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Abstract. For a group G acting on an affine variety X, the sep-
arating variety is the closed subvariety of X ×X encoding which
points of X are separated by invariants. We concentrate on the in-
decomposable rational linear representations Vn of dimension n+1
of the additive group of a field of characteristic zero, and decom-
pose the separating variety into the union of irreducible compo-
nents. We show that if n is odd, divisible by four, or equal to two,
the closure of the graph of the action, which has dimension n + 2,
is the only component of the separating variety. In the remain-
ing cases, there is a second irreducible component of dimension
n + 1. We conclude that in these cases, there are no polynomial
separating algebras.

1. Introduction

Let k be an algebraically closed field and let G be an algebraic group
acting rationally on an irreducible affine variety X. This action induces
an action on k[X], the ring of regular functions on X, via (σ ∗ f)(u) =
f(σ−1 ∗ u). The ring of invariants is the subalgebra k[X]G ⊆ k[X]
formed by the elements fixed by G, or equivalently, the subalgebra
formed by the elements of k[X] which are constant on the orbits. Thus,
for x, y ∈ X and f ∈ k[X]G, having f(x) 6= f(y) implies that x and y
belong to distinct orbits. In this situation, we say that the invariant f
separates x and y. A separating set is a set of invariants which separate
any two points which are separated by some invariant (see [5, Definition
2.3.8]).

The separating variety

SG := {(x, y) ∈ X ×X | f(x) = f(y) for all f ∈ k[X]G}
provides an alternate characterization of separating sets. Namely, if
δ : k[X] → k[X] × k[X] is the map defined by δ(f) := f ⊗ 1 − 1 ⊗
f , then E ⊆ k[X]G is a separating set if and only if VX×X(δ(E)) =
SG = VX×X(δ(k[X]G)), where V denotes the common zero set of a set
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of polynomials. The separating variety encodes which points can be
separated using invariants. In the case of finite groups, the invariants
separate the orbits, and so the separating variety is in fact equal to the
graph of the G-action:

ΓG := {(x, σ · x)) ∈ X ×X | x ∈ X, σ ∈ G}.
This played a central role in the first author’s proof that, when X is
a vector space on which a finite group G acts linearly, if there exists
a polynomial separating algebra, then the action of G on X must be
generated by reflections (see [7, Theorem 1.1]).

The graph consists of those pairs of points which belong to the same
orbit, while the separating variety consists of the pairs of points which
can not be separated by invariants. Thus, we always have ΓG ⊆ SG.
Moreover, as SG is Zariski-closed, we also have ΓG ⊆ SG. Even for
reductive groups, however, this inclusion can be strict (see [15, Example
2.1]). The invariants may not always separate orbits (as for the natural
action of the multiplicative group of an infinite field on a vector space),
but in the case of reductive groups, they do separate disjoint orbit
closures (see [17, Corollary 3.5.2]). Exploiting this, Kemper gives an
algorithm to compute the separating variety and then a separating set
(see [15, Algorithm 2.9]), which is the first step in his algorithm to
compute the invariants of reductive groups in arbitrary characteristic
(see [15, Algorithm 1.9]).

The motivation for this paper is to better understand the separating
variety in the case of non-reductive groups. We concentrate on what is
perhaps the simplest situation: algebraic actions of the additive group
Ga = (k,+) on an irreducible affine variety X (we will concentrate on
vector spaces), where k is a field of characteristic zero.

Actions of the additive group on X are in one to one correspondence
with locally nilpotent derivations (abbreviated LND) on k[X]. Recall
that a locally nilpotent derivation D is a linear map k[X]→ k[X] such
that D(ab) = aD(b) + bD(a) for all a, b ∈ k[X] and, for all a ∈ k[X],
there exists an m ≥ 1 such that Dm(a) = 0. A locally nilpotent
derivation D on k[X] induces an action ∗ : Ga × k[X]→ k[X] via

(−t) ∗ f := exp(tD)f =
∞∑
k=0

tk

k!
Dk(f) for t ∈ Ga, f ∈ k[X].

The invariant ring k[X]Ga coincides with the kernel of D and is de-
noted by k[X]D. We write SD = SGa to denote the separating variety
corresponding to the action induced by the locally nilpotent derivation
D, and ΓD to denote the graph of the corresponding Ga-action.

An important contribution of the LND approach is van den Essen’s
algorithm to compute the kernel of a LND, and thus the invariants of
a Ga-action (see [19]). An element s ∈ k[X] such that Ds 6= 0 and
D2s = 0 is a local slice. By the Slice Theorem (which is in fact the first
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step of the algorithm, see [19, Section 3]), for a local slice s and any

f ∈ k[X], the element π(f) := exp(tD)f |t:=−s/Ds is in k[X]DDs, and the

algebra homomorphism π maps k[X] onto k[X]DDs. We are particularly
interested in the plinth ideal pl(D), that is, the ideal of k[X]D formed
by the images Ds of all local slices s together with zero.

In Section 2, we first observe that outside the zero set of any subset of
pl(D), the invariants separate the orbits (Proposition 2.1). This leads
to a rather rough description of the separating variety (Proposition
2.2): apart from the graph, the separating variety is determined by the
restrictions of the invariants on the zero set of elements of pl(D). The
last of our results on arbitrary Ga-actions is that if there is a polyno-
mial separating algebra, then the separating variety has no irreducible
component of dimension less than dimX + 1 = dim ΓG (Proposition
2.6).

In Section 3, we focus further on the basic actions of the additive
group, that is, the finite dimensional indecomposable rational linear
representations of Ga. We use the separating set constructed in [11] to
compute the separating variety and write it as the union of irreducible
components (Theorem 3.2). We find that for n odd, divisible by four, or
equal to two, there is exactly one irreducible component: the closure of
the graph. On the other hand, for n > 2 even, but not divisible by four,
we find a second component. This component has smaller dimension
than the graph, which leads us to the conclusion that there can not be
polynomial separating algebras (Corollary 3.3).

Section 4 contains the technical details for the proof of the key result
of Section 3.

Acknowledgements. We thank Hanspeter Kraft and Gregor Kem-
per for their hospitality during academic visits between the two authors.

2. Separation properties of invariants

Before we specialize to the basic actions of the additive group, we
present some general results on separating properties of invariants of
additive group actions.

Proposition 2.1. If S ⊆
√

pl(D)k[X], then the invariants separate
orbits outside VX(S), that is,

SD \ (VX(S)× VX(S)) ⊆ ΓD.

Proof. We may assume that S ⊆ pl(D). Suppose x, y ∈ X \ VX(S)
are not separated by any invariant, that is, f(x) = f(y) for all f ∈
k[X]D. By our assumptions, there exist f ∈ S and s ∈ k[X] such
that f = D(s) and f(x) = f(y) 6= 0. Set tx = s(x)/f(x) ∈ Ga and
ty = s(y)/f(y) ∈ Ga. Suppose k[X] = k[a1, . . . , an]. For each ai, we
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have

ai((−tx) ∗ x) = (tx ∗ ai)(x) =
(∑∞

k=0
(−tx)k

k!
Dk(ai)

)
(x)

=
(∑∞

k=0
(−1)ks(x)k

(f(x))kk!
Dk(ai)

)
(x) =

(∑∞
k=0

(−1)ksk

(Ds)kk!
Dk(ai)

)
(x).

By the Slice Theorem (see [19, Proposition 2.1]),
(∑∞

k=0
(−1)ksk

(Ds)kk!
Dk(ai)

)
is in k[X]Df , and as x and y are not separated by invariants (including

f), it follows that

ai((−tx) ∗ x) = ai((−ty) ∗ y) for i = 1, . . . , n,

that is, (−tx) ∗ x = (−ty) ∗ y, and so x and y are in the same orbit. 2

Note that if S ⊆ k[X] consists of Ga-invariants, then the zero set
VX(S) of S in X is Ga-stable. In particular, the following Proposition
is a first step of the decomposition of the separating variety in Ga×Ga-
stable subsets:

Proposition 2.2. Let I ⊆
√

pl(D)k[X] be an ideal of k[X], and con-
sider the canonical projection τ : k[X]→ k[X]/I, given by f 7→ f + I.
Let A ⊆ k[X]D be a separating algebra. If h1, . . . , hr are elements of
k[X] such that k[τ(h1), . . . , τ(hr)] = τ(A), then the separating variety
decomposes as

SD =
(
VX×X(δ(h1), . . . , δ(hr)) ∩ (VX(I)× VX(I))

)
∪ ΓD.

Proof.
“⊇”: We have already seen that SD ⊇ ΓD. Take a pair (x, y) ∈
VX×X(δ(h1), . . . , δ(hr)) ∩ (VX(I)× VX(I)). We have to show (x, y) ∈
SD, that is, f(x) = f(y) for all f ∈ k[X]D. As A is a separating algebra,
it suffices to show that f(x) = f(y) for all f ∈ A. Let f be an element
of A. As τ(f) is in k[τ(h1), . . . , τ(hr)], there exists a polynomial p
in r variables such that τ(f) = p(τ(h1), . . . , τ(hr)). Therefore, f −
p(h1, . . . , hr) ∈ I. As (x, y) is an element of VX(I) × VX(I), we have
g(x) = g(y) = 0 for all g ∈ I. Thus we have

f(x)− p(h1(x), . . . , hr(x)) = 0 = f(y)− p(h1(y), . . . , hr(y)).

As also (x, y) ∈ VX×X(δ(h1), . . . , δ(hr)), we have hi(x) = hi(y) for
i = 1, . . . , r. It follows that f(x) = f(y).
“⊆”: It suffices to show that SD \ ΓD ⊆ VX×X(δ(h1), . . . , δ(hr)) ∩
(VX(I)× VX(I)). Take (x, y) ∈ SD \ ΓD. By Proposition 2.1, we
have that (x, y) ∈ VX(I) × VX(I). It remains to show that (x, y) ∈
VX×X(δ(h1), . . . , δ(hr)). Take elements gi ∈ A such that τ(hi) = τ(gi)
for i = 1, . . . , r. There then exist elements qi ∈ I such that hi = gi + qi
for i = 1, . . . , r. As x, y ∈ VX(I), we have qi(x) = 0 = qi(y) for all i.
As (x, y) ∈ SD, we have gi(x) = gi(y) for all i. Hence,

hi(x) = gi(x) + qi(x) = gi(y) + qi(y) = hi(y) for all i = 1, . . . , r.

This shows that δ(hi)(x, y) = 0 for i = 1, . . . , r, and so we are done. 2
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Example 2.3. We consider Daigle and Freudenburg’s 5-dimensional
counterexample to Hilbert’s fourteenth problem (see [3]). Let X := k5

and let R := k[x, s, t, u, v] be the ring of regular functions on X. Define
a LND on R via

∆ := x3 ∂

∂s
+ s

∂

∂t
+ t

∂

∂u
+ x2 ∂

∂v
.

In [9], we constructed the following separating algebra for R∆:

A := k[f1, f2, f3, f4, f5, f6]
= k[x, 2x3t− s2, 3x6u− 3x3ts+ s3, xv − s, x2ts− s2v+

2x3tv − 3x5u,−18x3tsu+ 9x6u2 + 8x3t3 + 6s3u− 3t2s2].

We have x3 = ∆(s) ∈ R∆ and f2 = 2x3t − s2 = ∆(3x3u − st) ∈ R∆,

thus, x and s are in
√

pl(∆)R. By [9, Proposition 3.2], we have R∆ ⊆
k ⊕ (x, s)R. Thus, if τ : R → R/(x, s)R is the canonical projection,
for any separating algebra A ⊆ R∆, we have k[τ(1)] = τ(A). By
Proposition 2.2, it follows that

(1) S∆ =
(
VX(x, s)× VX(x, s)

)
∪ Γ∆.

Both the sets on the right hand side are irreducible and of dimension 6,
and one can check (using Magma [1], for example) that neither contains
the other. Therefore Equation (1) gives S∆ as the union of irreducible
components. /

Remark 2.4. One can compute the separating variety in a similar man-
ner for Roberts’ counterexample [18] and the derivation investigated in

[8, section 5]. Indeed, in both cases there is S ⊆
√

pl(D) such that
k[X]D ⊆ k + Sk[X].

As the separating variety contains the graph, its dimension is at
least that of the graph. It can be bigger, as in [15, Example 2.1] and
Example 2.5 below, and as we can see from Theorem 3.2, it can have
components of smaller dimension. In characteristic zero, the additive
group has no non-trivial closed subgroups. Points are thus either fixed
or have trivial stabilizer. When the Ga-action is non-trivial, the Zariski-
closure of the graph therefore has dimension dim(X) + dim(Ga) =
dim(X) + 1 (see for example [16, Section 10.3]).

Example 2.5. We now consider Freudenburg’s 6-dimensional counterex-
ample to Hilbert’s fourteenth problem (see [12]). Let X := k6 and let
B := k[x, y, s, t, u, v] be the ring of regular functions on X. Define a
LND on B via:

D := x3 ∂

∂s
+ y3s

∂

∂t
+ y3t

∂

∂u
+ x2y2 ∂

∂v
.

We have D(s) = x3 ∈ BD and D(3x3u − y3st) = 2x3y3t − y6s2 ∈ BD,

that is, (x, ys) ⊆
√

pl(D)B. As BD ⊆ k⊕ (x, y)B (see [12, Lemma 1])
and BD ⊆ k[y] ⊕ (x, s)B (see [8, Example 4.4]), if τ : B → B/(x, ys)
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is the canonical projection, then for any separating algebra A, τ(A) ⊆
k[τ(y)]. By Proposition 2.2, we have

SD = ΓG ∪
(
(VX(x, ys)× VX(x, ys)) ∩ VX×X(y ⊗ 1− 1⊗ y)

)
= ΓG ∪ VX×X(x⊗ 1, 1⊗ x, y ⊗ 1, 1⊗ y)∪

VX×X(x⊗ 1, 1⊗ x, s⊗ 1, 1⊗ s, y ⊗ 1− 1⊗ y).

One can verify (again with Magma [1]) that this gives us the separating
variety as the union of three irreducible components of dimension 7,
8, and 7, respectively. This example also shows that in general, the
dimension of the separating variety is not 2 dimX − dim(k[X]D)). /

Proposition 2.6. If D is nonzero and k[X]D admits a polynomial sep-
arating algebra, then every irreducible component of SD has dimension
at least dimX + 1.

Proof. As k has characteristic zero, any separating algebraA has field of
fractions Q(A) = Q(k[X]D) (see [6, Theorem 3.2.3], or [5, Proposition
2.3.10] when k[X]D is finitely generated). Thus a finitely generated sep-
arating algebra A has dimension n := trdegk(Q(k[X]D)) = dimX − 1
(see [13, Principle 11(e)]). If A is a polynomial ring, then A is gener-
ated by n elements, say f1, . . . , fn. It follows that SD = VX×X(δ(A)) =
VX×X(δ(f1), . . . , δ(fn)) is cut out by n elements. By Krull’s Principal
Ideal Theorem (see for example, [10, Theorem 10.2]), every irreducible
component of SD has codimension at most n, that is, dimension at
least dimX + 1. 2

3. The basic actions

We now concentrate on the basic actions of the additive group. They
are induced by the Weitzenböck derivations Dn = x0

∂
∂x1

+ . . .+xn−1
∂
∂xn

on the polynomial rings k[x0, . . . , xn] = k[Vn]. We recall some results
and notation from [11], where separating sets for the basic actions were
first constructed. Define the invariants

fm :=
m−1∑
k=0

(−1)kxkx2m−k +
1

2
(−1)mx2

m ∈ kerDn for m = 1, . . . ,
⌊n

2

⌋
,

and f0 := x0. For m = 0, . . . , bn−1
2
c, [11, Equation (3)] also gives

polynomials sm such that Dnsm = fm. It follows that

(2) In := (x0, . . . , xbn−1
2
c) =

√
(f0, . . . , fbn−1

2
c) ⊆

√
pl(Dn)k[Vn].

Consider the projection τ : k[Vn] → k[Vn]/In. We can reformulate
[11, Proposition 3.1] as:

(3) τ(k[Vn]Dn) =

 k for 2 - n,
k[τ(x2

m)] for n = 2m, 2 - m,
k[τ(x2

m), τ(x3
m)] for n = 2m, 2 | m.
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Proposition 2.2 then implies that the separating variety SDn is
(4) (

VVn(In)× VVn(In)
)
∪ ΓDn , for 2 - n,(

VVn×Vn(δ(x2
m)) ∩ (VVn(In)× VVn(In))

)
∪ ΓDn , for n = 2m, 2 - m,(

VVn×Vn(δ(xm)) ∩ (VVn(In)× VVn(In))
)
∪ ΓDn , for n = 2m, 2 | m.

We formulate the technical part of our main result as a proposition
whose proof is postponed to Section 4:

Proposition 3.1.

(a) If n = 2m+ 1 is odd, then

VVn(In)× VVn(In) ⊆ ΓDn .

(b) If n = 2m is even, then
(i) (VVn(In)×VVn(In))∩VVn×Vn ((xm ⊗ 1)− (−1)m(1⊗ xm)) ⊆

ΓDn ,
(ii) and if furthermore k = C, then

ΓDn \ΓDn ⊆ (VVn(In)×VVn(In))∩VVn×Vn ((xm ⊗ 1)− (−1)m(1⊗ xm)) .

Theorem 3.2.

(a) If n is odd, divisible by four, or equal to 2, then the separating
variety is equal to the Zariski closure of the graph of the Ga-
action, that is, SDn = ΓDn.

(b) If n = 2m and m ≥ 3 is odd, then the separating variety has
two irreducible components:

– ΓDn, which has dimension n+ 2,
– and a second of dimension n+ 1:

VVn×Vn
(
xm ⊗ 1− 1⊗ xm

)
∩
(
VVn(In)× VVn(In)

)
.

Proof. (a) If n is odd or divisible by 4, the claim follows immediately
from Equation (4) and Proposition 3.1 (a) and (b)(i), respectively.

When n = 2, Equation (4) gives SD2 = M ∪ ΓD2 , where

M = {((0, a1, a2), (0, b1, b2)) ∈ V2 × V2 : ai, bi ∈ k, a2
1 = b2

1}.

Take (a, b) ∈M . If a1 = b1 6= 0, then setting t = b2−a2

a1
, we obtain

t ∗ a = (0, a1, a2 + ta1) = (0, b1, b2) = b,

and so (a, b) ∈ ΓD2 . On the other hand, if a1 = −b1, then Proposition
3.1(b)(i) implies (a, b) ∈ ΓD2 .
(b) Assume n = 2m with m ≥ 3 odd. Equation (4) yields SDn =
ΓDn ∪Mn,1∪Mn,2, where Mn,i is the set of points of Vn×Vn of the form

((0, . . . , 0, am, am+1, . . . , a2m), (0, . . . , 0, (−1)iam, bm+1, . . . , b2m))

for i = 1, 2 and ak, bk ∈ k. By Proposition 3.1 (b)(i), we have Mn,1 ⊆
ΓDn , and so SDn = ΓDn ∪ Mn,2. We clearly have ΓDn 6⊆ Mn,2. It
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remains to show that Mn,2 6⊆ ΓDn . Suppose, for the sake of a proof by
contradiction, that Mn,2 ⊆ ΓDn .

The Ga-actions we consider are in fact defined over Q. Thus, ΓDn
is the zero set of an ideal generated by polynomials with coefficients
in Q (often called the Derksen-ideal, see [4, 15]). Clearly, this also
holds for Mn,2. Note that ideal inclusion can be decided using Gröbner
Basis methods. Hence, the question of the inclusion of Mn,2 in ΓDn will
have the same answer over any field of characteristic zero, and we may
assume k = C. Proposition 3.1(b)(ii) then implies that Mn,2 \ ΓDn ⊆
ΓDn \ΓDn ⊆Mn,1. As m ≥ 3, this is a contradiction. Indeed, if a = em
and b = em + em+1 (where e0, . . . , en are the standard basis vectors),
then (a, b) ∈Mn,2 \ ΓDn , but (a, b) 6∈Mn,1. 2

Corollary 3.3. If n = 2m and m ≥ 3 is odd, then k[Vn]Dn does not
admit a polynomial separating algebra.

Proof. Immediate from Theorem 3.2(b) and Proposition 2.6. 2

4. Proof of Propostion 3.1

We first prove a technical lemma, which in turn uses the following
well-known formula (see, for example [14, Satz 1.25]):

(5)
r∑
j=0

(−1)j
(
r

j

)(
p− j
q

)
=

(
p− r
p− q

)
for all p ≥ q ≥ 0, r ≥ 0.

Lemma 4.1.

(a) If 2m ≤ n are natural numbers, then Mm,n =
(

1
(n−i−j)!

)
i,j=0,...,m

∈

Q(m+1)×(m+1) is an invertible matrix.

(b) For any m, if A := Mm−1,2m =
(

1
(2m−i−j)!

)
i,j=0,...,m−1

∈ Qm×m

and v := ( 1
m!
, 1

(m−1)!
. . . , 1

1!
)T ∈ Qm, then vTA−1v = 1− (−1)m.

Proof.
(a) For each i = 0, . . . ,m, multiply the ith line of Mm,n by (n − i)!

to obtain the matrix
(

(n−i)!
(n−i−j)!

)
i,j=0,...,m

having the same rank as Mm,n.

This is the evaluation matrix (fj(ai))i,j=0,...,m of the polynomials fj =
X(X − 1) · · · (X − j+ 1) of degree j at the points ai = n− i, and thus,
it is invertible.
(b) Set

x =

(
(−1)m+j(2m− j + 1)!

(j − 1)!(m− j + 1)!

)
j=1,...,m

∈ Qm.

We first show that Ax = v. For i = 1, . . . ,m, we have to show that
m∑
j=1

(−1)m+j(2m− j + 1)!

(2m− i− j + 2)!(j − 1)!(m− j + 1)!
=

1

(m− i+ 1)!
,
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which is equivalent to

m+1∑
j=1

(−1)m+j(2m− j + 1)!

(2m− i− j + 2)!(j − 1)!(m− j + 1)!
= 0.

The left-hand side is equal to

(−1)m+1

m∑
j=0

(−1)j(2m− j)!
(2m− i− j + 1)!j!(m− j)!

= (−1)m+1 (i− 1)!

m!

m∑
j=0

(−1)j
(

2m− j
i− 1

)(
m

j

)
︸ ︷︷ ︸

(∗)

.

Formula (5) with r := m, p := 2m, q := i− 1 implies that the sum (∗)
is equal to

(
m

2m−i+1

)
, which is zero for i = 1, . . . ,m, and so Ax = v.

Next, we show that vTx = 1− (−1)m, that is,
m∑
j=1

(−1)m+j(2m− j + 1)!

(j − 1)!((m− j + 1)!)2
= 1− (−1)m,

or again
m∑
j=0

(−1)j(2m− j)!
j!((m− j)!)2

=
m∑
j=0

(−1)j
(
m

j

)(
2m− j
m

)
= 1.

Since Formula (5) with r = m, p = 2m, and q = m yields the last
equality, we have shown that vTA−1v = vTx = 1− (−1)m. 2

Proof of Proposition 3.1. Set m := bn
2
c. We start by reformulating the

three statements:

(a) Suppose n = 2m+ 1 is odd. If

(6)
a = (0, . . . , 0, am+1, . . . , an)

and b = (0, . . . , 0, bm+1, . . . , bn),

then (a, b) ∈ ΓDn .
(b)(i) Suppose n = 2m is even. If

(7)
a = (0, . . . , 0, am, am+1, . . . , an)

and b = (0, . . . , 0, (−1)mam, bm+1, . . . , bn),

then (a, b) ∈ ΓDn .
(b)(ii) If k = C, then every point (a, b) ∈ ΓDn \ ΓDn is of the form

given in (7).

We prove (a) and (b)(i) simultaneously by constructing a morphism

f : k −→ V × V
u 7−→ (x(u), y(u)),

such that
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(1) f(0) = (a, b), as given in Equation (6) or (7), if n is odd or
even, respectively,

(2) and for each u 6= 0, we have y(u) = 1/u ∗ x(u).

As ΓDn is Zariski-closed, f−1(ΓDn) is also Zariski-closed and contains
k \ {0}. Thus, f−1(ΓDn) must contain k, and in particular, (a, b) =
f(0) ∈ ΓDn .

Set m′ := bn−1
2
c, so that for n odd, we have m′ = m, and for n even,

m′ = m − 1. Note that n = (m + 1) + m′ in both cases. We impose
the following restrictions:

x(u) := (x0(u), . . . , xm′(u)︸ ︷︷ ︸
:=x̃(u)

, am′+1, . . . , an),

y(u) := (y0(u), . . . , ym(u)︸ ︷︷ ︸
:=ỹ(u)

, bm+1, . . . , bn).

For z = (zi)i=0,...,n ∈ Vn and t ∈ Ga, the group action is given by

t ∗ z =

(
k∑
i=0

tk−i

(k − i)!
zi

)
k=0,...,n

.

If x(u) and y(u) define a morphism as desired, for u 6= 0, we must have
(1/u ∗ x(u))k=m+1,...,n = (bk)k=m+1,...,n, or equivalently

m′∑
i=0

1

uk−i(k − i)!
xi +

k∑
i=m′+1

1

uk−i(k − i)!
ai = bk for k = n, . . . ,m+ 1.

Set δ := m −m′, so that δ = 0 for n odd, and δ = 1 for n even, then
x̃(u) must be a solution of the following system of linear equations:
(8)

1
unn!

1
un−1(n−1)!

. . . 1
um+1(m+1)!

1
un−1(n−1)!

. . .
...

...
. . .

...
1

um+1(m+1)!
1

umm!
. . . 1

uδ+1(δ+1)!


︸ ︷︷ ︸

=:C(u)


x0

x1
...
xm′

 =


pm
pm−1

...
pδ

 ,

where pk−m′−1(u) := bk −
∑k

i=m′+1
(1/u)k−i

(k−i)! ai for k = n, . . . ,m+ 1.

Observe that

C(u) = uδ−1 · diag(u−m, u1−m, . . . , u−δ) · A · diag(u−m, u1−m, . . . , u−δ),



THE SEPARATING VARIETY FOR THE BASIC Ga-ACTIONS 11

where A := Mm′,n is the invertible matrix of Lemma 4.1 (a). Thus, for
nonzero u, we must have

x̃(u) =


x0

x1
...
xm′

 = u1−δ diag(um, um−1, . . . , uδ)A−1


umpm

um−1pm−1
...

uδpδ


︸ ︷︷ ︸

=:q(u)

.

Note that above, qk(u) = ukpk(u) is a polynomial in u, thus for this
choice of x̃(u), we obtain a morphism satisfying x(0) = a as desired.
For u 6= 0 and k = 0, . . . ,m′, we must then have

yk(u) :=
k∑
i=0

(1/u)k−i

(k − i)!
xi(u) =

(
u−k

k!
,
u−k+1

(k − 1)!
, . . . ,

1

0!
, 0, . . . , 0

)
x̃(u)

= u1−δ
(
um−k

k!
,
um−k

(k − 1)!
, . . . ,

um−k

0!
, 0, . . . , 0

)
A−1q(u).

This gives an expression of yk(u) as a polynomial in u. For k =
0, . . . ,m′, we have yk(0) = 0. For n odd, it already follows that
y(0) = b, and we are done. If n is even, then

(9) ym(u) = am +

(
1

m!
,

1

(m− 1)!
, . . . ,

1

2!
,

1

1!

)
A−1q(u),

which is again polynomial in u. It remains to show that ym(0) =
(−1)mam for n = 2m. As qk(0) is −am

k!
for k = δ, δ + 1, . . . ,m, for-

mula (9) yields

ym(0) = am +

(
1

m!
,

1

(m− 1)!
, . . . ,

1

2!
,

1

1!

)
A−1


−am

m!
− am

(m−1)!
...
−am

1!


= am(1− vTA−1v) = (−1)mam,

where v = ( 1
m!
, 1

(m−1)!
. . . , 1

1!
)T ∈ km, and the last equality follows from

Lemma 4.1 (b).
We now prove (b)(ii). Recall that for a constructible subset U in

an affine complex variety, the Zariski-closure coincides with the closure
taken in the Euclidean topology (see [2, Satz 11.23]). In particular, as
images of morphisms are constructible, this result holds for the image
ΓDn of the graph morphism φ : Ga×Vn → Vn×Vn defined by φ(t, x) =
(x, t ∗ x). Let (a, b) ∈ ΓDn \ ΓDn . We must show that (a, b) is of the
form described in (7). By Proposition 2.1, (a, b) ∈ SDn \ ΓDn implies
that (a, b) ∈ VVn(In)×VVn(In), that is, a = (0, . . . , 0, am, am+1, . . . , an)
and b = (0, . . . , 0, bm, bm+1, . . . , bn). Thus, it remains to show that
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bm = (−1)mam. As (a, b) ∈ ΓDn , there exists a sequence (tl, x
l)l∈N ∈

(Ga × Vn)N such that

lim
l→∞

(xl, tl ∗ xl) = (a, b).

If the sequence (tl)l∈N was bounded, there would be a convergent sub-
sequence with limit t′, and as the group action is a continuous map,
we would have (a, b) = (a, t′ ∗ a) ∈ ΓDn , a contradiction. Thus, the
sequence (tl)l∈N is unbounded, and we can assume

lim
l→∞

tl =∞ and tl 6= 0 for all l ∈ N.

Set yl := tl ∗xl, and write xl = (xl0, x
l
1, . . . , x

l
n) and yl = (yl0, y

l
1, . . . , y

l
n).

We then have the following equations:

ylk =
k∑
i=0

tk−il

(k − i)!
xli for k = 0, . . . , n.

For each k = m+ 1, . . . , 2m, these equations can be written as

m−1∑
i=0

tk−il

(k − i)!
xli = ylk −

k∑
i=m

tk−il

(k − i)!
xli︸ ︷︷ ︸

=:plk−m

.

Similarly as in Equation (8), we may write these equations in matrix
form:

(10)


t2ml
2m!

t2m−1
l

(2m−1)!
. . .

tm+1
l

(m+1)!

t2m−1
l

(2m−1)!

. . .
...

...
. . .

...
tm+1
l

(m+1)!

tml
m!

. . .
t2l
2!


︸ ︷︷ ︸

=:Cl


xl0
xl1
...

xlm−1

 =


plm
plm−1

...
pl1

 .

If A := Mm−1,2m =
(

1
(2m−i−j)!

)
i,j=0,...,m−1

∈ Qm×m is the invertible

matrix of Lemma 4.1(a), then

Cl = diag(tml , t
m−1
l , . . . , tl) · A · diag(tml , t

m−1
l , . . . , tl),

and thus,
xl0
xl1
...

xlm−1

 = diag(t−ml , t−m+1
l , . . . , t−1

l )A−1


t−ml pm

t−m+1
l pm−1

...
t−1
l p1

 .
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We define qlk := t−kl pk for k = 1, . . . ,m and all l. We have

ylm = xlm +
m−1∑
i=0

tm−il

(m− i)!
xli

= xlm +

(
tml
m!
,

tm−1
l

(m− 1)!
, . . . ,

tl
1!

)
xl0
xl1
...

xlm−1



= xlm +

(
1

m!
,

1

(m− 1)!
, . . . ,

1

1!

)
A−1


qlm
qlm−1

...
ql1

 .(11)

For k = 1, . . . ,m, we have

lim
l→∞

qlk = lim
l→∞

t−kl

(
ylk+m −

k+m∑
i=m

tk+m−i
l

(k +m− i)!
xli

)

= lim
l→∞

(
− 1

k!
xlm

)
= −am

k!
.

Therefore, by Lemma 4.1(b),

bm = lim
l→∞

ylm = am − am · vTA−1v

= am − am · (1− (−1)m) = (−1)mam,

as desired. 2
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