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Abstract

This report is intended as an introduction to evolution and evolutionary com-
putation. Taking its lead from contemporary thinking in biology, it advocates that
we have more to learn from the role that developmental processes play in natu-
ral evolutionary search than has previously been admitted by practitioners in evo-
lutionary computation. A brief summary of evolutionary biology is given, from
Darwin to Dawkins and beyond, alongside theoretical insights from authors such
as Kauffman and Solé. The report then sketches the development of evolution-
ary computation as a field of computer science. It gives some background to how
the “central dogma of biology” gained a canonical form as an algorithm and why
decomposing tasks for evolutionary computation remains a difficult problem. It
ends by indicating how gene re-use and context-dependent gene expression may
provide one key to how evolution creates scalable solutions of such complexity.
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1 Preface

Evolutionary computation uses the process of natural selection as a search algorithm.
Like evolution, the algorithm works over successive generations, gradually moving the
search closer to the objectives until no more improvement in the population is possible,
or the objectives are satisfied.

Evolutionary computation has a long academic and industrial record (see §8.1).
Within that time it has branched into variants (discussed in § 8.1.5), developed a canon-
ical form (§8.2) and been deployed in a wide range of industrial applications (§9.1).
During the mid 1990s, evolutionary computation began to draw media attention with
claims that human-competitive patents were being discovered through the use of evo-
lutionary search techniques (Fonlupt, 2005; Koza et al., 2003). The techniques found
industrial application wherever a design required taking a set of competing objectives
into account. Examples from this period include Honda’s “evolved” gas turbine fan
blades (Jin, 2005), while NASA carried out experiments to evolve antennae and other
aerospace hardware (Miller, 2000). More recently, claims in popular science journals,
such as Peter Bentley’s article in New Scientist, have fuelled expectations that evolu-
tionary computation is poised to take over human design and that creativity can now
be automated (Bentley, 2004). The reality is more mundane. The achievements of
evolutionary computation remain relatively modest. No one has evolved the design
for a car, a house, or anything where the number of parts exposed to random mutation
significantly adds to the complexity of the objective.

The problem is one of scale. Evolutionary computation has successfully been used
as a search-based optimisation technique. Such optimisation generally involves a hand-
ful of factors in the fitness assessment. But as the number of elements sought by evo-
lutionary search goes up, the time required to find a solution increases dramatically
(see §8.1.1). Where elements can affect one another, the search space size increase is
exponential.! To get round this, the process is generally “bootstrapped” to the point
where evolutionary algorithms optimise just a few variables on an existing solution,
poor though that initial solution might be. But bootstrapping incurs a penalty — it con-
stricts the search start point and therefore its trajectory. While we can trace the search
trajectory of an evolved artifact, it is harder to estimate the place we should have started
from to get a better result, particularly when the nature of the search space is unknown.
Tackling these issues requires being well-versed in the art of problem representation
and decomposition, an area that continues to cause difficulties (see §9.2).

Claims that evolutionary computation is inspired by biological evolution must be
tempered with the understanding that the representation and process bear only a token
correspondence to those in nature. Although evolutionary computation employs a ge-
netic encoding from which a population is generated and upon which selection is made,
the step between the genetic encoding and selection of the phenotype is very small. In
contrast, natural evolution has brought about a complex developmental process that
plays a vital role in the exploration of the functional search space, and by extension,
on phenotype selection. It is worth noting the historical legacy at work here, both from
the study of evolution by biologists and the “borrowing” done by practitioners of evo-
lutionary computation. The theory of evolution and natural selection, as developed by
Charles Darwin (see §3), was taken up and revised after the 1960s by those who be-
lieved that genes alone were the driving forces behind evolutionary change (§3.2). This

'Natural evolution deals with just such multi-dimensional search spaces, but of mind-boggling propor-
tions, see §6.3.
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was the point at which evolutionary computation first settled on an established repre-
sentation of genetic encoding and mutation (§ 8.1.4). But the genetic “reductionism” of
the late 1970s was seen by some in biology as omitting the bigger picture (§3.3). They
argued that evolution did not have a free hand to exploit genetic mutations. Instead,
developmental processes constrain the degree and type of changes permitted in order
to maintain the viability of the organism (discussed in §3.3 and §5.1). These restric-
tions have important implications on how natural evolution handles the combinatorial
explosion of scale that has so far defeated proponents of evolutionary computation.
However, despite the emerging evidence from biology on gene re-use and expression,
and criticisms of the field’s own shortcomings over the last decade (Banzhaf and et al,
2006), evolutionary computation has failed to move away from evolutionary models
founded in the 1960s and has largely ignored what phenotype development could bring
to the process of evolutionary discovery.

During the 1990s, theoretical biologists began to investigate complexity and evo-
lution by building models of how evolutionary paths were traversed in competitive
ecologies (§6). The models indicated that rather than striving for continuous perfec-
tion, organisms are involved in an evolutionary arms race against other organisms.
Those who stand still while the world evolves around them fail in the race for survival.
Likewise those who stray too high up an evolutionary peak of specialist adaptation
find their evolutionary paths are cut off when they need to adapt to new circumstances
(§6.3). These theoretical models suggest that natural evolutionary systems are poised
close to the edge of chaos, as small changes in one part frequently have knock on effects
throughout the system (§ 6.3; page 31). This picture of evolution is closer to one where
the system is held in balance and species expand into available niches as they appear,
rather than one geared to isolated optimisations over an open landscape. Such theoret-
ical evidence may give clues to how evolution works within highly connected systems
and perhaps help evolutionary computation cope with the complexity generated when
evolution can act on all parts of a system.

Although it is difficult to do justice to the breadth of developmental and evolution-
ary biology, the following sections attempt to show where the arguments in favour of
a developmental approach to evolutionary computation come from, and in doing so try
to give a flavour of the inspiration that natural evolution provides.

2 The Inspiration of Nature

Nature furnishes us with examples of organisms that have adapted to a bewildering
variety of environments. Forms of life extend almost as far below the earth as they do
above it. From bacteria thriving in complete darkness in hostile, boiling sulphur springs
miles beneath the surface of the Pacific Ocean, to insects blown aloft in the oxygen-
deprived, freezing temperatures of our upper atmosphere, there are few places that life
has not managed to adapt to and survive. This general purpose, problem-solving inge-
nuity can be found almost anywhere life exists, but where there are abundant sources
of food and water, such as equatorial rain forests, there is more opportunity for spe-
cialist adaptation. Camouflage is a vivid manifestation of adaptation to a particular
habitat, and insects in particular draw inspiration for camouflage from almost anything
in their environment. Examples can be found of beetles on the forest floor that have
evolved to mimic fallen seeds pods (Fig. 1), while others mimic twigs or diseased
leaves (Fig. 2). Caterpillars may mimic other, more poisonous caterpillars, or even
bird excrement (Fig. 1). Birds also make use of their plumage and stance to render
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Figure 1: Insect camouflage: one mimics a shiny seed pod found on the forest floor
(left), another mimics bird excrement while it feeds.
Images copyright of BBC Worldwide Ltd. (Attenborough, 1984)

themselves invisible (Fig. 3).

The variety of evolved forms is one factor that allows life to solve the problem of
existence within such a wide range of habitat (see Fig. 4). But variety alone would be
insufficient to allow phyla to survive indefinitely. If environments change, whether by
movement of the organism or from external factors, organisms must change with them.
If a species fails to change, it may quickly die out. No organism knows how it will
need to adapt for the future and only reproduction permits a species to survive.

In Europe at least until the mid-nineteenth century, what had enabled a species to
arise in the first place had traditionally been ascribed to the creative power of God.
There was no recognition that things ever changed from the point of creation onward.
But a famous debate by the British Association for the Advancement of Science in
Oxford in 1860 (Howard, 2001), gave birth to a new vision of how life created and
continued to create new forms. Theologians lost the right to impose a single under-
standing of how life had been created, and although that debate is still engaged in some
quarters, the explanation of how life has evolved has been almost universally attributed
to the theory of natural selection developed by Charles Darwin.

3 Darwin’s Theory of Natural Selection

Jonathon Howard has commented in his book on Darwin that anyone attempting a
biography of the man is “faced with an embarrassment of riches” (Howard, 2001). But
while a very full account of Darwin’s life would be possible given the notes and records
that have come down to us, the following section attempts to summarise in brief terms
who Darwin was, with respect to his time and place, and what enabled him to formulate
the most famous theory in biology, in his book “On The Origin of Species” (Darwin,
1859).

Grandson of the doctor and “speculative evolutionist” (Howard, 2001) Erasmus
Darwin, Charles Darwin was born into a wealthy family, allowing him the opportunity
to study what he wished. After giving up a brief career as a medical student in Edin-
burgh, Darwin took the retrospectively ironic step of moving to Cambridge to become
an Anglican priest. But his interest in science developed and led him at the age of
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Figure 2: Stick insects come in huge variety of shapes, but each subspecies is closely
adapted to a particular species of flora.
Images copyright of BBC Worldwide Ltd. (Attenborough, 1984)

22, thanks to his tutor’s recommendation, to be accepted as the naturalist on board a
five-year scientific voyage by the HMS Beagle. Darwin claimed that the “voyage of
the Beagle has been by far the most important event in my life and has determined my
whole career” (Darwin and Henry, 1974) and there is no doubt that the places that the
Beagle visited, in particular some isolated islands, were to play a large part in shaping
Darwin’s thoughts about evolution.

Most biographers assert the principal influence on Darwin while aboard the Beagle
was Charles Lyell’s Principles of Geology. Prior to the theory of natural selection, the
earliest battles fought by scientists against the scriptural dogma of the Church were
fought by geologists:

“It was inevitable that a geological science which looked at the surface
of the earth as a mobile and changing structure and part of a mobile and
changing cosmos should eventually come into direct conflict with theolog-
ical limitations on the development of science. Historical geology, with its
emphasis on slow and continued processes, introduced a new and almost
limitless timescale for the past evolution of the earth which recognised
none of the miraculous and instantaneous events of the Mosaic creation
story.” (Howard, 2001)

Alongside evolutionary geology were the natural sciences that represented the prevail-
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Figure 3: The feathers of Brazilian potoo closely resemble both the colour and textures
of bark and lichen, allowing it to mimic a tree stump when sitting motionless on its
nest.

Images copyright of BBC Worldwide Ltd. (Attenborough, 1984)

ing scientific beliefs of the time, some of which were intermingled with religious senti-
ments regarding man’s “place” within nature, and the widespread belief that there was
a well-defined hierarchy of species or types, and that such types persisted unchanged
through time. For example, as Howard points out, the concept of permanence among
species type was closely correlated to the story of Genesis, where God created all liv-
ing things on a single day and their types continued unchanged to the present day via
reproduction.

But our ability to classify distinct types or species had already been questioned.
Linnaeus had begun his System Naturae in 1735 with the conviction that a distinct
categorisation was possible for all species, but ended his life doubting it was achievable
(Howard, 2001). This wasn’t the only messy problem that failed to fit with the vision of
a divinely created natural system. Others more firmly attached to “natural theology”,
such as the Anglican cleric Malthus, sought in 1809 to justify why an ideal creation
countenanced a system that allowed a species population to exhaust its resources and
suffer. Malthus argued that populations always increase geometrically where there is
no competition for resources. What made Malthus different from previous justifications
for nature’s “unreasonableness” was that he declared that competition between species
was a “law of nature” and that man was no different from any other creature with
respect to competition. This was at least a shift from most classifications that painted
man at the head of creation.

One can draw from early Victorian thinking to depict the background from which
the theory of natural selection sprung, but whether such opinion would have had much
sway on a passenger of the Beagle when it was several thousand miles from home is
doubtful. What we do know is that Darwin took with him Lyell’s work, and Lyell’s sec-
ond volume of the Principles of Geology reached Darwin midway through his voyage.
In that volume, Lyell dealt with biological evolution and in particular, responded to a
theory of evolution put forward by Jean Baptiste de Larmark in his book Philosophie
Zoologique (1809). Lamark not only emphasised Linnaeus’s doubts about the difficul-
ties of classification, he noted the specialist adaptations of which nature was capable
and presented a theory to explain such adaptations. Lamark claimed, without evidence,
that the evolution of animals was propelled by their recognition of “new needs”, which
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Figure 4: Two specialist adaptations: the lichen beetle (left) exudes a glue so that it
can stick pieces of lichen to itself, while a relative of the cockroach, grylloblattodea
(right), scavenges high up above the snowline on the Himalayan mountains. It is so
closely adapted to temperatures below freezing that the heat of your hand would kill it
in a few minutes.

Images copyright of BBC Worldwide Ltd. (1984)

in turn provoked behavioural change to satisfy those needs, and this in turn caused
structural change to make the behavioural change more efficient (Howard, 2001). This
neat circularity was complete when the structural changes made in the creature’s life-
time were inherited by its offspring. But while Lyell came up with his own ideas about
biological evolution (later rejected by Darwin), his importance to Darwin was that he
effectively dismissed Lamark’s ideas as speculative, i.e. that the mechanism of evolu-
tion had not been proven, even by argument (Howard, 2001). It was Lyell’s insistence
that the mechanism required a scientific explanation that led Darwin to concentrate on
this first, rather than why variations occurred between species, or the more established
problem of species classification.

3.1 The Three Generalisations

The mechanism involving the flawed replication of DNA code through which inher-
itable variation operates was not found in Darwin’s lifetime. However, the attributes
manifested by the process were deduced by Darwin through observation and argument.
Darwin drew up three independent generalisations which allowed him to argue for the
theory of natural selection:

Variation: no two individuals are identical within a population.

Hereditary characteristics: the variation expressed as individual characteristics is in-
heritable from parents to offspring.

Multiplication and competition: Malthus’s observation — about population increase
where no competition for resources exists — means that as resources are always
finite, competition must act as a brake on population growth.

If these processes were acting, then hereditary variations within a population that al-
lowed an organism to survive would stand a greater chance of being passed on to their
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offspring. This was the method that explained how characteristic adaptations to the
environment evolved within species and why species diverged.

However, geographical divergence between species was not entirely explained by
natural selection. A new species isolated on an island or separated by a mountain
range from a similar species presented an easy case, but Darwin found it harder to
provide convincing arguments for why speciation still occurred where there was no
geographical barrier. This area would continue to cause difficulty for Darwin in his
later years, even to the extent of damaging his reputation when he published an account
of it (his hypothesis of panegenesis) which veered dangerously close to Lamark in
explaining the process of heredity. Richard Dawkins points out that this may have had
its roots in 19th century views that heredity was a blending process. He comments:

. if heredity is of this blending type, it is almost impossible for Dar-
winian natural selection to work because the available variation is halved
in every generation. Darwin knew this, and it worried him enough to drive
him in the direction of Lamarckism. (Dawkins, 1998)

Despite the difficulties Darwin faced trying to explain heredity and variation, his
theory of natural selection went on to become the dominant explanation of evolution
which the discovery of DNA, almost a century later, would do little to change. Indeed,
some would say the discovery has strengthened the theory of natural selection, even
though in the words of Richard Dawkins, biologists now had to turn “from the fact of
evolution to the less secure theory of its mechanism” (Dawkins, 1998).

3.2 Neo-Darwinism

“The definition that I want comes from G.C. Williams. A gene is de-
fined as any portion of chromosomal material that potentially last [sic]

for enough generations to serve as a unit of natural selection.” (Dawkins,
1989)

The solution to Darwin’s problem over the blending nature of hereditary was pub-
lished, unknown to him, by the German Gregor Mendel in 1865. Mendel’s theory was
that heredity was particulate, rather than blending in nature, so that parents pass on
to their offspring discrete hereditary particles. The mechanism underlying this was
not provided until the twentieth century, with the discovery that how particular genes
are inherited from a parent — and genes are particulate in nature, either they are in-
herited or they are not. There is no half-way, partial inheritance. It is claimed (by
neo-Darwinists) that this makes all the difference to the mathematical plausibility of
the theory of natural selection. Dawkins states that Hardy and Weinberg were the first
to realise:

“there is no inherent tendency for genes to disappear from the gene
pool. If they do disappear, it will be because of bad luck, or because of
natural selection — because something about those genes influences the
probability that individuals possessing them will survive and reproduce.
The modern version of Darwinism, often called Neodarwinism, is based
upon this insight.” (Dawkins, 1998)

Dawkins was one of those who championed neo-Darwinism, and he summarised the
modern genetic theory of natural selection as follows.
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The genes of interbreeding animals constitute a gene pool. The genes compete,
but in practice spend their time either sitting in individual bodies which they helped
to build, or travelling from body to body via sperm or egg in the process of sexual
reproduction. Sexual reproduction shuffles the genes, and it is in this sense that the
long-term habitat of a gene is the gene pool. Any given gene originates in the gene
pool as a result of a mutation, a random error in the gene-copying process. Once a
mutation is formed, it can spread by means of sexual mixing provided that its carrier
is able to sexually reproduce. Good carriers will contribute more to the gene pool than
reproductively less successful ones. Any given gene in a gene pool is said to have a
frequency, as it is likely to exist in the form of several copies, all descended from the
original mutant. Some genes such as the albino gene are rare in the gene pool, others
are common. At a genetic level, evolution may be defined as the process by which gene
frequencies change in gene pools (adapted from (Dawkins, 1998)).

For Dawkins, although natural selection accounts for the “perfection of adaptation”
in nature, it is of primary importance only because of its consequences for the survival
of genes in the gene pool. If a gene is successful in creating a good body that reproduces
successfully, then it ensures its own survival. Dawkins (1989) developed this idea in
great detail in his first book, The Selfish Gene. In it he suggested that in the world of
the selfish gene (“what is a single selfish gene trying to do? It is trying to get more
numerous in the gene pool”) there is no individual altruism in the carriers of genes
other than kin selection, that is to say, “a gene might be able to assist replicas of itself
that are sitting in other bodies”. The logical extension to this, Dawkin argues, is that
almost all behaviour is genetically predetermined to aid the survival of the gene and
nothing else. This he argues, explains all manner of bizarre behaviours:

Mantises are large carnivorous insects. . . If the female gets the chance
she will eat [the male]. .. It might seem most sensible for her to wait until
copulation is over before she starts to eat him. But the loss of the head
does not seem to throw the rest of the male’s body off its sexual stride.
Indeed, since the insect head is the seat of some inhibitory nerve centers,
it is possible that the female improves the male’s sexual performance by
eating his head. (Dawkins, 1989)

Dawkin’s one caveat to the selfish gene is that humans may be the one organism capable
of resisting genetically determined behaviour through cultural and moral values.
Dawkin’s ideas helped swing popular opinion towards a belief that genes explain
“life”, and persuaded many that the notion of competitive genes fitted perfectly into
the theory of natural selection. But such genetic reductionism began to look less con-
vincing as more became known about the developmental process of molecular biology
and the constraints of the environment. It became apparent that genes do not have a
free hand when it comes to altering features that could affect the viability of the or-
ganism. Conflicting genetic evidence also started to muddy the waters concerning the
separate evolution of similar organs across species, such as the eye (see §3.2). But
even outside these discoveries, there were there those who remained sceptical about
the presence of minute variations in the gene pool explaining the eventual appearance
of new species.” Brian Goodwin, one of those who sought to bring the generic com-
plexity across nature (including developmental biology) back to the forefront of the
evolutionary debate, commented a few years after The Selfish Gene was published that

2When I refer to such scepticism, I am referring to those in the scientific community who wish to be
convinced of better scientific arguments, rather than those who counter such arguments with religious bias.
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neo-Darwinism failed to explain “large scale aspects of evolution, including the origin
of species”:

“New types of organisms simply appear upon the evolutionary scene,
persist for various periods of time, and then become extinct. So Darwin’s
assumption that the tree of life [i.e. speciation] is a consequence of the
gradual accumulation of small hereditary differences appears to be with-
out significant support. Some other process is responsible for the emergent
properties of life, those distinctive features that separate one group of or-
ganisms from another...” 3 (Goodwin, 1994)

Goodwin questioned whether the mechanisms of evolution could be reduced to the
action of genes alone. Genetic mutation painted a convincing picture for small scale
changes — the “fine tuning” of varieties — but not differences of type: fish from
amphibian, worms from insects, or horsetails from grasses. Darwin’s original diffi-
culty to explain speciation began to rear its head again, despite the best efforts of neo-
Darwinists to put the argument to bed. This is a broad topic and one we can summarise
only a part of. The next section tries to indicate the nature of current debates over
speciation and functional features, and how these debates now include evidence from
diverse areas, such as developmental biology and gene regulation, and the development
of similar functional features across the species divide.

3.3 The Role of Complexity in Evolution

Fully developed forms of animals and plants, with their millions of eukaryotic cells
acting in concert to provide much larger scale functionality, can seem a long way from
the genetic code that translates a string of amino-acids to some proteins. The gap
between the two is the part investigated by developmental biology.

Goodwin, in his book How the Leopard Changed its Spots, argued that genes are
not the whole picture, and that complex organs have developed the way they are due to a
robust, morphological process of development that was both helped and constrained by
its environment (Goodwin, 1994). Goodwin’s choice of the eye as one of his principal
examples was deliberate. It was the organ that Darwin had gone to enormous effort
to convince people that such “organs of extreme perfection and complication” could
have developed by the infinitely gradual process of inheritable variation and natural
selection, even though in his own words, it “seems I freely confess, absurd in the
highest possible degree”.* It was his defence of the evolution of the eye that provided
one of the more famous quotes in The Origins of Species:

“If it could be demonstrated that any complex organ existed, which
could not possibly have been formed by numerous, successive, slight mod-
ifications, my theory would absolutely break down. But I can find out no
such case.” (Darwin, 1859, pg. chapter VI)

3Goodwin and others, such as Gould (1989), may not have had access to Darwin’s notebooks, particularly
some of his pencil sketches, which give a less rigid idea of his tree of descent than is often portrayed. Darwin
was perfectly aware that his tree of descent could not simply be an ever-growing tree of diversification, but
instead was somewhat fragmented, more “like a piece of coral, with some parts dead and missing at the root,
some parts alive and growing at the tips.” (Howard, 2001)

4To counter the scepticism he met, Darwin felt compelled to extend his arguments for the evolution of
the eye between the first (1859) and sixth (1872) edition of the The Origins of Species.
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Figure 5: Possible landscape of eye evolution created by Mike Land. Height represents
optical quality and the ground plane evolutionary distance. Land writes that “Climbing
the hills is straightforward but going from one hilltop to another is near impossible”
(Quoted by Ferald (2001)).

Image and text taken from Ferald (2001) (originally in Dawkins (1996))

Darwin marshaled all manner of examples to suggest that primitive eyes were present in
many organisms in different stages of evolutionary development, that nerve endings in
many creatures were sensitive to light and that the “unerring skill of natural selection”
would forever refine the simplest form of eye towards greater perfection.

By re-examining the evolution of the eye, Goodwin created a long-running debate
between molecular, developmental and evolutionary biologists. Dawkins wrote a direct
response to Goodwin from the neo-Darwinist perspective in Chapter 5 of his book
Climbing Mount Improbable (Dawkins, 1996). In it he gives a picture by Mike Land
that tries to represent the evolutionary landscape of all known eyes (Fig. 5). Dawkins
argued that climbing an evolutionary peak of optical sophistication was easy enough
for a species, but no species could jump from one mountain top to another. Others have
pointed to the fact that the simple compound image-forming eye appears to have been
invented at least three times during the course of evolution (Fogel, 2000, pg. 35), and
therefore types of eye couldn’t be explained by a diagram such as Fig 5.

But it seems now as if neither Dawkins (for neo-Darwinists and gene reductionism)
nor Goodwin (influence of developmental processes and morphological constraints)
can claim an emphatic victory over the root causes of differences in species type and
that the truth lies somewhere between the two. Russell Fernald, writing in (2001), sums
up how the arguments swing this way, then that, almost as each new research paper is
published:

Have the structural similarities among eyes resulted from evolutionary
convergence due to similar selective pressures (analogous) or from descent
from a common ancestor (homologous)? This distinction is particularly
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hard to draw when comparing eyes because the physical laws governing
light greatly restrict the construction of eyes. Similar eye structures may
have arisen in unrelated animals simply because of constraints imposed
by light. ... However...opsin has a significant DNA sequence homology
across all phyla. Remarkably, recent work by Gehring and Ikeo (Gehring
and Ikeo, 1999) has shown that features of ocular development in different
phyla can be coordinated by a homologous “master” gene, Pax-6. That a
single gene could trigger construction of an animal’s eye in diverse species
led to their proposal that eyes are monophyletic, i.e. evolved only once.
(Ferald, 2001)

What can be said about the ongoing debate on the evolution of complex organs
is that developmental processes and environmental constraints seem to be playing a
larger part in the debate than in the early eighties, when they were largely discounted
by those advocating gene reductionism. In the following sections, we examine some
of the complexity that makes up the physical development of the phenotype and assess
why such developmental processes are important in their own right to the creation of
complex organisms.

4 Aspects of Development

If evolution has a guiding hand in creating successful designs, that hand is constrained
by developmental processes. Development controls whether those designs can be built
or not, and helps exploit the complexity of the physical world to allow life to be con-
structed. Genes play a vital role in development, but they are also restricted in what
they can do or change. This section draws heavily from the introduction to Kumar and
Bentley’s book On Growth, Form and Computers (2003), which in turn draws almost
exclusively from Wolpert’s The Principles of Development (1998).

Wolpert describes development as “the emergence of organised structures from an
initially very simple group of cells” (Wolpert, 1998). The process of moving from
simple cells to more complex structures is almost entirely governed by proteins, but
in order to understand how proteins influence development, we need to first become
familiar with development at the level of the cell. This overview therefore starts with
a high level view of cell development, then looks at the internals of cells, covering the
synthesis of proteins within cells and cell signalling, before ending with a look at DNA
and the role of proteins in gene regulation.

4.1 Cells

Cells are complicated. They have their own internal logic, they can act as sensors to
respond to external signals and are able to emit signals that govern the behaviour of
other cells. Cells and their proteins have resulted in a sophisticated control mechanism
that not only dictates how development proceeds, but which also controls the running
of bio-machinery after development.

Cells have two forms: prokaryotic (bacteria, including the important, large group of
cyanobacteria, sometimes referred to as “blue green algae”) and eukaryotic (everything
else). The latter encases its DNA within a membrane, giving advantages in terms of
control, defence and the ability to process information. Many regard the eukaryotic
cell as the foremost achievement of evolution. Wolpert goes as far to claim that:



4 ASPECTS OF DEVELOPMENT 14

Figure 6: “Eukaryotic cells have an extensive array of membrane-bound compartments
and organelles with up to 4 levels of nesting. The nucleus is a double membrane. The
external membrane is less than 10% of the total.”

Image and text taken from Cardelli (2005)

“Once you had the eukaryotic cell, from the point of view of evolution
and development, it was downhill all the way: very, very easy... Among
the basic components required for development, I can think of virtually
nothing that eukaryotic cells did not have which is required for the devel-
opmental process.” (Wolpert, 2003, pg. 59)

Certainly when we look at the extraordinary information processing capabilities of the
cell one can only marvel that the system scales so well.

4.1.1 Cell Signalling

The cell container is a membrane (Fig. 6), a subtle discriminator over what passes
through it — some proteins may enter, others can leave, the membrane determines
which. This selective permeability gives cells a universal filtering mechanism which
can listen to broadcast messages as though tuned into a single hormonal frequency.
Cells act as marvellously sensitive sensors and emitters of signals. They can operate
in a wide range of media, from pheromone signalling in an air stream over miles of
open space, to hormone signals carried in the blood stream in animals, to cell mem-
brane surface proteins signalling to their immediate neighbours during development,
to intra-cellular signalling for the presence of invading pathogens, cells can do it all.
The mechanisms they use are equally complex and diverse (Hancock, 2003). Without
cell signalling, it is hard to envisage how multicellular organisms, that are awash with
information, could evolve, develop or exist at all.

The physical sequence of a cell signal generally follows the pattern of a molecule
being released by one cell to be detected by the receptors on another cell, but there are
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variations on this, such as the detection of membrane proteins on one cell by receptors
on another or the transfer of small molecules through “gap junctions”.

Cell signalling plays an important part in development, particularly mechanisms
such as juxtacrine signalling in early development when the cells may be closely
packed together (Wearing et al., 2000). But more generally, without cell signalling
an organism could not even begin to differentiate positional information to set up the
axes of the body plan (see Spemman’s ‘organiser experiment’ on amphibian embryos in
Wolpert (1998)). Without cell signalling, only asymmetric distribution of transcription
factors during cleavage could cause cells to become different from one another (Ku-
mar and Bentley, 2003, pg. 5-6, but see also §5.2). Developmental processes, as we
shall see in later sections, require context specific gene expression in order to achieve
particular morphological functions.

Finally, binding a protein to a cell’s receptor can trigger internal cell reactions that
relay information back to the genome via signal transduction pathways. Such path-
ways can be viewed as signal cascades, sometimes involving many events that can
be used by the cell as an amplification mechanism. Pathways are complex, as during
the “cascade” there are opportunities for increased interaction or influence from other
pathways leading to a complex interplay of genes, proteins, even conflicting signals.

4.1.2 Cell Division

Cells multiply by duplicating their contents and splitting in two. The cycle of cell di-
vision contains several phases: interphase, where DNA replication and the production
of proteins occurs, mitosis or nuclear division, and cytokinesis, which concerns the
division of a cell’s cytoplasm after nuclear division (Kumar and Bentley, 2003).

Cell division is either symmetric or asymmetric. Symmetric division occurs when
the plane of cleavage divides the cell into equal sizes with equal proportions of cyto-
plasmic proteins. Asymmetric division results in unequal sizes of daughter and parent
cells containing different cytoplasmic factors. The different levels of cytoplasmic fac-
tors plays a large part in local regulation of gene expression in the embyro (§5.2).

4.2 Proteins

The broad behaviour range of eukaryotic cells is due to their interaction and production
of proteins. With each cell containing several thousand proteins, the scope of potential
functions a cell can achieve is huge. Proteins form not just the structural components
of cells and tissues, but are involved in both signalling and the general “house keeping”
of the cell, such as transporting or storing oxygen or haemoglobin molecules. Proteins
are also involved in defensive mechanisms such as the production of antibodies.

In terms of their chemical structure, proteins are polymers comprised from twenty
different amino acids. These amino acids are joined by peptide bonds giving long
polypeptide chains, hundreds or thousands of amino acids in length. The chains “fold”,
taking on distinctive three dimensional shapes which are critical to their function. Con-
ceptually, proteins might be described as rather like a scrunched up ball of string, with
the string itself being composed of up to 20 differently coloured segments, which can
be repeated, and whose sequence order is specified by the order of nucleotides in the
gene (see next section). The spatial proximity of the segments in their scrunched up ball
largely determines the functionality of the protein. However understanding proteins in
the real world is less easy than this simple, visual conceptualisation. 3D modelling
software can help indicate the physical complexities of proteins by producing “ribbon”
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2fold

Figure 7: The structure of the Choline Kinase CKA-2 Dimer. (A) Shows a ribbon
drawing of the CKA-2 dimer looking straight down the two-fold axis of symmetry. (B)
and (C) show enlarged views of the residues involved in interactions between the two
symmetry-related helices. The view in (B) is orthogonal to those in (A) and (C).
Image and text reproduced from Peisach et al. (2003)

drawings (see Fig. 7), but understanding the modelled structures remains difficult, par-
ticularly when trying to determine a functional role from protein folding.

4.3 Genes Code for Proteins

The genome specifies when and where proteins are synthesised, and there are those
who argue that genes have no function other than to specify proteins (Wolpert, 2003).
As hinted at in the introductory section on proteins (§4.2), complicated networks of
interactions involving proteins and genes are built up within cells. Proteins can promote
or inhibit other proteins, and the absence or presence of certain proteins can affect the
expression of a gene, which would in turn affect the production of another protein.
These forms of “cascading” control sequences in protein production are termed gene
regulatory networks and can be extremely complex. A minor industry has built up
trying to infer such networks by analysing the massive amounts of data produced during
the study of gene expression. It is important to understand that it is via gene regulatory
networks and protein signalling pathways that physical feedback loops are possible
during the development of the organism. Feedback and control during development
gives the organism a measure of flexibility in response to its environmental conditions.
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Figure 8: The double helix structure of DNA.
Image reproduced from Alberts et al. (2002)

4.3.1 Deoxyribonucleic Acid (DNA) and the translation process

In what would appear to be a case of massive redundancy, every cell in every living or-
ganism contains the unique instruction set for that organism’s construction. That might
seem a lot of information for each cell to contain, but the cell as it divides and multi-
plies will make use of just a tiny part of it. The cell must construct itself from proteins,
and the rules for synthesising those proteins are contained in the DNA sequence that
specifies the proteins for that cell.

The discovery of the structure of DNA by Crick and Watson in 1953 helped un-
derstand how genetic information copied itself. Rather like the polypeptide chains of
amino acids that make up proteins, DNA contains two polynucleotide chains of nucleic
acids, linked to form the two strands of a double helix. The nucleic acids are simpler
than their amino acid counterparts in proteins and contain just four bases (usually rep-
resented by their first letters), two purines: adenine (A) and guanine (G), and two
pyrimidines: thymine (T) and cytosine (C) (see Fig. 8). Along the two polynucleotide
chains of the helix, purines and pyrimidines face inward and pair up in what are termed
the complementary base pairings: G-C and A-T. 3 One consequence of complementary
base pairings is that a single strand of DNA or RNA can act as a template for the syn-
thesis of its complementary strand, allowing nucleic acids the capability of directing
their own replication (Kumar and Bentley, 2003, pg. 8).

In a section of the DNA, the order of the nucleic acid sequences governs the creation
of amino acids that make up the protein. However, DNA is passive. It does not directly
control the protein synthesis generated in the cell cytoplasm. That process is controlled
by synthesised RNA, known as messenger RNA (mRNA), itself synthesised from the
DNA template. In order to construct a protein, the nucleotide sequence in the mRNA
is read three bases at a time, in what are termed nucleic triplets, or codons, with each
codon corresponding to a single amino acid (Kumar and Bentley, 2003, pg. 8). This
allows some redundancy, with some of the amino acids being encoded by more than

5In RNA, thymine is replaced with uracil (U), giving a base pairing of A-U.
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one codon.

The translation of the codon into an amino acid is carried out by transfer RNA
(tRNA) molecules, with at least one tRNA molecule being specific for an amino acid
and a particular codon (although some amino acids may require the services of two
or three different tRNAs). The amino acid is attached to the tRNA by an enzyme
(aminoacyt-tRNA synthetase) which is again specific to that amino acid and its corre-
sponding tRNA molecule. In a process similar to DNA replication, each kind of tRNA
has a sequence of 3 unpaired nucleotides known as the anticodon, which bind into
complementary base pairs in exactly the same way as the double helix strands in DNA,
except this pairing is to the codon in the mRNA molecule.®

Having covered the basic building blocks of protein transcription, we can now look
at what restrictions development places on evolution, how developmental processes
differentiate cells and how evolution is able to re-use functional genes in new locations.

5 Evolutionary Developmental Biology

Although the supporting evidence changes, evolutionary developmental biology is still
tussling with the same question that Darwin hesitatingly put to his readers: how did
organs “of extreme perfection and complication” such as the eye evolve?

“One of the most important concepts in evolutionary developmental
biology is that any developmental model for a structure must be able to
account for the development of earlier forms in the ancestors.” Wolpert
(2003, pg. 47), citing Carroll et al. (2001).

Over a hundred years after Darwin first posed the question, and even with our increased
knowledge about the developmental process, being able to account for earlier ancestral
forms presents a fascinating challenge and as we shall see in later sections, its answers
may help computer scientists as much as biologists.

Evolution and development are closely interwoven. In §3.3 it was argued that the
importance of developmental processes has begun to be given greater credence in evo-
lution. Wolpert is not merely being provocative when he states that “DNA is rather
boring and passive” (Wolpert, 2003, pg. 47), he is also promoting the extent to which
proteins are responsible for the complexity we see around us. It is true that all changes
of form and function are down to changes in DNA, as it is DNA that determines which
proteins are made, when and where. But this implies that there is a “one-way flow
of information, from DNA to proteins” (Banzhaf and et al, 2006) that forms the ba-
sis of functional exploration by evolutionary search, and this is clearly not the case.
Organisms evolve info environments, and this would be impossible unless the flow of
information was two-way. As the environment into which an organism develops isn’t
a given constant, the developmental process needs constant feedback and gene regu-
latory networks cannot obtain information about their environment except via protein
interaction. The presence of certain proteins (transcription factors) inhibits or promotes
gene expression, so that genes encode not only for the proteins that build the biological
infrastructure, but also for the proteins that control their own self-expression.

The ability of genes to encode for proteins that allow them to self-construct their
own rules of operation is one of the more remarkable features of development. But

6 Although I can’t include it here, I can heartily recommend John Kyrk’s animation of how the trans-
lation process constructs proteins, which is viewable online from http://www. johnkyrk.com/
DNAtranslat.swf.
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there are restrictions on how those rules evolve to explore functional space, and the
evidence for that comes from the field of evolutionary developmental biology.

5.1 The Development of Complexity

For evolutionary developmental biologists,” every structure has two histories that relate
to how it developed: ontogeny (its complete development to maturity) and phylogeny
(its evolutionary history). Wolpert states that, “ontogeny does not recapitulate phy-
logeny”, as many embryos pass through common phases that their ancestors passed
through (Wolpert, 2003, pg. 47).® For example, all vertebrates pass through a similar
phylotypic stage involving the development of the nervous system (neurolation) and
the formation of somites (body segments). This suggests that a distant ancestor of all
vertebrates passed through this stage, and despite the stages before and after the phy-
lotypic stage diverging in many species, neurolation has persisted to become a feature
of all vertebrate development.

Sharing an embryonic stage provides evidence of common ancestors. An alterna-
tive source of evidence is to trace the alteration of structures present in ancestral forms
in early embryonic stages. An example is the evolution of the branchial arches and
clefts that are present in all vertebrate embryos, including humans. During evolution
the branchial arches have produced both gills in primitive jawless fishes, and in a later
modification, given rise to jaws. But Wolpert makes an important point:

“These are not the relics of the gill arches and the gill slits of an adult
fish-like ancestor, but of structures that would have been present in the
embryo of the fish-like ancestor.” Wolpert (2003, pg. 55) (my emphasis)

This has profound implications. It suggests that while all changes to form result from
changes in the DNA, the changes are limited to where they can occur. Early embryonic
stages appear to be robustly protected against change, perhaps because change here
would be dangerous to the organism, but also because change appears to be easier once
critical stages of development have passed.

Striking evidence of the restriction imposed on gene mutations that control early
development is the almost universal conservation of a group of genes called Hox gene
clusters. Hox gene clusters control a wide range of developmental processes, such
as limb bud or body plan development, and range across species from fruit flies to
elephants. An important function of some Hox genes is to specify positional identity in
the embroyo. These positional values are interpreted differently in different embryos,
so that cells develop into, for example, segments and appendages (Wolpert, 2003).
This means that the same genes expressed in a different location, time or context, may
give rise to a different morphological form (Carroll et al., 2001). This aspect of re-
use is examined in more detail in the following section, as it demonstrates how nature
has invented a few, very useful genes, and re-used them widely across species. If we
want evolutionary computation to mimic this trick, we need to discover what allows
context-specific expression of a gene, and allow that context to in-part define the gene’s
functional role.

But the universal presence of Hox gene complexes should not be used as blanket
evidence that such genes cannot mutate. Quite the reverse is true, but the manner they

TThis subsection draws heavily from a single source (Wolpert, 2003).

8This is a common rebuttal of Ernst Haeckel’s theory of recapitulation put forward in 1866, which claims
that embryos pass through all their evolutionary stages. A full discussion of the debate (with references) can
be found on Wikipedia, http://en.wikipedia.org/wiki/Ontogeny_and_phylogeny.
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have mutated gives an insight into a key evolutionary mechanism. Gene duplication
can occur in a variety of ways during DNA replication and doing so it provides the
embryo with an additional copy of the gene. The beauty of this is that:

“... this copy can diverge in its nucleotide sequence and acquire a new
function and regulatory region, so changing its pattern of expression and
downstream targets without depriving the organism of the function of the
original gene.” (Wolpert, 2003, pg. 57)

Haemoglobins (an oxygen carrier in red blood cells) in humans are an example of
the evolution of new proteins and patterns of gene expression that have occurred by
gene duplication. The duplication that gave rise to Hox genes means that they can be
compared across a variety of species, allowing one to reconstruct how they are likely
to have evolved from “a simple set of six genes in a common ancestor of all species”
(Wolpert, 2003, pg. 57). Thus Hox genes are evidence on the one hand of a certain
‘conservatism’ in development due to their widespread deployment, and on the other
hand they indicate how successful genes that provide functional features can be both
kept and changed at the same time. Both these aspects are pertinent to evolutionary
computation, where there is a need to protect a good solution as part of solving a larger
problem.

If the gene mutation is limited to where it can occur, it suggests that functional
complexity is hierarchical in nature with changes only possible at the ‘leaves’ of the
tree. The supporting evidence from evolutionary biology is two-fold. Firstly, entirely
new structures are rare, evolution tends to “tinker with existing structures’:

“New anatomical features usually arise from modification of an exist-
ing structure. A nice example is provided by the evolution of the mam-
malian middle ear. This is made up of three bones that transmit sound
from the eardrum (the tympanic membrane) to the inner ear. In the reptil-
ian ancestors of mammals, the joint between the skull and the lower jaw
was between the quadrate bone of the skull and the articular bone of the
lower jaw, which were also involved in transmitting sound. During mam-
malian evolution, the lower jaw became just one bone, the dentary, with
the articular no longer attached to the lower jaw. By changes in their devel-
opment, the articular and the quadrate bones in mammals were modified
into two bones, the malleus and incus, whose function was now to trans-
mit sound from the tympanic membrane to the inner ear.” (Wolpert, 2003,
pg. 55-56).

Although mammals and reptiles appear to have evolved separate mechanisms for hear-
ing, the mechanism actually stems from a common structure. Secondly, comparisons
of embryos suggests that those characteristics that are shared by a group of animals
appear earliest in their evolution:

“In the vertebrates, a good example of such a general characteristic
would be the notochord (a skeletal rod of tissue enclosed by a firm sheath),
which is common to all vertebrates and is also found in other chordate em-
bryos. Paired appendages, such as limbs, which develop later, are special
characters that are not found in other chordates and which differ in form
among different vertebrates.” (Wolpert, 2003, pg. 54)
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Figure 9: Drosophila embryos showing pattern and stripe formation.
Image reproduced from Kosman et al. (2004)

The evolutionary record therefore provides us with some interesting evidence: shared
characteristics occur earlier in evolution, and entirely new structures are, if not infeasi-
ble, at least rare. While the fossil record has long suggested these observations, fossil
evidence is often patchy and its discovery down to chance. It is the more recent genetic
evidence from embryology and developmental biology that has thrown light on the
restrictions that evolution operates under. Although mutations may occur at random,
developmental processes place restrictions on changes to the DNA, as any change must
leave the organism viable. The scope of potential change is therefore narrowed to pro-
duce the “tinkering” effect described by Wolpert.

Evidence provided by Sean Carroll and colleagues suggests that most changes are
in the cis-regulatory region of the genes, rather than in the nature of the protein for
which the genes encode (Carroll et al., 2001). The reason for this is that the cis-
regulatory region is where protein factors — the transcription factors — bind and
determine whether or not the gene will be transcribed. The subtle variations in mor-
phological form, or “tinkering”, is a by-product of this process, and is explained in the
following section.

5.2 Evolutionary Development

Work on developmental processes has uncovered much of what drives morphological
variation in organisms. The literature is full of examples of drosophila embryos show-
ing early body plan layout or stripe formation. These pictures are created by attaching
fluorescent proteins to certain transcription factors (see Fig. 9) which enables biologists
to see the distribution of such proteins across the embryo. As we will see, it is the indi-
vidual contexts provided by the varying distribution of transcription factors that allows
the expression of repetitive morphological structures, such as backbone vertebrae or
body segments. Developmental processes are governed by complex networks of gene
regulation. In the following sections we outline how regulation works at the level of a
single cell nucleus, rather than tackle the complexity caused by cascading networks of



5 EVOLUTIONARY DEVELOPMENTAL BIOLOGY 22

BMP5 .
Gene | W Bl
Ribs Omosterna Thyroid Outer

Cartilage Ear

Figure 10: Different switches cause the gene for bone material protein 5 (BMPS5) to be
expressed in different locations in a mouse embryo.
Image taken (with permission) from Carroll (2006)

control, which is beyond a short introduction such as this.

As mentioned briefly in §5.1, the cis-regulatory regions or “switches” employed
by gene regulatory networks (GRNs) determine the contexts in which a particular gene
is expressed or inhibited from transcribing proteins in the nucleus of a cell. These
“switches” allow a gene to be re-used in a variety of contexts, which means that the
protein a gene encodes will have the opportunity of interacting with different sets of
proteins according to the cell’s location in the organism. For example, the different
bones in our body are not created by different genes encoding separate proteins for
particular bones, but by the same gene being used in different contexts to create the
bone material protein for a rib, a sinus, an outer ear and so on (see Fig. 10).

Gene switches work by certain proteins being able to bind to small sections of
DNA material upstream of where the gene is located. These transcription factors or
“binding proteins” act on DNA to inhibit or promote gene expression, and whether a
transcription factor is present or not in a particular cell type is determined by that cell’s
location in the embryo. For example, in Fig. 11, a promoter for a gene is distributed in
vertical stripes that extend to the horizontal axis of an embryo. However, the presence
of inhibiting transcription factors for the same gene in the lower third and back half of
the embryo results in a net expression of the gene as a series of dots along the horizontal
axis.

5.3 Gene Expression and Re-use

Pattern formation is the basis of all gene re-use: the same gene is turned on or off
according to the presence of the transcription factors that occur in cells distributed
throughout the embryo. Research suggests that hardly any morphological features are
created de novo from new genes (Carroll, 2006; Wolpert et al., 2002), instead different
morphological features between species are the result of the same genes (usually one
of the four Hox clusters) being employed in different contexts. The Distal-less gene,
essential for the formation of appendages, such as limbs or wings, is one example. In
butterflies, this gene has evolved an additional “switch”. The switch provides a new
context for the Distal-less gene to be expressed — in this particular case, that location
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Figure 11: Gene switches acting on a drosophila embryo results in the gene being
expressed as a series of dots extending halfway along the horizontal axis.
Image taken (with permission) from Carroll (2006)

is on the wing. In the new context, rather than forming a limb bud, the gene results in
an entirely different morphological feature: a spot of colour (see Fig. 12).

The gene switch mechanism allows re-usable, configurable instances of a gene to
be expressed in the different contexts of embryo development. Repeated use of a gene
in different contexts is called modularity by biologists, and gives rise to repetitive mor-
phological structures such as vertebrate backbones, thorax segmentation, rib cages, leaf
and wing venation, limbs, etc. Such structures are common in nature, but it has taken
researchers a long time to understand the link between switches and gene expression
leading to gene re-use. An important part of this interaction is how the switches work
to allow the binding process some degree of flexibility.

5.4 Binding Signatures

Transcription factors attach to stretches of DNA by recognising signature sequences
of base pairs. For example, a single switch for a gene may consist of several hundred
base pairs (bp), lying perhaps several thousand bp upstream of the gene. Within the
gene switch, there are usually 6-20 signature sequences (each ~6-9 bp in length) that
affect the expression of the gene concerned (a gene contains ~1000 or so bp, and a
chromosome contains thousands of genes, so millions of bp). Even a short signature
length has a huge number of possible combinations (Carroll, 2006).

Signature sequences sometimes require exact matches for every position, some-
times they contain wildcards. Wildcard positions can be filled by all four nucleic acids
(Cytosine, Thymine, Adenosine, and Guanine) but are more often limited to pairs of
alternatives (e.g T or A, C or G, etc.). For example, Tinman, a gene related to heart
development in most species, is highly specific. However, Pax-6 (the gene supposedly
controlling the development of sight across species) and the gene Dorsal use wildcards
in their binding signatures, represented by K (G or T), Y (Cor T), M (C or A), W(...),
etc. (example below is from Carroll (2006)):
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Figure 12: Switches in the Distal-less gene control expression in the embryo, larval
legs and wing in both flies and butterflies, but butterflies evolved an additional switch
providing a new context for Distal-less (giving wing eyespots — a different morpho-
logical feature).

Image and text taken (with permission) from Carroll (2006)

Tinman TCAAGTG
Pax—-6 (eyeless) KKYMCGCWTSATKMNY
Dorsal GGGWWWWCCM

Thus Pax-6 has a signature with only 6 specific sites out of 16 possible bp combi-
nations, indicating that it could bind at a variety of locations. This is borne out by
experimental evidence that shows eyes can be “grown” in other contexts — such as on
wings or legs — by altering the transcription factors present at those locations (Carroll,
20006).

Binding signatures and proteins permit the genome to maintain a set of solutions
from which it selects how to explore its functional domain. The action of “binding”
is one of feedback: the information fed back to the DNA determines which genes will
be expressed in that context. By exploring the functional search space in this way,
developmental processes have a fundamental impact on which genes are conserved.
But their continued presence means that they are also more likely to be re-used by
evolution during later developmental processes.

6 Models of Evolution and Complexity

So far we have taken examples from nature, looked at how theories of evolution have
developed, and tried to investigate how the evidence provided by our greater under-
standing of genetics has influenced those theories. We have also looked at the process
of construction, including the basic building blocks of life and combined them with a
brief excursion into evolutionary developmental biology to see if they could shed some
light on the evolution of complex features. However, it should be noted that not all the
progress in this area has been done by practitioners gathering samples and amassing
data from real life examples. Some important concepts have been developed by theo-
retical biologists, particularly those such as Kauffman (1995) and Solé and Goodwin
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Figure 13: Schematic “adaptive” or “fitness” landscape.

(2000) working on abstract models of evolution and complexity.

One consequence of the restrictions that developmental processes impose on evo-
lution’s design is a “smoothing out” effect. Large jumps, as we saw in the theoretical
landscape of all possible eyes, are not possible; small, incremental changes of direction
are.

6.1 Fitness Landscapes

The analogy of the landscape that represents peaks and troughs of evolutionary success
within a population was first devised by the American geneticist Sewall Wright, who
coined the phrase “adaptive landscape” to describe the shifting balance of population
genetics (Wright, 1932). The adaptive landscape and its associated heuristics is an
influential model in evolutionary biology, but its use is not universally accepted. It was
strongly criticised by Wright’s own biographer, Provine, who declared the heuristic
was mathematically uninterpretable (as there appears to be no way of generating the
continuous “‘surface” of the landscape) (Provine, 1986). But it has also been defended
by Ruse (1996) and most recently by Skipper (2002) who, in a short survey on the
influence of Wright’s work, claims that the adaptive landscape diagram remains of use
in the study of dynamic behaviours. Despite apparent weaknesses with the model,
Wright’s adaptive landscape has gone on to be extensively developed by Kauffman,
Levin, Johnsen and others, in the investigation of what they term “adaptive walks” by
organisms (Kauffman and Levin, 1987). They term their models “fitness landscapes”.

The model is a simple one. An individual within a species is represented as a string
of genes that defines its genotype. The string itself has a real number associated with it.
This number defines the fitness of the string in terms of the phenotype it produces. The
assessment of fitness as a single or two dimensional trait is one aspect of the model that
has been criticised (see following paragraph). The distribution of fitness values over the
space of all genotypes gives the fitness landscape, and all members of the population
map onto that landscape according to their fitness value. If an individual has a high
fitness value, it falls somewhere near a peak on the landscape; if it has a low fitness
value, it is in a trough. A schematic fitness adaptive landscape is shown in Fig. 13,
although most landscapes are considerably more rugged (and higher dimensional, see
§6.3) than this, something that has important implications. Initially (at least conceptu-
ally), the population of phenotypes falls over the landscape with a random distribution,
according to the fitness values given to them by their genes. However, after undergoing
selection and mutation (more details of this are given in §8.1.4), individuals start to
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gain higher fitness values and start to “walk” towards the nearest peak. For the purpose
of the model, the process of adaptation or improving a phenotype’s fitness values is
equivalent to walking up a peak.’

A crucial part of the model is the definition of the fitness landscape, as it is this
which measures how the fitness of the population moves towards some optimal con-
figuration. Although the model is intuitive to visualise for two fitness traits that can
be isolated and easily quantified, the situation becomes more difficult as we try to rep-
resent complex, interrelated factors. But let us first examine the case of single fitness
traits. In an imaginary world, I might have a creature that is predated on by an animal
that can run fast. The environment therefore selects individuals who can run fast as
these individuals have more chances of escape, by reproducing those individuals who
are located higher up on the fitness peak that represents the ability to run fast and dis-
carding others. Over time, the individuals who survive are all fast runners. At least that
is the theory of the model. In reality, there is no evidence that evolution works on sin-
gle traits. It may select for longer legs, faster muscles, and so on, but it could equally
evolve the strategy of growing sharp horns, becoming poisonous or evolving a thick
skin. Even in the former case, there might be many different ways of achieving the
same fitness value as it is measured solely in terms of running speed. For the purpose
of modelling selection based on a single trait the model is adequate, and some authors
even go so far to claim that the model reflects reality:

“Selection acts on collections of interactive phenotypic traits, not on
singular traits in isolation. The appropriateness of an organism’s holistic
functional behaviour in light of the physics of its environment is the sole
quality that is optimised through selection”. (Fogel, 2000, pg. 35)

Fogel thus suggests that providing one selects (or assesses) on the basis of an aggre-
gated, holistic functional behaviour, the complex genetic relationships that cause the
behaviour can safely be ignored. This perspective is one that is interested in the per-
ceived “optimisation” of that behavioural trait.

The problem for fitness-landscape models is that we are forced to assess all fit-
ness in terms of such amalgamated functional features, which in the real world are the
complex expressions of genes and proteins. But as this would lead to a very difficult
to visualise model, involving thousands of dimensions, fitness landscapes are instead
generally plotted against just two dimensions representing two traits in the phenotype.
Often, there is a sleight of hand at work here, in that we need to forget the multi-
dimensional nature of the genotype space. Stuart Kauffman gives a flavour of this
easy-to-imagine model:

“Consider a set of all possible frogs, each with a different genotype.
Locate each frog in a high-dimensional “genotype space”, each next to all
genotypes that differ from it by a single mutation. Imagine that you can
measure the fitness of each frog. Graph the fitness of each frog as a height
above that position in genotype space. The resulting heights form a fitness
landscape over the genotype space, much as the Alps form a mountainous
landscape over part of Europe”. (Kauffman, 2000, pg. 18)

The appealing nature of such illustrations is shown in Fig. 14 from Solé and Goodwin
(2000, pg. 257), where a fictitious landscape has been plotted based on fossil tribolites

90ne could select for negative values and this might be more apt, particularly for aspects of development
as one could model “basins of attraction” (see Fogel (2000, pg. 37) and also § 6.4).
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Figure 14: Imaginary rugged fitness landscape, showing optimal shape configurations
of fossil tribolites.
Image reproduced from (Solé and Goodwin, 2000, pg. 257)

and fitness assessed in terms of shape. In any one set of conditions, there are some opti-
mal configurations for the organism, represented by the peaks in the fitness landscape.
However, the extent to which this has any real meaning in nature is doubtful. Even
Wright (1932, pg. 161-163) realised that such a representation hugely over-simplified
the case:

113

. accurately representing the population genetics of the evolution-
ary process requires thousands of dimensions. This is because the field
of possible gene combinations in the field of gene frequencies of a pop-
ulation is vast. ... Wright used the two dimensional graphical depiction
of an adaptive landscape ... as a way of intuitively conveying what can
only be realistically represented in thousands of dimensions. The surface
of the landscape is typically understood as representing the joint gene fre-
quencies of all genes in a population graded for adaptive value.” (Wright’s
words italicised by me) (Skipper, 2002)

But Provine (1986, pg. 308-316) argues that Wright’s original illustrations have no
gradation along the axis or even any indication of what the units are (as they represent
“genotype interpretation”) and neither are there points along them to indicate where a
gene combination is placed. Provine therefore claimed that there is no way of generat-
ing the continuous surface of an adaptive landscape. A second, more serious criticism
by Gavrilets (1997), is that many gene combinations are incompatible, the number of
which rises with the number of genes under consideration. Therefore the idea of rep-
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resenting gene combinations by a smooth continuous surface is itself specious; reality
more closely resembles a landscape pock-marked with variously sized holes, where the
holes indicate unachievable gene combinations. Others, notably Stadler (2002), have
extended fitness landscapes with views similar to Gavrilets based on the impossibility
of certain genotypes realising phenotypes due to developmental processes (in essence
the same restrictions placed on evolution that were noted in §5.1). As a result of these
issues, most biologists have abandoned Wright’s original genotype interpretation in
favour of one that assumes a population-based interpretation: “joint frequencies of all
genes in a population graded for adaptive value” (Skipper, 2002). But even if one takes
this model as realistic, the problems are not over for fitness landscapes.

6.2 The NK Model

The difficulties with the genotype interpretation led to the development in the late
1980s of a fitness landscape that tried to tackle the interdependency between genes,
known as epistasis. In Kauffman and Levin’s well-known NK model (Kauffman and
Levin, 1987), N represents the number of genes (and therefore the dimension), while
K indicates how many other genes influence any given gene, i.e. the K other genes are
epistatic inputs to the fitness of the considered gene. If K = 0, so that no gene influ-
ences any other gene, then it results in a fitness landscape of only one peak with smooth
sides (known as the Fujiyama landscape). But as K increases, the number of peaks on
the landscape increases and the mean fitness of the nearest peak decreases toward that
of an entirely random genotype (Skipper, 2002). Typically, interconnection results in
a rugged fitness landscape. Genes (or traits) are represented as binary alleles, so that
they are either expressed (1), or not (0). For computer scientists, the model starts to
sound familiar:

“the 2 to the N combinations of alleles of the NV genes are therefore
located on the vertices of the N-dimensional Boolean hypercube. The
fitness of each type of organism, or vertex, is written on that vertex and
can be thought of as a height. Hence the N K model creates a fitness
landscape over the N-dimensional Boolean hypercube” (Kauffman, 2000,

pg. 198).

The N K model and its statistical properties (i.e. the effects of changing values of N
and K) have been widely explored (Solé and Goodwin, 2000, pg. 258).

As before, a species evolves by “adaptive walks”. Essentially this means that we
can choose a given trait, mutate the bit and then examine the fitness table. If the average
fitness of the resulting configuration is higher, an adaptive walk has occurred and the
species moves in the landscape (it starts to climb). As already mentioned, when K = 0
the system is disconnected and there is a single global optimum. But when K is the
theoretical maximum, N — 1, the system is entirely interconnected and every gene in-
fluences every other gene. Kauffman explored the generic properties of interconnected
landscapes by assigning random fitness values across each of the allele states affecting
a given gene (i.e. alleles of other genes whose expression affects the gene you’re look-
ing at). The fitness value of a specific allele at each of the N genes is then the average
of the fitness contributions of the other N genes, yielding a random fitness landscape
over the NV dimensional hypercube (see Fig. 15). These random, highly interconnected
landscapes yield interesting properties:

“A main feature of random landscapes is that there are nearly expo-
nentially many local peaks, indeed the number of local peaks is 2 to the
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Figure 15: Building up fitness landscape. Each gene receives inputs from two other
genes (K = 2) that affect the fitness contribution of the gene. Each gene in each of the
23 = 8 possible genomes is randomly assigned a fitness contribution between 0 and
1. The fitness value of each genome is then computed as the mean value of the fitness
contributions of the three genes. A fitness landscape is constructed as a boolean hy-
percube. Circled vertices on the cube represent local optima, arrows represent “uphill”
directions (text from Kauffinan (2000, pg. 199)).

Image reproduced from Solé and Goodwin (2000, pg. 258)

N/(N + 1). For N = 1000, there are 10%°7 local peaks on the landscape.
Finding the global peak by hill climbing is improbable, and the system be-
comes trapped on a local peak. Other features include the lengths of walks
via fitter neighbours to nearby peaks, which scales as the logarithm of N,
and the way directions uphill dwindle on walks uphill. At each step uphill,
the fraction of directions uphill is cut in half, yielding exponential slowing
in the rate of finding fitter variants.” (Kauffman, 2000, pg. 200)

These features of highly interconnected, rugged landscapes are crucial to under-
standing the nature of a genotype search space. Because the landscape is big and
interconnected, finding a global optimum becomes not just improbable, but of dubious
value even as a strategy. The odds are stacked against the organism. Furthermore, the
fact that the rate of improving fitness slows exponentially with each uphill step, and
that the system gets trapped on local optima, correlates to the earlier suggestion by
Wolpert that evolution merely “tinkers” with existing structures. Big jumps are not
possible. The reason you are forced to tinker with the edges, making only incremental
movements in any direction, is because each step uphill seriously restricts the other
directions you can move in. If an organism wants to stay flexible in a dynamic envi-
ronment, it can’t afford to get trapped on a local peak of specialist perfection having
abandoned its options for adaptive movement. Unfortunately organisms have no way
of knowing whether their adaptive movements may strand them or keep them in the
race of poor, but flexible competitors.
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Figure 16: Interconnected genes affecting two coevolving species where K represents
epistatic influence, C represents the degree of epistatic coupling between species.
Image reproduced from Kauffman (2000, pg. 200)

6.3 Coevolution

Natural systems are much more complicated than single genotype populations. In a
Malthusian world of limited resources, everything is fighting for survival. For cheetahs
to stay alive and reproduce, the species must keep up with the gazelles who are con-
stantly evolving to outrun the fastest cheetah. Organisms not only affect each other’s
environment, they compete in an evolutionary race against other species. Losing means
extinction. The idea of organisms competing merely to “stay in the race” was first put
forward by Van Valen (1973) and is known as the Red Queen hypothesis '°

Solé and Goodwin (2000) explain the hypothesis thus: based on the fossil record,
Van Valen observed that a species may become extinct at any time, regardless of how
long it had previously existed. But if evolution is a process of constant improvement,
why are modern species as equally likely to disappear as their ancestors were? Van
Valen’s hypothesis suggests if that continual improvement were the case, we would
expect to see a decreasing probability of extinction the longer a species had existed.
Instead, the fossil record shows the probability remains constant. That constant prob-
ability can only mean that continuous improvement is not possible for any species.''
Van Valen claims that this means species are compelled instead to continuously adapt
to each other’s changes. Rather than continuous improvement, we have continuous
re-adjustment. And despite natural selection doing its best to improve your chances
of genetic survival, you might find you can no longer hill-climb as well as you could
because someone else is affecting your ability to do that. Thus you can drop out of the
race at any moment, and according to Van Valen, that would probably be the moment
you failed to adapt to someone else’s advantageous change. So we have yet another
route to extinction. But this time, rather than getting trapped on a local peak due to
your own adaptive movements, you get trapped because the landscape moves faster
than you do.

Modelling adaptive landscapes takes on a whole new level of complexity when
competing species are able to affect the fitness criteria of the genotype search space.

10The name of the hypothesis comes from the Red Queen in Lewis Carroll’s Alice Through the Looking
Glass, in which she explains to Alice “Here, you see, it takes all the running you can do, to keep in the same
place” Solé and Goodwin (2000, pg. 254).

T As pointed out in the previous section, the evidence suggests that continuous improvement is actually
dangerous to the continued existence of a species.
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Kauffman uses a simple, fictitious model of a frog and fly in evolutionary competition
(see Fig. 106)

“Each of the NV genes in the frog receives inputs from K genes in the
frog and C' genes in the fly, and vice-versa. Thus, the sticky tongue of
the frog affects the fitness of the fly via the presence or absence in the
fly of slippery feet, sticky stuff dissolver, or a strong sense of smell for
sticky frog tongues ... Now when the frog population moves by mutation
and selection uphill on the frog landscape, those moves distort the fly’s
landscape and vice-versa. Coevolution is a game of coupled, deforming
landscapes.” (Kauffman, 2000, pg. 201)

The NKC model developed by Kauffman and Johnsen (1991) introduces the new pa-
rameter C' to represent the coupling between species. Kauffman and Johnsen claim
that these models “generally behave in two regimes: an ordered regime and a chaotic
regime, separated by phase transition” (Kauffman, 2000, pg. 201). Solé and Goodwin
describe these regimes as a) low-K, ordered or frozen, where species settle on local
optima, and b) high- K, chaotic or Red Queen, where the ecosystem is in constant flux.
They also comment that the system appears finely, if not critically balanced:

“At the boundary between these regimes, species in a finite system
reach local peaks, but any small perturbation generates a coevolution-
ary avalanche of changes through the system. The distribution of these
avalanches follows a power law, as expected for a critical state.” (Solé and
Goodwin, 2000, pg. 259)

Such changes are usually interpreted as extinction events. Kauffman and Johnsen
(1991) mapped these avalanches to extinction events in the fossil record and although
initially unsuccessful in finding a correlation, once the model was adapted to allow
connections between species themselves to co-evolve, a correlation was found (Kauff-
man, 1995). Kauffman concluded that as avalanches of extinction events can propagate
across species, it appears that species survive by niching on local optima and thus pro-
tecting themselves against too much “evolutionary competition” from other species.
This niching, in a highly coupled, adaptive landscape is akin to each species “tuning”
the ruggedness of its landscape (i.e. managing its interconnectedness) so that it retains
both a degree of independence from the adaptive movements of other species and the
ability to make its own adaptive moves. Both Solé and Kauffman further claim that
by tuning their own landscapes, species poise the entire system as close to the criti-
cal boundary as possible. That boundary line is the edge of chaos between the two
system states, low-K and high-K, as described above. The knack of maintaining the
system near that edge of chaos is termed “self-organised criticality”.'” This is an inter-
esting property of interconnected evolutionary systems, and perhaps one that those in
evolutionary computation should bear in mind as they attempt to scale their models.

6.4 Deforming Landscapes of Development

The NK and NKC models of adaptive landscapes are not the only theoretical models
that use the metaphor of deforming landscapes. Waddington developed a model in
the 1950s of an epigenetic landscape that uses a slightly different metaphor to explain
stability during development. In Waddington’s model, rather than adaptive walks over

12Per Bak (1996) was largely responsible for developing ideas around self-organised criticality.
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Figure 17: Waddington’s epigenetic landscapes: his original drawing on the left show-
ing developmental pathways (Waddington, 1957, pg. 11-58) and a later alternative
showing epigenetic influences on the same landscape. Genes pull guy ropes attached
to the landscape, deforming it and fixing the path of the ball, but a slight alteration in the
genotype will not significantly change the final state, due to the stability (homeostasis)
of development.

Right-hand image reproduced from Saunders (1993, pg. 200)

a fitness landscape, the image is one of a ball rolling down the hills and valleys of a
landscape of potential developmental paths, as shown in Fig. 17. The hills and valleys
are created by the competing influence of genes (the genes were later shown as pulling
on guy ropes that are attached both to each other and to the surface of the landscape
with different degrees of force). Waddington’s model does not suffer the problems
of some gene combinations being impossible, as we are looking at the developmental
process. Instead unrealisable developmental paths (due to the viability of the organism)
are represented by peaks in the landscape that deflect the path the ball can take. The
smooth continuous surface is the result of gene expression during development, itself
an interconnected system of guy ropes where many genes can affect the influence of
a specific gene’s tension on the landscape. Waddington was fascinated by the ability
of the system to return to a stable state even after being perturbed by environmental or
genetic effects, a property he termed homeostasis. He also used the word canalization
to describe the property that development can typically proceed to one or more of a
restricted number of alternative end states, rather than to a broad spectrum (Saunders,
1993). Waddington’s point was that a system, especially a dynamic, non-linear system
such as an organism, is unlikely to have stability in the traditional sense of a single point
equilibrium. Waddington sought to emphasise that dynamic, nonlinear systems had a
richer notion of stability, one closer to a path or trajectory, which could be returned to
if travel along it was deflected at some point.

The importance of stability is crucial in determining the viability of the organism
and although this acts as a restriction on evolutionary change, it also brings benefits.
For example, it is through developmental stability that great genetic variation can be
supported in a population of nearly identical phenotypes (Saunders, 1993). The model
also has explanatory value when we want to view how large evolutionary changes might
affect the developmental process. From Waddington’s model, we can see that, even if
the influence (i.e. the tension on the guy rope) of a gene is increased dramatically,
change is mitigated by the opposing tensions from other genes’ guy ropes that are
attached to it. Thus for one change to have a large impact, it would have to affect
many other genes with a similar degree of force, and make them somehow conspire
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to work together to allow a large alteration to affect the shape of the landscape. Large
changes to the outcome of developmental processes are thus both difficult and unlikely
by random mutation.

7 Concluding Remarks on Biological Evolution

The invention of nature appears almost limitless. Nevertheless, evolutionary adaptation
is tightly constrained by natural selection and the viability of the organism throughout
both its evolutionary and developmental history. The interplay of so many aspects
in evolution makes the process difficult to model. From complex developmental pro-
cesses that show little evidence of tampering with the early embryonic stages, to theo-
retical models showing the interplay of epigenetic forces through to evidence from the
avalanches of extinction events in the fossil records, no single model can capture it all.
The best we can hope for, it seems, is to take as much evidence as we can from natural
and theoretical biology when hoping to understand evolution in its broadest sense, and
investigate how the mechanics of the process tune and govern themselves.

If there were a single criticism of the field of evolutionary computing, it would be
that too little evidence from biology has been used during adoption of the evolutionary
paradigm. While no one would wish to try to replicate the intricacy of biology, evo-
lutionary computation has historically taken a very narrow interpretation of evolution,
one that is predominantly based on models of fitness landscapes. These models are
highly abstract and perhaps rather sterile as a consequence. There is little opportunity
for the rich, complex interactions we see in real biological processes to take place. For
example, hardly any work has included the role developmental processes play in evolu-
tionary search, despite evidence from biology suggesting its fundamental importance.

In the following sections we briefly examine the history of evolutionary computa-
tion, taking in the major trends in the field and examining where the current research
effort is focused. We see how some of the early successes of evolutionary computa-
tion were in part responsible for the direction of later research. We look at interesting
results from research into the evolution of logic circuits in hardware, which provide
evidence that “richness” is a quality we need more of in our models and our approach
to evolution, and end by considering a few developmental approach.

8 Evolutionary Computation

Towards the end of the twentieth century, biotechnology increasingly made headline
news. There was a growing awareness, even hysteria, about the extent to which genes
determined many aspects of our lives. Genes were discovered, it was disturbingly
claimed, for homosexuality, schizophrenia, even criminality (Hutcheon, 1996). Other
spinoffs from biotechnology, such DNA “fingerprinting” have become commonplace
and large scale. Publicly funded research such as the Human Genome Project'? kept
biotechnology in the public eye. The famous double helix even features on a British
sterling two pound coin minted specially for the fiftieth anniversary of the discovery of
DNA.

Biotechnology’s rise to fame and its increasing influence on people’s lives is per-
haps matched only by that of computer science over the same period. As biologists

Bhttp://www.genome.gov/ and http://www.ornl.gov/sci/techresources/
Human_Genome/home.shtml
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have become increasingly reliant on computers, it was inevitable that the latest find-
ings and theories in biology would feed back into computer science research. Just a
decade after Crick and Watson’s discovery of the structure of DNA, computer scien-
tists were already investigating what ideas could be taken from biology to use in their
own field (Fogel, 1963). But although the borrowing has been somewhat piecemeal to
date, the trend to adopt ideas from biology shows signs of becoming even stronger in
the coming years. For some, such as Peter Bentley writing the New Scientist in 2004,
the future of computer science will be inextricably linked to paradigms of biological
processes:

“You could say we are going back to nature. I am convinced that in the
future, software will evolve and grow instead of being designed and built.
In place of programmers there will be digital horticulturalists who plant,
prune and grow software from seeds that they have cultured. Not a single
line of code will ever be typed into a computer again.” (Bentley, 2004)

Whatever the truth to such grandiose claims, links between computer science and biol-
ogy are gaining strength. One could point to areas such as neural networks and immune
systems as examples of this, but perhaps the greatest recipient of ideas in computer sci-
ence is the area covered by evolutionary computation.

8.1 A Brief History of Evolutionary Computation

The earliest attempts at simulating evolution were linked to machine learning. Tur-
ing (1950) suggested how an evolutionary or genetic search might be used in general
machine learning, while Friedman (1956) speculated on the use of feedback, selection
and mutation to design “thinking machines” (an idea which has raised its head again re-
cently, with the work of Bongard and Lipson (2004)). There were others too, perhaps
less closely tied to academia, such Friedburg (1958) (who suggested “a population-
based hill climbing search”) and Box (1957). Box’s work is interesting in that it dates
the involvement of industrial systems control engineering to the earliest days of evolu-
tionary computation. While never purely an engineering discipline, the practical side of
evolutionary computation has remained influential and been partly responsible for the
direction and narrowness of later research (see §9.1). However, despite these early pi-
oneers, evolutionary computation as a field didn’t really develop until the early 1960s,
when several branches appeared independently.

8.1.1 Evolutionary Programming

Evolutionary programming was part of the attempt to create artificial intelligence. L.
Fogel (1962) used finite state machines and simulated evolution on a population of
contending algorithms to demonstrate intelligent behaviour. The machine in question
had to predict an input symbol and its prediction was an output based on previous
experienced input symbols. Fogel exposed a population of machines to the learning
environment of input symbols and selected machines on fitness criteria. The selected
machines were then randomly mutated and the process repeated with their offspring.
It is worth noting that Fogel presented his work initially in an industrial research
journal and it would be fair to say received mixed reviews. While some were positive,
others such as Solomonoff (1966) were critical of the inefficiency of random, hill-
climbing searches. But the criticisms stemmed from comparisons with other artificial
intelligence research, rather than an objective look at the potential of the method for its
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own sake. More recent commentary on the early work in automated programming by
Lenat (1983) is equally critical, but perhaps unfairly so given the considerable benefit
of hindsight:

. early (1958-1970) researchers in automatic programming were
confident that they could succeed by having programs randomly mutate
into desired new ones. This hypothesis was simple, elegant, aesthetic and
incorrect. The amount of time necessary to synthesise or modify a pro-
gram was seen to increase exponentially with its length. Switching to a
higher level language ... merely chipped away somewhat at the exponent,
without muffling the combinatorial nature of the process. All the attempts
to get programs to “evolve” failed miserably, casualties of the combinato-
rial explosion. (cited in Fogel, 2000, pg. 67-68)

Fogel argues that claims about the amount of time to evolve a solution increasing expo-
nentially with its length are unsubstantiated in the literature. However, the “combinato-
rial explosion” of the total search space is a well-documented issue with other branches
of evolutionary computation, particularly genetic programming, but also more gener-
ally when the representation length is increased or given greater complexity. Practi-
tioners still advocate throwing more computing power at this problem, much as they
did in the 1960s (discussed in §9).

8.1.2 Evolutionary Strategies

Evolutionary strategies developed as general function optimisation algorithms to solve
difficult real-valued parameter optimisation problems. The work was started in the
mid-1960s at the Technical University of Berlin by Rechenburg (1963; 1964; 1973) and
Schwefel (1975; 1977; 1981). Evolutionary strategies had some noteworthy features.
For example, “the components of a trial solution are viewed as behavioural traits of
an individual, not as genes along a chromosome” (Fogel, 2000, pg. 69). Although
a genetic source for phenotypic traits is assumed, the nature of that linkage is not
made explicit. The genetic transformations result in behaviour changes that follow
a Gaussian distribution, allowing many phenotypic characteristics to change following
a genetic alteration.

Another interesting feature was the self-adapting strategy parameters, enabling the
degree of mutation of a parent to change dynamically and for the parameter to be mu-
tated and undergo evolution itself. This work bears comparison with the more recent
dynamic parameter encoding in genetic algorithms (Schraudolph and Belew, 1992).
Fogel (2000, pg. 72) claims that “strong similarities exist between evolution strategies
and evolutionary programming ... In many cases, the procedures are virtually equiv-
alent even though they developed independently”. More recent work on evolutionary
strategies can be found in Voigt et al (1996).

8.1.3 Genetic Programming

Genetic programming was extensively developed by Koza as a means to automate pro-
gramming, but some of its greatest successes have been in the field of machine gen-
erated analogue circuit designs (Fonlupt, 2005; Koza, 1992, 1994; Koza et al., 1999,
2003). An individual in genetic programming is a computer program rather than a
chromosome. Each program is evaluated by being run and a fitness is then assigned to
it (although this may be over multiple runs with different inputs).
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Programs themselves are usually represented as parse tree structures, with subtree
nodes acting as the points on which mutation or recombination occurs. For example,
in recombination, two different subtrees in the same node position might be swapped
between parent trees, or if using a mutation operator, a node might be selected and the
subtree replaced by a randomly generated subtree. Other variants of mutation exist.

Like other branches of evolutionary computation, genetic programming has been
successful in industrial applications (Koza et al., 2004), particularly with respect to
human-competitive solutions in analogue electrical circuit design, some of which have
been patented (Streeter et al., 2003).

However, a big problem with genetic programming has historically been the issue
of “bloat”. Operators can grow large structures that have no effect or that are wasteful.
This feature of genetic programming has been likened to “junk DNA”, in that while it
doesn’t alter the semantics of the program it represents junk code that is either unused
or wasteful. There are many papers suggesting ways to tackle bloat (Brameier and
Banzhaf, 2003; Ferndndez et al., 2004; Langdon, 2000; Langdon and Banzhaf, 2000;
Langdon and Poli, 1997; Tomassini et al., 2004; Vanneschi, 2004). Some good papers
theorising about the shapes of parse trees and the causes of bloat have been recently
been published by Diada et al (2004; 2003; 2005), in particular an analysis of the visual
form of evolved tree structures which has lead to the hypothesis that evolved trees are
inherently “deep and narrow rather than wide” due to the numbers of nodes on deep
subtrees leading to them being more likely to be selected.

8.1.4 Genetic Algorithms

Genetic algorithms (GA) were largely developed by John Holland and his students
from the 1960s onwards (1962; 1992),'* with theoretical work being added by Gold-
berg (1989; 2002) and Vose (1999a; 1999b). Holland’s original motivation was to
“understand the principles of adaptive systems” (Dimutrescu et al., 2000, pg. 7) and in
common with other branches of evolutionary computation, the early papers presented
the process of evolution in a highly abstract form, so that key elements of the simplified
process could be identified and understood in terms of what made the process effective
as a search algorithm.

GAs are generally comprised of a population of candidate solutions encoded as
chromosomes in a binary string representation.'> The process is simple: take the best
members from the candidate population of solutions and use those to form your next
generation of solutions by combining them with randomly chosen individuals or each
other. Assess your new population and repeat. Natural selection ensures successive
generations move the population towards your fitness objectives. The canonical form
of GAs is given in the following section.

Exactly how each successive generation should be formed soon became a major
topic of debate, with many forms of crossover between individuals being tried. A
large part of the debate focused on improving the performance of GAs. Running a
simulation over many generations containing large populations was computationally
expensive and early workers in the field frequently struggled with limited computing
power (Fogel, 1998). This, combined with the pressure to achieve practical results on
engineering problems, meant it became the dominant area of research.

4Fogel (2000) also cites Bremermann (1962; 1966) and Fraser (1957; 1968) as among the early develop-
ers.

5Binary representation has declined in recent years, but the canonical form is generally given as a fixed
length binary string representation. See § 8.2.



8 EVOLUTIONARY COMPUTATION 37

The GA is considered to be the main paradigm of evolutionary computation (Dimutrescu
et al., 2000, pg. 21) and as so much work has been done on aspects of the model, we
will look in greater detail at its main components and theories relating to their influence
in §8.2.

8.1.5 Evolutionary Computation

The previous four sections have outlined the historical branches of evolutionary com-
putation. Although each of the variants presents slightly different models of evolution,
the representation of individuals and the mechanism of exploring the population search
space, the differences are not sufficient to consider any of the variants unique. Fogel
(2000) notes that since 1993 and the formation of the journal Evolutionary Compu-
tation, “evolutionary computation” (or “evolutionary computing”) has become an ac-
cepted umbrella term for all the variants. Fogel even doubts whether any value can
continue to be gained by using specialist terminology from one of the branches:

“It is no longer possible to identify a particular effort in evolutionary
computation as a genetic algorithm, an evolution strategy, or an evolution-
ary program, simply by examining the representation chosen, the selection
method, the use of self-adaptation, re-combination or any other factor. In
fact, the practical utility of each of these terms has evolved to be essentially
useless: Little or no information is conveyed by identifying a particular
effort as a genetic algorithm, evolution strategy or evolutionary program.”
(Fogel, 2000, pg. 85)

In agreement with this sentiment and notwithstanding the historical importance of the
variant branches, the term evolutionary computation will be used for the remainder of
this section.

8.2 The Canonical Genetic Algorithm

The basic framework of evolutionary computation is one based on population con-
vergence over optimal peaks in a fitness landscape of the genotype’s population. In
the breeding of successive generations, selection occurs according to individuals be-
ing assessed against some fitness criteria, thus some of their “good” genes are carried
over into the next generation. The canonical process uses fixed-length binary strings
to represent chromosomes. In terms of actual algorithms, the genetic operators are
procedures that modify the individuals represented as chromosomes by mutation (or
inversion) or by combining them (crossover). As individuals usually map to a repre-
sented solution, it is common in evolutionary computation to refer to the population as
containing candidate solutions.

The canonical or simple GA is as follows (from Dimutrescu et al. (2000, pg. 29—
31)), where ¢ means time step:

1. Sett =0
2. Initialise chromosome population P(t).
3. Evaluate P(t) using fitness criteria.

4. while termination condition not satisfied do
begin
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Crossover Point
Paremt#1: 1 1 01|01 11101 Offspring#1: 10100111101
-
Paremt#2: 101010000100 Offspring#2: 11010000100

Figure 18: The one-point crossover operator applied to two parents.
Image and text reproduced from (Fogel, 2000, pg. 75)

No. String Fitness % of Total
1 0llo01 169 144
2 11000 576 49.2
3 01000 64 5.5
4 10011 361 309
Total 1170 100.0

Figure 19: Roulette wheel selection.
Image and text reproduced from (Fogel, 2000, pg. 74)

(a) Select best individuals from P(t). Let P (t) be the set of selected chromo-
somes. Choose individuals from P (t) to enter mating pool (M P).

(b) Recombine chromosomes in M P forming populations P,. Mutate chro-
mosomes in P, forming Ps.

(c) Select replacements from Ps and P(t) forming P(t + 1).
(d) Sett=t+1

end

This simple process provides certain key elements to the model that have been investi-
gated in great detail. For example, there are many forms of crossover. Holland created
a straightforward crossover between two parent chromosomes to get two offspring by
“selecting a random position along the coding and splicing the section that appears
before the selected position in the first string with the section that appears after the
selected position in the second string, and vice versa” (see Fogel (2000, pg. 74) and
Fig. 18). Other types exist that use multiple crossover points.

Generally each chromosome is assigned a probability of reproduction so that its
chances of being selected are proportional to its fitness. One method of doing this is
the roulette wheel, which divides up the population such that all chromosomes receive a
probability in relation to their fitness (Fig. 19). Another popular method is tournament
selection, and there are several others.

The use of binary encoding for fixed-length chromosomes has been criticised since
it was first proposed as a universal encoding by Holland (1975). Binary encoding has
its historical roots in the introduction of the schema theorem and building blocks, also
by Holland. Fogel (2000, pg. 75) states that “schemas allow a way of determining
the usefulness of finding out fitness values for strings that match your schema, as a



8 EVOLUTIONARY COMPUTATION 39

partial match should also mean a partial fitness.” His example explains how using a
wild card [*] in a schema where the evaluation of the string [0000] has some fitness,
the schema would suggest that partial information is also received about the worth of
sampling the variations in [****]  [0***], [*0**], [0*0*], [*00*] and so on (Fogel,
2000, pg. 75). This characteristic is called implicit parallelism and indicates that a
single sample can provide information with respect to many schemas. It is claimed that
certain representations and problem spaces are more amenable to implicit parallelism
in schema design, particularly those where individual genes are not epistatic (MacKay,
2003).

But although Holland claims to have proved maximum implicit parallelism (i.e.
the effectiveness of using schemas) occurs when the encoding is binary (1975, pg. 71),
others have found no practical advantage. Michalewicz (1992, pg. 82) finds that real-
valued numerical optimisation problems are best encoded in floating-point representa-
tions (faster, more precise), and others had similar experiences after practical experi-
mentation (Koza, 1989; Syswerda, 1991; Wright, 1991). Nowadays, binary represen-
tations are rarely used except when the representation can be easily mapped to a series
of Boolean decisions or a bit mask. Whatever representation is chosen for the chromo-
some encoding, it would be well to remember that Fogel and Ghozeil (1997) “proved
that there are essential equivalencies between any bijective representations, regardless
of cardinality ... Thus, no intrinsic advantage accrues to any particular representation”
(cited in Fogel, 2000, pg. 76).

According to the building block hypothesis (Goldberg, 1989; Holland, 1975), ge-
netic algorithms work by locating and maintaining “good” building blocks. Building
blocks are defined as “low order, low defining-length schemata with above average fit-
ness”.'® Good building blocks are joined to other building blocks to create sequences
that are associated with above average fitness. The hypothesis rests on the assumption
that combinations of good schemata are likely to result in higher fitness more quickly
than could be achieved if every possible combination of bits in a string were tried.
Goldberg states “instead of building high-performance strings by trying every conceiv-
able combination, we construct better and better strings from the best partial solutions
of past samplings” (Goldberg, 1989). The building block hypothesis has been criti-
cised as having no theoretical basis (Wright et al., 2003) and experimental evidence
has shown that single point crossover does not result in identifiably better solutions
(Syswerda, 1989). Despite the uncertainty around the building block hypothesis, it is
notable that there is no other well developed philosophy about Zow genetic algorithms
work and such a theory (or practical understanding) is needed if evolutionary compu-
tation is ever to scale to tackling large, complex problems (see §9.2).

GAs have been applied to a wide variety of real-world tasks. As that experience
has been gained, practitioners discovered there were issues that reduce the technique’s
attractiveness as a search-based optimisation algorithm. Premature convergence is a
common problem that occurs when the population of chromosomes reaches a genera-
tion where crossover no longer provides offspring that are capable of out-performing
their parents. Although one might suspect this is the natural fate of any hill-climbing
search, premature convergence is peculiar in that the means to avoid it often seem
landscape dependent. An example was the attempt to introduce dynamic parameter
encoding (DPE) by Schraudolph and Belew (1992). The technique seems to offer
promise on quadratic bowl shaped landscapes; however, it actually fares worse than
a simple GA on multimodal type landscapes (such as Shekel’s foxholes, see Fig. 20).

16Definition taken from Wikipedia: http://en.wikipedia.org/wiki/Genetic_algorithm.


http://en.wikipedia.org/wiki/Genetic_algorithm

9 WEAKNESSES IN EC MODELS 40

Log Error Score
L

i

(i

! | l\ I
"“‘h.\\;,"\m

\\I"‘\I i

Generations

Figure 20: DPE performance on a testing landscape (inverted Shekel’s foxholes).
Image and text reproduced from (Fogel, 2000, pg. 79)

Further doubt was cast on the wisdom of pursuing solutions to premature convergence
by coming up with landscape-specific algorithms. The “No free lunch theorem” by
Wolpert and Macready (1995; 1997) states that averaged over all landscapes, no search
algorithm performs better than any other. The same may be true for landscape-specific
solutions to premature convergence. In addition to which, landscape-specific solutions
require prior knowledge of the search space — something which it may be impossible
to ascertain.

Despite these shortcomings, there is no doubting the popularity of GAs, either in
academia or industry. They are now part of the standard toolbox of search algorithms
where the search space is large and unpredictable, and have become the default method
for tackling traditional, NP-hard problems, such as the travelling salesman. Unsurpris-
ingly, their ability to tackle multiple objectives and to find optimal (or “good enough”)
solutions grouping those objectives finds many applications in control systems and
other industrial applications.

However, the range of problems that evolutionary computation has tackled outside
those relating to optimisation is not as wide as one might imagine. Perhaps a victim
of its own (industry-based?) success, evolutionary computation and in particular, GAs,
have themselves evolved little beyond their basic operational framework that was first
described in the 1960s.

9 Weaknesses in EC models

No one has yet evolved a design for a car, a house, or anything that has a high number
of parts, each of which can be exposed to evolutionary change. In the current model, as
complexity grows, the length of the chromosome string representation grows, and large
numbers of generations start to be required to reach good solutions. This increasingly
hampers the effectiveness of an evolutionary search and during the 1980-1990s re-
searchers attempted to address the issue. Initially, in an echo of the 1960s, researchers
tackled the problem by simply throwing more computing power at it (Koza et al., 2003).
Parallel GAs running on parallel machines were also tried (Cantu-Paz, 1998; Cantu-Paz
and Goldberg, 1997). But the promised breakthrough hasn’t happened. To date, no one
has cracked the problem of scale when it comes to complexity, and evolutionary com-
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putation remains tied to addressing the same problems of multi-objective optimisation
that it first started investigating over twenty five years ago.

9.1 Obsessed by Optimisation

By tracing the historical successes in evolutionary computation we can understand bet-
ter the influence of those successes on the direction of subsequent research. Industrial
success is often a good thing, but there is no doubt that evolutionary computation as a
field has been heavily influenced by the need to fulfill its practical promise. Success
in industrial applications, such as circuit design (Koza et al., 2004) and control sys-
tems (Robinson and Mcllroy, 1995; Sharman et al., 1995), has meant that evolutionary
computation was always being pushed towards making the evolutionary process more
efficient, more practical. Such implementation concerns are not usually the domain of
academia, but Chris Stephens being interviewed in 2003 for the EvoNet website, admits
that research in the field is driven by those who want to use evolutionary computation
for practical design problems:

“Evolutionary computation, at least in terms of the fraction of papers
dedicated to it, is mainly driven by the practitioners. ... there is a big gap
between the mathematical perspective and the engineering perspective.”
(Stephens, 2003)

While research programs can be forgiven for focusing on ways to improve the
performance of genetic algorithms, that same focus has produced a rather blinkered
view of evolutionary computation, one that sees nothing more in evolution than a set
of optimising search algorithms. For example, David Fogel, in his introduction to
Evolutionary Computation: the fossil record firmly states that “natural evolution is
a population-based optimization process” (Fogel, 1998). Martin Keane, in a similar
introductory chapter, describes evolutionary computation as “design search and opti-
mization” (Keane, 2000). Both of these views stem from a practitioner’s perspective,
a perspective which has built up authority after the success GAs had in particular with
multi-objective optimisation problems. So the last two decades have seen a continuous
stream of papers published on the performance of GAs and optimisation, perhaps to the
detriment of work that could have explored other features of the evolutionary process,
such as greater exploration, better bootstrapping to deal with complexity, alternative
mechanisms for encoding or problem representation and so on.!” For example, a sur-
vey by Coello (2000) for the IEEE on multiple objective GAs (MOGAs) managed to list
almost fifty separate applications and variants of MOGAs, and one wonders whether
even industrial applicants would wish to wade through them all to find one appropriate
to their needs (see Table. 1).

9.2 The Black Art of Decomposition

Despite the attention to optimisation issues, to say that nothing had been reported about
other interesting aspects of the evolutionary process would be wrong. Indeed the abil-
ity of evolution to “invent” things was widely publicised in popular journals like Sci-
entific American (Koza et al., 2003). As noted, human-competitive, even patented
designs have been produced by evolutionary computation, and practitioners such as

17This remains the case. A count of papers submitted to EvoWorkshop 2003 and 2004 shows the majority
(over 60%) in areas related to optimisation.
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Multi-objective GA Year
Schaffer’s Vector Evaluated GA 1985
Syswerda & Palmucci GA with weighted sums 1991
Fonseca and Fleming propose MOGAs 1992
Wilson & MacLeod goal based GA 1993
Goldberg’s Fast Messy GA 1993
Srinivas & Deb Nondominated sorting GA 1993
Horn, Nafliotis and Goldberg’s Niched Pareto GA — co-operative shar- || 1993
ing

Coello Min-Max Optimisation — ideal non-Pareto feasibility vetting 1996
Priaux et al. GA-based approach with game theory 1997
Gary Lamont & David Van Veldhuizen’s survey of MOGAs 2002
Tan, Khor, Lee &. Yang Tabu-based exploratory GA 2003

Table 1: List of multi-objective GAs (MOGAs), adapted and much reduced from
Coello (2000).

David Goldberg claim that what was going on in these processes was more than mere
optimisation:

“... the design of effective GAs [is] ultimately helping us create first-
order computational models of innovation.” Goldberg (2002) (my italics)

However, a genuine computational model of innovation is something we are far from
having. Innovation is hard to quantify or model in any sense, and working out how
people (or GAs) invent things has proved equally difficult (although Thompson (2002)
has some interesting comments on how evolution does this).

Goldberg, following on from Holland, believes that the knack of getting your prob-
lem effectively solved by GAs lies in the correct representation of the problem, and that
representation itself relies on the problem being broken down in the correct “chunks”,
so that the right building blocks can be chosen. This may seem something of a black art
to the uninitiated, an impression unlikely to be diminished by Goldberg’s interesting,
if unconvincing, description of the invention of human flight by the Wright Brothers
in 1903. According to Goldberg, the Wright brother’s success was down to how they
decomposed the problem. While the evidence for this is sketchy and based on Gold-
berg’s analysis of events, Goldberg nevertheless makes some interesting observations
about the nature of invention and human design.

Goldberg demonstrates that human design isn’t always a rational process of prob-
lem decomposition. When the problem domain is poorly understood, people will ap-
parently try anything, no matter how deeply it may run against the grain of common
sense. Fig. 21 gives an idea of just how wild human invention can be when uncon-
strained by design principles.'® But it equally demonstrates just how dangerous a little
knowledge can be, as an incomplete understanding of aerofoils led to people misap-
plying what little knowledge they had and trying designs that were doomed to fail.
Goldberg described these early pioneers of aviation as appearing to “flail about in de-
sign space, hoping for good luck” (Goldberg, 2002, pg. 7).

181 can find no authoritative source for the photographs in Fig. 21, which appear on many websites. A good
source for explanations about the machines can be found at http://www.ctie.monash.edu.au.
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Figure 21: Bats and bikes as flying machines from early aviation pioneers: (a) Le
Bris, The Albatross, 1868; (b)—(d) Adapted Lilienthal c.1890; (e) Phillips Multiplane

of 1904; (f) Phillips Multiplane of 1907.

But even if Goldberg were correct, and the reason for the Wright brothers’ success
was the correct decomposition of their problem, there is still no convincing rationale
behind why they broke it down the way the did — was it fluke, intuition, or did they use
a set of rules that could be applied to unknown problem domains everywhere with the
same degree of success? Goldberg claims the latter, but offers only a vague method,
while the record of those aviation pioneers shows that while many tried, hardly any had
success. One argument that supports finding the “lucky” decomposition of the problem
is that over a population, the success rate of so many failures is consistent with an
evolutionary process exploring a large search space. However, it is one thing for human
engineers to have discovered “good building blocks” that could then be combined to
solve a bigger problem, it quite another to suggest that evolutionary computation can
do the same. The problem again comes back to scale.

Practitioners, such as Goldberg, advocate “careful” decomposition for complex
problems: one should decompose the problem into small chunks, then run an evolution-
ary computation process over them. Leaving aside whether your problem decomposi-
tion is correct, for larger, more complex problems, decomposed solutions must “bolt
back together” so that the whole thing works as a single solution. But although problem
decomposition may be a typically human approach to finding a solution, there is no ev-
idence that natural evolution tackles large scale problems this way. In fact the evidence
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is to the contrary. We have seen that epistatic fitness landscapes in co-evolution appear
to be self-tuned close to the critical point of interconnectedness (see page 31), meaning
that although species appear to be evolving in isolation, they are in fact responding to
a wider ecosystem that cannot easily be broken into parts. Despite ideas about species
niching on local optima, there is no evidence that natural evolution allows a chunk of
the system to evolve in isolation, with the aim of making it fit into the wider whole
at a later point. Such a proposal seems straight-forwardly counter-intuitive, but this is
exactly what has been proposed as a way to scale evolutionary computation (Goldberg,
2002). However, work by Torrensen (2000) again reinforces the fact that evolutionary
algorithms exploit the particular characteristics of their search space to find a solution,
and this results in highly localised solutions for local problems.

Torrensen (2000) investigated issues of scalability and complexity while trying to
evolve a signal filter over a range of inputs for a road image recognition exercise. Tor-
renson first broke the problem into a series of subproblems (each evolving a logic
circuit on part of an FPGA (Field Programmable Gate Array)). For each subproblem,
he then subdivided his inputs. Although the circuits evolved individually to high fit-
ness, Torrensen found that when they were reassembled, the circuits failed to work due
to noise from other inputs. This is a typical characteristic of evolved solutions in that
evolution is “lazy”; it does the minimum possible to achieve satisfaction. It is also
highly environment sensitive, solutions are not generally portable (see also Thompson
(1997), discussed in more detail in §9.3). Torrensen’s solution was to evolve his de-
composed filters by exposing them to the full range of inputs. This worked when the
decomposed elements were reassembled, but meant that the evolutionary process was
now much slower for each subunit than before, resulting in a less than ideal solution to
the problem of complexity and scale (see also investigations by Vassilev et al. (2000).

9.3 Towards Richer Invention

Humans “flailing about in the design space” of early aviation is an example of highly
unconstrained invention, but it is not a realistic example of evolutionary invention.
We know from evidence in evolutionary developmental biology, that evolution tends
to tinker with successful structures rather than create entirely new structures out of
the blue. A better example of evolutionary design by humans is the evolution of golf
balls in the latter part of the twentieth century (Thompson, 2002). In contrast to early
aviation, where a little knowledge led to many misguided designs, the evolution of golf
balls was carried out in ignorance of why the changes led to improvements.

The earliest balls were called featheries and were made of hide case densely packed
with feathers. Around 1850, a new type of ball appeared, a guttie, of solid gutta per-
cha (a sort of rubber). They were cheap and smooth, but didn’t fly as far as the older
featheries. Gradually it was noticed that used featheries travelled further than brand
new ones, so people experimented adding nicks and cuts to make their balls fly fur-
ther. Over time, the manufacturers started to produce balls that had similar textures on
them. Modern balls prefer a variety of dimples. However, it is only recently that the
aerodynamics causing a rough ball to travel further have been understood. Two things
stand out in this example of design evolution; i) changes were made at random and in
ignorance of why they were good changes to make, ii) the changes were incremental.

Thompson wanted to see if a blind, incremental evolutionary search could still be
encouraged to generate truly innovative designs. In 1996, he set up a ground-breaking
experiment designed to promote design innovation through the relaxation of constraints
(Thompson, 1996). His experiment evolved a circuit to distinguish between two fre-
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quencies on an FPGA, at the lowest level of abstraction possible — that of the physical
behaviour of the platform. A 10x10 area of Xilinx 6126 bitstream was evolved (i.e. all
the bits in this area were evolved directly as chromosome bits in a GA). The evolved
circuit had to discriminate between 1kHz and 10kHz bursts of signals, no other input
was given. Even the clock on the chip was turned off (Gordon and Bentley, 2002).

The experiment was a success. However, when Thompson tried to copy the evolved
circuit onto another FPGA chip, he found that the circuit wasn’t portable. He then tried
to move the circuit onto another part of the original chip used in the experiment. Again
the circuit failed to work. Thompson discovered that the circuit made use the physical
properties of the silicon on the FPGA chip. It was extremely sensitive to any alteration
in its environment — temperature, electricity supply, even the silicon of the chip — a
change in any of them could stop the circuit working. Again, the result demonstrates
the laziness of evolution.

Thompson’s circuits lacked both robustness and portability.!” But there was an-
other feature of the evolved circuit that caused puzzlement. A lengthy analysis of the
circuit concluded that its functionality was “bizarre” and some parts of it are still not
understood (Thompson, 1997; Thompson et al., 1999). By utilising physical charac-
teristics of the platform, the algorithm made some very unusual and complex circuitry.
Commentators on Thompson’s work have suggested that the reason for the innovative
nature of his evolved circuit was not because evolution had searched a bigger design
space than human designers, but that evolution had navigated through that search space
differently (Gordon and Bentley, 2002, pg. 14). It seems inescapable that the reason for
the search trajectory is due in part to evolution making use of the physical properties
of its environment.

Miller and Downing (2002) have investigated what it would mean for complexity
and innovation if evolved solutions were given a free reign to make use of the physics
embedded in a rich medium. Rather than being surprised at evolution exploiting the
complex physical properties of silicon, Miller states we should be impressed that it was
able to do anything at all, given that silicon as a material was chosen expressly for its
stability in electronics. He suggests the time is ripe to abandon media traditionally cho-
sen for its physical stability and even the conventional components of electronic circuit
boards: “... artificial intrinsic evolution may be best attempted in physical substrates
that are rich and complex, rather than conventional transistor based technology” (Miller
and Downing, 2002). To this end, Miller and Harding recently investigated evolving
robot controllers in media such as liquid crystal (Harding and Miller, 2003).

9.4 The Gap Between Genotype and Phenotype

Environments select for fitness based on the capabilities of the phenotype. In the natural
world, the viability of the phenotype not only acts as a brake on the random mutation of
genetic material, it also acts to link evolutionary search to the process of construction.
In most models of evolutionary computation, the development of the phenotype prior
to selection is conspicuously absent. But as greater importance began to be attached
to developmental processes in biology, so researchers in evolutionary computation be-
gan to question why it was missing from their models (Shipman et al., 2000). The
standard representation for genetic algorithms, for example, is that shown in Fig. 22
(Lewontin, 1974). While such diagrams show the mappings between genotype and
phenotype populations, and even some cursory epistasis, they stem from the period of

19Thompson later evolved more robust circuits by varying the environmental conditions.



9 WEAKNESSES IN EC MODELS 46

Phenotypic
State Space

Genotypic
State Space

Figure 22: Lewontin’s (1974) distinction between the two state spaces of geno-
type population space (informational/encoding) and phenotype population space (be-
havioural/performance). The middle spaces have been added to indicate the missing
stages of development in the model.

Image and text reproduced from (Fogel, 2000, pg. 33)

neo-Darwinism that saw genes as the source of all phenotypic features and behaviours,
and the role of development was credited with less influence than it has today. But these
diagrams still constitute the majority of models employed in evolutionary computation.
Genotype to phenotype mapping remains insignificant. The developmental process of
the organism interacting with its environment and the restrictions imposed on evolu-
tion by development — such as the viability of the organism and the dependence of
complex features on phylogenic predecessors — is ignored. But if these things help
nature handle the combinatorial explosion of complexity when all parts of the system
are potentially exposed to mutation and selection, then why wouldn’t they also be of
advantage to evolutionary computation?

Genetic evidence from evolutionary developmental biology has provided us with
evidence of why evolution has to tinker with existing structures. Embryology has given
us clues about the hierarchical nature of developmental structures and how evolution
is constrained to act at the later stages of development. Evolutionary computation has
yet to take account of such evidence. Instead, hypotheses such as building blocks and
schema theorems that have no basis in biology have been allowed to dominate the re-
search agenda, while failing to tackle either complexity or scalability. Thompson’s
work opened researchers’ eyes to a whole new world of search potential. To explore
it we need to allow our search algorithms to exploit physical resources. If we want to
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evolve solutions beyond human design space, we must move evolutionary computation
out of sterile software abstractions into a much richer environment. However, provid-
ing access to richer resources does not guarantee they will be used. We know that
biological development feeds back information about the search environment to the
genome. The genome in its turn, dictates how to respond to that environment. To at-
tempt a similar exploratory system in evolutionary computation, we need a mechanism
capable of dynamic gene expression that can control the developmental process.

9.5 Models of Development

Development in evolutionary computation is a still nascent subject area. Other than
an interesting collection of essays edited by Kumar and Bentley (2003) and some iso-
lated submissions in the field of evolvable hardware (Gordon and Bentley, 2002; Lones,
2003; Tufte and Haddow, 2003), there has been little work done on modelling devel-
opment within the evolutionary computation community.”’ Some early papers that are
often cited, such as Fleischer and Barr (1994); Hogeweg (2000a,b) have presented mod-
els that, while impressive, have not been further developed by other authors. However,
the field is growing and we highlight below some of the better known frameworks.

One relatively successful framework with a considerable body of research behind it
is Lindenmayer, or L-system, grammars (Lindenmayer and Prusinkiewicz, 1989). The
approach is capable of modelling the growth of plants and simple cell development.
The use of generative grammars such as L-systems provides a means of modelling
structure, and in particular, the growth of that structure. Structural elements repre-
sented in L-systems may not have or need a close mapping to the microscopic units
that comprise real biological structures — in fact, successful models have been built
using macro-level abstractions of plant parts, such as petals and leaves.

A powerful feature of L-systems is their brevity of expression. A relatively small
rule set can generate surprisingly complex structures. Another is that generative gram-
mars lend themselves to repetitive modular structures, so that structural elements such
as branches or hair can be elegantly represented. One side effect of the “abstraction”
of macro-level units is that some irregularity has to be introduced into the models so
that forms acquire “roughness” (see Fig. 23). This can be done using context-sensitive
or stochastic means. Some success has also been achieved using fractals for this pur-
pose (Ferraro et al., 2005) and when rendered with turtle graphics, such models can be
startlingly realistic in both behaviour and appearance (see Jacob (1999); Prusinkiewicz
(2000) and Fig. 24).

For those looking at particular influences on development, feedback points can be
introduced into L-system structures in conjunction with turtle graphics to produce mod-
els that respond to changes in their environment. Work by Méch and Prusninkiewicz
(1996) has shown how feedback can be incorporated into open L-systems to show
variance in the developmental outcome according to environmental conditions (see
Fig. 25). Thus the potential to have open systems that develop in a natural way by
interaction becomes a possibility.

To date, such systems have been implemented in software-based virtual environ-
ments (as opposed to embedded solutions using real sensor data). Jacob was one of
the first to use evolutionary computation with L-systems to explore the evolution of
plants and branching structures under light deprivation (Jacob, 1999). Following on

20Until recently there were few places to get such work published. For example GECCO, the main con-
ference for evolutionary computation, featured its first track in development in 2007.
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Figure 23: Some trees with different branching structures produced by L-systems.
Image reproduced from Prusinkiewicz and Lindenmayer (1990, pg. 60, Fig. 2.8)

from this, work by Hornby has shown that evolution is able to quickly make use of the
structural forms that L-systems can describe, and that the use of a generative encod-
ing to produce such structures is advantageous in that “good” structures can be built
more quickly (Hornby et al., 1999, 2001; Hornby and Pollack, 2001a,b). His work
suggests that there may be a link between these sorts of highly compressed, generative
descriptions and the complex, cascading control of genetic regulatory expression, and
this would be interesting to explore. Hornby and Pollack have also evolved controllers
based on L-systems (in conjunction with neural networks) to produce realistic gaits in
simulated walking robots (Hornby and Pollack, 2002). The use of L-systems to model
developmental processes is attractive to computer scientists as generative grammars are
easy to represent and much of the work to render the structures graphically has already
been done.

Developmental characteristics, such as canalization, have been viewed as a useful
attribute for systems seeking fault recovery or robustness. Such approaches generally
take the view of development as a robust construction process, rather than an adaptive
control response to exploration. One example is Miller’s French flag “multicellular
organism” (Miller, 2004), which formed the starting point for several other pieces of
work. Miller evolved two solutions demonstrating interesting capacities for self-repair
based on cell growth (i.e. cell replication). The cell behaviour was based on chem-
ical input bits and determined whether the cell would live, die or differentiate as it
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Figure 24: Photograph of wild crocus (left) and rendered image produced by a “hairy”
L-system (right).
Image and text reproduced from Fuhrer et al. (2006)

grew in the Moore neighbourhood (the 8 cells surrounding a 2-D cell). The number
of chemicals varied but all chemicals followed a diffusion rule as they spread to new
neighbourhoods. Miller’s choice of a flag as the task map was based on Wolpert’s de-
scription of positional information in early embryo development (Wolpert, 1998) and
his experiments demonstrated that pattern recovery, even after damage, was possible
following a simple developmental model. In his models, the presence of more chem-
icals had a positive effect on fitness. Miller proposed to take the work forward and
implement the system as a control mechanism giving cell growth a function, however
to my knowledge this has not yet been done.

Pauline Haddow’s group in Norway have also emphasised the importance of a de-
velopmental approach, initially using FPGAs (Haddow and Tufte, 2001) and examining
the benefits of an extended genotype-phenotype mapping and redundancy / self-repair,
and more recently extending Miller’s work and looking at cell development in three
dimensions (Haddow and Hoye, 2007). In the latter, they asked whether the presence
of chemicals was helpful or a hindrance to the developmental process, but rather than
having cell behaviour solely determined by chemicals, proteins requests are used. The
chemicals form part of a precondition to protein production, and in contrast to Miller’s
results it was found that too many chemicals hindered phenotype fitness. Haddow’s
work is possibly the closest models we have to investigating development in the light
of gene expression control. However, even here development is essentially modelled at
the level of the single cell (albeit with some parallelism). No gene regulatory networks
are modelled, nor are attempts made to see if intermediate fitness can be assigned to
developmental stages. Such cascading regulatory control is common in natural sys-
tems, but it isn’t clear what role evolution plays in all aspects of regulatory control.
Like many areas of biological development, this could be a rich vein for evolutionary
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Figure 25: Model for an open L-system allowing environmental feedback, in this case
modelling root exploration.
Image and text reproduced from Méch and Prusinkiewicz (1996)

computation to explore.

As a final note, a taxonomy has been proposed by Stanley and Mikkulainen (2003)
for artificial developmental systems, or what the authors call “artificial embryogeny”.
Under their classification, models of development fall into two camps: L-systems (or
similar generative grammars) and cell chemistry approaches. The latter is inspired by
the early models byTuring (1952), who defined mathematical models of diffusion and
reactions in physical substrates. Stanley and Mikkulainen claim that the division be-
tween grammatical systems and cell chemistry approaches is the easiest to make in
what is admittedly a fledgling field. However, they go on to say that differences be-
tween the two are “largely superficial and [do] not reflect how phenotypes can develop”
(page 106). Instead, their taxonomy draws up five dimensions of development, which
help position an artificial developmental system in terms of what it is trying to achieve:

Cell Fate The eventual role of a cell during development;

Targeting Connections made by cells to target locations;

Heterchrony Timing and ordering of events in the phylogeny of an organism;
Canalization Stable development despite genetic perturbation;
Complexification The addition of new genes.

These dimensions are sliding scales with respect to nature. Stanley and Mikkulainen
point out that being closer to natural systems isn’t necessarily a measure of whether
the system is “better”, and that the dimensions instead inform you of the broad charac-
teristics and capabilities of the system. For example, not being faithful to nature could
give an artificial development model considerable advantage in terms of its computing
speed. However, Stanley and Mikkulainen’s dimensions contain some bias towards
neural networks in particular and machine intelligence more generally. The dimension
of targeting seems focused on the quality (or ability) of cells to form extensions such as
dendrites and axons used in neural connections and nervous systems. But such qualities
relate more to animal cytology than a general measurement of biological development.
This criticism aside, their system of classification is at least a useful reminder of some
of the qualities that artificial development models should emulate in order to get closer
to nature and it contains a useful summary of work in this area.
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10 Summary

The previous section has taken an overview of the field of evolutionary computation.
Some omissions were necessary in both this overview and that of biological evolu-
tion and development. The purpose of covering what has already become well-trodden
ground to some in computer science is to try and emphasise the importance of a de-
velopmental perspective on evolutionary processes. The genetic reductionism of the
1970s in biology left a lasting impression on evolutionary computation, and it is one
that has become the de facto viewpoint.

However, there is evidence that calls for more inclusive models of evolutionary
search are gaining ground. A research agenda calling for evolutionary computation
to abandon its “restricted and dated understanding of natural evolution” has recently
appeared (Banzhaf and et al, 2006). That article asks the field to challenge its long
held assumption that there is a “one-way flow of information, from DNA to proteins”
that forms the basis of solution discovery by evolutionary search algorithms. The view
prevalent among practitioners of evolutionary computation is that genetic material is
essentially symbolic rather than physical. But ignoring the physical aspects of gene
translation may have led the field to underestimate the importance of developmental
processes on issues like scalability and re-use. Advances in developmental biology
have given us fresh insights into how evolution explores a functional domain and the
constraints it operates under. Criticisms of this nature have appeared elsewhere (Ku-
mar and Bentley, 2003) but have had little impact on the field, which continues to be
dominated by efforts to optimise evolutionary search.

One agenda, to investigate how evolutionary algorithms find solutions and what
they are capable of finding, was set in motion by Adrian Thompson in the mid 1990s
(Thompson, 1996). His in silico experiments were designed to encourage as much
innovation from the evolutionary process as possible. By allowing free access to the
physical nature of the search domain, Thompson discovered that evolution was capable
of finding solutions in areas that humans would find difficult or impossible to operate
(see discussions in Gordon (2001); Harding and Miller (2004); Miller and Downing
(2002)). An outstanding task for evolutionary computation — for those who want to
pursue Thompson’s aims — is to find ways of introducing the equivalent richness of
real world physics into virtual environments.

However, the introduction of richer resources does not guarantee their accessibility.
In order to access interesting physical properties in evolved solutions, we may need a
physical embodiment of the developmental mechanisms employed by nature. This
requires a two-way flow of information that allows a phenotype to explore a functional
domain in a manner controlled by the genome. A crucial ability of the developmental
process is to sense environmental inputs and respond. Things grow in accordance with
their surroundings, using a feedback mechanism that tells cells when to start producing
certain proteins or inhibit the production of others. Evidence from the study of gene
regulatory networks suggests that evolution has exploited developmental mechanisms
to allow the re-use of “useful” genes in different contexts (Carroll, 2006; Carroll et al.,
2001).

The issue of re-use prompts another criticism of current models of evolutionary
computation, namely the “single solution genome”. This artifact results from the prox-
imity between genotype and phenotype, the translation process between them being so
direct a mapping as to make them often indistinguishable. In nature, a genome control-
ling the developmental process selects from many potential responses, according to the
developmental context. A gene used in one place will have a different role somewhere
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else, roles that are separated by time and space. The repeated morphological features
we witness throughout nature are the product of developmental processes. By contrast,
in evolutionary computation, selection is carried out on “instant” phenotypic solutions,
randomly mutating from one generation to the next, in a process that has no natural
mechanism for exploring the functional search space, or conserving and re-using use-
ful genes (see discussion in §5.4). Such evolved solutions only work as single, fixed
answers to static environments. There is no redundancy to draw on.

Biological evolution has come up with a neat trick: DNA encodes for proteins, and
those proteins can govern the production of other proteins. Thus it encodes for the
rules that dictate how it explores a particular functional domain. Not only that, but a
tiny fraction of what could be expressed is ever realised in a phenotype. A genome
contains solutions for countless sets of contexts. Change the contexts and the genome
still has room for developmental exploration. This flexibility and redundancy of so-
lutions has an impact on the re-use and conservation of genes during developmental
processes. Without similar mechanisms of interaction and feedback, digital genomes
cannot guide themselves across functional search spaces in a way that fully exploits a
domain’s resources, and this is particularly true where that domain includes the com-
plexity provided by real-world physics.

While the wet manufacture of life is hardly a practical ambition for computer sci-
entists, it contains clues, patterns if you like, of how subtle, scalable structures can be
built that allow evolution to explore and interact with the world about it. DNA alone
can’t do that: it’s a passive instruction set. To paraphrase Lewis Wolpert, it’s proteins
that do all the work (Wolpert, 2003).
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