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ABSTRACT. This paper gives the first explicit example of a finite
separating set in an invariant ring which is not finitely generated,
namely, for Daigle and Freudenburg’s 5-dimensional counterexam-
ple to Hilbert’s Fourteenth Problem.

1. INTRODUCTION

Hilbert’s Fourteenth Problem asks if the ring of invariants of an al-
gebraic group action on an affine variety is always finitely generated.
The answer is negative in general: Nagata [L1] gave the first counterex-
ample in 1959. In characteristic zero, the Maurer-Weitzenbock Theo-
rem [15] tells us that linear actions of the additive group have finitely
generated invariants, but nonlinear actions need not have finitely gener-
ated invariants. Indeed, there are several such examples, the smallest
being Daigle and Freudenburg’s 5-dimensional counterexample [1] to
Hilbert’s Fourteenth Problem.

Although rings of invariants are not always finitely generated, there
always exists a finite separating set [2, Theorem 2.3.15]. In other words,
if k is a field and if a group G acts on a finite dimensional k-vector
space V, then there always exists a finite subset F of the invariant
ring k[V]¢ such that if, for two points z,y € V, we have f(z) = f(y)
for all f € E, then f(z) = f(y) for all f € k[V]®. This notion was
introduced by Derksen and Kemper [2, Section 2.3], and has gained a
lot of attention in the recent years, for example see [3], 4. [5, [6] 8 [T2].

The proof of the existence of a finite separating set is not construc-
tive, and until now, no example was known for infinitely generated
invariant rings. The main result of this paper is to give the first exam-
ple: a finite separating set for Daigle and Freudenburg’s 5-dimensional
counterexample to Hilbert’s Fourteenth Problem.
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2. DAIGLE AND FREUDENBURG’S COUNTEREXAMPLE

We now introduce the notation used throughout the paper, and set
up the example. We recommend the book of Freudenburg [7] as an
excellent reference for locally nilpotent derivations.

Let k be a field of characteristic zero, and let G, be its additive
group. If V =Kk’ is a 5-dimensional vector space over k, then k[V] =
k[z, s,t,u,v] is a polynomial ring in five variables. Daigle and Freuden-
burg [I] define a locally nilpotent k-derivation on k[V]:

0 0 0 0
D=a®—+s—+t— 2
¥ 9s +88t+ 8u+x ov
This derivation D induces an action of G, on V. If r is an additional
indeterminate, then the corresponding map of k-algebras is
—~ D"(f) &

D) wekV]=k[V]lr],  foplf) =wm(f) =) — =,

where k[V][r] =2 k[V] @ k[G,]. The induced action of G, on k[V] is:
(—a)- f:=u.(f) forallaceG,,fek[V].

In particular, for a € G,, we have
2

(—a) -z =z, (—a)-s=s+azr’ (—a)-t:t+as+%x3,

2 3

(—a)-u:u+at+%s—|—%x3, (—a)-v=v+ar’

The invariant ring k[V]G“ coincides with the kernel of D. Define a
grading on k[V] by assigning degz = 1, degs = degt = degu =
3, degwv = 2. As the action of G, on k[V] and the derivation D are
homogeneous with respect to this grading, the ring of invariants is a
graded subalgebra. We write k[V}E“ to denote the unique maximal
homogeneous ideal of k[V]°*. Daigle and Freudenburg [I] proved that
k[V]G“ = ker D is not finitely generated as a k-algebra. The main
result of this paper is to exhibit a finite geometric separating set.

Theorem 2.1. Let G, act on V as above. The following 6 homo-
geneous polynomials are invariants and form a separating set E in
k[V]%
fi=x, fo=20%—5% f3=32% — 32%ts + s°,

fi=zv—s, f5=a’ts—s’v+22%v— 3z,

fo = —18x3tsu + 92%u? + 82°t® + 65°u — 3t%s7.
Remark 2.2. In [16, Lemma 12|, Winkelmann shows that these six
invariants separate orbits outside {p € V' : z(p) = s(p) = 0}, which as

we will see later, is the easy case. (Note that in [16] there is a typo in
the invariant we denoted by fs.)
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3. PROOF OF THEOREM [2.1]

In this section, we prove our main result. We start by establishing
some useful facts.

Lemma 3.1. ]k[V]G" Ck[f1, fo, f3 f1, %]

Proof. As z is a constant, the derivation D extends naturally to k[V]_
via D (L) = 28 forall f € k[V],n € N, and we have k[V]* C
(k[V],)®. The element =% € k[V], satisfies D (=) = 1, that is, it is a
slice. By the Slice Theorem (see [14], Proposition 2.1}, or [7, Corollary
1.22]), we obtain a generating set of the invariant ring k[V]S“ by ap-
plying p to the generators of k[V], =Kkl[z, s,t,u,v, 1] and “evaluating”
at r = — 2. Therefore, we have

KIVIE = [ (@), ey (), e (8), s (), o (0), i

= k|:f1707 f2 f3 é l

2037 328z x

Proof of Theorem [2.1] First, note that f; is invariant for i = 1,...,6.
Let p; = (x4, 04, T, Wiy Vi), © = 1,2, be two points in V' such that f;(p;) =
fi(pa) for each i = 1,...,6. We will show that f(p;) = f(p2) for all
f e k[V e Since fi = x, we have y1 = x2. If x1 = x2 # 0, then
Lemma implies f(p1) = f(po) for all f € k[V]®*. Thus, we may
assume y; = x2 = 0. It follows that o1 = —fy(p1) = —fa(p2) = 0.
Define a linear map

v: k> =k (x,0,7,w, V) (0,T,w,V),
and a k-algebra morphism
pklx, s t,u,v] — K[s, t,u,v],  f(x,s,t,u,v)— f(0,s,t,u,v).
Define a k-linear locally nilpotent derivation on k[s, ¢, u, v] via

0 0
A=s—+t—.
ot ' ou
One easily verifies that A o p = po D. In particular, p induces a map
ker D — ker A. The kernel of A is known (or can be computed with
van den Essen’s Algorithm [I4]): it corresponds to the binary forms of

degree 2, that is,
(2) ker A = k[s, 2us — %, v].

Since x; = 0, we have f(p;) = p(f)(v(pi)) fori = 1,2 and any f € k[V].
Thus, to show f(p1) = f(p2) for all f € k[V]® = ker D, it suffices to

show f(7(p1)) = f(y(p2)) for all f € p(ker D) C Kk[s, 2us — ¢, v].
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If o0y = 09 # 0, then the values of s,2us — t%,v on (p;) are uniquely
determined by the values of p(fy) = —s, p(fs) = —s?v, and p(fs) =
3s%(2us — t?) on y(p;) for i = 1,2. Since

p(fi)(v(p1)) = filp1) = fi(p2) = p(fi)(v(p2)) foralli=1,...,6,

the case o1 = g9 # 0 is done. Assume x; = x2 = 01 = 03 = 0, then by

Proposition , f(p1) = f(p2) = £(0,0,0,0,0) for all f € k[V]G“. O
Proposition 3.2. We have k[V]® C k& (z, s)k[V].

This proposition is the key to the proof of Theorem 2.1} It could be
obtained from a careful study of the generating set of k[V]G“ given by
Tanimoto [13]. We give a more self-contained proof, which relies only
on the van den Essen-Maubach Kernel-check Algorithm (see [14], and
[10, p. 32]).

Proof of Proposition[3.9 Tt suffices to show that k[V]Ea C (z, 9)k[V].
By way of contradiction, suppose there exists f € k[V]E“ of the form
f =axp+ sq+ h(t,u,v), where p,q € k[V], and h(t,u,v) # 0.

Without loss of generality, we can assume f is homogeneous of pos-
itive degree. We apply the map p from the proof of Theorem [2.1]
By Equation (2)), we have f(0,s,¢,u,v) € K[s,2us — ¢*,v], so we have
£(0,0,t,u,v) = h(t,u,v) € k[0, —t2,v], and we set h(t,v) := h(t,u,v) €
k[t,v]. Since f is homogeneous, so is h, and there is a unique mono-
mial t%° in h such that the exponent e of v is maximal. Clearly,
Do % = % o D, and so, for all k£, we have

o f  9*p  9Fq  9"h(t,v)

dok ok ovk ovk
If d = 0, then taking k = e—1, implies v is the only monomial appearing
in 66(;;?_@1’”) (since v has degree 2, and ¢ has degree 3, t cannot have
nonzero exponent). Thus, there is a homogeneous invariant of degree 2
of the form zp+sG+wv € k[V]%, but as 2% spans the space of invariants
of degree 2, we have a contradiction.

Assume now that d > 0. If & = e, then t¢ is the only monomial
appearing in 86’57(2’”). Thus, replacing f by gi}{:, and dividing by the
coefficient of ¢, we can assume f = xp+ sq+t?, where p, ¢ € k[V] and
d > 0. Since f(z,s,t,u,v) € ker D, Lemma/[3.3| (a) implies the element

c k[V]%e.

g(x, t,u,v) = f(z,zv,t,u,v)
(3) = ap+xvg+tt e klz, t,u,v]

lies in the kernel of the derivation A’ ;= x2% + xv% + ta% defined on

k[z,t,u,v]. As no monomial of the form t* (with k& > 0) appears in the
four generators of ker A’ (by Lemma 3.3 (b)), the monomial ¢ cannot
appear as a monomial in g € ker AA’, and so we have a contradiction. O
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In the following Lemma, we write k|x, v, ¢, u] rather than k[z, t, u, v],
so that the derivation A’ is triangular.

Lemma 3.3. Define a k-algebra map
¢ Kklz, s, t,u,v] — K[z, v, t,ul,
flx, s, t,u,v) — o(f)(x,v,t,u) = f(z,zv,t,u,v),
and a derivation A’ on K[z, v, t, u]:
0

A = 22 2+xv—+t£
T o ot ou

It follows that

(a) Ao = ¢o D, in particular, ¢ maps ker D to ker A';
(b) ker A’ = k[hy, ho, h3, hy|, where

hy =z, hy =2zt —0% hg =32 — 3avt +0°,

hy = 8xt3 4+ 9x*u® — 182%tuv — 3t%0? + 6xuv®

= (1 m)a
Proof. (a): For f = f(x,s,t,u,v) € K[z, s,t,u,v], we have
@od() = @2+l i) fr o)
2oy 02650y 1 avs(2) 1000

- ¢(x3§—f+ ?+ %Hg—f)—womq).

(b): Since A’ is a triangular monomial derivation of a four dimensional
polynomial ring, by Maubach [9], its kernel is generated by at most four
elements. In fact, [0, Theorem 3.2, Case 3] gives the same generators
for ker A’; up to multiplication by a scalar (the formula for h, contains
a typo).

Alternatively, one can use van den Essen’s Algorithm. As in the
proof of Lemma , the derivation A’ can be extended to k|z, v, t, ul,,
and as A’(-z) = 1, the Slice Theorem [I4, Proposition 2| yields

(1) (kerA), = iy (Ko, v,tu, 1)) = Klha, hay b, 1,

where p is defined similarly as in Equation (|1). Consider the addi-
tional invariant hy := (h3 + h3)/2? € K[z, v,t,u]. We claim ker A’ =
k[hq, ha, h3, hy] =: R. Equation implies R C ker A’ C R,. Next, we
look at the ideal of relations modulo z between the generators of R,
{P € k[Xla X?a X37 X4] ‘ P(hfly h27 h37 h4) € (x)k[x, v, t? U]}
= {P ek[Xy, Xo, X3, X4] | P(0,—0*v*, —3t*v%) = 0}
= (Xlan+X§)k[X17X27X37X4]'
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Since (h3 + h2)/x = xhy € R, we have that P(fy, fo, f3, f1)/x € R for
every P € I, and the Kernel-check algorithm implies ker A" = R (see
[T, p. 184]). O
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