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1 Introduction

Additional material related to the development of particle distribution functions

(section 2) and the relationship of Maxwell’s equations to ray treatments of light

(section 4) for ‘Tallents, G. (2018). An Introduction to the Atomic and Radiation

Physics of Plasmas. Cambridge: Cambridge University Press’ is presented here.

The text of the book develops the physics of emission, absorption and interaction

of light in astrophysics and in laboratory plasmas from first principles using the

physics of various fields of study including quantum mechanics, electricity and

magnetism, and statistical physics. This text can be regarded as an additional

Appendix to the book. References to Equations and Sections given with decimal

numbering refer to those presented in the book.

2 The Boltzmann and Fermi-Dirac distributions

In Section 8.1 we show that particles can be designated as fermions, where only

a maximum of one particle can occupy a quantum state, or as bosons where any

number of particles can occupy a quantum state. In a book on atomic and radia-

tion physics, we are mainly concerned with electron quantum states (representing

fermions) or the quantum states associated with photons (representing bosons).

The probability P (E) of finding a particle in a quantum state of energy E

at a temperature T is given by Equation 1.19. By including the number N of

particles allowed to occupy the quantum state of energy E, Equation 1.19 enables

a presentation in the same expression of the probability of having either fermions

or bosons in a quantum state. The Pauli exclusion principle (see section 8.1) allows

fermions to have either N = 0 or N = 1 particles in the same quantum state, while

bosons can have have N = 0, 1, 2, ... (up to any integer). Equation 1.19 is given as

a probability proportionality:

P (E) ∝ exp

(
N(µ− E)

kBT

)

where µ is the chemical potential. The chemical potential is the energy per particle

required to add more particles into the available quantum states.

Equation 1.19 is used to determine the Maxwellian distribution of speeds in

Section 1.2 and then to derive the Saha-Boltzmann ratio of the populations of
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different ionisation stages at low density in Section 1.4.1. In later chapters, the

probability of having a particle in a quantum state is employed in the deriva-

tion of the Planck black-body radiation distribution, enabling a calculation of

the probability of the number of photons in a mode (Section 4.1.2). Finally, the

Boltzmann ratio of populations is utilised to derive the high density form of the

Saha-Boltzmann equation (Section 13.4).

To derive Equation 1.19, we need to consider the change ∆U of the total

energy U of an assumed large number ntot of particles distributed into a number

of quantum states. From equilibrium thermodynamics, we have for a constant

temperature T and constant chemical potential µ that any change in the total

energy U of a collection of quantum states arises from a change in the entropy S

plus any energy change due to the addition of ∆ntot more particles. We have

∆U = T∆S + µ∆ntot. (1)

In thermodynamics, entropy change ∆S is defined by the first term on the right in

Equation 1. There is additional energy associated with an increase in the ‘disorder’

represented by the entropy.

The total energy U is determined by adding up the energy of each quantum

state multiplied by the number of particles in the state, so that

U =
∑
i

NiniEi (2)

where Ni is the number of particles allowed in the ith quantum state and ni is

the number of quantum states in the system with an energy Ei. We discussed

previously that for fermions, Ni is either zero or one, where for bosons Ni can

range from 0, 1, 2, ... up to any integer. So as not violate the Pauli exclusion

principle, we are assuming that the different quantum states with the same energy

are separated into different atoms (for bound electrons) or satisfy the possible

density of quantum states (for free electrons, see section 1.3).

The total number of particles is determined from a summation of the particle

number over all the quantum states. We have

ntot =
∑
i

Nini. (3)

In statistical physics, the entropy S of a system is determined by the number

of ways Q that particles can be arranged in the collection of quantum states of the
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system. We have that

S = kB lnQ. (4)

We show below that this definition of entropy is consistent with the thermodynamic

definition stated in terms of the change ∆U of total energy of the particles due to

increasing entropy ∆S:

∆S =
∆U

T
.

The logarithm in Equation 4 is useful in obtaining an approximate value for

the entropy. Fortunately, the approximation we will use becomes very accurate

when the number ntot of particles is large. The number of distinct arrangments of

ntot indistinguishable particles into quantum states (which we are labelling as i) is

given by probability theory. We have that the number of distinct arrangements Q

is given by the factorial of the total number ntot of particles divided by the product

of factorials of the number ni of quantum states i of the system1:

Q =
ntot!∏
i ni!

. (5)

The total number of ways that ntot particles can be arranged is ntot!. We are not

concerned with the order of ‘placing’ the particles in each of the quantum states

i as we assume that the particles are indistinguishable, so Equation 5 divides the

total number of arrangements by the number of ways ni! that ni states can be

arranged. This is done for each quantum state i giving rise to the product in the

denominator.

Taking the logarithm of Q gives

lnQ = ln(ntot!)−
∑
i

lnni.

The Stirling approximation is a convenient simplification for the factorial of ntot.

For large x, we have

ln(x!) ≈ x lnx− x.
1Equation 5 assumes that particles have sufficient time and sufficient interaction for all the

quantum states to be accessible. For fermions, collisions between particles often ensure equal

accessibility, leading to equilibrium distributions where, for example, Equation 1.19 is valid. For

photons and other bosons, the particles need to interact with electrons (or other fermions).
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The value of lnQ becomes

lnQ = ntot lnntot − ntot −
∑
i

ni lnni +
∑
i

ni. (6)

Returning to the energy balance equation (Equation 1), we can divide through-

out by a small increment ∆nj of the population of nj quantum states associ-

ated with a quantum state j. Taking the limits of small increments and using

S = kB lnQ, we have a differential equation

∂U

∂nj

= kbT
∂ lnQ

∂nj

+ µ
∂ntot

∂nj

. (7)

Each of these terms simplifies considerably. Using the summation of all quantum

state energies given by Equation 2 we have

∂U

∂nj

= NjEj. (8)

All values in the summation of U are zero in the partial derivative except when

i = j. Similarly, using Equation 3 we have that

µ
∂ntot

∂nj

= Njµ.

The partial derivative of lnQ also simplifies. We can differentiate lnQ using Equa-

tion 6. The total number of particles ntot is constant when considering the partial

derivative with respect to the population of the jth quantum state and again the

summations are only non-zero upon partial differentiation when i = j. We have

∂ lnQ

∂nj

= − lnnj. (9)

The result of these simplifications is

NjEj = −kBT lnnj + µNj.

Re-arranging gives

nj = exp

(
Nj(µ− Ej)

kBT

)
. (10)

Dropping the sub-script j, we then have a probability for the occupation of a

quantum state of energy E determined by

P (E) = exp

(
N(µ− E)

kBT

)
/ntot. (11)
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2.0.1 Fermion and bosons

For fermions, the average occupancy n(E) of a quantum state with energy E is

determined by the ratio of the probability of occupation when a particle can be

present in the quantum state (N = 1) to the addition of the two probabilities

when a further occupancy is not allowed (N = 1) and allowed (N = 0). We obtain

Equation 1.20 with

n(E) =
P (N = 0)

P (N = 1) + P (N = 0)
=

exp((µ− E)/kBT )

exp((µ− E)/kBT ) + 1
=

1

1 + exp((−µ+ E)/kBT )

We may have several quantum states with the same energy E or an energy within a

small range E to E+dE. Equation 11 shows for fermions that if the energy E is the

same for different quantum states then the probability P (E) of occupation is the

same. We can allow for the effect on the populations of different quantum states

with the same energy by multiplying the average occupancy by a ‘degeneracy’ g

(also known as a statistical weight) which is the number of distinct quantum states

with the same energy. If the degeneracy or density of states in the energy range E

to E + dE is g(E), the population of all quantum states with energy E to E + dE

is given by

fFD(E)dE =
g(E)dE

1 + exp((−µ+ E)/kBT )
(12)

where g(E) is the degeneracy or density of quantum states at energy E. This

distribution is known as the Fermi-Dirac distribution. It is used in Section 13.3.

The chemical potential µ for a collection of electrons is obtained by integrating

Equation 12 over all energy and equating this integrated value to the known num-

ber of electrons in the system. Usually the number of electrons per unit volume,

that is the electron density ne is known. The degeneracy g(E) is then specified

as the number of quantum states per unit energy per unit volume. In dealing

with a bound quantum state, the electron degeneracy is specified as the number

of quantum states with the same energy per atom or ion.

At low densities and high temperatures, the chemical potential µ is large and

negative (see Section 13.3), so that the population of quantum states are propor-

tional to g(E) exp(−E/kBT ). The ratio of two discrete quantum state populations

n per unit volume which we label for the higher energy state with subscript ‘u’

and for the lower energy state with subscript ‘l’ is given by Equation 1.27 and is
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known as the Boltzmann ratio. Equation 1.27 is written as:

nu

nl

=
gu
gl

exp
(
−∆E

kBT

)
where the energy difference of the two quantum states is ∆E and gu and gl are

respectively the upper and lower quantum state degeneracies.

In Section 4.1.2, we determined the Planck black body radiation distribution.

Part of this calculation involved evaluating the probability of the presence of np

photons with energy h̄ω for a radiation temperature of T . As photons are bosons,

the chemical potential is zero. Adding a boson to a collection of bosons does not

release or require any energy. In addition, the parameter N in Equation 11 can

represent any number of photons in the same mode. The probability of having np

photons per mode can be regarded as following Equation 11 so that

Pnp =
exp(−nph̄ω/kBT∑
n′ exp(−n′h̄ω/kBT

where the summation in the denominator is from n′ = 0 up to n′ = ∞. The

average number of photons nav per mode is then given by

nav =
∑
np

npPnp =
1

exp(h̄ω/kBT )− 1
.

The expression on the right hand side is derived in Section 4.1.2. This value of

nav can be generalised to represent the average occupancy of bosons in a quantum

state of energy E after replacing h̄ω by E. There is a superficial resemblance to

the average occupancy of fermions (given by Equation 1.20), except the minus in

the denominator for bosons becomes a plus for fermions.

2.0.2 The thermodynamic and statistical physics entropy

The thermodynamic definition of an entropy change ∆S defines entropy in terms

of the change of total energy ∆U by specifying that ∆S = ∆U/T . This defini-

tion assumes that the chemical potential remains constant and the temperature

remains constant. The statistical physics definition is given by Equation 4 with

S = kB lnQ. We need to show that the two definitions are consistent.

With constant chemical potential µ and constant temperature T , we can have

an increase in entropy S associated with an increase of the total energy U by adding
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the entropy increase due to an increase in ‘disorder’ (represented by kB lnQ) and

the increase in entropy associated with the addition of particles. We have (see

Equation 1) that the additional energy associated with an increase of the total

particle number ntot is given by µ∆ntot. The increase of entropy associated with

the increase of particle number is consequently (µ/T )∆ntot. Adding the differential

of the entropy increase due to disorder plus the entropy increase due to particle

number with respect to the total energy U gives

dS

dU
=
∂(kB lnQ)

∂U
+
µ

T

∂ntot

∂U
.

We can write for any of the quantum states j that

∂ lnQ

∂U
=
∂ lnQ

∂nj

∂nj

∂U
= (− lnnj)

1

NjEj

upon using Equation 9 for the differentiation of lnQ and Equation 8 for the dif-

ferentiation of the total energy U . For the term involving the chemical potential

µ, we write that

(µ/T )
∂ntot

∂U
= (µ/T )

∂ntot

∂nj

∂nj

∂U
=
µ/T

Ej

.

Using the Boltzmann factor for nj with nj = exp(Nj(µ − Ej)/kBT ) gives the

required result that

dS

dU
=
∂(kB lnQ)

∂U
+
µ

T

∂ntot

∂U
= (− lnnj)

kB
NjEj

+
µ/T

Ej

=
1

T
.

3 Special relativity and the Thomas correction

In section 7.4, the effects of spin-orbit coupling on the fine structure energies of

hydrogen and hydrogen-like ions are examined. The magnetic field in the frame

of reference of the electron is determined using the Bio-Savart law by considering

the +Ze charged nucleus orbiting in the frame of the electron. This value of the

magnetic field and consequently the energy associated with the intrinsic electron

magnetic moment due to the electron spin in the magnetic field is reduced by a

factor 1/2 due to the necessity to measure magnetic fields in the frame of reference

of the electron.

If an electron in an atom has an angular momentum, it is in a frame of reference

rotating with respect to the electric field produced by the nucleus. In special
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relativity, the electric field is equivalent to a magnetic field in the electron frame.

In hydrogen-like ions, the electron motion perpendicular to the nuclear electric

field creates a magnetic field in the electron frame which is opposite to and with a

magnitude of half the value of the magnetic fiield created by the orbiting nuclear

charge (in the electron frame). The total magnetic field exerienced by the electron

is consequently half the magnetic field expected for the orbiting nuclear charge.

The factor 1/2 is known as the ‘Thomas correction’ after Llewellyn Hilleth Thomas

(1903 - 1992) who first explained the reduction in spin-orbit coupling energy. The

origins of the Thomas correction are explored in this appendix.

Special relativity provides equations for the changes in electric and magnetic

fields observed when considering two frames of reference with a relative velocity

between them. Transforming electric and magnetic fields between inertial frames

moving relative to each other at velocity v results in identical electric and magnetic

field components parallel to the direction of the velocity. The electric and magnetic

field components perpendicular to the velocity are, however, changed so that in

the frame moving at velocity v relative to a rest frame, we have

E′ =
E + v ×B√

1− v2/c2
(13)

B′ =
B− (v × E)/c2√

1− v2/c2
(14)

where the primes indicate the value of electric and magnetic fields in the frame

moving at velocity v and unprimed values are the electric and magnetic fields in

the rest frame. Equation 13 for the effective electric field induced when moving

through a magnetic field is the basis for the motional Stark effect discussed in

section 10.4. Using the motional Stark effect, magnetic fields are measured by

recording the Stark shift of atomic energy levels in atomic beams moving across

the magnetic field in, for example, a tokamak. Stark shifts of atomic energy levels

are energy changes normally produced by an electric field external to the atom.

To examine the magnetic field producing spin-orbit coupling we need to use

equation 14 showing a different magnetic field in a frame moving perpendicu-

lar to an electric field. The treatment follows that of H. Kroemer [Am. J.

Phys. 72, 51 (2004) ‘The Thomas precession factor in spin-orbit interaction’ doi:

10.1119/1.1615526]. Consider an electron moving in a straight line parallel to the
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x−axis in Cartesian co-ordinates with velocity vx with an electric field Ey parallel

to the y−axis and a magnetic field Bz parallel to the z−axis. For the electron to

travel in a straight line, the forces on the electron due to the electric and magnetic

fields must be equal in magnitude and opposite in direction, so that

E = −v ×B.

In our Cartesian co-ordinates this means that Ey = vxBz.

We need to expand the denominator in equation 14 as a series. Assuming that

v << c and expanding up to terms varying as v2 = v2x gives

1√
1− v2/c2

≈ 1 +
1

2

(
vx
c

)2

+ ...

The magnetic field in the moving frame given by equation 14 becomes

B′
z = Bz −

Eyvx
c2

+
1

2
Bz

(
vx
c

)2

+ ...

Using the assumption that the electric and magnetic forces are balanced (Ey =

vxBz) and neglecting terms greater than v2x, we obtain

B′
z = Bz −

1

2

vxEy

c2
.

In vector notation, we have

B′ = B− 1

2

v × E

c2
. (15)

This equation is similar to equation 14, but has the addition of a factor 1/2 on the

term correcting the magnetic field in the moving frame.

In section 7.4, the magnetic field in the frame of the electron in a hydrogen-like

ion is deduced using the Biot-Savart law by considering the nuclear charge +Ze or-

biting around the electron. Assuming the electron orbital angular momentum is in

the z−direction, we have a magnetic field in the electron frame in the z−direction

at radius r from the nucleus given by

B′
z = Bz −

1

2

vE

c2
=
µ0

4π

Zev

r2
− 1

2

vE

c2

upon using equation 15. Here v is now the notional rotation velocity of the electron

perpendicular to the magnetic field at radius r. The velocity v is also perpendicular
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to the radially directed electric field E. The electric field due to the nuclear charge

is given by

E =
1

4πε0

Ze

r2
.

Consequently, we can use the identity c2 = 1/(ε0µ0) to show that

vE

c2
=
µ0

4π

Zev

r2

and hence for all radial distances r from the nucleus

B′
z =

1

2
Bz. (16)

The factor of 1/2 is the Thomas correction to the magnetic field strength created

by orbital angular momentum and the correction to the spin-orbit coupling energy

used, for example, to develop equation 7.16. We have shown that the Thomas

correction factor 1/2 arises due to the reduction in magnetic field seen by the

electron due to the electron motion perpendicular to the nuclear electric field

creating a magnetic field in the electron frame of reference.

4 Light rays and Fermat’s principal

In section 3.4.2, we discuss refraction of light in terms of light rays and use Fermat’s

principal to obtain an expression (equation 3.47) for the path of light rays in a

plasma medium with a continuous variation of refractive index. Fermat’s principal

states that, compared to nearby paths, light travels between two points along the

path that requires the least time. In the treatment here, we develop a ’bridge’

between the wave equation (derived from Maxwell’s equations) and ray treatments

of light optics, then show how Fermat’s principle can be derived.

The concept of a ray of light can be regarded as arising from the plane wave

solutions of the wave equation (see section 2.1). In a plane light wave, the elec-

tric field E oscillates with angular frequency ω in a direction perpendicular to

the wavevector k representing the direction and spatial period of the rapid spatial

variation of the field. The electric field is assumed constant in all planes perpen-

dicular to k and the wave propagates in the k direction. The planes with constant

electric field implicitly extend to infinity as no boundary is set in treatments such
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as given in section 2.1. If the variation in the refractive index n(r) with position

r occurs on length scales much greater than the wavelength λ of the light, the

concept of the plane wave solution can be applied to a local plane associated with

a light ray. Differences in refractive index can be accommodated by considering

other nearby light rays propagating in approximately parallel directions at slightly

different spatial positions. Such a treatment seems heuristically feasible, but we

now show that it is possible to be more precise and to determine the appropriate

equations for ray propagation from the wave equation.

Using the refractive index n(r) to allow for the effects of the medium on the

electric field E, the wave equation was determined from Maxwell’s equations in

section 2.1. We can write

∇2E− (n(r))2

c2
∂2E

∂t2
= 0 (17)

where the phase velocity of the light is given by the vacuum speed of light divided

by the real part of the refractive index (c/η(r)). Neglecting absorption of light, we

make the assumption that solutions of the wave equation are of the form

E(r, t) = E0(r) exp (i(k0R(r)− ωt)) (18)

where k0 = ω/c is the wavevector amplitude in vacuum and R(r) is a real function

varying with position r and having the dimensions of length. The parameter R(r)

determines the phase of the electric field as a function of position r. Points of

constant phase for an extended light field are referred to as ‘wavefronts’.

Substituting equation 18 into the wave equation (equation 17) and using k0 =

ω/c gives

∇2[E0(r) exp(ik0R(r))] + (η(r))2 k20 E0(r) exp(ik0R(r)) = 0

where η(r) is the real component of the refractive index as we are not considering

absorption (involving the imaginary component of the refractive index). Evaluat-

ing and re-arranging the wave equation, we obtain

[∇R(r) · ∇R(r)− (η(r))2]E0(r) =
∇2E0(r)

k20
+

i

k0
E0(r)∇2R(r) +

2i

k0
X(r) (19)

where using Cartesian co-ordinates

X(r) = x̂

(
∂E0(r)

∂x

)
· ∇R(r) + ŷ

(
∂E0(r)

∂y

)
· ∇R(r) + ẑ

(
∂E0(r)

∂z

)
· ∇R(r).
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The wavevector k0 is a large number compared to the gradients (∇) and Lapla-

cians (∇2) of the electric field and wavefront parameterR(r) provided the refractive

index does not change rapidly over the length scale of the wavelength. For ap-

proximately uniform media, the right hand side of equation 19 can be accurately

equated to zero, so that

∇R(r) · ∇R(r) = (η(r))2.

This equation is more simply written as

∇R(r) = η(r) ŝ(r) (20)

where ŝ(r) is a unit vector in the direction of ∇R(r). Equation 20 is known as the

Eikonal equation.

Points of constant phase are represented by constant values of R(r) for an

extended light field. As the value of ∇R(r) represents the steepest change of R(r),

points of constant phase (with zero change of R(r)) are perpendicular to ∇R(r)

and hence perpendicular to ŝ(r). In a plane wave solution of the wave equation,

the wavefronts are perpendicular to the direction of propagation (represented by

the wavevector k direction), so assuming the plane wave solution to the wave

equation has validity, we have that the direction of ∇R(r) and ŝ(r) represent the

direction of propagation of a light ray. More detailed calculations show that ŝ(r)

gives the direction of propagation of a light ray provided the assumption made in

simplifying equation 19 is valid: the changes in the refractive index are small over

the length scale of a wavelength.

4.1 Fermat’s principle

Fermat’s principal states that, compared to nearby paths, light travels between

two points along the path that requires the least time. We can derive Fermat’s

principle from equation 20. Taking the curl of both sides of equation 20 gives

∇× [η(r) ŝ(r)] = ∇×∇R(r) = 0

as ∇×∇ of a scalar is identically equal to zero. If we integrate the left hand side

over an area A, we can convert the integral over area to a line integral around the

edge of the area using Stokes’ theorem (discussed in Appendix A.2). We have∫
A
∇× [η(r) ŝ(r)] · dA =

∫
C
η(r) ŝ(r) · dl = 0.
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The line integral is around a closed contour which we can imagine is from a point

1 to point 2 in the propagation of a ray, and then back from point 2 to 1. The

return from 2 to 1 in the line integral along a different path has the same absolute

value (but opposite sign) as the integral 1 to 2 because the closed integral 1 to 2

then back to 1 is zero. This means that a line integral from point 1 to point 2

given by ∫ 2

1
η(r) ŝ(r) · dl (21)

has a constant value independent of the path taken to evaluate the line integral

between points 1 and 2.

We now consider a simple integration L of the refractive index along a path

between points 1 and 2 and compare this to integrals of the form of equation 21.

We have an optical pathlength L given by

L =
∫ 2

1
η(r)dl ≥

∫ 2

1
η(r) ŝ(r) · dl (22)

with equality only when the right hand side integral is evaluated for a path where

dl is always along the direction of propagation ŝ(r). The equality in equation

22 occurs only when dl is always along the direction of propagation ŝ(r) as then

ŝ(r) ·dl = dl, otherwise ŝ(r) ·dl < dl . The path taken by light is seen to follow the

minimum of all the optical pathlengths L. From equation 22, all pathlengths other

than the one taken by the light have higher values of L. The time for propagation

of light along a pathlength L is given by L/c, so the minimum value of L gives

the minimum propagation time and proves Fermat’s principle that, compared to

nearby paths, light travels between two points along the path that requires the

least time.

Fermat’s principle enables procedures for determining the path taken by light

rays in optical systems. In plasmas, the minimisation of the optical pathlength L

for propagation along the z−direction gives rise to a general differential equation

for the ray path. This is listed as equation 3.47 and can be written

d

dz

(
η(r)

dr

dz

)
= ∇η(r).
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4.2 An analogy between light paths and particle trajecto-

ries

The trajectory of a particle of kinetic energy T (r) in a potential energy field

V (r) is well-known to be determined by minimising the integral of the Lagrangian

parameter LG with respect to time. The Lagrangian parameter is given by

LG = T (r)− V (r).

If the total energy E of the particle is constant, then E = T (r) + V (r) for all

positions r and the Lagrangian is given by

LG = 2T (r)− E.

The path of a particle of mass m and velocity v(r) is determined by minimising the

integral of this Lagrangian with respect to time. The particle will follow the path

in the potential field V (r) which minimises the integral
∫
LGdt. For convenience,

we determine to minimise an integral
∫

(LG + E)dt, so consider∫
(LG + E)dt =

∫
2T (r)dt =

∫
mv(r) (v(r)dt) =

∫
mv(r)dl =

∫
p(r)dl (23)

where we introduce an increment of distance dl = v(r)dt and the momentum of

the particle p(r) = mv(r). The integral
∫

(LG + E)dt is minimised over the same

path as
∫
LGdt as the energy E is constant.

Our manipulations in equation 23 have shown that the path of the particle of

total energy E is along the path which minimises the integral of the amplitude

of the particle momentum. We can equate this minimisation to a ray path in a

plasma by relating momentum and refractive index. Kinetic energy is related to

the potential energy field V (r) by

T (r)

E
= 1− V (r)

E
.

Converting the kinetic energy T (r) to momentum p, we have

p2(r)

2mE
= 1− V (r)

E
. (24)

This relationship between momentum p(r) and potential energy V (r) has an anal-

ogy with the relationship with the refractive index η(r) in a plasma and the electron
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density ne(r). The plasma refractive index and electron density are related by

η2(r) = 1− ne(r)

ncrit

where ncrit is the critical density (see equation 2.12). If we equate p(r)/
√

2mE

to the refractive index η(r), then the ratio of the potential energy to the total

particle energy (V (r)/E) is analogous to the plasma electron density divided by

the critical density (ne(r)/ncrit).

We have seen that minimising an integral of the value of momentum over

different paths gives the path taken by a particle in a conservative (no energy

loss) potential field (see equation 23). Fermat’s principle states that minimising

the integral of the refractive index over different paths gives the path taken by a

light ray (see equation 22). Consequently, a light ray will follow the path taken

by a particle of total energy E in potential field V (r) if we imagine that V (r)/E

replaces ne(r)/ncrit.

A simple one-dimensional scenario can illustrate the analogy between a light

ray and the motion of a particle. If a particle of initial kinetic energy E is incident

into a potential V (z) from zero potential, the particle will rise up the potential

until E = V (z), then stop so that it has zero momentum and finally return back

along the path, exiting with kinetic energy E. A ray of light incident into a

one dimensional plasma with an increasing electron density with increasing z will

penetrate up to the critical density, then reflect and follow a path in the −z
direction.

More complicated ray paths can be evaluated by considering the ballistic mo-

tion of a particle. For example, the angular momentum LM of a particle with

momentum p around a point is given by

LM = r× p = r p sin θ

where r is a vector from the point to the particle and θ is the angle of the particle

momentum p to the position vector r. Conservation of angular momentum for

particle motion without dissipation means that rp sin θ is constant. Our analogy

developed above between the path of a light ray and particle motion has the

refractive index η as an analogous quantity to the particle momentum p, so we

have that the quantity rη sin θ is constant for a light ray. This is immediately useful
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if we consider a circle of material of refractive index η2 of radius r0 surrounded

by material of refractive index η1. A light ray incident in the plane of the circle

onto the material with refractive index η2 with an angle of incidence θ1 must have

rη sin θ constant, so that the angle θ2 of the ray in the material with refractive

index η2 is given by

η2 sin θ2 = η1 sin θ1

which is Snell’s law (given as equation 3.41). The ray will continue to propagate

within the circle of refractive index η2 with rη2 sin θ constant. The closest approach

rmin of the ray to the centre of the circle will occur when θ = π/2, so that

rmin =
η1r0 sin θ1

η2
.

This relationship for the closest approach of a ray to the centre of a circular medium

holds even if the refractive index η2 is continuously varying with radius r (as it

does for a circle of plasma).
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