positive aspects when

compared to traditional drug treatments, making it a tantalizing idea. Since the vibra-

tional modes of viral capsids are virus specific, the method is theoretically selective and

can be used to target only virus particles while leaving important cellular structures and

cellular biochemical processes undamaged. But more importantly, mutations of the virus

are unlikely to appreciably effect the vibrational frequencies of the capsid. Thus, unlike

drug therapies that will eventually become ineffective as the virus mutates, mechanical

destruction of the virus could persist.
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Several experiments on the subject were very recently performed by K.-T. Tsen and

colleagues [25, 26, 27] using visible and near-infrared light from a pulsed laser source (Im-

pulsive stimulated Raman scattering [69]) as a method of resonantly exciting the vibrational

modes of pathogens. The results of the experiments were encouraging showing that various

pathogens (such as the M13 bacteriophage) could in fact be destroyed using the low power

pulsed laser. However, it still remains to be seen if the inactivation of the pathogens are

a direct result from resonant excitation of their vibrational modes or if there are other

physical phenomena that are involved. Still, the possibility of virus destruction using a

mechanical means as opposed to standard drug therapies warrants further investigation in

light of recent experimental evidence.

Performing a theoretical simulation of ISRS induced vibrations may help to elucidate

the sensitive areas of the capsid that are prone to disruption and provide important insights

into capsid assembly and disassembly. The simulation performed in this section seeks to

model the laser experiment performed by K.-T. Tsen et al. by using classical molecular

dynamics (MD). The theoretical simulation represents a first attempt at examining whether

or not ISRS can break apart a viral capsid and if so, under what conditions.

In ISRS, the light scatters inelastically as it interacts with the polarizable bonds in

the molecule. In Chapter 5 Section VI, a specific formula for the ISRS force on a single

atom was derived from an empirical bond polarizability model [19, 21]. Since the frequency

of the light is much higher than any of the vibrational frequencies of the M13 bacteriophage

(ω << ωL), Equation (5.85) for the ISRS force on a single bond can be time averaged over

one period of the light (ωL) to give

FLiα(t) =
[

fdd̂α + fEÊα
] |E0|2

2
e−t

2/τ2

L . (8.1)

Equation (8.1) provides an additional time dependent force that can be incorporated into
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an MD simulation in addition to the five main MD forces (e.g. bond stretching) to describe

the coupling of light to the M13 bacteriophage capsid.

The formula for the ISRS force on a bond depends on the electric field strength E0,

the pulse width of the light τL, and the two variables fd and fE. The variables fd and fE

are dependent on the orientations of the electric field and bonds as well as the polarizability

parameters for the bond. They both can be calculated using Equation (5.86). Although

each bond will have unique polarizability parameters, each bond will be assigned the same

set of polarizability parameters chosen to reflect the “average” type of bond in the capsid,

i.e. single bonded carbon-carbon bonds. The parameters used were obtained from Snoke

and Cardona [20] and can be found on page 91.

The M13 phage consists of a protein capsid composed of many alpha helix building

blocks, each 50 amino acids in length (see Figure 31). The capsid forms a tube with an

approximate length of 800 nm. At the center of the tube lies the circular ss-DNA genome

of the virus. Although the experiment involved complete M13 phages (capsid plus DNA),

the MD simulation is performed on only the capsid in order to reduce the total number of

atoms in the MD simulation. In addition, periodic boundary conditions are also used to

treat the M13 phage as an infinite tube allowing for further reductions. The lattice vector

along the ẑ axis (tube axis) was set to 161.5 Å. The two remaining lattice vectors (along the

x̂ and ŷ axes) were set to 200 Å to avoid interactions of one infinite tube with its nearest

neighbors.

One final approximation used in the MD simulations is that an implicit solvent model

for the interactions of the capsid with water is used instead of explicit water. Although the

presence of water is likely to play an integral part in the experiment, especially in regards

to the dampening of vibrational modes, an implicit solvent will be used for simplicity.
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Explicit water typically requires temperature and pressure coupling algorithms to maintain

thermodynamic equilibrium of the system. The presence of an external force (from the light

scattering) will drive the system out of equilibrium as energy is transferred from the capsid

to the surrounding water. Care must be taken to properly account for the dynamics of the

system in a non-equilibrated state. Later studies may be designed to incorporate explicit

water into the simulation.

One periodic segment of the M13 capsid was minimized using the generalized Born

implicit solvent model [13, 14, 37] and periodic boundary conditions. Using the minimized

structure, a series of constant energy constant volume MD simulations were performed

using various values for the intensity and pulse width of the light. The MD simulations

were around 20 ps in length each, depending on the pulse width used. The microcanonical

ensemble is used in order to make estimates of how much energy is delivered to the virus

capsid from the light. In addition, one 20 ps constant temperature constant volume MD

simulation of the M13 capsid was also performed without the ISRS force [Eq. (8.1)] to make

sure the capsid is stable over a simulation time of 20 ps.

In the various MD simulations, the intensity was varied from I = 0.7 PW/cm2 (Peta

Watts per centimeter squared) to I = 2.0 PW/cm2 and the pulse width was varied from

τL = 10 fs to τL = 10 ps. It is quite obvious that the intensity of light used is enormous.

These high intensities were used because lower intensities were unable to break apart the

capsid by the end of the simulation. The implications of this will be discussed later. The

pulse width is varied to stimulate either high frequency or low frequency phonons of the

virus capsid. In Chapter 5 Section VI, a pulse width of τL ≈ T/4 was shown to stimulate

vibrational modes having frequencies near ω = 2π/T the strongest. Ranging τL from 10 fs

to 10 ps (specifically τL = 10 fs, 100 fs, 1 ps, and 10 ps) will allow the effects of stimulating
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TABLE XI. The total energy delivered to an M13 capsid from a classical impulsive stim-
ulated Raman scattering simulation. The table represents a collection of energy values for
different pulse widths (τL) and intensities of the light (I). An asterisk next to the value in
the table indicates that the capsid was damaged by the end of the simulation. The inten-
sities are given in PW/cm2, pulse widths in ps, and the energies in keV. Note the unusual
behavior that longer pulse widths deliver less energy to the virus for fixed intensity.

I = 0.7 I = 0.8 I = 0.9 I = 1.0 I = 1.5 I = 2.0

τL = 0.01 2.698 3.517 4.447 5.489 12.470* 22.152*
τL = 0.10 0.656 0.793 0.918 1.045 1.733 2.368*
τL = 1.00 0.488 0.537 0.587 0.617 0.859* 1.068*
τL = 10.0 0.344 0.406 0.429* 0.465* 0.579* 0.656*

both high and low frequency modes of the capsid to be examined.

The starting time of an MD simulation is usually set arbitrarily to t = 0. Here, the

initial time is set to t = −5 ps (t = −20 ps for τL = 10 ps) so that a single light pulse will

interact completely with the M13 capsid during the MD simulation. A time step of 1 fs was

used to integrate the equations of motion when τL = 1, 10 ps. For the other two cases of

τL = 10, 100 fs, a 0.1 fs time step was used to insure proper integration over the light pulse.

Table XI shows a compilation of the total energy delivered to the virus for various

pulse widths and intensities of light. To calculate the total energy delivered, a simple

difference between the final and initial energies (potential plus kinetic) of the capsid was

calculated from the MD simulation data. Initially the virus was at rest and had only

potential energy. One naively expects the energy delivered to the virus to increase as the

pulse width of the laser increases. Scaling estimates for the total energy delivered [Eq.

(5.94)] show an inverse relationship. Data points with an asterisk in Table XI indicate

that the capsid was damaged for the corresponding pulse width and intensity parameters.

Damage meant that the capsid showed an open hole or pore in its surface by the end of the

simulation.
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To illustrate what destruction of the M13 capsid entailed, Figure 50 shows snapshots

of the M13 capsid trajectory over one of the MD simulations. For the MD simulation shown,

the pulse width was set to τL = 1 ps and the intensity amplitude of the light was I = 1.5

PW/cm2. Similarly, snapshots of the control simulation where no ISRS force was present

is shown in Figure 51. The control experiment (Figure 51) exhibited no damage by the end

of the simulation. Thus, from a comparison of the ISRS simulation with the control, it is

clear that the capsid was broken up as a result of the additional ISRS force.

In Chapter 5 Section VI, a formula [Eq. (5.94)] was derived for the approximate

total energy that would be delivered to a viral capsid as a result of inelastic light scattering.

This formula was derived from a simple driven harmonic oscillator interpretation of the

scattering process. The total energy delivered (TED) was found to be proportional to the

intensity of light squared and inversely proportional to the pulse width of the light,

TED ∝ I2

τL
. (8.2)

Logarithmic plots of the data in Table XI are shown in Figure 52. The plots show that,

in general, the TED does indeed decrease with increasing pulse width and increase as the

intensity of light is increased. The logarithmic plots find that the TED predictions [Eq.

(5.94)] compare well to the MD data for short pulses. For longer pulse widths, the MD data

does not quite follow the I2/τL dependence predicted. One likely reason for the discrepancy

is that the longer pulse widths allow the bonds in the molecule sufficient time to change

orientation during the pulse. This will produce a time dependence on the fd and fE terms

in Equation (8.1), which were assumed constant for the TED derivation in Chapter 5,

creating a more complicated dependence on the pulse width and intensity.

Interestingly, the MD results show that the capsid breaks apart for mostly high

intensities except for the long 10 ps pulse width. For this pulse width, the MD results find
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FIG. 50. Four snapshots of the M13 bacteriophage capsid taken from a 20 ps molecular
dynamics simulation with no temperature or pressure bath. Impulsive forces from inelastic
light scattering are present during the simulation. The pulse width of the light was τL = 1
ps and the intensity amplitude of light was I = 1.5 PW/cm2. The maximum amplitude
of the intensity occurs at t = 0 ps (I(t) ∝ e−t

2/τ2

L). (a) Snapshot at time t = −5 ps. (b)
Snapshot at time t = 0 ps. (c) Snapshot at time t = 5 ps. (d) Snapshot at time t = 15 ps.
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FIG. 51. Four snapshots of the M13 bacteriophage capsid taken from a 20 ps molecular
dynamics simulation at constant temperature and constant volume. No impulsive forces
from inelastic light scattering are present during the simulation. (a) Snapshot at time t = 5
ps. (b) Snapshot at time t = 10 ps. (c) Snapshot at time t = 15 ps (d) Snapshot at time
t = 20 ps.
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FIG. 52. Various log-log plots of the total energy delivered to the M13 capsid verses pulse
width or light intensity. The total energy delivered to the capsid was calculated from
molecular dynamics simulations with an external force from light present. (a) Log-log plot
of the total energy delivered vs. pulse width. Data for light intensities of I = 1 and I = 2
PW/cm2 is shown. (b) Log-log plot of the total energy delivered vs. peak light intensity.
Data for pulse widths of τL = 0.01 ps and τL = 1.0 ps are shown.

that the capsid breaks apart at lower intensities. The driven harmonic oscillator provides a

very simple interpretation of this. In Chapter 5 Section VI, the maximum amplitude of the

single vibrational mode i after stimulation with the driving force (neglecting dampening)

was found to be

Ai ∝
IτL
ω
e−ω

2τ2

L
/4. (8.3)

A plot of the maximum amplitude for various intensities and pulse widths of light is shown

in Figure 53. The plot illustrates the idea of an “amplitude threshold”. In order to break

apart the viral capsid, it is likely that a few low frequency modes must be excited over a

potential barrier. This requires that the modes responsible for the viron destruction must

have a certain amplitude in order to overcome the barrier. Figure 53 (a) shows a general

plot of the maximum amplitude of a vibrational mode driven with the ISRS force. Figure 53

(b) illustrates the hypothetical amplitude threshold. Light having pulse width and intensity

values that are within the white area will create a mode with large enough amplitude to
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FIG. 53. Theoretical maximum amplitude of an M13 vibrational mode as the result of
impulsive light scattering. The theoretical predictions are based on a simple driven harmonic
oscillator model [Eq. (8.3)]. (a) Plot of the maximum amplitude for arbitrary intensity and
pulse width. (b) Illustration of the “amplitude threshold”. Virons scattered with light
having intensity and pulse width parameters in the white area will be destroyed.



197

overcome the potential energy barrier that holds the capsid together. This basic explanation

seems to explain the general trend of the data in Table XI.

The data from the MD simulations fits quite well to the driven harmonic oscillator

model discussed in Chapter 5 Section VI. However, it is important to note that the light

intensities used in the theoretical modeling are extraordinarily high. In the experiment,

intensities of no more than 100 GW/cm2 were sufficient to inactivate M13 phages in solution.

One may argue that, due to the simplicity of the bond polarizability model, the ISRS force

on a bond is underestimated. However if this were the main reason for the discrepancy

then the bond polarizability model would be underestimating the force by roughly a factor

of 104. Since the bond polarizability parameters α⊥ etc. are on the order of an atomic

volume, it is difficult to rationalize this explanation.

Another possibility is that the short pulse width of approximately 100 fs used in

the experiment is depositing energy into the numerous high frequency modes which then

“cascades” down into lower frequency modes via anharmonicity. Once this energy accumu-

lates into the low frequency modes, they will then have sufficient amplitude to overcome the

potential barrier that holds the capsid together. This is a plausible explanation since the

TED calculation predicts that large amounts of energy can be deposited into the capsid at

low intensities by using a shorter pulse width. Thus, it is unlikely that relatively short MD

simulations of 20 ps would be able to observe the cascading phenomenon. Nevertheless, the

large intensities required in the MD simulations raises doubts about a direct ISRS mech-

anism inactivating the viral capsid through resonant excitation of its mechanical modes.

What fits is that there is a fairly large energy deposition for small pulse widths which must

cascade down to a few low frequency modes.
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III. FULLY ATOMISTIC ART WITH EXPLICIT SOLVENT

In the ART method, the conformational space of a molecule is searched by following

a three step procedure. Starting in a local minimum, the molecule is first excited along a

random direction. Here the term random direction means any displacement of the individ-

ual atoms in the molecule that disrupts its structure and results in the molecule leaving its

current local minimum. The random direction is referred to as the “activation” direction.

As the atoms in the molecule are displaced along this direction, the molecular structure

is relaxed by allowing the atoms to move along directions that are perpendicular to the

activation direction. The purpose of the relaxation is to keep forces on the molecule rea-

sonable and aligned along the activation direction. Periodically the lowest eigenvalue and

eigenvector of the Hessian (matrix of second derivatives of the total potential energy) are

calculated. The Hessian matrix gives information on the curvature of the potential energy

function. When a negative eigenvalue is located it signals the possible location of a saddle

point in the energy landscape. Step two now begins by updating the activation direction

so that the atoms are moved along the eigenvector of the Hessian corresponding to the

negative eigenvalue. The atoms are moved along the new activation direction and relaxed

perpendicular to it (as in step 1) until the total force vanishes. Once the total force vanishes,

it signals that the molecule has converged to a metastable saddle point. Finally step three

commences by minimizing the molecule to a new local minimum. A diagram of the three

steps of the ART method is shown in Figure 4 (a), (b), and (c) respectively.

This procedure has been successfully used to study the various conformations of

glassy materials [28, 29], small peptide sequences [48] and a beta hairpin turn [49]. In the

case of the small peptide sequences, the ART method was successful at predicting folded

structures that were independent of the starting conformation. It is also important to note
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that in addition to a folded structure, the ART method was also able to locate other stable

conformations for each of the small peptides.

Being able to locate other stable structures of peptides or peptide aggregates may

be important in the study of diseases like Alzheimer’s, Creutzfeldt-Jakob Disease (CJD)

or Bovine Spongiform Encephalopathy (Mad Cow). For example, some researches have

suggested [109] that the key pathology in Alzheimer’s disease is the increased ability of

Aβ proteins to aggregate into insoluble fibers that form the senile plaques seen in the

brains of Alzheimer’s patients. At the present time it is unknown under what physiological

conditions these senile plaques are formed or if they are even a cause of neuron death, or

instead are merely a symptom of the disease. Recent evidence with mice has demonstrated

that neuron death is present in locations with and without abundant Aβ plaques [113]. Such

evidence blurs the cause of the disease requiring further investigation on both theoretical

and experimental fronts.

Mousseau and colleagues have already begun to look into these questions by per-

forming an ART simulation of a small portion of the Aβ protein that is believed to be

crucial for the formation of the insoluble fiber [47]. In this study, the energy landscape of

a set of six peptide chains, each containing a seven amino acid segment of the Aβ protein,

were examined using ART. The energy model used was a coarse grained energy model, the

optimized potential for efficient peptide-structure prediction (OPEP) [107]. One of the main

simplifications of the OPEP model is that it clumps side chain atoms into a single mass or

“bead” with electrostatic and van der Waals properties. In addition, the OPEP model uses

an implicit solvent model for treatment of any solvent interactions. Their results provided

useful information about the possible assembly methods of the insoluble fiber. However,

in order to fully explore the conditions that may effect the stability of the insoluble fiber,
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an ART method capable of using a fully atomistic structure of the peptide with explicit

solvent is necessary.

Some questions arise when considering such an extension. How easily can the ART

method be adapted to fully atomistic structure of the molecule? What changes in the

algorithm are necessary to incorporate explicit solvent? In order to answer these questions,

a fully atomistic ART method with and without explicit solvent can be tested by finding

the local minima of a small peptide, alanine dipeptide (ADP). The basic structure of ADP

can be described as the amino acid alanine with its N-terminal end attached to CO-CH3

and its C-terminal end to NH-CH3. The local minima of ADP are well studied [111, 112]

and can be easily compared with.

The most important (and problematic) part of a fully atomistic ART method is in

the selection of the activation direction. This will have a direct result on the efficiency in

exploring the energy landscape. For example, if the activation directions are selected from

the full Cartesian space of three degrees of freedom per atom, the majority of new local

minimum are likely to involve the trivial adjustments of single atoms or small groups of

atoms. As a result, the ART method will tend to find these local minima much more often

(as they are much more numerous) than the ones that result from a large structural change.

In general, the choice of activation directions will be problem specific. For peptide

chains such as ADP, a natural choice for the activation directions is the space of Ramachan-

dran angles. In the Ramachandran space, each amino acid in the peptide chain has two

degrees of freedom corresponding to the Ramachandran angles of φ and ψ. A diagram of

the two Ramachandran angles for ADP is shown in Figure 54 (a) and a rotation of the

ψ Ramachandran angle is depicted in Figure 54 (b). Since the three dimensional struc-

ture of a protein chain can be described in part by its Ramachandran angles, searching
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FIG. 54. Diagram of alanine dipeptide and its two Ramachandran angles φ and ψ. The
molecule is shown in two arbitrary configurations. (a) The alanine dipeptide molecule
shown in the configuration φ = ψ = 180◦. (b) The alanine dipeptide molecule shown in the
configuration φ = 180◦, ψ = 90◦.

the Ramachandran space should be much more efficient than using the standard Cartesian

space.

For this choice of activation directions, the energy landscape of ADP must be de-

scribed as a function of only the two Ramachandran angles, E(φ,ψ). One possible way to

obtain this energy function is to evaluate the AMBER empirical energy function V [Eq.

(2.1)] at the atomic coordinates of an ADP molecule that has Ramachandran angles of φ

and ψ,

E(φ,ψ) = V |φ,ψ . (8.4)

It is important to note that Equation (8.4) is not a single valued function. There are many

configurations of ADP that have the same Ramachandran angles yet different energies. For

example, a simple adjustment of only the side chain atoms of ADP (CH3) will most certainly

result in a different value for E(φ,ψ). A very simple fix is to only allow movement of the side

chain atoms after a new local minimum of E(φ,ψ) is located by the ART procedure. Thus,

during all ART steps, the relative positions of each atom can only be adjusted by rotations

about the Ramachandran angles. This will produce a single valued energy function E(φ,ψ).



202

This procedure should result in ART finding a structure of the ADP molecule that is close

to a local minima in the true energy landscape V . After step three of ART, a quick all

atom minimization of V will yield the true local minima.

During the ART procedure, each atom in the molecule only moves if the angles φ or

ψ are adjusted. Thus, the position of each atom can be given in terms of a rotation matrix

↔
R (φ,ψ) as

~ri =
↔
R (φ,ψ)~Ri, (8.5)

where ~Ri are the positions of the atoms when φ and ψ are both equal to zero and is a

constant. Since a derivation of the matrix
↔
R (φ,ψ) is somewhat involved but easy, it is not

described here.

Using Equation (8.5) to describe each atom’s position, the gradient of the energy

landscape necessary for the ART procedure is given by the chain rule:

∂E

∂φ
=

∑

iα

∂V

∂riα

∂riα
∂φ

,

∂E

∂ψ
=

∑

iα

∂V

∂riα

∂riα
∂ψ

. (8.6)

The term ∂V/∂riα is the derivative of the potential energy of the molecule with respect to

atom i and direction α = x, y, z. These derivatives are simply the force on each atom and

are very easily calculated. The calculation of derivative ∂riα/∂φ is also easily calculated

using Equation (8.5). A similar calculation can be done to find the second derivatives which

are required for the formation of the Hessian matrix in the ART procedure.

Now with the activation directions and energy model discussed, the ART algorithm

described above can be used to find the local minima of the fully atomistic ADP molecule.

The potential energy (V ) required for all of the calculations is calculated using the AMBER

94 force field model [9]. First, a vacuum calculation is performed where there are no inter-
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FIG. 55. Ramachandran plot of the various local minima of alanine dipeptide in vacuum
which were found by using the activation relaxation technique with an atomistic structure.
A total of five minima were found.

actions of ADP with either implicit or explicit solvent. All other electrostatic interactions,

i.e. those between each atom in ADP, were accounted for. A total of 1000 ART steps

were performed on an initially minimized ADP molecule. One ART step corresponds to the

three ART procedural steps listed above plus the last minimization of V required to locate

a true local minimum. Therefore, each ART step should result in one of the local minima of

ADP being found. The minimization procedures in the ART algorithm were stopped once

the root mean square (RMS) force was less than 10−3 eV/Å. A total of five unique confor-

mations of ADP were found in the vacuum calculation. Figure 55 shows a Ramachandran

plot of the five conforms along with their respective Ramachandran angles. Three of the

conforms found in other studies [111] (C7eq, C7ax, and C5) are labeled in the plot. The
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TABLE XII. The five conforms and energies of alanine dipeptide in vacuum. The vacuum
calculation means that no interactions of alanine dipeptide with either implicit or explicit
solvent are accounted for. All other electrostatic interactions are accounted for. The Ra-
machandran angles φ and ψ are given in degrees and energies are listed in electron volts.
The lowest energy state is arbitrarily chosen to have an energy of 0eV .

Conform φ ψ Energy

C7eq -73.2 66.1 0.0000
Γ1 -69.9 32.2 0.0098

C7ax 61.3 -52.3 0.0643
C5 -146.6 170.9 0.0651
Γ2 -148.9 -61.0 0.2668

remaining two that could not be compared with other studies are labeled arbitrarily as Γ1

and Γ2. Table XII summarizes the data.

The same process can be repeated for the case of an implicit solvent. The implicit

solvent is modeled using the generalized Born model [13, 14, 37]. A cutoff for the electro-

static interactions is typically used in the generalized Born model. However, due to the

small size of ADP, the cutoff was set to an arbitrarily large number so that all interactions

were accounted for. A total of 1000 ART steps were performed on an initially minimized

structure of ADP. The minimization procedures in the ART algorithm were again stopped

once the RMS force was less than 10−3 eV/Å. The ART simulation with implicit solvent

found a total of nine local minima. Oddly, the C7 conforms are not found with the gen-

eralized Born model. This of course is due to the energy model used and not the ART

method itself. The generalized Born energy model predicts an additional four conforms

(labeled Γi) which are not found in other studies [111]. Table XIII summarizes the results.

A Ramachandran plot of the conforms is given in Figure 56.

In order to extend the ART method to allow for explicit water, a slight change in the

three main steps of the ART algorithm is necessary. The reason for the adjustment is that
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FIG. 56. Ramachandran plot of the various local minima of alanine dipeptide in implicit
solvent found using the activation relaxation technique with an atomistic structure. A total
of nine minima were found.

as the molecule is moved during the ART procedure, the water must naturally adjust to the

molecules new structure to avoid problems such as overlaps of the water with the molecule.

To allow the water to adjust naturally, classical molecular dynamics is performed on the

water molecules while the ART procedure is performed on the molecule. Since molecular

dynamics is being performed on the water, it can be held at a specific pressure and/or

temperature. This type of procedure is similar to so called “hybrid” QM/MM methods

that employ quantum mechanics on a small segment of the system that is of interest while

the rest undergoes classical molecular mechanics [114]. This new algorithm is called Wet-

ART.
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TABLE XIII. The nine conforms and energies of alanine dipeptide in implicit solvent. The
interactions of alanine dipeptide with the solvent (water) was calculated using the general-
ized Born model. All possible electrostatic interactions were accounted for in the calculation.
The Ramachandran angles φ and ψ are given in degrees and energies are listed in electron
volts. The lowest energy state is arbitrarily chosen to have an energy of 0eV .

Conform φ ψ Energy

αR -71.9 -27.8 0.0000
PII -71.5 165.3 0.0219
C5 -143.6 170.9 0.0342
Γ1 -126.8 8.0 0.0565
Γ2 -141.1 -55.0 0.0778
β -139.3 99.4 0.1108
αL 55.0 40.8 0.1895
Γ3 59.1 -165.2 0.2090
Γ4 54.0 -122.5 0.2401

Obviously as the water moves, the local minima of the molecule will shift as well. The

idea behind Wet-ART is that these local minima will tend to be located in the vicinity of the

various conformations that the molecule can have while in explicit water. Thus, over many

samplings of local minima using the three ART steps described above, the Wet-ART method

should show a clustering of local minima around the various conformations of the molecule.

This clustering is not much different from a true molecular dynamics simulation where

the molecule will sample some space around a conformation. The advantage here is that

molecular dynamics can require upwards of several seconds (or longer) of simulation time

to find all conformations of some complex molecules, since barriers between conformations

can be higher than kbT . Since Wet-ART actively searches for new conformations, it should

be able to locate them much faster.

To test the Wet-ART method, the procedure is applied to a single ADP molecule

surrounded by water molecules. The three ART steps are performed on ADP while molec-

ular dynamics is performed on the surrounding water. The results are then compared with
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a 2 ns molecular dynamics simulation of ADP. In both the Wet-ART and regular molec-

ular dynamics calculations, a single ADP molecule was placed in a periodic box with a

total of 297 water molecules. The box dimensions were first adjusted using the Nosé-Klein

temperature-pressure coupling algorithm [43] to a final average temperature of 300 K and

pressure of 1 atmosphere. The final lattice vectors for the periodic box were roughly 20

Å in each direction which placed periodic ADP units no closer than 10 Å away from each

other. The final coordinates of the water and ADP molecule represent an equilibrated sys-

tem and were used as starting coordinates in both the Wet-ART and molecular dynamics

simulations.

For the Wet-ART simulation, a total of 6000 ART steps were performed on the ADP

molecule while the water was maintained at a temperature of 300 K using a Nosé-Hoover

thermostat [40]. The volume of the periodic box was held fixed during the simulation.

Equation (8.4) was used as the energy landscape for ADP. Once a local minima of E(φ,ψ)

was found, the water was temporarily frozen, and all atoms of the ADP molecule minimized

using V . Coulomb interactions were calculated using the particle mesh Ewald method [12]

with an 8 Å cutoff for the direct sum. The minimization procedures on ADP necessary for

the ART method were stopped once the RMS force on ADP was less than 5 × 10−3 eV/Å.

The local minima found by Wet-ART are plotted on a Ramachandran map in Figure 57.

The Wet-ART results show some clumping in two regions (displayed as boxes in Figure

57) of the Ramachandran plot. One region corresponds to the PII conform. In general

though, the Wet-ART method seems to have failed to predict definitive conforms. A very

simple explanation for the failure is that 6000 ART steps was not sufficient to result in the

“clumping” of local minima that was expected.
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FIG. 57. Ramachandran plot of the various local minima of alanine dipeptide in explicit
solvent found using the wet-activation relaxation technique. Many minima are found due
to the dynamic nature of the solvent. A clustering of minima is found in the boxed regions.

For the molecular dynamics simulation, the equilibrated structure was maintained

at constant volume and constant temperature of 300 K using the Nosé-Hoover thermostat.

Coulomb interactions were calculated using the particle mesh Ewald method with an 8

Å cutoff for the direct sum. A total of 2 ns of molecular dynamics was performed using

a 1 fs time step. Coordinates of the ADP molecule were output every 1 ps and used to

calculate the current Ramachandran angles, φ and ψ, of the ADP molecule. A plot of the

Ramachandran angles is shown in Figure 58. It is interesting to note that in the molecular

dynamics simulation, 2 ns only allows the molecule to essentially sample the PII and αR

conforms.
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FIG. 58. A two nanosecond molecular dynamics simulation of alanine dipeptide in explicit
water. The water was maintained at a constant temperature of 300 K and constant volume.
The Ramachandran plot shows that the ADP molecule essentially only visits the PII and
αR conforms after two nanoseconds. A broad energy well is visible around the αR conform.

Although the initial results with the small Alanine Dipeptide molecule are somewhat

encouraging, using the fully atomistic ART method with implicit solvent or the Wet-ART

method on larger peptide chains has been unsuccessful so far. The main reason for the fail-

ures has to do with the choice of activation vector (rotations of the Ramachandran angles).

When a peptide chain has many amino acids a small rotation about a Ramachandran angle

at one end of the chain will produce a large displacement at the other end of the chain.

This causes either (i) the chain to overlap with itself or in the case of Wet-ART (ii) the

chain to overlap with water molecules. In the Wet-ART procedure, the water molecules that

overlap with the peptide chain tend to be unable to reequilibrate themselves with classical

molecular dynamics and the Wet-ART algorithm fails. With better choices for activation
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directions or the possible creation of “safety checks” in the algorithm, these problems may

be alleviated in the future.



CHAPTER 9

CONCLUSIONS

The bulk of the work in this dissertation is centered around a new technique that al-

lows for the low frequencies and corresponding displacement patterns of very large molecules

or molecular complexes to be obtained with full atomistic detail. The technique, the phonon

functional method, is iterative and based on order N strategies used in electronic structure

theory to calculate band-structure energies by minimizing an energy functional. A key ad-

vantage of the phonon functional method is that the dynamical matrix need not be explicitly

stored in computer memory. Instead the method only requires the iterative operation of the

dynamical matrix on a vector, which can be typically calculated in Order (N) steps. This

allows for the lowest vibrational modes of very large molecular systems, such as viruses,

to be calculated with full atomistic detail. In addition, the phonon functional method was

shown to be quite robust, lacking many of the problems of other iterative techniques [63].

Chapter 2 began the theoretical half of the dissertation with a brief overview of

the empirical energy model and the software package developed for all the calculations

in this work. Chapter 3 continued the theoretical portion by reviewing some basic group

theory concepts which were used for the study of the highly symmetric icosahedral viruses

in Chapter 6. In addition, Chapter 3 also presented a computational algorithm capable

of calculating the irreducible representation matrices and character table of a group from

only a set of rotation matrices that represented the group. The algorithm is somewhat

similar to earlier work by Bloker and Dixon [58, 59], but has the advantage of being able

to construct both the irreducible representation matrices and character table from a simple

diagonalization of a Hermitian matrix. This technique has the potential to highly automate

the application of group theory to complex and diverse problems.
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The theoretical portion culminated with the development of the phonon functional

method in Chapter 4 were the electronic band-structure problem was shown to be mathe-

matically equivalent to the problem of finding the lowest frequencies and vibrational mode

patterns of a large dynamical matrix. This allowed for the creation of a “phonon en-

ergy functional” with the same properties of the electronic energy functional. The phonon

functional method was then tested on the ubiquitin protein. Minimization of the phonon

energy functional provided the lowest frequency phonon states for the ubiquitin protein.

The phonon states calculated with the energy functional compared extraordinarily well

with those calculated from a standard diagonalization of the dynamical matrix with errors

in the frequencies on the order of 0.01 cm−1.

Chapter 6 began the application portion of the dissertation. In this chapter, the

phonon functional method was used to calculate the lowest frequencies and mode patterns of

three large virus capsids to atomic detail: the icosahedral satellite tobacco necrosis virus, the

icosahedral cowpea chlorotic mottle virus, and the tubular M13 bacteriophage. Although

the vibrational properties of viruses have been studied in the past, method developed here

has allowed full atomistic detail and semi-quantitative calculations of the Raman scattering

cross sections as well. These scattering profiles are useful in identifying vibrational modes

that couple strongly to light and thus have the best potential to be resonantly “pumped”

with inelastic Raman scattering. In each of the three cases, the Raman scattering cross

sections were computed using the atomistic displacement patterns and an empirical bond

polarizability model. The Raman cross sections for all of the viruses showed that a variety

of the vibrational modes contributed to the overall Raman intensity.

An examination of the lowest frequency modes of the icosahedral viruses found that

they were remarkably similar in flavor. Both of the icosahedral viruses studied exhibited
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the three low frequency “breathing”, “rotational” and “puckering” modes which have sym-

metry of the irreducible A representation. Low frequency modes with symmetry from other

irreducible representations were also found to be similar between the two icosahedral cap-

sids. Further examination of the vibrational mode patterns of the two viruses however

illuminated subtle differences between the two. For example, the breathing, rotational, and

puckering modes of the satellite tobacco necrosis virus showed a gliding of the β sheets that

make up one of the 60 individual proteins of the viral capsid. These types of motions are

of course specific to the satellite tobacco necrosis virus due to the unique structure of its

protein. Similar motions were not found in the cowpea virus. This leads to the conclusion

that the icosahedral geometry determines only the very basic type of motion i.e. breathing,

puckering etc. The internal motions of the protein that result in, for example, the breathing

motion of the capsid are dependent on the unique structure of the protein.

A study of the swelling process of the cowpea chlorotic mottle virus capsid was

also performed using the phonon functional method. By removing the calcium ions from

the optimized capsid structure, several unstable modes were found. Interestingly, unstable

modes of the calcium deficient cowpea virus were found in all irreducible representations.

Examination of two unstable modes (involving approximately 2000 atoms each) found a

preferential expansion of the capsid at the interface between two of the three proteins.

The vibrational modes of the M13 bacteriophage were studied next using both a

continuum elastic model and the phonon functional method. This allowed for a direct

comparison of a continuum model with an atomistic one. The continuum model was derived

in Chapter 5 along with a partner amorphous isotropic bond polarizability model to predict

relative Raman intensity profiles. The results found that the continuum model can provide

very good predictions of both the general displacement patterns and frequencies for the
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first lowest five or six modes. After this, the continuum theory misses many modes that

are predicted by the atomistic calculation. Interestingly, the atomistic model found small

splittings for a variety of the M13 capsid modes that had multiple degeneracies, such as the

string like modes. This was due to the detailed atomistic structure of the capsid which was

treated as an isotropic material in the continuum model.

Comparison of the M13 Raman profiles predicted using displacement patterns from

continuum theory and the atomistic calculation revealed some discrepancies. The atomistic

calculation predicted a single large peak at 5.5 cm−1 whose intensity was from mostly

radial-torsional modes. The continuum calculation on the other hand predicted a large

contribution from an axial mode at roughly 10.4 cm−1 and negligible or no Raman intensities

in the 0 to 5.5 cm−1 frequency range. The lack of Raman intensity in the continuum

calculation between 0 to 5.5 cm−1 is a result of the model missing modes in this range when

compared to the atomistic calculation. Both compared reasonably well to the experimental

results which found a single Raman peak at around 8.5 cm−1 [84, 85].

An application of the phonon functional method to other large molecules or molecular

complexes was demonstrated in Chapter 7. In this chapter, the phonon functional method

was used to perform a low frequency normal mode analysis of four periplasmic binding

proteins and a complete adenosine triphosphate binding cassette. The normal modes of the

periplasmic binding proteins compared well with those predicted by other coarse graining

methods such as the elastic network model. There were slight differences though. The most

noticeable were found in the two main motions of the two periplasmic binding proteins

BtuF and FhuD.

Next, a normal mode analysis was performed on the A. fulgidus molybdate ABC

transporter. The calculations were performed on the complete atomistic structure which
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consisted of the periplasmic binding protein, transmembrane, and nucleotide binding do-

mains. The calculation represents the first known atomistic normal mode analysis of a

large molecular complex. Two low frequency modes that could directly contribute to the

transport process were found. One low frequency mode was argued (based on experimental

evidence) to be involved in signaling the nucleotide binding domain to close. The other low

frequency mode was shown to directly influence the opening of the gating region, allowing

the molybdate molecule to be transported through the inner cellular membrane.

In Chapter 8, a simulation of the inelastic scattering of light from an M13 bacterio-

phage capsid was performed using classical molecular dynamics. The results of scattering

process were found to follow many of the predictions made using a simple driven harmonic

oscillator model in Chapter 5. While it was shown that the capsid can break apart as a

result of inelastic light scattering, the intensities required were much higher than those used

in experimental studies [25, 26]. One possibility is that the simulation times are much too

short to observe the capsid breaking apart at low light intensities. The overall conclusion

however was that the light intensities used in the experiments are much too small to di-

rectly break the capsid apart without a cascade mechanism of energy redistribution from

high frequency to low frequency modes.

Finally, the last section of Chapter 8 examined the activation relaxation technique

from the perspective of a fully atomistic structure with explicit solvent. It was concluded

that the algorithm used in the traditional activation relaxation technique is not easily

generalized to simulations with explicit solvent. This limits the applicability of the technique

to simplified models with implicit solvents.

The main work presented in this dissertation, the phonon functional method, has

been shown to provide a way to perform a low frequency normal mode analysis of large
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systems completely atomistically. The method removes the N2 dependence on memory that

is typically required for a direct diagonalization of the dynamical matrix by only searching

for the low frequency states. The phonon functional method significantly increases the

number of atoms that can be treated with an atomistic normal mode analysis and may help

to provide greater detail in conformational motion and vibrational studies of other large

biomolecular systems.
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I. IMPROVEMENTS IN NORMAL MODE ANALYSIS

As seen in this dissertation, atomistic normal mode calculations of large biomolecules

with the phonon functional method presents an advance from normal mode calculations

which utilize coarse graining techniques. However, their is still room for much improvement

in the normal mode analysis technique itself. Here, some of the main deficiencies of the

normal mode analysis technique that can be improved upon in future work are highlighted.

A. Effects of Water

The main deficiency of the normal mode calculations presented in this dissertation is

due to the fact that water was only included implicitly. Further, only the electrostatic effects

were considered while the damping and hydrodynamic effects were ignored. Most biological

molecules are surrounded by water which will have an effect on the vibrational properties

of the molecule. At the present time, the hydrodynamic and damping effects of water

on the vibrational modes of virus capsids have only been examined with continuum type

theories. Balandin and Fonoberov [66] have studied the damping effects of the cylindrical

M13 bacteriophage in water (were the water is treated as an elastic medium) using the

complex-frequency approach of Dubrovsky and Morochnik for an elastic sphere embedded

in an elastic medium [115]. Their results found frequency shifts on the order of a few

(≈ 2 cm−1) wave numbers. Murray and Saviot also applied the Dubrovsky approach but

to spherical shaped capsids [116]. Their results also found similar frequency shifts in the

mechanical modes.

One possible way to include at least the damping effects of the water in the atomistic

normal mode analysis is to use the Langevin dynamics technique discussed by Lamm and

Szabo [117]. The Langevin scheme appears to be well suited for the study of the low

frequency mechanical modes of viral capsids and may be able to be adapted for use in the
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phonon functional method. If successful, the method would provide reasonable estimates

of frequency shifts due to water damping.

The hydrodynamic effects of water however way prove more difficult to incorporate

in an atomistic model. With further improvements however, the normal mode analysis tech-

nique may be able to provide a much more realistic picture of the low frequency vibrations

of large biomolecules through the incorporation of the hydrodynamic and damping effects

of the surrounding solvent.

B. Effects of Anharmonicity

A second problem with the normal mode analysis technique is due to the use of the

harmonic approximation. In Chapter 4 Section II, it was shown that the harmonic approx-

imation resulted from a truncation of the Taylor expanded potential energy of a molecule.

Thus the approximation only holds for small oscillations about equilibrium and lacks the

anharmonic higher order terms which can describe effects such as the coupling between

individual modes. One of the main problems with this is that at thermal equilibrium, the

amplitudes of the low frequency modes of a viral capsid are most likely higher than what can

be treated accurately with a harmonic approximation. The maximum thermal amplitude of

a low frequency vibration at equilibrium, Am, can be approximated from kbT = meω
2A2

m/2

where me is the effective mass of the molecule. For the molybdate ABC transporter (see

Chapter 7 Section III) the main low frequency mode was found at roughly 2 cm−1. Setting

the effective mass equal to the approximate mass of the full transporter, me ≈ 10−22 kg,

one finds a maximum thermal amplitude of roughly Am = 0.2 Å at 300 K.

The anharmonicity of the potential energy of the ABC transporter can be examined

by moving along an eigenvector of the dynamical matrix. Figure 59 shows the potential

energy U(Qη), where η is the displacement vector of the 2.62 cm−1 normal mode of the ABC
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FIG. 59. Deviation of the potential energy U of the molybdate ABC transporter from the
harmonic approximation as the molecule is moved (by an amount Q) along the displacement
pattern corresponding to the eigenvector of the dynamical matrix with eigenvalue of 2.62
cm−1. The displacement η is distributed over all atoms and the maximum component
of any atom is 0.0135 Å. The solid black line is the true potential while the dashed red
line corresponds to the harmonic approximation. The potential begins to deviate from the
harmonic approximation when the maximum displacement of any atom is around 0.1 Å.

transporter calculated from the dynamical matrix, as a function of displacement Q along the

mode. One can see that the potential begins deviating from the harmonic approximation

(shown as the dashed red line) quite early, when the maximum displacement of any atom

is around 0.1 Å.

Anharmonicity is also likely to play an important role in the impulsive stimulated

Raman scattering (ISRS) of virus capsids, especially if ISRS is indeed exciting large ampli-

tude vibrations of the capsids (see Chapter 8 Section II). Rössler and Page showed that in

an anharmonic crystal, intrinsic localized modes (local solitons) can be excited by applying
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a series of femtosecond pulses [118]. Thus, it may be possible to produce a localized mode in

a virus capsid through a series of low intensity pulses that results in localized capsid dam-

age and deactivation. Localized intrinsic modes presents another plausible explanation, in

addition to the cascade theory, for the experimental observation of virus inactivation with

ISRS. However an understanding of the anharmonic properties of a virus capsid is necessary

in order to test such a hypothesis.

From the above arguments it is quite clear that although the phonon functional

method has allowed for the study of low frequency mechanical vibrations of large biomolec-

ular systems to atomic detail, improvements can still be pursued.

II. SAGUARO PROGRAM

At the present time, the Saguaro program is operational and has no known errors.

However, it is expected that the program will undergo further development, most likely for

the purposes of adding additional features. This section outlines how to run Saguaro and

its basic coding structure since an extensive user manual on the program does not exist

at the present time. An abbreviated manual can be downloaded from the Saguaro website

(http://physics.asu.edu/atofs/Saguaro).

A. Running Saguaro

To run Saguaro, at least four files must be created by the user. Three of the files,

the parameter file, the coordinate file, and the molecule file, describe the system to be

simulated while the fourth file, the options file, contains information on what type of Saguaro

simulation will be run. The options file is a free form format file where options such as

constant temperature can be used by changing the value of an “option flag”, with multiple

option flags separated by a comma (i.e. iflag1=0, iflag2=0). Each flag has a default value

that is set in the subroutine getoptions. Once the program starts, these values are updated
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by reading the options file using a name list format. Any option flags not present in the file

will cause there default value to be used. A list of all the options present in the Saguaro

program can be found in the OPTIONS file located in the main program directory and on

the Saguaro website. An example of an options file can be found in the tutorial folder in

the main directory.

The remaining three files contain information about the system to be simulated. The

parameter file contains information on the spring constants, partial charges, atomic masses,

and van der Waals parameters for the atoms in the system. The coordinate file contains

the atom types and atomic coordinates for every atom in the system. If the system is

periodic, lattice vectors are listed at the end of the file after the coordinates. The molecule

file contains information on the number of molecules in the system and if that molecule

is solvent or solute. Solvent molecules are labeled with an “S” while solute molecules are

labeled with an “A”. If counter ions are present, these are distinguished with a “C” in the

molecule file. The format of each of these three files can be found in the README file

located in the main Saguaro directory or in the abbreviated manual located on the Saguaro

website. Examples of these three files can also be found in the tutorial folder. The easiest

way to create these three files is to use the pepalyze (peptide analyze) program located in

the tools folder in the main directory. The program will create parameter, coordinate, and

molecule files of a protein from its protein data bank (PDB) file.

Once the coordinate, parameter, and molecule files have been created by the user

and the options for the Saguaro run set in the options file, the program can be executed by

typing

Saguaro.x -i options -c coordinates -p parameters -m molecule

on the command line where options, coordinates, parameters, and molecule are the names
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of the four files created by the user. These names are passed into the program on the

command line with the flags -i, -c etc. Default file names exist for all of these files so if one

of them is not specified, for example the parameter file, the program will attempt to open

a file with the default name (sys.parm in the case of the parameter file).

At the end of the run, Saguaro will create various output files. Names for the

output files that are different from the default names can be specified using similar flags

on the command line (see the main code saguaro.f90 for the specific flags). Two files that

will always be created are the output file, which contains information on the options that

were set for the simulation and any errors, and the restart file which contains the current

coordinates of the system (eigenvectors for the case of a vibrational analysis run). The

restart file can be used (for example) to continue a molecular dynamics run by using the

restart file as the initial coordinate file.

For more information on running Saguaro, the user should consult one of the four

tutorials located in the tutorial directory of the Saguaro package.

B. Coding Structure

The Saguaro code, written in FORTRAN 90, consists of a main program wrapper

saguaro.f90 which reads in the option, parameter, molecule, and coordinate files by calling

subroutines getoptions and getparams. The system is then setup for its appropriate run.

For example, arrays necessary for the particle mesh Ewald routine would be allocated and

formed by calling pmesetup, if the user specifies this option. Next one of the four subroutines

mdynamics, feperturb, art, or vibes is called to perform the appropriate simulation specified

by the user in the options file. Once the simulation is complete, the main program wrapper

closes any open files then ends. There are many subroutines (approximately 40-50) in

Saguaro and to go through the details of each would be time consuming. Instead, only
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details about the code that can be found in the main directories (ENERGY, INOUT,

SETUP, etc.) will be given.

The directory CONSTRAINTS contains code required to implement constraints on

velocities and/or atomic positions during constant temperature, constant pressure molecular

dynamics runs. These subroutines are only called by mdynamics.

The ENERGY directory contains all of the subroutines that are used to calculate

the total energy of the system and the forces on each atom. The subroutine energy does

the complete force and energy calculation by calling individual potential energy subroutines

such as bond which calculates the energy and forces on atoms due to bonds.

The directory FEP (free energy perturbation) contains special energy subroutines

very similar to the ones in the ENERGY directory. The difference is that the energy

subroutines in FEP also calculate the derivative dE/dλ that is required for thermodynamic

integration.

The HESSIAN directory contains all of the subroutines that are used to calculate

the dynamical matrix operating on a vector. The subroutines dynamicalu and gdynamicalu

calculate the dynamical and group dynamical matrices operating on a vector (respectively)

by calling individual subroutines such as bonddu which calculate the contribution to the

dynamical (or group dynamical) matrix times a vector from only the bond potential energy

terms.

The directory INOUT is were the subroutines such as getoptions and getparams are

located. These subroutines read and write information to files.

The MAPPING directory contains the neighbormap and symmetrymap subroutines

which calculate the neighbor maps for systems with periodicity (neighbormap) or systems

with symmetry of a group (symmetrymap).
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The MISC directory is were various miscellaneous subroutines such as bspline (which

calculates and returns the bspline function of an argument) or gramschmidt (which makes

a set of vectors orthogonal) can be found. These subroutines are usually called by many

other subroutines.

The directory SETUP has all of the subroutines that setup various things such as

the particle mesh Ewald arrays (pmesetup) or group theory basis vectors (setupgt). These

are usually called in the main saguaro program wrapper.

Finally, the directory SIMS contains the main code for the four simulations that

Saguaro can perform. Molecular dynamics is performed by the subroutine mdynamics, free

energy perturbation by feperturb, activation relaxation technique by art, and atomistic

vibrational analysis with the phonon functional method by vibes.


