The Semantics of Plurals

Eytan Zweig

THE UNIVERSITY of York

August 4, 2009

An observation

- There's a sense in which (1) is collective and (2) distributive:
 - (1) The boys surrounded the building.
 - (2) The boys are tall.

An observation

- There's a sense in which (1) is collective and (2) distributive:
 - (1) The boys surrounded the building.
 - (2) The boys are tall.

Observation 1

Choice of predicate affects availability of distributive readings.

Another observation

- Some predicates are ambiguous:
 - (3) The boys are building a raft.

Another observation

- Some predicates are ambiguous:
 - (3) The boys are building a raft.
- But not in every context:
 - (4) The boys are building a raft each.
 - (5) Every boy is building a raft.

Another observation

- Some predicates are ambiguous:
 - (3) The boys are building a raft.
- But not in every context:
 - (4) The boys are building a raft each.
 - (5) Every boy is building a raft.

Observation 2

Quantifiers and other operators may induce a distributive reading.

A third observation

- Here is another ambiguous example:
 - (6) Ten boys are building a raft.
- How many rafts?

A third observation

- Here is another ambiguous example:
 - (6) Ten boys are building a raft.
- How many rafts?
- Collective construal 1.
- Distributive construal 10.

A third observation

- Here is another ambiguous example:
 - (6) Ten boys are building a raft.
- How many rafts?
- Collective construal 1.
- Distributive construal 10.

Observation 3

Distributivity creates numerical dependencies between quantifiers.

The source of distributivity

- Take a sentence like (7):
 - (7) Two students danced.
- We know this sentence is ambiguous between a distributive reading and a collective reading:
 - (8) a. DANCE $(a \oplus b)$
 - b. $DANCE(a) \land DANCE(b)$
- What is the source of the distributivity?
 - 1 The DP two students
 - The VP danced

Both DPs and VPs are ambiguous

- Two early approaches indicate that the ambiguity lies in both DPs and VPs.
- Bennett (1974), who extends Montague grammar to deal with plurals, argues that distributive and collective DPs are of different types, the former denoting sets (type $\langle e, t \rangle$) and the latter denoting sets of sets (type $\langle \langle e, t \rangle, t \rangle$).
- Predicates have to be specified as being of type \(\langle e, t \rangle, t \rangle\) (select for distributive) or \(\langle \langle e, t \rangle, t \rangle\) (select for collective) or ambiguous between both.

Both DPs and VPs are ambiguous

- Scha (1981), building on Bartsch (1973), treats all predication as inherently collective.
- Distributive predication (and cumulative predication, more on that later) is derived from collective predication via meaning postulates.
- Both determiners, and verbs, have to be lexically marked as to whether they allow this to happen.
- Neither approach is particularly attractive from a compositional semantics perspective, and they quickly gave way to views that attribute the ambiguity to either the DP or the VP but not both.

- One such view was offered by Lakoff (1970).
- Re-formulating his approach in more modern terms, it states that noun phrases are ambiguous between two readings:
 - A quantifier reading
 - An argument reading

- Quantifiers undergo obligatory raising, while arguments do not.
- So, for example:
 - (9) [John and Bill] $_C = j \oplus b$
 - (10) [John and Bill]_D = $\lambda P[P(j) \wedge P(b)]$

• Predicates, however, are unambiguous:

(11)
$$[tall] = \{j, b\}$$

(12)
$$[met] = \{j \oplus b\}$$

$$[[dance]] = \{j, b, j \oplus b\}$$

Predicates, however, are unambiguous:

(14)
$$[tall] = \{j, b\}$$

$$[met] = \{j \oplus b\}$$

(16)
$$[dance] = \{j, b, j \oplus b\}$$

- tall can thus only combine with the quantifier reading of the DP.
- met can only combine with the argument reading.
- And dance can combine with both.

- This view is attractive in that it draws a simple view of distributivity, and the division of work between quantification and predicates.
- Predicate distributivity amounts to a lexical fact about their denotations. If they contain atoms in their denotation, they have distributive readings. If they contain sums, they have collective readings. The two are not mutually exclusive.
- The actual work of distributivity is done by quantifiers.
- No need to distinguish type 1 and type 2 distributivity.

- DP ambiguity views were popular in the 70s and 80s and persisted until the early 90s (Gillon 1990, 1992).
- However, a convincing argument against them was offered by (Lasersohn 1995):
 - (17) The students closed their notebooks, left the room, and gathered in the hall after class.
- The same DP can have both collective a distributive readings in the same sentence.

- Lasersohn's argument leads towards an alternate view, that it is the VP that is ambiguous.
- This was first proposed by Hoeksema (1983).
- In Hoeksema's view, plural NPs always denote sets of sets; below I will rewrite this as sums.

(18) [two men] =
$$\{j \oplus b, b \oplus c, c \oplus j...\}$$

(19)
$$[\![John and Bill]\!] = \{j \oplus b\}$$

• Distributive/collective only predicates are unambiguous:

(20)
$$[tall] = \{j \oplus b, j, b\}$$

(21)
$$[are a good team] = \{j \oplus b\}$$

 Ambiguous sentences arise because the predicate is ambiguous:

$$[dance]_C = \{j \oplus b\}$$

(23)
$$[dance]_C = \{j \oplus b, j, b\}$$

- Note that in Hoeksema's system, distributivity is an inference.
 - (24) a. John and Bill are a good team.
 - b. GOOD-TEAM $(j \oplus b)$
 - (25) a. John and Bill are tall.
 - b. TALL $(j \oplus b)$
- There is no difference in the logical form of a distributive or a collective sentence.
- Rather, we are able to make the lexical inference that if (25b) is true, then it must also be true that TALL(j) and TALL(b).

- One problem with Hoeksema's system is that it predicts massive (and systematic) lexical ambiguity.
 - (26) Two students danced.
- While it is well known that sentences like (26) are ambiguous, is it really true that there are two lexical entries for dance?
- Link (1983) proposes a semantics of distributivity and collectivity that avoids this problem, by introducing distributivity operators.

Distributivity operators

 Link's semantics for inherently collective and distributive predicates is the same as Hoeksema's:

(27)
$$[[tall]] = \{j \oplus b, j, b\}$$

(28)
$$[are a good team] = \{j \oplus b\}$$

However, ambiguous predicates get only one denotation; this
may be distributive, or not, depending on the current state of the
world.

 Under the collective reading, arguments combine directly with the ambiguous predicate:

- (29) a. John and Bill danced.
 - b. DANCE $(j \oplus b)$
- In the distributive reading, however, an operator DIST applies to the predicate before composition. This operator is defined as follows:

(30)
$${}^{DIST}P = \lambda X[\forall x[x \in X \land ATOM(x) \rightarrow P(x)]]$$

 In essence, the distributive operator takes the implication of distributivity and places it in the truth conditions.

- For example:
 - (31) a. John and Bill danced.
 - b. DANCE $(j \oplus b)$
 - c. DIST DANCE $(j \oplus b)$
- (31b) will be true if $j \oplus b$ is in the denotation of dance.
- (31c) will be true if $j \oplus b$ is in the denotation of **dance**, AND j is in the denotation of **dance**, AND b is in the denotation of **dance**.

• What happens when DIST combines with lexically collective or distributive predicates?

- (32) a. John and Bill are a good team.
 - b. GOOD-TEAM $(j \oplus b)$
 - c. DIST GOOD-TEAM $(j \oplus b)$
- Since j and b can never be in the denotation of be a good team,
 (32c) is a contradiction.
 - (33) a. John and Bill are tall.
 - b. $TALL(j \oplus b)$
 - c. DIST TALL $(j \oplus b)$
- Since it is lexically specified that if j ⊕ b is in the denotation of tall, j and b must be there too, (33b) and (33c) are equivalent.

Distributivity and plurality

- We have seen how a system such as Link's works for conjoined subjects. What of plural subjects?
- In Link's system, the denotation for plural noun phrases is achieved by the the use of a pluralizing operator *:
 - (34) P is the closure of P under the sum operation.
 - (35) $[boy] = \{a, b, c\}$
 - $[36) [*boy] = \{a, b, c, a \oplus b, a \oplus c, b \oplus c, a \oplus b \oplus c\}$
- Thus:
 - (37) a. Some boys danced.
 - b. $\exists X[*BOY(X) \land^{DIST} DANCE(X)]$

Distributivity and plurality

- Landman (1989, 2000) points out that the DIST operator can be redefined in terms of the * operator:
 - (38) $^{DIST}P = ^*ATOM(P)$, where ATOM(P) is the subset of P that includes only atoms.

Distributivity and plurality

- Landman (1989, 2000) points out that the DIST operator can be redefined in terms of the * operator:
 - (38) $^{DIST}P = ^*ATOM(P)$, where ATOM(P) is the subset of P that includes only atoms.
- This leads to Landman's overall statement:

Definition

Distributivity is predicate plurality.

Groups

- Take the following sentence:
 - (39) The cards below 7 and the cards from 7 up were separated.
- separated is a collective predicate; we cannot paraphrase (39) as (40):
 - (40) The cards below 7 were separated and the cards from 7 up were separated.
- Thus, according to our discussion so far, (39) translates as:
 - (41) SEPARATE([$\oplus 2 \oplus 3 \oplus 4 \oplus 5 \oplus 6$] \oplus [$7 \oplus 8 \oplus 9 \oplus 10 \oplus J \oplus Q \oplus K \oplus A$])

Groups

- But what of:
 - (42) The cards below 9 and the cards from 9 up were separated.
 - $(43) \qquad \mathsf{SEPARATE}([2 \oplus 3 \oplus 4 \oplus 5 \oplus 6 \oplus 7 \oplus 8 \oplus 9] \oplus [10 \oplus J \oplus Q \oplus K \oplus A])$
- $[2 \oplus 3 \oplus 4 \oplus 5 \oplus 6 \oplus 7 \oplus 8 \oplus 9] \oplus [10 \oplus J \oplus Q \oplus K \oplus A]$ is identical to $[2 \oplus 3 \oplus 4 \oplus 5 \oplus 6] \oplus [7 \oplus 8 \oplus 9 \oplus 10 \oplus J \oplus Q \oplus K \oplus A]$.
- Thus, the two sentences appear to be synonymous.

Groups

- Partially in order to solve this problem, Landman (1989), following Link (1984), introduces the notion of a group.
- A group is a noun phrase that denotes a singular entity, that corresponds to multiple entities.
- We have lexical nouns that denote groups: e.g. The committee:
 - (44) The committee is made up of John, Mary, Bill and Susan.

Or contexts?

- Imagine that in our farm we have four animals: one young pig, one old pig, one young cow, and one old cow.
 - (45) The cows and the pigs were separated.
 - (46) The young animals and the old animals were separated.
 - (47) The animals were separated.
- We don't necessarily have pre-conceived notions of groups, but perhaps they are given by the context (Schwarzschild 1996)

Intermediate distributivity

- Some sentences cannot be simply viewed as distributive or collective (Gillon 1987, 1990):
 - (48) Gilbert, Sullivan and Mozart wrote operas.
- Mozart wrote operas, and Gilbert and Sullivan wrote operas.
- The sentence is not true on the collective reading, as the three men did not write anything together.
- The sentence is not true on the distributive reading, as neither Gilbert nor Sullivan wrote operas alone.

Intermediate distributivity

- It gets even more complicated:
 - (49) Rodgers, Hammerstein and Hart wrote musicals.
- Rodgers and Hammerstein wrote musicals together, and Hammerstein and Hart wrote musicals together, but they did not write musicals as a trio, nor individually.

Intermediate distributivity

- It gets even more complicated:
 - (49) Rodgers, Hammerstein and Hart wrote musicals.
- Rodgers and Hammerstein wrote musicals together, and Hammerstein and Hart wrote musicals together, but they did not write musicals as a trio, nor individually.
- We need a theory for "intermediate" readings.

Cumulative readings

- So far, we have talked about the distinction between distributive and collective readings.
- But as far back as Scha (1981) that in sentences with more than one argument, there is another type of reading: the cumulative reading.
 - (50) Three boys carried two pianos.

```
John — piano<sub>1</sub>
Bill
Frank — piano<sub>2</sub>
```

Cumulative readings

- Also:
 - (51) Three boys carried four pianos.

```
John — piano<sub>1</sub>

Bill — piano<sub>2</sub>

Frank — piano<sub>3</sub>

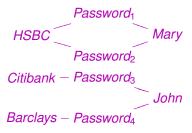
piano<sub>4</sub>
```

Cumulative readings

- Cumulative readings have the following two properties:
 - Each boy must participate in the carrying, and each piano must be carried.
 - There is no number dependency between the two arguments. (No type 3 distributivity)
- Are they distributive readings? Or collective? Or neither?

The collective/collective view

- One view argues that cumulative readings are a sub-type of collective readings (Roberts 1987).
- Specifically, they argue that in the cumulative readings, both arguments are interpreted collectively.
 - (52) Three boys carried four pianos.
 - (53) A group of three boys carried a group of four pianos.


The collective/collective view

- Landman (2000), however, points out one critical flaw to this view:
 - (54) Ten hens laid fifteen eggs.
- lay an egg is an inherently distributive notion. It is impossible to jointly lay eggs.

Mixed distributivity

Consider:

(55) Three banks gave two new members each exactly two passwords.

- Bartsch, Renate. 1973. The semantics and syntax of number and numbers. In *Syntax and semantics 2*, ed. John p. Kimbell. New York: Seminar Press.
- Bennett, Michael. 1974. Some extensions of a Montague fragment of English. Doctoral Dissertation, UCLA. Reprinted 1975, IUCL, Indiana Universia, Bloomington.
- Gillon, Brendan S. 1987. The readings of plural noun phrases in English. *Linguistics and Philosophy* 10:199–219.
- Gillon, Brendan S. 1990. Plural noun phrases and their readings: a reply to Lasersohn. *Linguistics and Philosophy* 13:477–485.
- Gillon, Brendan S. 1992. Towards a common semantics for English count and mass nouns. *Linguistics and Philosophy* 15:596–639.
- Hoeksema, Jack. 1983. Plurality and conjunction. In *Studies in modeltheoretic semantics*, ed. Alice ter Meulen, 63–83.Dordrecht: Foris.

- Lakoff, George. 1970. Linguistics and natural logic. *Synthese* 22:151–271.
- Landman, Fred. 1989. Groups, I. *Linguistics and Philosophy* 12:559–605.
- Landman, Fred. 2000. *Events and plurality: the Jerusalem lectures*. Dordrecht: Kluwer.
- Lasersohn, Peter. 1995. *Plurality, conjunction and events*. Dordrecht: Kluwer.
- Link, Godehard. 1983. The logical analysis of plurals and mass terms: a lattice-theoretical approach. In *Meaning, use and interpretation of language*, ed. Rainer Bauerle, Christoph Schwarze, and Arnim vs Stechow. Berlin: de Gruyter.
- Link, Godehard. 1984. Hydras: on the logic of relative clause constructions with multiple heads. In *Varieities of formal semantics*, ed. F. Landman and F. Veltman. Dordrecht: Foris.
- Roberts, Craige. 1987. Modal subordination, anaphora, and

distributivity. Doctoral Dissertation, U Mass, New York and London.

Scha, Remko. 1981. Distributive, collective and cumulative quantification. In *Formal methods in the study of language*, ed. J. Groenendijk, T. Janssen, and M. Stokhof. Amsterdam: Mathematical Center Tracts.

Schwarzschild, Roger. 1996. Pluralities. Dordrecht: Kluwer.