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Abstract

The motion of an electron in an electromagnetic field of arbitrarily
high intensity is examined. Relativistic effects apparent in the rest
frame are taken into account for linearly and elliptically polarized light.
It is shown that the light intensity and frequency in the frame of the
electron are Lorentz invariant. For linear polarization, an electron
exhibits a figure-of-eight motion in the plane of the electric field and the
direction of light propagation which is superimposed on a drift velocity
in the direction of the light propagation. With circular polarization, the
electron exhibits a drift velocity, but does not oscillate in the direction
of light propagation. Electron motions strongly influence the energy
transfer from light to plasma in experiments where high power laser
light is focused onto solid, liquid or gaseous targets.

1 Introduction

The interaction of focused high intensity laser light with targets is of relevance to inertial
fusion experiments and the production of high energy electron, protons and x-rays from
laser-irradiated targets. At high laser irradiance, the electromagnetic forces on individual
electrons from light increase the momentum and energy of the electrons and are conse-
quentally important for the expansion behavior and radiation emission of the plasmas
formed in laser-irradiated targets. In this paper, the forces, momenta and trajectories of
an electron in an arbitrarily large, uniform electromagnetic field are determined.

2 Momentum scaling of electrons in a light field

For a linearly polarized electromagnetic wave, we consider that the wave propagates in
the z-direction with the electric field E directed in the x-direction and the magnetic field
B directed in the y-direction. It is reasonable to assume light pulse durations with many
electric and magnetic field oscillations of frequency ω with the electric field given by

Ex = E0 cos(ωt)

where the amplitude E0 is constant in time. The accompanying magnetic field varies
such that

By = B0 cos(ωt) =
E0

c
cos(ωt).
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In the rest frame, the forces on an electron of charge −e in the x- and z-directions can
be written as

dpx
dt

= −e (Ex − vzBy) = −eEx

(
1− px

γm0c

)
dpz
dt

= −evxBy = −eEx

(
px

γm0c

)
(1)

upon converting the x- and z-directed velocities (vx and vz) to momenta using px = γm0vx
and pz = γm0vz, where γ is the Lorentz parameter and m0 is the electron rest mass.
Eliminating the electric field Ex from Equations 1, we find that

dpx
dt

=
m0c

px

dpz
dt

(
γ − pz

m0c

)
(2)

It is convenient to use reduced momenta written in units of m0c so that p̂x = px/(m0c)
and p̂z = pz/(m0c). Equation 2 becomes

dp̂x
dt

=
1

p̂x

dp̂z
dt

(γ − p̂z) . (3)

The Lorentz parameter can be evaluated using

γ2 = 1 + p̂2x + p̂2z. (4)

Differentiating the Lorentz parameter

γ
dγ

dt
= p̂x

p̂x
dt

+ p̂z
p̂z
dt
.

Using Equation 3, we have that
dp̂z
dt

=
dγ

dt
. (5)

Integrating with appropriate limits shows that the z-directed momentum and Lorentz
parameter vary proportionally in time such that

p̂z(t) = γ(t)− 1. (6)

Substituting Equations 5 and 6 into Equation 3, the momentum in the electric field
direction (x-direction) is related to the Lorentz factor by

p̂x
dp̂x
dt

=
dγ

dt

Integrating the momentum and Lorentz factor with appropriate limits means that

1

2
p̂2x(t) = γ(t)− 1

We already found that p̂z(t) = γ(t)− 1 (Equation 6), so in summary:

p̂z(t) =
1

2
p̂2x(t) = γ(t)− 1. (7)
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We can evaluate the angle θ of the electron trajectory to the z-axis (k-direction of the
light). At any time:

cos θ =
p̂z

(p̂2x + p̂2z)
1/2

(8)

The instantaneous velocity v of the electron is given by(v
c

)
=

((vx
c

)2

+
(vz
c

)2
)1/2

=
1

γ
(p̂2x + p̂2z)

1/2. (9)

The standard expression for the Doppler shifted frequency ω′ of the incident light in the
frame of the electron is given by

ω′ = ω γ
(
1− v

c
cos θ

)
(10)

where ω is the light frequency in the rest frame. Substituting Equations 8 and 9, the
Doppler shifted frequency in the electron frame is given by

ω′ = ω (γ − p̂z) (11)

Using Equation 6 we see that ω′ = ω. There is no Doppler shift of the light frequency in
the frame of the electron. The ’time dilation’ effect on the light frequency (represented
by γ) is balanced by the momentum component p̂z of the electron away from the light
source (in the k-direction along the z-axis).

The reduced vector potential a0 is useful in reducing the apparent complexity of
equations of electron motion in a light field. The reduced vector potential is defined by

a0 =
eE0

m0c ω
. (12)

The reduced vector potential a0 is related to the laser intensity I = (1.2)ϵ0cE
2
0 (power

per unit area) when measured in W cm−2 by

a0 =

√
Iλ2

1.37× 1018
(13)

when the light wavelength λ = 2πc/ω is measured in microns. Quantities of form I/ω3

are Lorentz invariant (see Appendix A [1]). As I/ω3 and the frequency ω are Lorentz
invariant, the vector potential a0 and the intensity I are Lorentz invariant for an electron
in an electromagnetic field.

3 Electron motion in linearly polarized light fields

In this Section, we calculate the motion of a single electron that is assumed to be initially
stationary in a linearly polarized high intensity light field. At high light intensities,
electrons can be accelerated to velocities close to the speed of light c so any initial thermal
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or other electron velocity can be ignored, or the calculations can be regarded as being
undertaken in the initial frame of reference of the electron before any light impinges.
Due to electron motion in the z-direction, the electron moves relative to the oscillating
electromagnetic field. The electromagnetic field oscillations in the frame of the electron
need to be calculated using a retarded time τ ′ such that

τ ′ = t− z

c
(14)

where z represents the z-position of the electron relative to its initial position in the
electron frame. The electric field in the frame of the electron can be written as

E ′ = E ′
0 cos(ω

′τ ′)

Quantities calculated in the moving frame of the electron are here designated with an
apostrophe and without an apostrophe, quantities are relevant to the rest frame or are
Lorentz invariant. For a list of Lorentz invariant quantities related to the propagation of
light, see Appendix A of Tallents [1].

We now initially calculate the x-directed electron momentum and velocity in a frame
of reference moving along the z-axis with the electron. In this frame, the electric field E
is Lorentz invariant in calculations of the x-directed electron momentum px as the electric
field is parallel to the x-directed electron velocity. Similarly, the light phases ωt and ωτ
are Lorentz invariant. In the frame moving along z with the electron, the velocity v′z in
the z-direction is zero, so that the Lorentz force |v ×B| = v′zB

′
0 cos(ωτ) = 0. The force

parallel to the electric field E in the frame of the electron is given by

dpx
dτ ′

= −eE0 cos(ωτ). (15)

Integrating, we have the electron momentum component in the x-direction:

p̂x =
px
moc

= − eE0

m0c ω
sin(ωτ) (16)

where m0 is the electron rest mass. Using the reduced vector potential

a0 =
eE0

m0c ω

we have
p̂x =

px
moc

= −a0 sin(ωτ). (17)

The rest frame momentum px is related to the x-directed electron velocity vx by px =
γm0vx, where γ is the Lorentz parameter for the moving electron. The electron velocity
in the x-direction in the rest frame is given by

vx
c

= −a0
γ

sin(ωτ). (18)

The force dpz/dτ in the frame moving along the z-axis parallel to the z-directed
velocity vz and the velocity vx are the same in the rest frame and the frame moving along
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the z-axis with the electron. Due to the −ev ×B force arising from the B field of the
electromagnetic wave, the force on the electron in the direction of wave propagation (the
z-direction) is given by

dpz
dτ

= −evxB
′
0 cos(ωτ). (19)

The magnetic field B is directed perpendicularly to the frame velocity following the
electron along the z-axis, so that the magnetic field amplitude B′

0 in the frame moving
along the z-axis is related to the rest frame magnetic field amplitude B0 by B′

0 = γB0.
Substituting for vx (Equation 18) and noting that B0 = E0/c we can write that the force
in the rest frame is given by

dpz/(m0c)

dτ
=

eE0 a0
m0c

sin(ωτ) cos(ωτ). (20)

Integrating we obtain the momentum in the z-direction in the rest frame

p̂z =
pz
m0c

=
a20
2
sin2(ωτ). (21)

Using pz = γm0vz, we have for the electron velocity in the z-direction in the rest frame

vz
c

=
a20
2γ

sin2(ωτ). (22)

Integrating again gives an expression for the distance z of travel of an electron in an elec-
tromagnetic field as a function of retarded time τ . Introducing the wavevector amplitude
k = ω/c for the field, we have that the position z of the electron in the rest frame is given
by

k z =
a20
8γ

(− sin(2ωτ) + 2ωτ) . (23)

The electron oscillates in time in the z-direction at a frequency close to 2ω with a super-
imposed “drift velocity”. The drift velocity vd of the electron can be regarded as given
by

vd
c

=
z

c t
=

(
a20
4γ

)
τ

t
=

(
a20
4γ

)
t− z/c

t
=

(
a20
4γ

)(
1− vd

c

)
Re-arranging

vd
c

=
a20

4γ + a20
. (24)

The phase of the light field in the rest frame is obtained using Equations 14 and 23:

ω t = ω τ + k z = ω τ +
a20
8γ

(− sin(2ωτ) + 2ωτ) . (25)

We need to evaluate an expression for the electron Lorentz parameter γ appropriate to
the rest frame. The total electron velocity v in the rest frame comprises two components
in the x- and z-directions such that

v2 = v2x + v2z .
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The Lorentz factor γ for the electron in the rest frame can be related to the electron
momenta in the x- and z-directions:

γ2 = 1 +

(
px
m0c

)2

+

(
pz
m0c

)2

. (26)

Substituting expressions for the x-momentum (Equation 16) and z-momentum (Equation
21) gives

γ2 = 1 + a20 sin
2(ωτ) +

a40
4
sin4(ωτ) =

(
1 +

a20
2
sin2(ωτ)

)2

.

The time varying Lorentz parameter in the rest frame for the electron becomes

γ = 1 +
a20
2
sin2(ωτ). (27)

The cycle-average for the square of the sine here is 1/2 suggesting that the cycle-averaged
Lorentz parameter has a value

<γ>= 1 +
a20
4
. (28)

For a0 less than approximately 2, this cycle-averged Lorentz parameter can be approxi-
mated by

<γ>≈
(
1 +

a20
2

)1/2

. (29)

As well as being appropriate at low intensity (a0 < 2) in the rest frame, Equation 29
represents the average Lorentz factor in the frame of reference moving with the electron
along the z-axis.

Substituting the time-varying Lorentz factor γ (Equation 27) into Equation 22, the
instantaneous velocity in the z-direction in the rest frame becomes

vz
c

=
a20 sin

2(ωτ)

2 + a20 sin
2(ωt)

. (30)

Using the cycle-average for the squares of the sinusoidal variation, the cycle-averaged
drift velocity can be regarded as (vz

c

)
av

=
a20

4 + a20
. (31)

A different cycle averaged relationship is obtained if we substitute the cycle-averaged
Lorentz parameter (Equation 28) into Equation 24, namely

vd
c

=
a20

4 + 2a20
. (32)

Equation 30 shows that the instantaneous velocity in the z-direction varies from zero to
a maximum drift velocity given by(vz

c

)
max

=
a20

2 + a20
. (33)
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The maximum velocity in the direction of light propagation at low a0 is a20 c/2, while at
high a0, the maximum velocity approaches the speed of light c.

Our different cycle-averaging procedure here show that a cycle-average for electron
velocities in an electromagnetic field is difficult to define as, for example, the instantaneous
velocity in the direction of light propagation varies from zero up to (vz/c)max. However,
the cycle-averaged electron velocity is always in the direction of light propagation which
causes light to exert a force on free electrons in the direction of the wave vector k. Using
the equations determined in this Section, we can plot the position of an electron in a
constant electromagnetic field as a function of time (see Figure 1).
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Figure 1: The electron position along the direction of light propagation as a function
of time in the rest frame. The results are plotted in terms of the frequency ω and
wavenumber k of the light for a constant reduced vector potential of a0 = 1 (Iλ2 =
1.37 × 1018 W cm−2µm2). The higher line fitting the maximum points of oscillation
is determined using Equation 31, while the lower line fitting the minimum points of
oscillation is determined using vd/c = a20/(4 + 3a20).

The cycle-averaged electron velocity in the x-direction (the direction of the electric
field) is, of course, zero. Substituting Equation 27 in Equation 18, we find that the
maximum electron velocity in the x-direction is given by(vx

c

)
max

=
a0

1 + a20/2
. (34)

Equation 34 suggests that the maximum electron velocity in the direction of the electric
field is produced when a0 =

√
2 with a maximum velocity at this reduced vector potential

of c/
√
2. The maximum electron velocity in the k-direction when a0 =

√
2 is c/2 with

γ = 2. The variation of the maximum velocities parallel to the electric field and parallel
to the direction of electromagnetic beam propagation as a function of light intensity are
shown in Figure 2.
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Figure 2: The maximum electron velocities in the rest frame for an electron in a linearly
polarized electromagnetic field at the peak of the field oscillation as a function of the
reduced vector potential a0. The velocity vx is in the direction of the electric field, while
the velocity vz is in the direction of beam propagation.

4 Elliptical polarization

An elliptically polarized light wave can be represented by two oscillating electromagnetic
fields with a phase difference of π/2 between them. In a similar co-ordinate system as
employed for linear polarization, we can write for the electric fields

Ex = Ex0 cos(ωt)

Ey = Ey0 sin(ωt) (35)

The magnetic fields for elliptically polarized light can be written as

By = By0 cos(ωt) =
Ex

c
cos(ωt)

Bx = Bx0 sin(ωt) =
Ey

c
sin(ωt). (36)

In the rest frame, the forces on an electron of charge −e in the x-, y- and z-directions
can be written as

dpx
dt

= −e (Ex − vzBy) = −eEx

(
1− px

γm0c

)
dpy
dt

= −e (Ey − vzBx) = −eEy

(
1− py

γm0c

)
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dpz
dt

= −e(vxBy + vyBx) = −e

(
Expx + Eypy

γm0c

)
. (37)

These equations can be solved using a similar method to the solution for linear polar-
ization by introducing the degree of ellipticity ϵ of the incident light polarization such
that

ϵ =
E2

y

E2
x

=
E2

y0

E2
x0

cot2(ωt). (38)

The electron momenta px and py are similarly related with ϵ = p2y/p
2
x. The force on the

electron in the z-direction becomes

dpz
dt

= − e

γm0c
(Expx + Eypy) = −eExpx

γm0c
(1 + ϵ) (39)

Eliminating the electric field Ex from Equations 37 and 39, we find that

dpx
dt

=

(
1

1 + ϵ

)(
m0c

px

)
dpz
dt

(
γ − pz

m0c

)
(40)

It is convenient to use reduced momenta written in units of m0c. Equation 2 becomes

dp̂x
dt

=

(
1

1 + ϵ

)
1

p̂x

dp̂z
dt

(γ − p̂z) . (41)

The Lorentz parameter can be evaluated using

γ2 = 1 + p̂2x + p̂2x + p̂2z = 1 + p̂2x(1 + ϵ) + p̂2z. (42)

Differentiating the Lorentz parameter

γ
dγ

dt
= p̂x

p̂x
dt
(1 + ϵ) + p̂z

p̂z
dt
.

Using Equation 41, we have that
dp̂z
dt

=
dγ

dt
. (43)

As for linear polarization, integrating with appropriate limits shows that the z-directed
momentum and Lorentz parameter vary proportionally in time such that

p̂z(t) = γ(t)− 1. (44)

We can evaluate the angle θ of the electron trajectory to the z-axis (k-direction of the
light). At any time:

cos θ =
p̂z

(p̂2x + p̂2y + p̂2z)
1/2

(45)

The instantaneous velocity v of the electron is given by(v
c

)
=

((vx
c

)2

+
(vy
c

)2

+
(vz
c

)2
)1/2
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=
1

γ
(p̂2x + p̂2y + p̂2z)

1/2. (46)

The expression for the Doppler shifted frequency ω′ of the incident light in the frame
of the electron is given by Equation 11. Substituting Equations 45 and 46, the Doppler
shifted frequency in the electron frame is given by the same expression as found for linear
polarization

ω′ = ω (γ − p̂z) (47)

Using Equation 44 we see that ω′ = ω. As found for linearly polarized light, there is no
Doppler shift of the light frequency in the frame of the electron for elliptically polarized
light.

The reduced vector potentials for elliptically polarized light can be defined by

ax =
eEx0

m0c ω

ay =
eEy0

m0c ω
. (48)

The reduced vector potential magnitudes ax and ay are related to the laser intensity
I = (1/2)ϵ0c(E

2
x0 + E2

y0) (power per unit area) when measured in W cm−2 by

a2x + a2y =
Iλ2

1.37× 1018
(49)

when the light wavelength λ = 2πc/ω is measured in microns. As discussed for linear
polarization, quantities of form I/ω3 are Lorentz invariant. As I/ω3 and the frequency
ω are Lorentz invariant, the vector potentials ax and ay and the intensity I are Lorentz
invariant for an electron in an elliptically polarized electromagnetic field.

5 Electron motion in elliptically polarized light fields

In this Section, we calculate the motion of a single electron in an elliptically polarized light
field. In the frame moving along the direction of light propagation z with the electron,
the velocity v′z in the z-direction is zero, so that the Lorentz forces |v ×B| = v′zB

′
y =

v′zB
′
x = 0. The forces parallel to the two electric fields in the frame of the electron are

given by
dpx
dτ

= −eEx0 cos(ωτ)

dpy
dτ

= −eEy0 sin(ωτ) (50)

Integrating, we have the electron momentum component in the x- and y-directions:

px
moc

= − eEx0

m0c ω
sin(ωτ) = −ax sin(ωτ)

py
moc

=
eEy0

m0c ω
(1− cos(ωτ)) = ay (1− cos(ωτ)) (51)
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upon using reduced vector potentials ax = eEx0/(m0cω) and ay = eEy0/(m0cω). The
momenta px and py in the rest frame are related to the x-and y-directed electron velocity
by px = γm0vx and py = γm0vx, where γ is the Lorentz parameter for the moving electron
in the rest frame. Using px = γm0vx and py = γm0vy, we have for the electron velocity
in the x and y-direction in the rest frame

vx
c

= −ax
γ

sin(ωτ)

vy
c

=
ay
γ
(1− cos(ωτ)). (52)

The electron oscillates in time in the x and y-directions at a frequency close to ω, but
with a phase difference of π/2 between the x and y-directions.

Due to the −ev ×B force arising from the B field of the electromagnetic wave, the
force on the electron in the direction of wave propagation (the z-direction) with elliptical
polarization is given by

dpz
dτ

= −e(vxB
′
y + vyB

′
x). (53)

The magnetic fields B′
x and B′

y are directed perpendicularly to the frame velocity along
the z-axis, so that the magnetic fields B′

x and B′
y in the frame moving along the z-axis

with the electron are related to the rest frame magnetic fields by B′
x = γBx and B′

y = γBy.
Substituting for vx and vy (Equation 52) and noting that Bx = Ey/c and By = Ex/c we
can write that the force in the rest frame is given by

dpz/(m0c)

dτ
=

(
e(Ex ax − Ey ay)

m0c

)
sin(ωτ) cos(ωτ) +

eEyay
m0c

sin(ωτ). (54)

Integrating we obtain the momentum in the z-direction

pz
m0c

=

(
a2x − a2y

2

)
sin2(ωτ)− (cos(ωτ)) a2y. (55)

assuming that the initial z-directed momentum is zero. Re-writing Equation 55 with the
approximation that the average of 1− cos(ωτ) is 1/2 gives that

pz
m0c

≈ −
(
a2x − a2y

4

)
cos(2ωτ) +

a2x + a2y
4

. (56)

Using pz = γm0vz, we have for the electron velocity in the z-direction in the rest frame

vz
c

≈ −
(
a2x − a2y

4γ

)
cos(2ωτ) +

a2x + a2y
4γ

(57)

Integrating the z-directed velocity results in the evaluation of the position z of the electron
in terms of the wavevector k for the incident light:

k z =

(
a2x − a2y

8γ

)
sin(2ωτ) +

(
a2x + a2y

4γ

)
ωτ (58)

11



The phase ωt of the elliptically polarized light field in the rest frame is obtained using
Equations 14 and 58:

ω t = ω τ + k z = ω τ +

(
a2x − a2y

8γ

)
sin(2ωτ) +

(
a2x + a2y

4γ

)
ωτ. (59)

Equations 57 and 58 shows that the electron oscilates at a frequency of 2ω in the direc-
tion of light propagation (the z-direction) superimposed on a drift velocity. For circular
polarization (Ex = Ey), the z-oscillation disappears with the electron still exhibiting a
drift velocity in the direction of light propagation.

The value of the Lorentz parameter γ is found using

γ2 = 1 + a2x sin
2(ωτ) + a2y(cos(ωτ)− 1)2 +

(
pz
m0c

)2

= 1 + a2x sin
2(ωτ) + a2y(cos(ωτ)− 1)2 + (γ − 1)2.

using pz/m0c = γ − 1 (Equation 44). Simplifying, we find for the Lorentz paramter

γ = 1 +
a2x
2
sin2(ωτ) +

a2y
2
(cos(ωτ)− 1)2 (60)

The cycle-averaged Lorentz parameter becomes

<γ>= 1 +
a2x
4

+
a2y
4

(61)

For circular polarization, setting ax = ay means that the Lorentz parameter simplifies to

γ = 1 + a2x(1− cos(ωτ)) (62)

The cycle-averaged drift velocity of the electron along the z-axis is found by substituting
the value of the cycle-averaged Lorentz parameter (Equation 61) into the drift velocity
obtained from Equation 58:(vz

c

)
av

=
(a2x + a2y)

4γ
=

(a2x + a2y)

4 + (a2x + a2y)
. (63)

If a2x + a2y for elliptical polarization is replaced by a20 as used for linear polarization, the
drift velocity is the same as found for linear polarization (see Equation 31).
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