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1 Introduction

Additional Exercises for ‘Tallents, G. (2018). An Introduction to the Atomic and

Radiation Physics of Plasmas. Cambridge: Cambridge University Press’ are pre-

sented here. The text of this book develops the physics of emission, absorption

and interaction of light in astrophysics and in laboratory plasmas from first prin-

ciples using the physics of various fields of study including quantum mechanics,

electricity and magnetism, and statistical physics. The book links undergraduate

level atomic and radiation physics with the advanced material required for post-

graduate study and research. Additional Exercises are presented here, sometimes

along with a comment added in brackets indicating a numerical answer, or in some

cases, wider implications of the Exercise.

Exercises relevant to each chapter are included at the end of each chapter in the

book. Many of the Additional Exercises presented here use the physics developed

over more than one chapter. References to Equations, Sections and Exercises

refer to the text of the book, while questions presented in the following pages are

referred to as Additional Exercises.

2 Fundamentals and the hydrogen atom

2.1

The Stern-Gerlach experiment used a non-uniform magnetic field to accelerate a

beam of silver atoms transversely. If the magnetic field gradient ∇B is uniform

across the atomic beam and extends along the beam a length L, show that the

atoms are deflected by angles θ, such that

θ = ±gsµB
2E

L∇B

where gs = 2.0023 is the g-factor for electron spin, µB is the Bohr magneton and

E is the kinetic energy of the silver atoms. Evaluate a numerical deflection angle

if the magnetic field gradient is 10 Tm−1, the atoms have a kinetic energy of 1 eV

and the length of the field along the atomic beam L = 1 m. [±0.6 mrad.]
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2.2

The ground state of the hydrogen atom has a wavefunction given by

ψ1 =
1

√
πa

3/2
0

exp(−r/a0)

where r is the distance from the nucleus and a0 is the Bohr radius. The nuclear

potential V (r) of the hydrogen atom is given by

V (r) = − 1

4πε0

e2

r
.

Show that the expectation value
∫
ψ1V (r)ψ1dV of the potential energy for the

hydrogen ground state is such that

∫
ψ∗1V (r)ψ1dV = − e2

4πε0 a0

.

[This potential energy is equal to −2Rd, where Rd is the ionisation energy of the

hydrogen ground state and is identical to the value predicted by the Bohr model,

see Equation 1.30].

2.3

The kinetic energy operator T̂ is given by

T̂ =
p̂2

2m0

= − h̄2

2m0

∇2

where m0 is the electron mass. Using the wavefunction ψ1 given for the above

Additional Exercise 2.2, show for the ground state of hydrogen that

∇2ψ1 =
1

√
πa

3/2
0

1

r2
e−r/a0

r

a0

(
r

a0

− 2
)

and that the expectation value T for the kinetic energy of the ground state electron

is given by

T =
∫
ψ∗1T̂ψ1dV =

h̄2

2m0 a2
0

.
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2.4

As the total ground state energy for hydrogen comprises the addition of the kinetic

and potential energy, use the results from the Additional Exercises 2.2 and 2.3, to

show that the ionisation energy Rd of the hydrogen atom has a value

Rd =
h̄2

2m0 a2
0

.

3 Quantum mechanics

3.1

Using Equation 7.20, show that the first order relativistic correction to the kinetic

energy operator T̂ leads to an expression

T̂ = T̂0 −
1

2m0c2
T̂ 2

0

where T̂0 = p̂2/2m0 is the kinetic energy operator neglecting relativity. Here p̂ is

the momentum operator.

3.2

Setting

T̂R = − 1

2m0c2
T̂0,

for the relativstic correction to the kinetic energy operator, prove the following

commutator relationship

[x̂, [x̂, Ĥ0 + T̂R]] = − h̄
2

m0

(
1− 3

m0c2
T̂0

)

where Ĥ0 = T̂0 + V (r) is the Hamiltonian for the electron energy in a central

potential V (r) and x̂ is an operator for the component of a position vector along

the x-axis.
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3.3

The general sum rule for Hermitian operators f̂ has the following relationship

1

2

∫
ψ∗1[f̂ , [f̂ , H0]]ψ1dV = −

∑
j

(Ej − E1)
∣∣∣∣∫ ψ∗1 f̂ψjdV

∣∣∣∣2 .
where the sum is over all wavefunctions ψj with energy Ej and Ĥ0 is the energy

Hamiltonian (see Equation A.33 in Appendix D). If this relationship is valid1 when

Ĥ0 is replaced by Ĥ0 + T̂R, use the result of the Additional Exercise 3.2 to show

that ∑
j

(Ej − E1)
∣∣∣∣∫ ψ∗1x̂ψjdV

∣∣∣∣2 =
h̄2

2m0

(
1− 3

m0c2
T1

)
where T1 is the expectation value of the kinetic energy for wavefunction ψ1.

3.4

Use the definition of an oscillator strength f1j (Equation 10.29) and the result

of the Additional Exercise 3.3 to show that the oscillator strength sum rule for

absorption from a quantum state subject to a small relativistic kinetic energy

correction becomes ∑
j

f1j = 1− 3

m0c2
T1

where T1 is the kinetic energy expectation value of the state 1. [Caveat: The

general sum rule with the relativistic correction is not exact as assumed in the

Additional Exercise 3.3, so that the correct relativistic oscillator strength sum rule

becomes: ∑
j

f1j = 1− 5

3m0c2
T1,

according to H. Sinky and P. T. Leung 2006 Phys. Rev. A74, 034703 ‘Relativistic

corrections to a generalized sum rule’.]

1Unfortunately, the relationship is not exact with the extra T̂R term, but assuming that the

extra T̂R term is negligible gives an answer close to that of more complete treatments, see the

caveat for the Additional Exercise 3.4.
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4 Radiative processes

4.1

In section 5.1, the time taken for cyclotron radiation to cause the electron kinetic

energy to decrease was examined assuming the electron velocity distribution is

isotropic relative to a magnetic field B0. The electron kinetic energy Ekin was

shown to decrease with time t such that Ekin(t) = Ekin(0) exp(−t/t0) with t0 =

0.3/B2
0 seconds, when the magnetic field B0 is measured in Tesla. Show that

electrons with velocity v at an angle α to the magnetic field B0 radiate so that

their kinetic energy decreases with a time constant t0 = 2.7 sin2 α/B2
0 seconds.

4.2

Formulas for the black-body radiation discussed in Chapter 4 in terms of angular

frequency ω are often expressed in terms of the wavelength λ of the radiation.

We have shown in Chapter 4 (equation 4.9) that inside a black-body the radia-

tion intensity in units of power per unit area per unit steradian per unit angular

frequency is given by

Jp(ω) =
h̄ω3

4π3c2

1

exp
(
h̄ω
kBT

)
− 1

.

Show that the black body intensity B(λ) in units of power per unit area per unit

steradian per unit of wavelength is given by

B(λ) =
2hc2

λ5

1

exp
(

hc
λkBT

)
− 1

.

Hence show that the Rayleigh-Jeans expression valid for long wavelengths can be

written as

B(λ) ≈ 2c

λ4
kBT.

4.3

The cross-section σ12 for the absorption of radiation by a transition from a bound

quantum state 1 to another bound state 2 alters the intensity I of radiation trav-

elling in the direction z following

dI

dz
= N1σ12I.
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By considering the Einstein B-coefficient (see Exercise 10.4), show that

σ12 =
h̄ω

c

πe2

3ε0h̄
2

∣∣∣∣∫ ψ1xψ2dV
∣∣∣∣2 f(ω − ω21)

where the integral is over the initial (1) and final (2) bound quantum states and

f(ω−ω21) is the lineshape variation in frequency ω from the line centre frequency

ω21.

4.4

From Exercise 10.2, the oscillator strength f12 for a bound-bound radiative transtion

is given by

f12 =
2ω21m0

h̄

∣∣∣∣∫ ψ1xψ2dV

∣∣∣∣2 .
Using the result from the above Additional Exercise 4.3, show that

σ12 = 2π2 h̄

m0

α f12 f(ω − ω21)

where α = 1/137 is the fine structure constant.

4.5

The value σbfdω for bound-free absorption from the principal quantum number

n states of hydrogen-like ions of atomic number Z gives the cross-section for the

absorption in the frequency range ω to ω+dω. Karzas and Latter give an expression

for the cross-section per frequency unit (see Equation 5.27) as follows:

σbf =
16

3π
α3π

2c2

h̄ω3

RdZ
4

n5

Gbf√
3

where Gbf ≈ 1 is the Gaunt factor. Show that the oscillator strength fbfdω for

bound-free absorption in a hydrogen-like ion over the frequency range ω to ω+dω

is given by

fbfdω =
8

3
√

3π
α2m0c

2

h̄2ω3

RdZ
4

n5
Gbfdω.
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4.6

Using photon energy units ER of Z2Rd, evaluate the result from the above Addi-

tional Exercise 4.5 to show that the bound-free oscillator strength for the ground

state n = 1 of a hydrogen-like ion is given by

fbf dER = 0.98107Gbf
dER
E3
R

.

4.7

The bound-bound absorption oscillator strengths f1n from the ground state of

hydrogen and hydrogen-like ions can be evaluated and summed. We have

∞∑
n=2

f1n = 0.565.

The Thomas-Reiche-Kuhn sum rule requires the sum of all oscillator strengths

both bound-bound and bound-free from the ground state to be equal to unity:∫ ∞
ER=1

fbf dER +
∞∑
n=2

f1n = 1.

Considering the result from the Additional Exercise (4.6), evaluate an appropriate

frequency averaged Gaunt factor G̃bf so that the Thomas-Reiche-Kuhn sum rule

is satisfied. [0.887]

4.8

In section 3.5.2 we noted that the frequency ωs of scattered light is related to the

incident frequency ωi of light by

ωs = ωi
1− î · v/c
1− ŝ · v/c

where î is a unit vector in the incident light direction, ŝ is a unit vector in the

scattered light direction and v is the velocity of the scattering object. Show that

a plane mirror moving at speed v perpendicular to the mirror plane towards the

light source reflects light incident at an angle of incidence θ with a frequency shift

ωs − ωi in the laboratory frame given by

ωs − ωi =
2ωi v

c
cos θ,
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provided the speed v is small compared to the speed of light c. [A ’plane mirror’

could be the critical density in a laser-produced plasma, see e.g. A. Adak et al

2014 Phys. Plasmas 21, 062704. ‘Ultrafast dynamics of a near-solid-density layer

in an intense femtosecond laser-excited plasma’. ]

4.9

Use Equation 4.33 to show that in LTE the source function S employed in radiative

transfer calculations is given by

S =
h̄ω3

π2c2

1

exp(h̄ω/kBT )− 1
.

4.10

Consider a steady-state balance of the populations N2 and N1 of two bound

quantum states with collisional excitation at rate N1K12ne, de-excitation at rate

N2K21ne and spontaneous radiative decay at rate A21N2 added to rates of photo-

excitation and stimulated emission included in Equation 4.26. If only collisional

and radiative processes between the two states 1 and 2 are significant, show that

the ratio of the populations N2 and N1 in steady state are given by

N2

N1

=
K12ne + (g2/g1)(π2c3/h̄ω3

21)A21

∫∞
0 (I(ω)/c) f(ω) dω

K21ne + A21 + (π2c3/h̄ω3
21)A21

∫∞
0 (I(ω)/c) f(ω) dω

where f(ω) is the line shape profile and I(ω) is the radiation intensity at fre-

quency ω within the plasma. The parameters g1 and g2 are the degeneracies of the

quantum states 1 and 2 and ω21 is the frequency of the line centre for radiative

transitions between states 1 and 2.

4.11

(a) Using the results of the Additional Exercise 4.10, show in the limit of very

large radiation intensity I(ω) that

N2

N1

=
g2

g1

.
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(b) In the limit where radiative processes become negligible compared to collisional

processes show that
N2

N1

=
g2

g1

exp

(
− h̄ω21

kBT

)
.

[For (b) refer to Equation 12.4].

4.12

Using the Equations of section 4.3, show for a photon energy h̄ω21 corresponding

to the energy difference between two quantum states that the source function S

employed in radiative transfer calculation is given by

S =
h̄ω3

21

π2c2

1

(g2N1)/(g1N2)− 1

where N1 and N2 are the population densities of the two states 1 and 2. [This

result along with the Equation found for Additional Exercise 4.10 can be used to

determine the source function at the frequency ω21 corresponding to a transition

between two quantum states where only collisional and radiative processes between

the two states (and no other states) are significant.]

4.13

Consider the steady-state population balance between two quantum states as pro-

posed in Additional Exercise 4.10. Show that the probability PR of an absorbed

photon being re-emitted is given by

PR =
A21 + (π2c3/h̄ω3

21)A21

∫∞
0 (I(ω)/c) f(ω) dω

A21 + neK21 + (π2c3/h̄ω3
21)A21

∫∞
0 (I(ω)/c) f(ω) dω

.

4.14

Consider the scenario for Additional Exercise 4.13 with the radiation of intensity

I(ω) incident in a single direction from a backlighter through a thin, uniform

plasma. Show that the fraction fS of the absorbed radiation which is re-emitted

into 4π steradian (angularly re-distributed) is given by

fS =
1

1 + (π2c3/h̄ω3
21)
∫∞

0 (I(ω)/c) f(ω) dω
.
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4.15

In the discussion of opacity in section 6.5, the second equation (un-numbered)

obtained from equation 6.13 shows that the radiation power FA per unit area for

a planar geometry after integration in angle is given by

FA = −4π

3

1

K

dJ

dz

where J is the radiation intensity per unit solid angle, K is an absorption coefficient

and z represents distances perpendicular to the planes of symmetry in the one-

dimensional geometry. Assume a sharp radiation ‘heat front’ propagates into a

plasma as described in section 6.4 so that the radiation FA at time t heats a thin

plasma layer of density ρ, heat capacity CV per unit density and thickness z to

z + ∆z to a temperature T . If the temperature before the heat front impinges on

the plasma can be regarded as zero and we have a Planck black body radiation

distribution in the heat front, show that

z2 =
8

3

σSBT
3

KRosCV ρ
t

where σSB is the Stefan-Boltzmann constant, KRos is the Rosseland mean ab-

sorption coefficient and t is the time for the heat front to propagate a distance

z.

5 Astrophysics and space

5.1

The solar surface is typically 5800 K, while sunspots are regions appearing darker

with lower temperatures. If a sunspot has a temperature of 4200 K, determine the

relative spectrally integrated intensity of the sunspot compared to other parts of

the solar photosphere. [0.275].

5.2

The Sun has a regular 11 year cycle where the number of sunspots drops to close

to zero and then increases to 100 - 200 per year at a solar maximum. However, the
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spectrally integrated solar output only varies by approximately 0.1%. Estimate

the relative area of the solar photosphere taken up by sunspots at the time of solar

maximum. [0.14%].

5.3

Given the solar photosphere temperature of 5800 K and that the radius of the Sun

is 6.957 × 105 km, determine (a) the mass of solar material converted to energy

per second. (b) The present mass of the Sun is 1.989 × 1030 kg and the Sun is

4.6 × 109 years old. Estimate the fraction of solar mass that has been converted

to energy in the life of the Sun. [(a) 4.3× 109 kg s−1, (b) 3× 10−4 ].

5.4

The Hertzsprung-Russell diagram effectively plots the total power (luminosity)

radiated by a star as a function of the photosphere temperature. The temperatures

of the photosphere of stars range from 3000 K (star type M) to 30000 K (star

type O) with star radii varying from 0.084 to 1708 compared to the solar radius.

Estimate the maximum and minimum total power (luminosity) relative to that of

the Sun that could be expected from this temperature and size range of the stars.

[5× 10−4 - 2× 109. The maximum reached in practise is ≈ 106 as the largest stars

(supergiants) only have temperatures 3000 - 10000 K. ]

5.5

The space shuttle communicated to earth via several radio channels: UHF 289.7

- 296.8 MHz, S-band 1.7 - 2.3 GHz and Ku-band 15.25-17.25 GHz. During re-

entry into the earth’s atmosphere there was a period when plasma formed around

the shuttle and blocked all radio communication directly with the earth. From

Figure 2.1, estimate the minimum electron density of the plasma formed around

the shuttle during the communication black-out2. [1012 cm−3.]

2The problem of spacecraft blackout was solved in 1988 by NASA with the launch of the

Tracking and Data Relay Satellite System which allowed communication from the ‘topside’ (away

from the earth) via a relay from orbiting satellites
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5.6

The ionosphere surrounding the earth comprises plasma with electron density vary-

ing with the height above the earth’s surface. Letter symbols have been given to

different ionospheric regions at different heights: the D-region at 50 - 100 km with

electron density 103 cm−3, the E region at 100 km with electron density 105 cm−3

and the F2 region at 150 - 200 km with the maximum electron density ≈ 106

cm−3. An ionosonde is a radar system first employed in the 1920s which transmits

radar pulses vertically and records the time taken to receive a reflected signal from

the ionosphere. Determine the range of frequencies needed to obtain a reflection

from the D, E and F2 regions and the approximate expected time delay between

sending the radar pulse and receiving the reflection. [D-region 0.5 MHz, 0.3 - 0.6

ms; E-region 3 MHz, 0.6 ms; F2 region 10 MHz, 1 - 1.2 ms.]

5.7

The group velocity of radar pulses from an ionosonde in the ionsophere (see Addi-

tional Exercise 5.6) affects the time for a pulse to be returned. Consider reflections

propagating through 10 km of approximately uniform plasma material at an elec-

tron density ne = (1/2)ncrit, where ncrit is the critical density. Calculate the extra

pulse delay produced by changes to the group velocity from c by the radar pulse

propagating up and back through such a 10 km length of plasma. [1.6× 10−5 s.]

5.8

Consider a satellite orbiting in an approximately circular orbit at a speed v relative

to the earth transmitting a signal at frequency νs. At a particular time, the satellite

is at an angle θ to the vertical above a radio receiver on earth. The total electron

content of the ionosphere NT =
∫
nedz is the integral of the electron density

through the ionosphere along a vertical path. Allowing for the Doppler effect of

the satellite motion on the radio frequency in the earth’s frame of reference, show

that the group velocity delay ∆t due to the ionosphere of the received radio signal

relative to the signal received when the satellite is vertical varies as

∆t ≈ − e2vNT

2πε0m0c2νs
| tan θ|
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where positive velocity v is towards the radio receiver.

5.9

The first man-made satellite known as Sputnik 1 was launced into orbit on 4 Oc-

tober 1956 by the USSR. The Sputnik demonstrated a velocity of 29 000 km/hour

relative to the earth and emitted radio ‘beeps’ at 20 MHz of 0.3 s duration with

a gap of 0.3 s between beeps. Western listerners to Sputnik thought some teleme-

try information was conveyed as sometimes the beep duration and gap changed.

Assuming a height above earth of 500 km when close to vertical above a radio

receiver and a total electron content of 5× 1017 m−2, use the result of Additional

Exercise 5.8 to estimate the change of the duration between successive beeps due

to changes of the radio wave group velocity through the ionosphere. [0.005 s.]

5.10

Satellite lines are found at slightly higher wavelengths to hydrogen- and helium-

like resonance lines from ions of charge, say, Zi. In Section 12.6, the satellite lines

are shown to vary in intensity approximately proportionally to nine/T
3/2, where ni

is the density of ions of charge Zi, ne is the electron density and T is the electron

temperature . However, resonance line intensities vary approximately as nine/T
1/2.

Solar flare plasmas have temperatures sufficient to excite hydrogen- and helium-

like resonance and satellite lines up to iron enabling this variation in intensity with

temperature to be used as a diagnostic of the solar flare electron temperature.

Assume that a solar flare has a cylindrical cross-section, that measurements of

spectral line intensities are integrated over the cross-section, that ni ∝ ne and

that the electron density and electron temperature variations with radius r are

such that

ne(r) = ne(0) exp(−(r/∆rn)2),

T (r) = T0 exp(−(r/∆rT )2)

where ∆rn and ∆rT are measures of the spatial width of the solar flare density and

temperature. Show that the ratio R(T0) of the intensity of the satellite lines to
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the resonance line from a solar flare with a peak temperature T0 has a dependence

R(T0) = Ru(Tref )
Tref
T0

2(∆rT/∆rn)2 − 1/2

2(∆rT/∆rn)2 − 3/2
,

where Ru(Tref ) is the intensity ratio assuming a uniform plasma at some reference

temperature Tref . [Assuming a uniform solar flare plasma of temperature T0 gives

R(T0) ∝ 1/T0, whereas a non-uniform solar flare plasma of peak temperature T0

with ∆rT = ∆rn has R(T0) ∝ 3/T0.]

5.11

The intensity I of radiation for an optically thin plasma is obtained by integrat-

ing the emission coefficient ε along a line-of-sight. For a plasma with circular

symmetry, show that the intensity viewing along a line-of-sight at a minimum dis-

tance y from the centre of the axis of circular symmetry is related to the emission

coefficient ε(r) variation with radius r by

I(y) = 2
∫ ∞
y

ε(r)rdr√
y2 − r2

.

5.12

The equation for the intensity I(y) given in the Additional Exercise (5.11) can

be inverted to explicity give the emission coefficient ε(r) as a function of radius r

using the Abel inversion formula. We have that

ε(r) = − 1

π

∫ ∞
r

dI(y)

dy

dy√
y2 − r2

.

Consider the intensity I(y) of light from the solar corona which decreases approx-

imately linearly with distance y from the photosphere of the Sun when observed

from the earth. We have approximately that

I(y) =
I(RS)(R− y)

R−RS

for RS < y < R, and I(y) = 0 for y ≥ R. Here RS is the radius of the solar

photosphere. Show that the emission coefficient ε(r) for the light from the solar

corona varies as

ε(r) =
I(RS)

π(R−RS)
ln

1 +
√

1− (r/R)2

r/R

 .
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6 Tokamaks

6.1

A spectrometer used in a tokamak has a line of sight passing close to the ‘inboard’

vacuum wall with a minimum major radius R denoted by Rin. Plasma rotation

without shear often occurs such that the bulk velocity v of the plasma varies with

angle θ to the centre of the torus such that v = R (dθ/dt). Show that the Doppler

shift δω of line emission of frequency ω0 in the rest frame of reference due to plasma

rotation at any radius R is given by

δω =
Rin ω0

c

dθ

dt
.

6.2

The n = 2−1 transitions in He-like nickel along with Li-like satellite lines have been

recorded for the JET tokamak. The dielectronic satellite line intensities relative

to the resonance line increases by a factor of two for some discharges. What is

the change in plasma conditions most likely to cause such a change? [The central

electron temperature has dropped by a factor two.]

6.3

The spectral width of high-Z impurity line emission from the centre of tokamak

plasmas is used to deduce central ion temperatures T . The Lorentzian profile due

to natural broadening often needs to be taken into account. Show that the natural

broadening full width at half maximum is equal to or greater than one tenth of

the Doppler broadened full width at half maximum for H-like n = 2− 1 emission

if

kBT ≤ 102 4c2mp

9 ln 2

h̄2A2
21Z

5

R2
d

= 5.5× 10−5Z5 eV

where A21 is the transition probability for the hydrogen n = 2 − 1 (Lyman α)

transition, Rd is the Rydberg energy and mp is the mass of a proton.
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7 Laser-produced plasmas

7.1

In laser-produced plasmas, inverse bremsstrahlung is often the major absorption

mechanism for the laser light. The electron ne(z) and ion ni(z) density profiles in

a laser-produced plasma typically decrease exponentially with distance z from the

critical density ncrit along the target normal towards the laser, such that

ne(z) = ncrit exp(−z/L)

ni(z) = ncrit/Zav exp(−z/L)

where L is the density profile scalelength and Zav is the average ion charge in the

plasma. The electron temperature kBT is to a first approximation constant with

distance z ≥ 0 from the critical density. Use the expression obtained in Exercise

5.8 to show that the optical depth τabs =
∫
Kff dz for inverse bremsstrahlung of the

laser light incident normally in a laser-produced plasma is approximately given by

τabs ≈ 1.35× 10−2 ZavL

λ2(kBT )3/2

where the plasma scalength L is measured in microns, the temperature kBT is

measured in eV and λ is the laser wavelength measured in microns.

7.2

Laser light is often incident at an angle of incidence θ0 to the normal of a solid

target. The laser light penetrates to a turning point of electron density ne =

ncrit cos2 θ0 (see Section 2.4.4). Show that the optical depth τabs(θ0) for inverse

bremsstrahlung of the laser light incident at angle θ0 in a laser-produced plasma

is given by

τabs(θ0) ≈ 1.35× 10−2ZavL cos3 θ0

λ2(kBT )3/2

using the notation and conditions of the Additional Exercise 7.1.

16



7.3

Use Figure 2.6 to show that the angle of incidence θ0 for maximum resonance

absorption at the critical density in a laser-produced plasma is given by

sin θ0 ≈ 0.38

(
λ

L

)1/3

assuming the laser wavelength λ and the profile scalelength L are measured in the

same units.

7.4

Any focusing lens produces a range of angles of incidence θ in the near-field (away

from the focus) dependent on simple geometry. Laser-produced plasma focusing

geometries are often defined by the f-number fno of the lens which is the ratio

of the focal length to the diameter of the lens. Show that in the near-field, light

incident normally to a planar target after passing through a lens of f-number fno

will have a maximum angle of incidence θmax for the light rays given by

sin θmax =
1

2fno
.

7.5

In short scalelength laser-plasmas, resonance and inverse bremsstrahlung absorp-

tion as discussed in previous Additional Exercises becomes small. Another ab-

sortion process known as vacuum heating3 where electrons oscillate across the

solid target/vacuum boundary starts to dominate. Use the results of Additional

Exercises 7.3 and 7.4 to show that vacuum heating for normal incident light is

likely to dominate when the plasma scalelength L is such that

L <

(
0.38

2fno

)3

λ.

3The concept of ‘vacuum heating’ was first proposed by Brunel and is sometimes known

as Brunel heating, see F Brunel 1987 Phys. Rev. Lett. 59, 52. ‘Not-so-resonant, resonant

absorption’.
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7.6

A technique known as VISAR (Velocity Interferometer System for Any Reflector)

uses time-resolved interferometry of light reflected from a surface to measure the

velocity of the surface. VISAR is commonly employed to measure the velocity of

shock waves propagating in plasma as a shock wave exhibits a highly reflecting

steep increase in density and pressure at the front of the wave. (a) If a VISAR

using laser light of λ = 0.53µm normally incident onto a shock front detects 2

fringe shifts in 10 ps using a Mach-Zehnder interferometer, determined the shock

velocity. (b) Assume that there is a spatially and temporally varying electron

density ne(z, t) a distance z ahead of the shock such that

ne(z, t) = ns exp

(
− z

vpt

)
.

where ns is the electron density immediately ahead of the shock front and vp is

a velocity comparable to the shock velocity vs. Show that for ns much less than

the critical density ncrit for the probing light, that the plasma ahead of the shock

front produces a phase shift ∆φ in the VISAR additional to the phase change due

to the changing position of the shock front given by

∆φ =
2πns(vp − vs) t

λncrit
.

[(a) 5× 104 ms−1.]

7.7

Parallel rays of a probe laser are incident into a laser-produced plasma parallel to

the plane target surface and traverse a distance ∆z through the plasma. A lens

of numerical aperture NA focussed at the centre of the target collects refracted

laser light and images this onto a detector. Light incident at distances r from the

target surface such that r < rmin is refracted at angles θ > θmax, where θmax = NA

and appears black in the image. The electron density ne(r) in the laser-produced

plasma decreases with distance r from the solid target electron density ns and is

uniform along ∆z, such that

ne(r) = ns exp(−r/L)
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where L is a density scalelength. Show that

exp(−rmin/L)

L
≈ 2ncrit

ns

NA

∆z
,

where ncrit is the critical electron density for the probe laser wavelength.

7.8

Ignoring relativistic effects, show that the electron ‘quiver’ velocity vq in the electric

field of an electromagnetic wave is such that the value of (vq/c)
2 averaged over a

cycle of the wave has a value a2
0/2, where a0 is the reduced vector potential (see

section 2.4.1).

7.9

The ponderomotive force F on an electron arises from the spatial gradient of the

ponderomotive potential <U >. Consider a pulse of electromagnetic radiation

incident on a stationary electron. Show that the ponderomotive force due to the

rising edge of a light pulse causes a change of momentum dp/dt on the electron

in the direction of light propagation such that dp/dt = (1/c)d(<U>)/dt and that

hence during the light pulse the momentum of the electron in the direction of

propagation is equal to <U> /c. [In section 2.4.1 the microscopic motion of an

electron in an electromagnetic wave is shown to produce a cycle-averaged drift

momentum given by <U> /c.]

8 Spectroscopy

8.1

Consider two quantum states, a lower state 1 and and an upper state 2 with en-

ergy separation of h̄ω21. From the relationship between the absorption oscillator

strength f12 and radiative transition probability A21 between the two states (Equa-

tion 4.29), show that the frequency integrated emission cofficient ε21 for radiative

transitions between states 2 and 1 is given by

ε21 =
2h̄ω3

21

c
re

[
g1f12

N2

g2

]
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where re is the classical electron radius (see Equation 3.4), g1 is the degeneracy

of state 1 and N2 is the population density of state 2. [For closely spaced ex-

cited energy levels with populations N2 ∝ g2, the intensity of emitted radiation is

proportional to g1f12. The value of the oscillator strength times the lower state

degeneracy is often found in tabulations of spectral lines as it gives a good guide

to the relative intensity of a spectral line. ]

8.2

Consider two excited quantum states 2 and 3 separated by a small energy differ-

ence ∆E within the same ionisation stage. Show that the ratio of the emission

coefficients at frequencies ω21 and ω31 from these excited states to the ground state

1 can usually be approximated by

ε31

ε21

≈
(
ω31

ω21

)3 g1f13

g1f12

to an accuracy of 10%, provided the electron temperature T is such that

kBT > 10 ∆E.

8.3

The Balmer α (n = 3−2) and Balmer β (n = 4−2) lines of hydrogen have respec-

tive transition probabilities of 4.4101 × 107 s−1 and 8.4193 × 106 s−1. Assuming

LTE between the upper quantum states for these transitions, show that the elec-

tron temperature T is related to the ratio R = ε32/ε42 of the emission coefficients

for the two lines by
kBT

Rd

=
0.04861

−0.7808 + lnR

where Rd = 13.6 eV is the Rydberg energy.

8.4

Differentiate the expression for the temperature in Additional Exercise 8.3 to show

that the fractional error ∆T/T in a temperature measured using the Balmer line
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emission coefficient ratio R is such that

∆T

T
=

(
kBT

0.04861Rd

)
∆R

R

where ∆R/R is the fractional error in the Balmer line emission coefficient ratio.

8.5

Considering the discussion in Chapter 5, show that both free-free and free-bound

continuum emission can be used to determine a plasma temperature T by de-

terming the slope s of a plot of the natural logarithm of the continuum emission

coefficient as a function of photon energy h̄ω with

kBT = −1

s
.

Show that the error ∆T in the temperature measurement is related to the error

∆s in the measurement of the slope such that

∆T

T
=

∆s

s
.

8.6

An optically thin expanding plasma contains ions with a velocity v along a line of

sight varying linearly as v = Kvz (with Kv constant with z) and a density profile

N(z) of the upper quantum state of ions emitting a spectral line such that

N(z) = N(0) exp

(
−4
√

ln 2
(
z

∆z

)2
)
.

Assuming an infinitely narrow spectral line profile centred on the frequency ω0 in

the frame of the emitting ion, show that the full-width at half maximum ∆ω of

the line profile seen by a stationary observer viewing along the line of sight z is

given by

∆ω =
ω0Kv ∆z

c
.
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8.7

The Doppler broadening of spectral lines due to thermal motion of ions is used to

measure ion temperatures. Bulk plasma motion as explored in Additional Exercise

8.6 can invalidate such measurements. Show that the line broadening due to a

linear velocity gradient Kv and number distribution of ions as given in Additional

Exercise 8.6 is equal to the Doppler broadening associated with an ion temperature

T when

Kv ∆z = 1.665

√
kBT

M

where M is the mass of the emitting ions.

8.8

Consider a stationary plasma affected by the opacity broadening of spectral lines.

Use Figure 10.1 to estimate the maximum line centre optical depth τ0 causing a

less than 10% change to the spectral width of a spectral line. [0.3 assuming a

Lorentzian profile.]

8.9

Plasmas are often ‘backlit’ by a broad spectrum of radiation which enables a mea-

surement of the opacity of absorption lines. As absorption lines can be spectrally

narrow, the instrument resolution ∆ωRes of a spectrometer recording the absorp-

tion feature is often larger than the spectral width ∆ωs of an absorption line.

Assuming that the instrument resolution and absorption line profile can be both

characterised by Milne profiles (see Section 10.3), show that the apparent optical

depth τA measured for an absorption line of spectral width ∆ωs and peak optical

depth τs recorded with an instrument resolution ∆ωRes is given by

τA = − ln
[
1− ∆ωs

∆ωRes

(
1− e−τs

)]
assuming ∆ωRes ≥ ∆ωs. [This expression illustrates that the measurement τA can

be significantly less than the actual τs. A saturation effect can occur in absorption

spectroscopy where the measured optical depth does not increase with increasing

actual optical depth: saturation here occurs when τs is large, so that the maximum

apparent optical depth τA = − ln[1−∆ωs/∆ωRes]. ]
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9 High density plasmas

9.1

The rate coefficients of collisional excitation, collisional ionisation and bound free

photo-ionisation are modified at high density from the rates at low density due

to free electron degeneracy effects by factors of respectively (see equations 13.34,

13.41 and 13.45):

Rpq =
(2/ne)(2πm0kBT/h

2)3/2

1− exp(−∆E/kBT )
ln

[
1 + exp(µ/kBT )

1 + exp((µ−∆E)/kBT )

]
,

Rion = (2/ne)(2πm0kBT/h
2)3/2 Jion(Eion)

exp(−Eion/kBT
,

R∗ff = (2/ne)(2πm0kBT/h
2)3/2 exp

(
h̄ω

kBT

)
Iint.

In order to express these factors in terms of the chemical potential µ (and ionisation

energy ∆Eion), show that the following substitution can be used:

(2/ne)(2πm0kBT/h
2)3/2 =

√
π

2

1

I1/2(µ/kBT )

where I1/2(µ/kBT ) is the Fermi-Dirac integral of order 1/2 (see equation 13.6).

10 Errata

10.1

On p39, the number of photons in the volume of an atom should be

np = 2× 10−20I.

where the intensity I is measured in Wm−2. This means that intensities I > 1016

Wcm−2 are required to have at least two photons in the atomic volume.
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10.2

On p116, the solid angle of radiation propagating at an angle θ to the normal to a

plane subtends an angle 2π sin θdθ without the τ term as printed. Equation 6.5, 6.5

and the un-numbered integral at the top of p116 should appear with integrands of

respectively S(τ) exp(−τ)dτdu, S(τ)u exp(−τ)dτdu and S(τ) exp(−τ)2π sin θdθdτ .

10.3

On p267, equation 13.21 should have Z − Zav on the left hand side rather than

just Zav.
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