Efficient self-replication of digital circuits in
programmable logic devices

Joél Rossier, André Stauffer, Member, IEEE, and Gianluca Tempesti, Member, IEEE,

Abstract—This article presents the implementation of a self-
replication algorithm in a Field Programmable Gate Array
(FPGA). Whereas previous research on self-replication has been
mostly limited to theoretical examples and small problem sizes,
this work shows how the Tom Thumb self-replication algorithm
can be extended to take into account realistic FPGA architectures
and representative processor-scale digital logic circuits.

To achieve this objective, the algorithm was implemented
within the POEtic tissue, a programmable logic device for bio-
inspired systems, and a dedicated processor, based on the MOVE
paradigm, was developed. Starting from a single processor, the
self-replication process can be used to generate an arbitrarily
large array of identical processors that then differentiate to
realize a given application. In this article, this process is demon-
strated through a four-processor system that implements a simple
counter. The ultimate goal of this research is to demonstrate
how a bio-inspired approach can exploit self-replication to tackle
the complexity and high fault rates of next-generation electronic
devices.

Index Terms—Self-replication, FPGAs, bio-inspired hardware.

I. INTRODUCTION

HE self-replication of computing systems is an idea that
dates back to the very origins of electronics: in the 1950s,
John von Neumann was among the first to investigate the
design of processor-scale computing devices capable of self-
replication [1] [2] with the goal of obtaining reliability through
the redundant operation of many copies of the original device.
Since von Neumann’s ground-breaking work, research on
self-replicating computing machines has gone through several
phases, but, in general, interest in applying self-replication
directly to electronic hardware waned because of technological
hurdles. In recent years, the introduction of programmable
logic devices such as FPGAs has revitalized the field of
biologically-inspired hardware by allowing (at least in theory)
the run-time modification of hardware. The physical processes
that underlie the operation of organisms in nature remain
unattainable in electronic devices, but they can be approxi-
mated by altering the configuration of a programmable device.
However, practical applications of the self-replication pro-
cess to electronics remain almost non-existent, probably due
to the considerable amount of hardware overhead that is
inevitably associated with their implementation.

J. Rossier and A. Stauffer are with the School of Computer and Communi-
cation Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015
Lausanne, Switzerland; e-mail: j.rossier@epfl.ch, andre.stauffer@epfl.ch.

G. Tempesti is with the Department of Electronics, University of York,
Heslington, York YO10 5DD, UK; e-mail: gt512@york.ac.uk.

Manuscript received XXXXXX XX, 200X; revised XXXXXX XX, 200X.

On the other hand, some of the motivations that led von
Neumann to study self-replication are beginning to re-surface
among researchers faced with design and robustness issues
in next-generation electronic devices. The vast amount of on-
chip resources that will be available in the next few decades,
either by further shrinking silicon fabrication processes or by
the introduction of molecular scale devices, together with the
predicted features of such devices (e.g., high fault sensitivity),
will introduce layout and fault-tolerance issues that cannot be
solved using current design methodologies [3] [4] [5].

In this context, the usefulness of a self-replication process
that allows a complex circuit to automatically replicate within
a programmable substrate is fairly obvious:

¢ as biological organisms grow from an initial cell to a
complete adult, so large arrays of cellular computing
elements could exploit self-replication to grow in the
programmable substrate, rather than being completely
specified at design time;

o faced with faults in the substrate, a growth process could
be able to avoid faulty areas, while the redundancy that
is an automatic result of self-replication can potentially
allow the circuit to self-repair in the case of online faults.

To demonstrate the feasibility of self-replication in the
context of complex electronic circuits, however, it is necessary
to take into account several practical issues, such as the
hardware overhead and the efficiency of the mechanisms
involved, and advance beyond the “toy” examples that have
been traditionally used to illustrate this process. This article
describes the process whereby a recently-developed algorithm
was adapted to implement self-replication within a real-world
programmable device and applied to a system consisting of
four dedicated processors. While still simple, this system is
much more complex than any circuit to which self-replication
has been applied to date and exploits mechanisms and archi-
tectures that can be easily scaled to larger systems.

After a background on some of the historical approaches
to self-replication in section II, section III presents the basic
operation of the Tom Thumb Algorithm on a minimal example.
The FPGA substrate that has been used to implement the self-
replication process is illustrated in section IV and in section V
the architecture of the self-replicating processors is defined.
Section VI describes the modifications made to the basic Tom
Thumb algorithm and to the FPGA to efficiently implement
self-replication. Finally, section VII deals with the imple-
mentation of the self-replication process. A closing section
(VIII) will introduce future directions and a discussion on the
possibilities of the proposed approach to self-replication.



II. A SHORT BACKGROUND ON SELF-REPLICATION

The self-replication of computing machines has a long
history, punctuated by relatively few milestones. The following
is a brief outline of the main approaches used to study this
process, ranging from von Neumann’s original ideas to some
of the latest results in the area.

Of course, it should be mentioned that the concept of self-
replication has been applied to artificial systems in contexts
other than computing. A classic example is the 1980 NASA
study by Robert Freitas Jr. and Ralph Merkle [6] (recently
expanded in a remarkable book [7]), where self-replication
is used as a paradigm for efficiently exploring other planets.
However, the self-replication of physical machines rather then
computing systems is beyond the scope of this article and
this short background will not extend to cover this kind of
approaches.

A. Von Neumann’s Universal Constructor

Multicellular organisms are among the most reliable com-
plex systems known to man, and their reliability is a conse-
quence not of any particular robustness of the individual cells,
but rather of their extreme redundancy. One of the basic mech-
anisms which provides such reliability is cellular division, i.e.,
self-replication at the cellular level. Von Neumann, confronted
with the lack of reliability of the computing systems he was
designing, turned to this mechanism to find inspiration in the
design of fault-tolerant computing machines.

In particular, Von Neumann [2] investigated self-replication
as a way to design and implement digital logic devices and
attempted to develop an approach to the realization of self-
replicating computing machines (which he called artificial
automata, as opposed to natural automata, that is, biological
organisms).

Using cellular automata (CA) as a framework, von Neumann
realized the first self-replicating system. Based on a 29-
state CA, his approach centered on a Universal Constructor
(a machine capable of building any other machine, given
its description) composed of two parts: a tape containing
the description of the cellular machine to be built and the
constructor itself, a complex structure capable of reading
the tape and building the corresponding machine. Given a
description of itself, the machine was then able to create copies
of itself, first interpreting the contents of the tape and then
copying the tape to the new machine. Coupled with a (possibly
universal) Turing machine, the approach conceptually allowed
the self-replication of computing systems of arbitrary size and
complexity (Figure 1).

Never meant to be implemented in actual hardware, von
Neumann’s Universal Constructor is an extremely complex
machine. A recent estimate by W.R. Buckley [8] places
the size of the machine (without the Turing machine) at
approximately 800K cells, with a 12M cells tape. Obviously,
in spite of the considerable theoretical power of this approach,
its complexity prevents its use from a practical standpoint.

B. Langton’s Loop

A second stage in research on self-replication was opened
by C. Langton in 1983 [9]. In order to reduce the complexity

Ucomp' | Uconstr'

D(Uconstr+Ucomp)

Ucomp | Uconstr

D(Uconstr+Ucomp) ; EEEEEE -

Fig. 1: Von Neumann’s Universal Constructor (Uconst) can
replicate itself and an arbitrary (potentially universal) com-
puting machine (Ucomp) given the description D of the two
machines.

Fig. 2: The initial configuration of Langton’s Loop.

of the process, he dropped the universal construction and
universal computation ability of the von Neumann system and
proposed a simple self-replicating machine in the form of a
loop (Figure 2), also implemented as a cellular automaton,
based on a constructing arm and on a looping replication
program.

Unlike von Neumann, who was interested in self-replication
from the standpoint of circuit design, Langton’s research
was aimed at studying the application of life-like properties
to computational structures and his goal in developing his
approach was to determine the smallest automaton capable
of self-replication. Further improvements to the machine led
to smaller versions of the original loop [10] [11] resulting
in smaller self-replicating structures, but all these systems,
because of the context in which they were studied, lack any
computational capability.

More recently, some attempts have been made to redesign
Langton’s loop in order to embed calculation possibilities.
Tempesti’s loop [12] is thus a self-replicating automaton, with
an attached executable program that is duplicated and executed
in each of the copies. Perrier and al. [13] proposed a self-
replicating loop showing universal computational capabilities.
This system consists of three parts, loop, program, and data,
all of which are replicated, followed by the program’s exe-
cution on the given data. However, the complexity of these
approaches, while considerably smaller than von Neumann’s
Universal Constructor, remains too great to be considered
useful in the context of electronic hardware.



C. Other CA-based approaches

All of the approaches mentioned above share the common
process of self-replicating through the interpretation of a
sequence of building instructions. Some examples of self-
replicating CA, however, exploit a different mechanism, that
of self-inspection: instead of reading and interpreting a de-
scription, the self-replicating automaton inspects itself and
produces a copy of what it finds. While less general than the
universal constructor (obviously, the machine can only build
an exact copy of itself), this approach is more versatile than
Langton’s loop, as structures of (almost) any size and shape
can replicate. In practice, however, the best-known example
of self-inspection is that of a self-replicating loop [14].

Also, while traditionally there has been a very loose connec-
tion between the kind of cellular automata used to study self-
replication and actual circuit design, some researchers have
been trying to close this gap by studying automata that more
closely approach some particular features of digital circuits.
An example is Morita and Imai’s study of self-replication in
the context of reversible cellular automata [15] (in a reversible
CA, every configuration has at most one predecessor), inspired
by reversible logic in digital circuits.

Similarly, Peper et al. [16] [17] have developed self-
replicating structures in Self-Timed Cellular Automata
(STCA). This kind of automata do not rely on a global
synchronization mechanism to update the states of the cells,
but rather the state transitions only occur when triggered
by transitions in neighboring cells. The basic assumption in
this work is that STCA is a model that might more closely
resemble molecular-scale nanoelectronic devices.

D. Self-replication in electronic devices

As seen above, throughout its long history, cellular au-
tomata have remained the environment of choice to study
how self-replication can be applied to computing systems.
However, in general, researchers in the domain (including
von Neumann) have never regarded CA as the environment
in which self-replication would be ultimately applied. Rather,
CA have traditionally provided a useful platform to test the
complexity of self-replication at an early stage, in view of
eventually applying this process to real-world systems, either
to electronics or, more generally, to computing systems.

Approximating a self-replication process in an electronic
device, however, required the introduction of programmable
circuits, where the physical construction that occurs in nature
can be replaced by an information-based process. In practice,
self-replication in hardware has been implemented, without
exception to our knowledge, as the copy of a partial configu-
ration of a programmable device.

One of the simplest approaches that exploits this kind
of setup is configuration cloning [18], based on a simple
replication of the configuration of part of an FPGA in order
to create multiple copies of the same subsystem. In this case,
of course, no self-replication occurs, since the configuration
process is controlled by an external entity. As the external
controller still needs to sequentially program the entire circuit,
most of the advantages of self-replication are lost.

o P—
O |«
O |—
O |—
O | <
O |«
O |—»
O |—»

N N N N N N N N
DU N N o [
—o, | 2| oo, | 2] o
ACW CEACW CE"
T%%? %?%?
DN CN DN CN DN C:N DN cN
TR e e (o] e
P, | 2| of-p, | 2| Df-
ACW CEACW CE"
DS CS DS CS DS CS DS CS
vt vy b

Fig. 3: 2x2 Cell Matrix Grid. Each cell, which has two inputs
and two outputs per edge, is connected with its four direct
neighbors.

A variation on the same approach, closer to self-replication,
was developed by our group in the late 1990s [19] [20],
with an emphasis on self-repair. In this system, applied to
a very fine-grained custom FPGA, a tiny cellular automaton
is used in a first step of the replication process to subdivide
the programmable circuit into blocks of arbitrary size (corre-
sponding to the circuit to be replicated). In a second step, an
external entity injects a single copy of the configuration of the
block, which is automatically replicated so as to completely
fill the device. While more versatile than configuration cloning
(the automaton does not require external control and the
configuration of the device occurs in parallel rather than in
series), the approach still requires a relatively complex grid
of global connections and an external synchronization, which
again limit the advantages of self-replication.

The system that, to date, probably best exploits self-
replication in the framework of electronic devices is the Cell
Matrix system [21] [22]. Cell Matrix is a fine-grained recon-
figurable device composed of a collection of identical elements
(referred to as cells) placed on the edges of a two-dimensional
regular grid. Each cell in the grid is interconnected with its
four cardinal neighbors and contains a lookup table, which is
used as a truth table to implement logic functions. Each cell
can exchange information with its four neighbors, and it uses
(as a cellular automaton) its four inputs and its lookup table
to define the value of its four outputs.

Unlike the systems presented above that have to be con-
trolled by an external computer in order to achieve self-
replication, cells of Cell Matrix circuit can self-replicate
autonomously. Each cell is at the same time configurable and
can configure other cells without any external input command.
This feature is called self-duality. In order to implement self-
duality, a cell has to operate in two independent modes: D-
mode and C-mode. In D-mode the cell’s lookup table processes
the four input signals in order to generate output signals,
whereas in C-mode the input data is used to fill up (configure)
or re-write (re-configure) the lookup table of the cell.



Using self-duality, arbitrarily complex structures can self-
replicate within the circuit. Cell Matrix is an accomplished
system that has been shown to work well, but is hindered both
by the non-conventional structure of the cells (the approach
cannot easily be generalized to arbitrary programmable logic
architectures) and by the very large overhead required by
self-replication, since as in von Neumann’s approach the
construction process relies on a description of the machine
to be built that is in fact much larger than the machine itself.

More recently, another algorithm was proposed to achieve
self-replication of arbitrary structures in programmable logic.
The Tom Thumb algorithm [23] [24] borrows from Langton
and his successors the concept of loop, but was designed to
be implemented in silicon. Potentially, the algorithm could be
used to replicate any structure within a programmable device,
following a simple systematic methodology, but so far its oper-
ation has been described only for trivial, illustrative examples.
This article shows how the algorithm was extended and applied
to a real-world programmable logic device, demonstrating how
it can be used for the self-replication of complex circuits.

III. THE TOM THUMB ALGORITHM

This section introduces the basic behavior of the Tom
Thumb algorithm, designed to enable self-replication in pro-
grammable logic. Developed in the context of a more general
bio-inspired approach, the Embryonics project [20], which
ranges from logic gates to massively parallel arrays of proces-
sors, the algorithm requires a shift in terminology compared
to the traditional CA-based approaches.

In particular, examining in some detail the approaches
described in the previous section from the standpoint of
biological inspiration, it can be claimed that both the tape of
von Neumann’s Universal Constructor and the data circulating
in the self-replicating loops bear some resemblance to the
genome present in every cell in a biological organism. A single
instance of the constructor (or loop) can then be seen as a cell,
which conflicts with the terminology used in cellular automata,
where a cell is the basic element of the array.

Therefore, in the rest of this article, the terms “cell” and
“molecule” will be used in a way that corresponds more
closely to their biological definitions. The cell will be defined
as the smallest part of a living being which carries the
complete blueprint of the organism, i.e. the genome, and will
represent the unit within the system that can replicate itself. In
this case, it will represent a small, dedicated processor. Each
cell will then be implemented by an array of “molecules”,
which in this case represent the basic programmable elements
of an FPGA. As will be shown, the Tom Thumb algorithm
bears a strong resemblance to a cellular automaton (in fact,
the algorithm could be implemented using a conventional CA,
but to avoid confusion this terminology will not be used).

To complete the terminology used within the Embryonics
approach, the term “organism” indicates a complete comput-
ing system composed of several cells working together (i.e.,
an application-specific array of processors), while the term
“population” (not used in this article) refers to a set of several
organisms. The complete 4-level hierarchy of complexity is
shown in figure 4.

":’OPULATION LEVEL

(Z organisms)

ORGANISMIC LEVEL
(X cells)

CELLULAR LEVEL
(X molecules)

MOLECULAR LEVEL
(BASIC FPGA ELEMENT)

Fig. 4: The four hierarchical levels of the Embryonics ap-
proach.

A. Basic structure

The basic operation of the Tom Thumb algorithm can be
illustrated by means of a minimal cell composed of four
molecules, which grows and then divides to spawn two
daughter cells. This simple example is sufficient to define
the mechanisms that the basic molecule has to implement to
enable the self-replication of the cells.

For this example, a molecule is defined as a basic pro-
grammable logic element with no functionality. That is, the
element consists simply of a memory to store a minimal
configuration, which is not used for any purpose except to store
a unique number. Because of the operation of the algorithm,
the configuration of the molecules must be stored in a set
of shift registers: while obviously more expensive in terms
of surface compared to other solutions, this kind of memory
storage has the fundamental advantage of allowing data to
move easily within the programmable substrate, a necessary
condition for a self-replicating process to take place.

The purpose of the self-replication of a mother cell in
the context of a programmable logic substrate is to replicate
the configuration data of its molecules at a different location
within the substrate, creating identical copies of the mother
cell. The Tom Thumb algorithm enables such a behavior if the
cell and the molecules have the following characteristics: first
of all, a configuration path has to be defined inside the cell in
such a way that the configuration registers of the molecules are
connected in a loop that goes through each of the molecules
of the mother cell. A path of this type that is valid for a
cell composed of four molecules is shown in the figure 5(a).
This requirement is also the reason why the minimal cell that
can replicate using the algorithm has to be composed of four
molecules, organized as a square of two rows by two columns.

The second requirement of the algorithm is that each
molecule, in addition to its configuration, must contain a
flag indicating the direction of the configuration path (the



=
J

o1 2[]3
(e

Fig. 5: Basic Tom Thumb information and genome

arrows in figure 5(b)). Additionally, the flag information must
indicate which molecule is placed at the beginning of the loop
(arbitrarily defined as the lower left corner), shown with a
circle in figure 5(c), and which molecules will be used to
send out the data required for the creation of the daughter
cells, shown with black rectangles in the same figure.

Taking into account that the configuration of the molecules
is defined by the numbers 1 to 4 in figure 5(d), it results
that the minimal cell implementing the algorithm is entirely
defined by the configuration bitstream shown in figure 5(e).
This bitstream, which represents the genome of the cells, is
composed of eight packets, four of them containing the flags
and the other four used to define the configuration data.

Finally, the molecules must be able to store two copies of
their configuration data and flag. The first copy will be used as
the actual configuration, while the second will circulate within
the loop and be used to create the daughter cells.

Roughly equivalent to the double-helix configuration of
DNA in biological cells, this requirement introduces a con-
siderable amount of overhead, but greatly simplifies the self-
replication process (incidentally, a variation of the algorithm,
mentioned in the conclusion of the article, does away with this
duplication, but introduces other complications).

In the minimal example, since each molecule is defined by
two packets of information (the configuration data and the
flag), its configuration memory will have to store four packets
and, in order to fully configure a cell, the bitstream shown in
figure 5(e) will have to be injected twice.

The construction of the first cell, which occurs when the
genome is injected into the substrate from an external loader
will now be illustrated. Then, an explanation of how this first
mother cell duplicates to create copies of itself, i.e. reproduces
itself by configuring daughter cells, will be given.

B. Constructing the mother cell

Note that in the genome represented in figure 5(e), the
first, third, etc. packets always contain flag information (F in
figure 6), while the the second, fourth, etc. packets contain
the configuration data of the molecules (C in figure 6). As
shown in the same figure, each molecule contains four memory
positions able to store the packets. The two positions on
the right of the molecule will be used to store the fixed
information, i.e. the flag defining the the role of the molecule
in the Tom Thumb algorithm and the actual configuration of

Positions:

mobile  fixed E ..

TR AT
A - ACCEE

Fig. 6: Configuration of a single molecule and definition of
the direction of the next molecule in the configuration path.

s

the molecule, while the two left positions will be used to
transmit the packets to the next molecule on the construction
path and to contain the second copy of the genome that will
be used for the replication process.

At each time step t,, a packet of the original genome
is shifted and injected in the programmable substrate. For
practical reasons, the bottom-left molecule in the array is
normally considered as the first to be accessed, but of course
(the path being a loop) any molecule can be used to start
the configuration. As the Tom Thumb algorithm relies entirely
on local connections between neighbours, this initial molecule
represents the only injection point where an external connec-
tion is necessary for the configuration of the entire substrate.

When the first, empty molecule receives the first packets,
it shifts them until its two fixed positions (on the right in
figure 6) are filled. During this process, at time ¢3 the molecule
becomes aware of which flag (F) will be stored in its fixed
position, at which point it can establish a new connection
to forward the following packets of the configuration in the
direction indicated by the flag in order to configure the next
molecule on the path. This connection becomes valid one
clock cycle later, i.e. at time 4. At this moment, the molecule
has received its configuration and the flag defining in which
direction the construction will proceed and has created the
appropriate connection path. All further configuration packets
are shifted through the two left memory positions and then
out of the molecule in the direction indicated by its fixed flag.

The molecule that receives the configuration packets be-
haves in the same way and this process repeats itself until each
molecule of the cell has been configured. The entire process,
for the genome of figure 5(e), is shown in figure 7. At times
ts, ts, t12 and t16, new connections are established between
molecules. At time t16, the the configuration loop has closed
and the four molecules of the cell are configured.

Note that, during the construction process, the genome has
been inserted twice. The first copy is memorized in the two
right memory positions of each molecule (fixed memory) and
configures the molecules. In parallel, the second copy shifts
indefinitely through the two left memory positions (mobile
memory) of the molecules following the configuration path.
This second copy of the genome will be used to instantiate
the replication of the cell, as described in the next subsection.

Note also that the flag trapped in the fixed memory positions
of each molecule recalls the pebbles left by Tom Thumb in
the well-known fable to memorize his way, an analogy that
gives the algorithm its name.



-2

{4231 I
(oS [ e

tio

o2 >4 AR

e [
t

RSB
BRI >4

th4

B R 2B
R CIEEHE
==
AEA=LENEN
2[5

(-2
-2

-2

-2

tre

Fig. 7: Construction of the first cell. Connection setup: t4
north, tg east, t1o south, t;6 west

<
3
PN LY
- ==
s .&'“2 LS -2 '.&'“3 LY
iR N3
s b (o b

Fig. 8: Pattern of cell replications

C. Self-replication of the mother cell

In order to grow an artificial organism composed of multiple
cells, the Tom Thumb algorithm allows a cell to replicate in
both horizontal and vertical directions, as shown in figure 8,
where cell 1 replicates to construct the cells labeled 2, which
in turn replicate to construct the cells labeled 3. As a result,
a cell is able to trigger the construction of two daughter cells
to its north and to its east.

The first steps of the replication process towards the north
in the minimal example are detailed in figure 9. At time 11,

iR
Sl

iy
N
—

1

N

"
=

<[
M=
il
il

=
w
—

1

S

[T 8 [T EE
SR [ EE
IR
<43 [

—+
3

1

16

Fig. 9: First steps of the cell replication to the north

the upper left molecule of the mother cell receives the first
packet of the configuration. Because it is configured with a
flag indicating that it has to launch the replication to the north
(the black rectangle in the figure), in addition to the direction
of the construction path it establishes a new connection that
will be the start of the replication path to the north.

This new connection becomes active at the next clock cycle,
i.e. at time t19, and the packets of the configuration, in addition
to being shifted to the east following the configuration loop,
are also duplicated and shifted to the north. The molecule that
receives them will behave exactly as the initial molecule for
the construction of the mother cell and begin the construction
of the first daughter cell.

Figure 9 shows the configuration of this first molecule and
the establishment of the first construction path to the north that
will be used to configure the second molecule of the daughter
cell. The replication of the mother cell to the east (not shown)
follows exactly the same process, but starts at time toq4.

Note that after the mother cell has emitted the cell configura-
tion to the north twice, i.e. when it has sent two times the eight
packets of the cell genome at time %93, the daughter cell is fully
configured and has closed the loop of its construction path. As
a result, the replication path to the north can be suppressed
and the two cells will become separate (if identical) entities
ready to operate independently of each other.

D. Hardware implementation

Based on purely local interactions between neighbours, the
Tom Thumb algorithm could be implemented by a canonical
CA. However, while the conventional criteria used in the de-
sign of CA render them notoriously inefficient to implement in
hardware, the algorithm was conceived using a design method-
ology that privileges ease of implementation. The DSCA (for



tData 3:0
outBuf oubaa

NinData 3:0 o — >
EinData 3:0 £ < E g
. S8 o S S
SinData 3:0 | ™UX 7 0 &[|e & ool 84
——— el ¥l X
WinData 3:0 S |le | E|IE
NinSignal NoutSignal
__nsignal Mobile Data 0 outgna
EinSignal Fixed confi EoutSignal
SinSignal ENC —tedoong 4 GEN SoutSignal
WinSignal Fixed fla WoutSignal

Fig. 10: DSCA implementation of the Tom Thumb algorithm

Data and Signals Cellular Automata) paradigm [25] defines
the transitions of an element from one state to the next not by
accessing a truth table, but rather as a consequence of a set
of data and signals received from the element’s neighbours. In
particular, at each clock cycle information is sent from each
element to its cardinal neighbors, together with a signal that
indicates if the information has to be processed.

In the Tom Thumb algorithm, the data that needs to be sent
corresponds to the packets, consisting of either a flag or the
configuration data for the programmable elements. In practice,
the size of the packets is determined by the number of required
flags, since the flag information needs to be transmitted within
a single packet. For its basic version (the one that is described
in this section), the flags that are needed to implement the
algorithm are the following: one empty flag that corresponds to
a non-configured register, four directional flags corresponding
to the four arrows that are used to create the construction
path, one start flag indicating the first molecule of the path,
and finally two branching flags identifying the molecules that
handle the replication process. These eight different flags can
be coded with three bits. One additional bit is necessary to
determine the type of packet that a molecule is receiving, in
order to discriminate between flag and configuration packets.
This implies that the smallest size for a packet of the basic
Tom Thumb algorithm is four bits.

Using the DSCA approach, the hardware design of the basic
version of the algorithm is more or less straightforward and
is shown in figure 10 (a more detailed description of the
implementation can be found in [23]). The size of the busses
linking two adjacent molecules has to be at least equal to five
(one bit for the DSCA signal and four bits for the packets).

With a packet size of four bits, the maximum number of
different configurations of the molecules is limited to eight.
Obviously, this number is not sufficient to represent the possi-
ble configuration of a real-world programmable logic device:
the configuration memory of programmable elements typically
ranges from several dozens to hundreds of bits. However, the
example used in this section represents the minimal loop ca-
pable of implementing the Tom Thumb algorithm. In practical
applications to a programmable device, the algorithm can be
extended both to larger cells (i.e., cells that are composed
of an arbitrarily large number of molecules) and, with some
minor modifications, to much more complex molecules (i.e.,
molecules whose configuration consists of an arbitrarily large
number of memory positions).

In the next section, the programmable logic device that was
used in order to demonstrate the features of the Tom Thumb
algorithm in a realistic setting will be described. This custom
device, developed for the “Reconfigurable POEtic Tissue”
project, funded by the Future and Emerging Technologies
programme (IST-FET) for the European Community, was
selected both because of the presence of some features that are
interesting in the context of bio-inspired systems and, perhaps
more importantly, because the hardware architecture of its
elements could be freely accessed and modified. It is worth
noting, however, that the same algorithm can be similarly
adapted to any programmable device architecture, as long as
its configuration memory can be structured in the form of a
shift register.

IV. THE POETIC TISSUE

The POEtic tissue [26] [27] is a reconfigurable circuit
that draws inspiration from the multi-cellular structure of
complex biological organisms to implement the three main
models commonly used in bio-inspired systems [28] [29]:
Phylogenesis (P), the history of the evolution of the species
through time; Ontogenesis (O), the development of an in-
dividual as directed by his genetic code, from its first cell
to the full organism; Epigenesis (E), the development of an
individual through learning processes. All of these models,
to a greater or lesser extent, have been used as a source of
inspiration for the development of computing machines (for
example, ontogenesis in the Embryonics project or epigenesis
in artificial neural networks) but the POEtic tissue is the first
hardware substrate dedicated to the implementation of systems
that could potentially combine the three axes of bio-inspiration
into one single circuit.

Physically, the tissue is composed of two layers (Figure 11):
a regular, two-dimensional array of programmable logic ele-
ments (molecules) and a cellular routing layer. This second
layer is also a regular, two-dimensional array and consists of
special routing units that are responsible for the (long-distance)
communication between the cells (once again, cells are defined
as processor-scale circuits implemented in the programmable
substrate, according to the hierarchy of Figure 4). The routing
layer implements a distributed routing algorithm based on
identifiers that allows the creation of data paths between cells
at runtime.

Each molecule, as well as each routing unit, is connected to
its four cardinal neighbors in a regular structure, also shown
in figure 11. Moreover, each molecule can access a routing
unit to set up a long-distance connection. In the canonical
implementation of the POEtic tissue, each routing unit handles
connections from four molecules (i.e., there are one fourth as
many routing units as there are molecules in the substrate), but
the ratio can be varied depending on the predicted connection
density.

As shown in figure 12, a molecule mainly contains a 16-bit
look-up table (LUT) and a D flip-flop (DFF); its inputs are
selected by a set of multiplexers and its outputs can be routed
to any cardinal direction through a switchbox. A molecule
possesses 76 bits of configuration that define the content of



. i

7 =7 Routing Unit

Molecule

Fig. 11: POEtic two-layer physical structure with the
molecules and their routing units.

the LUT and of the DFF, as well as the selection of the
multiplexers for the inputs and the outputs of a molecule.
Moreover, these configuration bits also select one of the
different possible operational modes of a molecule.

The operational modes of a POEtic molecule are a reflection
of the diverse requirements of computing and bio-inspired
systems. To implement conventional logic designs, it can be
configured as a simple 16-bit LUT, as two 8-bit LUT, as a
8-bit LUT plus a 8-bit shift register, or as a 16-bit shift-
register. Then there are four additional operational modes that
are specific to the POEtic tissue: the first two are the Output
and Input modes in which the molecule is connected to its
routing unit and contains the 16-bit long routing identifier of
the molecule itself, respectively of the molecule from where
the information has to arrive (more on this subject below).
The third special mode is the Trigger mode, in which the task
of the molecule is to supply a trigger signal needed by the
routing algorithm for synchronization purposes. The last mode
is the Configure mode, in which a molecule has the capability
of partially reconfiguring its neighbors, i.e. the molecule can
modify a fixed subset of the configuration bits of its neighbors
(68 bits out of 76).

Inter-molecular communication, i.e. short-range commu-
nication between the programmable logic elements in the
POEtic circuit, is implemented by a switch box composed
of multiplexers and two directional lines to and from each
cardinal direction. This kind of communication is used to
implement the gate-to-gate connections required to implement
circuits within the programmable substrate.

Inter-cellular routing, i.e. long-range communication be-
tween the processors implemented using the programmable
logic, is implemented using a distributed routing algorithm,
inspired by Moreno [30], that dynamically connects the inputs
and outputs of the cells. The connection paths are set up using
a parallel implementation of the breadth-first search algorithm,
similar to Lee’s algorithm, that configures the multiplexers
contained within the routing units.

The dynamic routing approach used in POEtic has many
advantages compared to a static routing process. First of all,
it requires a small number of clock cycles to finalize a path.
Secondly, when a new cell is created it can start a routing

Input muIt{pIexers Look up table

% DFF
% Output1
Input(0..3)  Qutput2 —>
Switchbox —>1

Fig. 12: Basic structure of a POEtic molecule

process without the need of recalculating all the paths already
created. Thirdly, a cell has the possibility of restarting the
routing process of the entire organism if needed. Finally, this
approach is totally distributed, without any global control over
the routing process, a clear advantage where scalability is
concerned.

The operation and the non-standard features of the POEtic
tissue are described in some detail elsewhere [26] [27]. In fact,
many of these details are not relevant to this article, since
the POEtic tissue was selected as a test platform essentially
because of the possibility to modify its hardware structure and
not for its detailed architecture. This capability is of course
crucial to allow the circuit to be modified to implement the
Tom Thumb algorithm. In section VI, the modifications, both
to the algorithm and to the POEtic tissue, required to achieve
the self-replication of complex circuits, will be discussed.

V. CELLULAR PROCESSORS

A simple system based on dedicated processors (repre-
senting the cells in the algorithm and in the hierarchy of
figure 4) was chosen to verify the functionality and efficiency
of the Tom Thumb algorithm applied to complex circuits
implemented with the POEtic tissue.

In particular, this section will present a four-processor
system whose purpose is quite simple: to count minutes and
seconds. As will be shown, the system uses self-replication to
generate four identical copies of a processor, which then link
together and differentiate in order to execute a specific part of
the code, i.e. each processor will be responsible for one of the
four digits of the counter.

The next subsection will present the MOVE paradigm,
that is, the architecture that was selected to implement the
processors. The advantage of this architecture is that it allows
to easily design the processors without requiring high-level
synthesis tools. Then, in the second subsection, the detailed
architecture of the processor, describing its functional units
and the way they are linked, will be outlined.



PROGRAM TRANSPORT LAYER
MEMORY — /ADDR]
z DATA
5
INSTR 1
INSTR 2 5 SREE %g
INSTR 3 [ 53
fo0R
DATA

Fig. 13: Basic architecture of a MOVE processor

A. The MOVE paradigm

The MOVE paradigm, also known as the Transport-
Triggered Architecture [31] [32] [33], was originally devel-
oped for the design of application-specific dataflow processors
(processors where the instructions define the flow of data,
rather than the operations to be executed).

In many respects, the overall structure of a MOVE system
is fairly conventional and the basic differences lay in the
architecture of the processor itself, and hence in the instruction
set.

Rather than being structured, as is usual, around a more
or less serial pipeline, a MOVE processor (Figure 13) relies
on a set of Functional Units (FUs) connected together by
one or more transport busses. All the computation is carried
out by the functional units (examples of such units can be
adders, multipliers, register files, etc.) and the role of the
instructions is simply to move data from and to the FUs in the
order required to implement the desired operations. Since all
the functional units are uniformly accessed through input and
output registers, instruction decoding is reduced to its simplest
expression, as only one instruction is needed: move.

The move instructions trigger operations which, in the
simplest case, correspond to normal RISC instructions. For
example, in order to add two numbers a RISC add instruction
has to specify two operands and, most of the time, a destination
register to store the result. The MOVE paradigm requires a
slightly different approach to obtain the same result: instead
of using a specific add instruction, the program moves the
two operands to the input registers of a functional unit that
implements the add operation. The result can then be retrieved
from the output register of the functional unit and moved
wherever it is needed.

The reasons for choosing the MOVE paradigm for the
processors are two-fold: on one hand, its compactness and
versatility makes it ideally suited to the bio-inspired systems
studied, while on the other hand its simplicity allows to define
the layout of the systems on the POEtic tissue, for which no
automated synthesis tools exist.

As the contents of the LUTs, the connectivity between the
molecules, the structure of the functional units and that of the
communication units that implement the connection network
of the cellular array have to be defined by hand, there was
a necessary limitation to a very simple system. However, the
array remains sufficiently complex to be a good illustration of
the scalability of the self-replication approach.

B. Architecture of the system

As mentioned above, the final system (the organism) will
be composed of four MOVE processors (the cells) that will

form a 4-digit counter that will display seconds and minutes
(in practice, two connected modulus-60 counters). Each of the
processors will handle one digit. Thus, two will count from 0
to 9 while the two others will count from O to 5. In their final
configuration, they are logically organized to form a chain that
is represented in the organismic level of figure 14.

Shown in the same figure, the Seed Unit is used to start the
counter as soon as the replication of the processors is finished
and to provide the first (rightmost) processor of the final chain
the information it needs to launch the differentiation process
outlined in section VII. This process is an important part of the
setup of an organism within the bio-inspired approach: self-
replication generates multiple copies of an identical processor,
while differentiation determines the precise role of each of
the copies within the organism. Several kinds of approaches
can of course be used to implement this process (see, for
example, [34] for a partial survey), but for the purposes of
this article it can be seen as a local mechanism whereby each
cell determines its own position within the organism and, as a
function of this information, determines which instructions to
execute (in this precise case, whether to count to 5 or to 9).

The operation of the final system is rather obvious: the
processor that handles the rightmost digit, i.e. the units of
seconds, permanently counts from O to 9. When this processor
arrives at 9, it generates a signal (EnableCount) telling the
next processor, which handles the tens of seconds, to increment
its own digit. When the tens of seconds processor arrives at
5, it generates in turn a signal enabling the next processor on
the chain, i.e. the units of minutes, to count. Again, once this
processor reaches 9, it signals the next processor to count the
tens of minutes.

As exposed in the precedent section, the processors were
realized using the MOVE paradigm. Clearly, the system is
rather trivial, but the objective of the exercise was to test
the implementation of self-replication in a real implementation
and not to design a multi-processor system for performance.
The advantage of using MOVE processors in this context is
that the behavior of the system could easily be extended to
more complex applications by redesigning the functional and
communication units without in any way altering the self-
replication algorithm.

C. Implementation in the POEtic tissue

The actual implementation of a processor in the POEtic
tissue is shown in the cellular level of figure 14, while its
architecture is detailed in figure 15. The processor contains
the following Functional Units:

e CMP and INC, used to compare or increment a set of
internal values (addresses, conditions, etc.)

¢ EN, which receives the EnableCount signal from the
preceding processor in the chain and sends the same
signal to the next processor at the appropriate time.

e IOprec and IOnext, responsible for the dynamic setup
of the connections between the processors in order to
propagate the position (and hence the function) of each
processor within the system, the EnableCount signals
and the other control signals required for the operation



Organismic level

10

Molecular level

Proc4 Proc3
[cpt mod 6

t—\@iﬁ\
cpt mod 10 cpt mox
0-5'= 0-9

1/ 1

Procl
cpt mod 10 Seed

L L ot . | NV
e | it I A \
EEE b | Rl
Sel | | = < | ]
o b el = I '
ey
Sy e / [E4 r
/] i sl el
o o I E
b= / bl == S

Cellular level

Fig. 14: The three hierarchical levels of the system (cf. Figure 4): the organism implementing a counter, the cell mapped on

the POEtic tissue, and the molecule.

of the counter. Through these FUs, the processor ac-
cesses and controls the behavior of the Input and Output
molecules, i.e. it can force a molecule to establish a
connection or allow a molecule to accept the connections
through the dynamic connection network of the POEtic
tissue.

¢ POS, used to compute the position of the processor inside
the system (and hence its function within the organism),
as a function of the data received from the TOprec FU.

Additionally, each processor, as is usual in the MOVE
paradigm, contains a data bus, spanning all the FUs, and two
memory busses: one for the source addresses and the other for
the destination addresses of each move instruction.

The processors rely on two separate internal memories: the
first (DCMem) contains the code for the differentiation and
connection mechanisms, while the second (MEM) stores the
instructions for the normal operation of the processor (time
counting and signal generation).

As the processors were realized on the POEtic substrate,
which provides a specific molecular mode to implement shift

Bus
aa——

Direct
link

Inter -cell
link

I8 |

Other

Fig. 15: Detailed architecture of the processor.

registers, it was decided that, instead of an addressable mem-
ory that could support jumps in the code, cyclic memories [35]
would be used, where each instruction is read successively, and
executed or not, depending on the special unit called Execution
Stack (EXok in figure 15).

To summarize the behavior of the Execution Stack, it can
be said that, when facing an ”if condition then (xI; x2; ...) else
(vl; y2; ...) end” instruction, if the condition is valid, the stack
will permit the execution of the X instructions and then block
the Y instructions. Otherwise, it will block the X execution
and permit the Y instructions (a more detailed explanation of
this unit can be found in [36] [37]). The stack generates a
signal that drives the MemToBus part of the circuit (the white
circle in figure 15) which can enable or not the instructions
and data presented by the two memories to be transmitted on
the processor busses.

Finally, for demonstration purposes, a special unit (repre-
sented by the 8 in figure 15) was added, used to display
the digit stored in each processor. This unit, which would
not be useful in an actual electronic implementation within
an integrated circuit, was introduced in conjunction with a
dedicated simulation setup to visualize the internal operation
of the circuit through a custom GUI The results of this
visualization will be used in section VII to illustrate the self-
replication of the processors.

While trivial in many respects, the system described above
represents probably the most complex circuit to which self-
replication has ever been applied. Orders of magnitude larger
than the minimal example provided in section III to illustrate
the behavior of the Tom Thumb algorithm, its implementation
required several minor modifications both to the basic algo-
rithm and (to a much lesser extent) to the basic structure of
the POEtic elements. These modifications will be described in
some detail in the next section.



VI. IMPLEMENTATION ISSUES

Section III presented the basic operation of the Tom Thumb
algorithm. It is clear that the algorithm, in its minimal form,
cannot be applied to a real design. Several modifications to
the basic algorithm are necessary to allow it to implement
self-replication in a real-world programmable logic device
and to increase its efficiency from the standpoint of hardware
resources.

In particular, the following aspects of the basic algorithm
have been addressed:

e Only three bits of useful information are available for
the configuration of a molecule. It is obvious that a real
system must handle a greater number of configuration
bits for its basic component, i.e. the molecules.

e A cell can only replicate in two directions, i.e. to the
north and the east. While in some cases this might be
sufficient, in a real system it would be an advantage to
replicate in the four cardinal directions.

« Five bits are transmitted from a molecule to its neighbors
in each clock cycle. This number could be changed,
which would have an impact on the size of the busses
that link two adjacent molecules and change the number
of clock cycles needed for the replication.

o The cell has no control on the replication process, which
is launched at startup and continues until the substrate is
entirely configured. The algorithm could be modified to
enable the cells to choose when and where to replicate.

o There is a large overhead in terms of registers needed
for the replication, as every bit has to be duplicated in
the static genome and in the running configuration. While
much of this redundancy is unavoidable, some optimiza-
tions are possible to reduce the number of duplicated bits.

« Each molecule in the replicated cell is activated as soon
as its static configuration has been set. In a real circuit,
this can lead to strange behaviors as parts of the circuit
become active before the rest is configured.

Strictly speaking, only the first of these issues is crucial
to achieve self-replication in an FPGA. The rest are, essen-
tially, performance issues that increase the efficiency or the
versatility of the self-replication approach. In this section, the
modifications made to the basic algorithm to address these
issues will be detailed.

In addition to the modifications to the algorithm required
for an implementation in the POEtic tissue, the latter also
required some minor alterations to efficiently implement the
self-replication of the organism described in section V. These
alterations will be summarized in the last part of this section.

A. Size of the configuration data

In the basic Tom Thumb algorithm exposed in the sec-
tion III, the configuration data was coded in only one group of
three bits, implying that the maximum amount of information
usable to configure a molecule is limited to three bits. It
is clear that in a real application, these three bits would
not be sufficient to define the configuration of a molecule.
For example, applying the algorithm to the POEtic tissue, a
molecule would be the equivalent of an FPGA element and

11

. — [N ™
n-1 bits: || x| % el | | el | S
G I
config oflo|l o

Packet type E> 0 n

LolLo]

\
L -1 - J-

Mobile data Fixed data

(<]
— L=

Fig. 16: Configuration memory for a single molecule.

would require 76 bits of configuration. Generally speaking,
the bits required to configure a LUT-based FPGA element (for
example, at least 16 for a 4-input LUT and several more to
define the behaviour of the interconnection network and of
the register) are many more than the three at disposal with the
basic algorithm.

Luckily, the Tom Thumb algorithm was designed specifi-
cally with this option in mind and it is relatively straightfor-
ward to increase the size of the configuration memory within
the algorithm.

In the Tom Thumb algorithm, in each clock cycle a molecule
receives a packet of n bits (n = 4 in the basic algorithm).
Among these bits, one, the packet type bit, is used to determine
if the other n — 1 bits are flag or configuration information. In
the basic version, the entire information needed by a molecule
is received in two n-bit packets, one for the flag and the other
for the configuration data.

In order to cope with a greater number of configuration
bits, the algorithm was modified by multiplying the number
of packets used for the configuration data (Figure 16). In
this new design, the data needed for one molecule that uses
¢ configuration bits and a flag coded with f bits require
x = [(c+f)/(n—1)] different n-bit packets consisting of one
bit indicating the packet type and n— 1 bits for the information
(flag or configuration). Assuming the minimal packet size, i.e.
n = f+1 bits as shown in the figure, the total number packets
becomes z = [¢/(n—1)] + 1.

This simple modification allows the algorithm to replicate
a cell composed of molecules requiring any number of con-
figuration bits. Incidentally, this same modification reduces
somewhat the resource overhead of the algorithm, since only
one flag packet is necessary for each molecule, whatever the
number of configuration data packets.

B. Direction of self-replication

The basic Tom Thumb algorithm is designed to enable the
cell replication in only two directions, i.e. to the north and to
the east of the mother cell. Assuming that the injection point
for the first configuration is placed in the south-west corner
of the array, this restriction does not affect the basic operation
of the system.

However, taking into account the possibility of alternate (or
indeed multiple) injection points, or the application of the self-



S ?clz

Fig. 17: Replication with defaults

replication process to a faulty substrate, then the two directions
are not sufficient to guarantee an optimal replication pattern
within the programmable circuit.

Fault tolerance, in particular, is one of the main motivations
to justify the need for a self-replication process: assuming that
the programmable substrate in which self-replication occurs
can contain faults (a more than reasonable assumption in the
kind of electronic or nanoelectronic devices that are the main
targets of this approach), then it is necessary for the algorithm
to be able to avoid faulty areas of the circuit and replicate
only in the fault-free areas.

In figure 17, each square represents the area occupied by
a full cell (composed of many basic molecules). The bottom
left square is the initial cell that starts the replication process,
i.e. the mother cell, and the gray squares are areas that contain
faulty molecules and should be avoided when replicating.

With the basic two-directional algorithm, the replication
process will only be able to make copies of the mother cell in
the squares marked with a *V’, following the path shown with
the black arrows. The squares labeled with question marks will
not be configured, and the area will be wasted.

To avoid this potential loss of resources, the Tom Thumb
algorithm has been extended to enable replication in the four
cardinal directions. This extension will allow the entire fault-
free surface of the circuit to be exploited, whatever the location
of the faulty areas (for the example of figure 17, replication
will follow the configuration path indicated by the white
arrows).

As detailed in section III, the Tom Thumb algorithm works
using a path spanning all the molecules of the cell to be
replicated, a flag marking the first molecule on this path
and two more flags indicating the molecules from which the
replication has to occur and its direction. These are shown
in figure 18(a): the direction of the path in each molecule is
represented by the straight arrows, the start flag is the empty
circle and the flags for the directions of the replication are the
small gray rectangles. The dotted arrows show the new paths
constructed during the replication process.

In order to make a cell replicate in four directions, the basic
algorithm (Figure 18(b)) was modified by adding a new flag
and modifying two existing ones. The basic concept of the path
spanning all the molecules of the cell, defined by the four basic
directional flags, remains identical. The two branching flags
were modified to indicate the two additional directions for the
replication (these are shown with the small black rectangles

12

Ty D@ — T
et D g

(@ ®)
Fig. 18: Basic and modified TTA directions of replication

in the figure). Finally, while keeping the original start flag to
indicate the first molecule in the path, a second start flag (the
black circle in the figure) had to be introduced to indicate the
first molecule in the path for the new directions of replication:
for the replication to the north and to the east directions, the
first molecule to be configured is the one located at the bottom
left of the cell, while for the west and the south directions the
replication starts with the molecule located at the upper right
corner of the cell.

Adding the empty flag, the number of flags used for the
replication in the four directions is now equal to nine. This
implies that the minimum packet size for this modified version
of the algorithm becomes five bits (four bits for the flag plus
one bit for the packet type).

It should be noted that, to allow the Tom Thumb algorithm
to implement self-replication in a faulty substrate, the ability to
replicate in the four directions is a necessary, but not sufficient
condition. Obviously, this capability needs to be coupled with
a mechanism that allows the algorithm to recognize that an
area within the circuit is faulty, so as to avoid it when
replicating. This requirement has led to a re-design of the
Tom Thumb algorithm to implement this testing function [38].
This novel version (not used for the purposes of this article),
while more complex than the ”’standard” version, remains quite
similar and the same procedure that was followed to adapt the
standard algorithm to a real-world FPGA can be followed for
the new version.

C. Size of buses

Another modification that can be made to the basic self-
replication algorithm, one that does not affect the algorithm
itself but rather its implementation, is to vary the size of the
busses used to link the molecules in the configuration path.

In the basic algorithm, five bits must be transmitted from
one molecule to the next: one bit is used for the signal
transmission and four bits for the data packet (one bit for
the packet type and three bits for the actual configuration
information). Obviously, while the signal and packet type bits
cannot be altered, the width of the configuration data that is
transmitted at every clock cycle can be parameterized, keeping
in mind that the flag information has to be transmitted in a
single clock cycle and that, as a result, this width needs to be
at least three, respectively four bits, for a replication in two,
respectively four (see subsection VI-B), directions.



X packets X packets

Fixed défa
—|®
N S
—>=— |
[

w molecules

nbits

@

Mobile data

%

=
T
T
0

Fig. 19: Typical path spanning a 5 * 4 cell.

TILTI

JLh molecules

As is often the case in this kind of scenarios, the selection
of the bus size gives rise to a compromise between size and
speed. In this particular case, increasing the size of the busses
requires, obviously, a larger amount of hardware resources, in
the form of physical wires connecting the molecules (wires
that, however, are purely local from one molecule to the next,
and hence less costly than long-distance connections). On the
other hand, it can considerably reduce the number of clock
cycles required for the replication of a cell.

Assuming that a cell has a width of w molecules and a
height of h molecules, a packet has a size of n bits, each
molecule has a configuration of ¢ bits and the flag is coded
with f bits, then, as detailed in subsection VI-A, a molecule
must be able to store = [(c+ f)/(n—1)] packets in its fixed
positions. Obviously, the mobile data requires x additional
packets positions.

To illustrate the effects of changing the bus size, some
timing calculations will be presented for a configuration path
spanning a cell composed of wx*h molecules (54 in figure 19).
In this path, the starting molecule is at the bottom left corner
of the cell. The path first goes straight to the north, then to the
south, going successively in the east and west direction, and
finally comes back to the west from the bottom right corner.

For an injection of the configuration in the substrate starting
at time 0, at time ¢; = 2 % x the first molecule will have
fixed its entire configuration, and the second molecule will
have received its own configuration at time to = 4 % x. After
teett1 = 2% w x h * x clock cycles, the first cell is entirely
configured.

The replication to the north starts when the flag of the
starting molecule (the white circle in the figure) arrives at
the top left molecule. The second copy of the configuration
is injected in the circuit at time fsccondconf = W * h * x and
therefore is forwarded to the north from the top left molecule
at time tstartnorth = tsecondconf + hxzx = (w + 1) * ho* .
It results that the cell to the north will be fully configured at
time tceiinorth = tstartnorth + teell = (3 * W + ]-) *h*xx A

13

similar calculation indicates that the cell to the east is fully
configured after tcejjeqst = (d*wxh—w+2)xx clock cycles.

As each of these timing depend on the x value that is a
function of the packet’s width n, by altering the size of the
busses, the replication time can be changed. It is minimal when
x = 1, i.e. when the flag and the whole configuration are stored
in one single packet. The ratio ¢/(x + f) between the number
of useful configuration bits ¢ and the bits used expressly for
the replication process (z bits to define the packet types and
f bits for the flag) could also be modified.

D. Startup vs. runtime replication

In the basic Tom Thumb algorithm, the configuration of the
cell is injected inside the circuit at startup: the first cell (bottom
left in the examples) is configured and then the replication
process is automatic, filling the entire surface available on the
substrate. The cells are duplicated again and again as long as
there are free, not-yet-configured molecules. In such a set, the
cells have no influence on the replication process, i.e. they
cannot decide when and where to self-replicate.

While the creation of a full array of identical processors
at startup can have several practical advantages in a number
of systolic applications, from a more general point of view it
would be useful to give the cells the ability to choose when
and where to start their replication. This capability would add
the versatility, for example, to host more than one type of cell
(and hence more than one organism) within the substrate, or
allow a cell to create temporary copies of itself when executing
a computationally intensive task, and destroy them when the
task is over.

To increase the versatility of the Tom Thumb algorithm,
then, a possible modification would be to change the way the
cells decide to replicate. In the classic algorithm, described in
section III, a replication signal is emitted every time the start
flag cell arrives in a molecule configured (with a branching
flag) to initiate the replication (the grey and black rectangles
in figure 19.

A simple alteration to the algorithm would consist of
disabling, by default, these replication signals. A cell would
then have the ability to enable them, individually to replicate
in only one direction or together to replicate in all directions
at once, whenever it decides to create a copy of itself.

In such a system, as in the basic algorithm, the running
genome would constantly turn within the cell following the
configuration path. When the start flag arrives in a molecule
that could initiate the replication, if the latter has not been
enabled by the cell, nothing happens. On the other hand,
when the cell decides to replicate, it enables one of the
molecules that can initiate the replication, which, when the
start flag arrives, generates a replication signal and duplicates
the genome in the chosen direction to create another cell, as
in the original algorithm.

With this modification, the cell can now decide when to
replicate by deciding when to enable the molecules that
initiate the replication. Moreover, it can also choose where
to replicate, by enabling only the desired replication direction
in the appropriate molecule.



-k
Flag

Mobile data  Fixed data

Fig. 20: Suppression of packet type bits in the fixed memory
positions.

ZE A2

E. Bit optimization

There is no escaping the fact the Tom Thumb algorithm
implies a large area overhead, and as such it is suited for
the kind of circuits where the advantages of self replication
for layout or fault tolerance are more important than resource
optimization. As a consequence, while it is possible to consid-
erably reduce the hardware required for the algorithm through
a series of more or less complex alternative implementations
(e.g., by using self-inspection instead of keeping a second copy
of the configuration data [39]), for the purpose of illustrating
the operation of the algorithm in this article this kind of
optimizations were limited to a small simplification that does
not affect the operation of the algorithm.

Observing the implementation of the Tom Thumb algorithm
shows that the packet type bits are only used during the
construction process. Their value in the mobile data is used to
indicate when to start the duplication of the genome and gen-
erate replication signals. Once the data has been memorized
in the fixed positions within the molecule, this information
becomes useless, and the packet type bits can be suppressed
from the fixed data registers without in any way altering
the algorithm (Figure 20). This simple modification allows to
reduce the size of the configuration memory of each molecule
by x + 1 bits (where z is the number of configuration data
packets).

F. Disabling molecules during cell replication

In the basic Tom Thumb algorithm, during the replication
process, as soon as a molecule has been configured, it starts
to operate according to the configuration data it has received.
While not an issue for the function-less device used to il-
lustrate the operation of the algorithm in section III, such a
behavior could potentially be dangerous when the algorithm is
applied to a real programmable logic device. In practice, the
result of this process would be the step-by-step activation of
parts of the processor (the logic gates implemented by each
molecule) while the rest is still waiting to be configured. To
achieve correct functionality, every molecule of the entire cell
should start their normal processing at the same time, once
the entire cell has been configured.

To achieve this behavior, an additional 1-bit output in each
direction was added to each molecule. Then, as shown in
figure 21, when the first molecule of the cell is configured, it
generates an active signal through this output in the direction
of the replication path (the white arrow in the figure). This

14

= Bl B Pl
il B B g [Tk
S B B B
==

Fig. 21: Disabled molecules during replication process

signal is forwarded combinatorially by each newly config-
ured molecule and disables the normal functionality of the
molecules that receive it. Following the configuration path,
the signal is forwarded to every molecule of the replicated
cell and disables them as soon as they are configured.

At the end of the replication, when the last configured
molecule of the cell closes the path, it signals that the
replication process is finished. As a result, the disable signal
is deactivated and this information is forwarded through the
entire replication path, enabling all the molecules of the cell
to start their normal functionality at the same time.

G. Modifications to the POEftic tissue

Because the Tom Thumb self-replication algorithm affects
only the configuration of any FPGA it is applied to, the
two modifications required to adapt the POEtic tissue to
the algorithm are minor and only concern the setup of the
configuration memory.

The first modification implied a re-design of the archi-
tecture of the configuration memory to fit the structure of
the algorithm. As shown in the figure 16, the data injected
in a molecule has to be divided into several separate slots
that are chained together as a shift register. As a result, the
configuration registers of the POEtic molecules had to be
modified so that they can be set by shifting data packets of
n— 1 bits. Note that, having suppressed the bits for the packet
type in the fixed memory (subsection VI-E), the registers were
sized accordingly.

The second modification to the POEtic molecule concerns
the ability for the system to decide when and where to
replicate (subsection VI-D). Even if the test system (described
in section V, as well as in the next section) will not take
advantage of runtime replication, this ability was nevertheless
added to the substrate. As a result, the molecules had to
be altered slightly to allow the functional part to control
the configuration memory in order to enable the replication
process. This implied the creation of a new operational mode
for the POEtic molecule. In this mode, when a molecule
contains one of the two replication flags of the Tom Thumb
algorithm, the value of the LUT inputs can be used to enable
or not the replication in a specific direction.

In addition, independently of the Tom Thumb algorithm,
the POEtic tissue had to be modified slightly to allow the
implementation of the test system described in section V.

The main modification required for the implementation of
the counter was an upgrade of the I0 modes of the POEtic
molecules: in the basic specification, the molecules set in the
Input or Output modes, representing the source or the target of



a dynamic routing path, have a single control signal that forces
or not a connection to be established. To efficiently implement
the differentiation of the processors after the self-replication
phase, this aspect of the POEtic architecture was modified by
adding to the IO molecules a second control signal that forces
the molecule to accept or not a connection. As a result, the new
version of the POEtic IO molecules has two control signals:
one used to force a molecule to establish a connection and the
other to accept them.

A second, and final, modification was the introduction of an
additional input to each molecule, driven directly by the user.
This input is, in reality, required neither for the Tom Thumb
algorithm nor for the actual counter. Rather, it is related to
the user interface of the simulation platform used for the
implementation of the system: quite simply, the additional
input enables the user to act directly on the state of the flip-
flop of each molecule, giving the possibility to interact with
the system to activate some of its parts (for example, it is
used to launch the Seed Unit described in section V-B). Its
purpose is purely to allow the user to control the timing of
the simulation.

VII. SELF-REPLICATION OF CELLULAR PROCESSORS

With the modifications outlined in the previous section, the
Tom Thumb algorithm can be applied to the POEtic tissue to
instantiate the self-replication of complex circuits.

This section will describe the operation and implementation
of the system outlined in section V-B, i.e. how a MOVE
processor can replicate itself on a POEtic tissue using the
Tom Thumb Algorithm in order to implement a basic multi-
processor time counter.

A. Parametrization of the system

The modifications applied to the Tom Thumb algorithm and
the POEtic tissue in the preceding section introduced a series
of parameters and options that need to be specified for the
implementation of the final system.

o The option of disabling the molecules while self-
replication occurs (subsection VI-F) was implemented to
avoid spurious effects.

o The self-replication in four directions (subsection VI-B)
was implemented, even if it is not used in the specific
example chosen to illustrate the algorithm, where no fault
injection mechanism was introduced.

o The cells can control their replication at runtime (sub-
section VI-D), but again this feature was not used in the
example because it is not required by the application.

Data busses with a width of n = 5 bits were used: one
bit for the packet type transmission and the other four bits
for the configuration data or the flag. This solution represents
the minimal width as the flag data must be expressed with at
least four bits (9 flags for the replication in four directions, as
described in the subsection VI-B).

Since a POEtic molecule is fully defined by 76 configuration
bits, z = 76/(5 — 1) = 19 memory slots are needed for the
packets of the fixed configuration, plus one additional slot that
will be used for the flag data. Another x4+ 1 slots are required

15

to store the running data. As a result, each molecule needs
2x + 2 = 40 clock cycles to be fully configured.

The bits indicating the type of the packets in the static slots
were suppressed (subsection VI-E), enabling to decrease by
20 bits the size of the registers in each molecule.

A last parameter that had to be set concerns the density of
the routing units in the POEtic tissue (section IV): whereas in
the basic POEtic connection setup shown in the figure 11 each
routing unit is simultaneously connected to four molecules, the
POEtic implementation used for the test system contains one
routing unit per molecule. This increased density simplifies the
simulation and avoids irrelevant congestion issues, allowing a
denser connection pattern.

B. System configuration

At startup, the programmable substrate, i.e. the modi-
fied POEtic tissue, contains only a small set of configured
molecules implementing the seed unit. This unit is located at
the right side of the tissue, as shown in the figure 22(a) (the
figure displays the state of the circuit through an interface
described in subsection VII-D). The first step of the configu-
ration process is the injection of the configuration of the first
processor (the mother cell), in the format required by the Tom
Thumb algorithm, inside the circuit. The injection point was
arbitrarily set at the bottom left molecule of the tissue.

A few steps of the construction and replication processes
(which is essentially identical to those of the basic algorithm,
illustrated in section III, expanded to take into into account the
additional configuration packets) are shown in the figure 22.
In the figure, ¢ represents the number of clock cycles from the
beginning of the process, i.e. from the injection of the first
packet into the circuit.

The injected configuration automatically defines the con-
figuration path and fixes the static configuration of each of
the molecules of the first processor to be implemented in the
substrate. Then, since the option of using automatic replication
at startup (rather than letting the cells decide when and where
to replicate) was selected, as explained in subsection VII-A,
the replication process is automatically activated in every
direction.

As a result, even before this first processor is fully con-
figured, the replication of the genome according to the Tom
Thumb algorithm starts to configure a copy of the processor
to the north, as shown in figure 22(b). The third processor to
be configured is then also a replication of the first one to the
east (see figure 22(c)).

Finally, a fourth processor is configured on the substrate
as a replication of the second one 22(d). Note that the fourth
processor also tries to make a copy of itself in the east direction
(figure 22(e)), but this process halts automatically because
there are not enough empty molecules to contain a whole copy
of the circuit.

When the four processors are configured, the whole system
finds itself in an idle state (figure 22(e)): the Tom Thumb
algorithm has fully replicated the processors and fixed their
configuration.



() t = 17384

o WH ]
e g

W jﬁ

.

() t = 34375

16

R O T

(h) t = 101552

Fig. 22: State of the circuit at different time steps for the test system.

C. System operation

At the end of self-replication, the processors wait for an
activation signal, telling them to start their differentiation and
to connect in the appropriate pattern. As a result, nothing
happens until the user launches these processes by activating
the seed unit in order to connect to the first processor and
transmit the activation signal: in the test system, the seed unit
is activated by the user through the additional input to the
POEtic molecules described in subsection VI-G. This solution
was adopted to improve the demonstration of the system,
but obviously several other options are available in a real-
world setting (e.g., instructing the seed unit to wait for a pre-
determined number of clock cycles before connecting).

When activated, the seed unit connects to the first available
processor using the dynamic routing network of the POEtic
tissue. In practice, because of the routing algorithm, the seed
unit will connect to the closest processor which has not yet

been linked, i.e., the processor situated in the bottom right of
the circuit in figure 22(e). When connected, the seed unit will
send the first activation signal to the processor.

As a result of the activation, the processor will begin
to execute the instructions stored in its Differentiation and
Connection Memory (DCMem in figure 15): it will first setup
its IOprec FU in order to establish all the connections to
the seed unit needed in order to receive the EnableCount
signal (see subsection V-B), the information that allows it to
determine its position inside the chain of processors of the final
system (position O in this case), and to be able to transmit
another signal sBack that will be described below. Once
again, these connections are established using the dynamic
routing network of the POEtic tissue.

Having connected to the seed unit and retrieved the nec-
essary information, the processor knows its position inside
the final multi-processor system (position () and can continue
executing the instructions in the DCMem memory.



Since, based on its position, the processor knows that it is
not the last one in the system, it sets up its TOnext FU in
order to connect to another available processor and activate
it. When the second processor receives its activation signal, it
also starts to execute the instructions in the DCMem memory,
links to the preceding processor, and determines its position
(1) within the final system chain (figure 22(f)).

This process repeats itself until the four processors are
activated and linked together as shown in figure 22(g). The
fourth processor on the chain, upon seeing that it is the last
processor of the organism (position 3), does not try to connect
to another processor, but instead activates its sBack signal.

This signal propagates back along the chain of processors
through the dynamic connections and instructs the processors
to execute their MEM code, i.e. to begin their normal operation
as defined in subsection V-B: depending on the position within
the organism, defined through the process described above,
the processors differentiate and execute different parts of the
program stored in the MEM memory (processors at positions 0
and 2 count to 9, processors at positions 1 and 3 count to 5).
A snapshot of the state of the system after it has counted 34
minutes and 59 seconds is shown in figure 22(h).

D. Implementation

The VHDL specification of the POEtic tissue that had been
developed for the EU project was used as a starting point to
implement the test system. The modifications detailed in sec-
tion VI-G were added to the basic architecture of the POEtic
molecule. Then, the VHDL code defining the configuration
subsystem of the tissue was further modified to implement
the Tom Thumb algorithm, as described in section VI. This
resulted in the final specification of the molecules used to
implement the multi-processor system with self-replication
abilities: a matrix of 58+24 = 1392 such molecules is required
to allow the processors (implemented within a rectangular
array of 28 * 12 = 336 molecules) to replicate four times.

Because of the size of the system, a physical implementation
in hardware proved impossible. To verify its operation, then,
the whole system was simulated using synthesizable VHDL in
the ModelSim™environment (several smaller versions of the
circuit were physically implemented in an FPGA to verify the
transition from simulation to hardware).

In order to observe more clearly the details of the operation
of the system during simulation and to be able to control its
timing and setup, a custom graphical interface was developed
and linked with the ModelSim simulator. This interface is able
to display, in the form of an array of colored squares, some of
the data from a running simulation. It is also able to start, stop
and advance the simulation for a given number of clock cycles.
The pictures in figure 22 are screen-shots of the interface.

Finally, the whole system has been synthesized with
Leonardo Spectrum using the sclO5u library. The results are
summarized in the figure 23, showing the amount of hardware
resources needed for each part of the system. As each config-
uration register of the POEtic molecule has to be duplicated in
the block implementing the Tom Thumb algorithm, with the
addition of the registers storing the flags and other information

17

| DFFs | % || Gates | % |

TT 104 | 50.5 534 | 14.8
Routing 26 12.6 || 796 22
POEmol 76 36.9 || 2280 | 63.2

Fig. 23: Hardware requirements of the different parts of the
circuit (TT: Tom Thumb algorithm; Routing: dynamic routing
layer; POEmol: molecule of the POEtic tissue).

related to the algorithm process, the overhead in terms of DFFs
is obviously high (the DFFs have to be more than doubled). On
the other hand, in term of logic gates, the overhead remains
quite low, i.e. only 14.8% of the total logic needed for the
entire system is used to implement the self-replication process.

VIII. CONCLUSION

The work presented in this article represents, to the best
of our knowledge, the first example of self-replication of a
processor-scale digital circuit to be actually implemented in a
real-world setting.

This first solution is obviously open to amelioration in
several respects and the Tom Thumb algorithm is constantly
being improved to address other issues or environments:

e To reduce the overhead inherent in storing a second
copy of the configuration in each molecule, a variant
of the algorithm has been developed and implemented,
which uses a self-inspection approach (subsection II-C)
to generate a copy of the configuration whenever needed.
Fairly similar to the basic algorithm in its replication
dynamics (flags, etc.), this version drastically alters the
differentiation and system dynamics.

o Fault tolerance is a crucial application area for self-
replication. A self-repairing version of the Tom Thumb
algorithm, capable of reconfiguring the programmable
array to avoid faults, has been developed [40] and inves-
tigations on fault detecting logic are under way. Coupled
with the four-direction replication approach described in
this article, this version is able to tolerate considerable
numbers of faults in the substrate.

o In the context of next-generation electronics, and partic-
ularly in that of molecular-scale approaches, the global
synchronization required by a cellular automaton (such
as Tom Thumb) can be extremely difficult to achieve.
To avoid this potential obstacle to the implementation of
the algorithm, an asynchronous version has been realized,
where the local interactions between the molecules take
place without the need for a global clock signal.

e One of the promises of molecular electronics (which
could potentially allow a quantum leap in circuit density)
is the possibility of being able to design and build circuits
that exploit the three dimensions. Because self-replication
is an approach designed to simplify layout and design in
very complex circuits, a 3D version of the algorithm was
designed and implemented [41] [42]. Indeed, because of
its structure and its local interactions, the transition of the
algorithm from two to three dimensions is quite simple
and preserves all its properties.



Several issues connected to the practical implementation of
self-replicating processors also need to be addressed: seen
as part of a complex bio-inspired design approach, self-
replication must be integrated within a complex multi-cellular
computing system. This context implies that several “acces-
sory” issues have to be considered:

o The self-replication approach must be extended to real-
world applications. While the test system described in this
article is sufficient to show that the Tom Thumb algorithm
can be applied to structures of arbitrary complexity, the
methodology used in the design of the system (or rather,
its lack, since the processors had to be designed by hand)
does not scale to larger systems. Current work is under
way to define a design environment for the synthesis of
cellular processors [43].

o The design environment will have to be extended to take
into account and exploit the possibilities introduced by
self-replication, such as the ability of cells to replicate
at will (subsection VI-D), and to integrate fault tolerance
and reconfiguration processes in the design.

o The differentiation process of the cellular array will have
to be closely integrated in the design as well, to allow
newly-replicated cells to seamlessly connect to the rest
of the array. The ad-hoc approach used in the test system
was designed specifically for the given example, whereas
a more general solution must be found to implement this
process in a wider range of applications.

But even if improvements are of course possible, the self-
replication approach described in this article represents a clear
step beyond existing solutions, in terms of hardware efficiency
and versatility. This latter aspect is particularly important:
while the test system used to illustrate the algorithm exploits
some of the non-standard features of the POEtic tissue (no-
tably, its dynamic connection network), these features are used
exclusively during its operation and are completely disjoint
from the self-replication algorithm. In other words, the only
requirement of the algorithm is that it must be possible to
implement the configuration memory of the programmable
device as a shift register. In turn, this implies that the algorithm
is relatively technology-independent and can easily be adapted
to any programmable structure, as long as the above condition
is met, a crucial versatility in view of its implementation in
the next generation of electronic devices.

REFERENCES

[11 W. Asprey, John von Neumann and the Origins of Modern Computing.
Cambridge, MA: The MIT Press, 1992.

[2] J. Von Neumann, Theory of Self-Reproducing Automata. Urbana, IL:
University of Illinois Press, 1966, edited and completed by A. W. Burks.

[3] K. E. Drexler, Nanosystems: Molecular Machinery, Manufacturing and
Computation. New York, NY: John Wiley, 1992.

[4] J. Han, J. Gao, Y. Qi, P. Jonker, and J. Fortes, “Toward hardware-
redundant, fault-tolerant logic for nanoelectronics,” IEEE Design and
Test of Computers, vol. 22, no. 4, pp. 328-339, 2005.

[5] S. Cotofana, A. Schmid, Y. Leblebici, A. Ionescu, O. Soffke, P. Zipf,
M. Glesner, and A. Rubio, “Conan - a design exploration framework for
reliable nano-electronics,” in Proc. 2005 IEEE Int. Conf. on Application-
Specific Systems, Architectures and Processors (ASAP’05). IEEE
Computer Society, 2005, pp. 260-267.

[6] R. A. Freitas Jr., T. J. Healy, and J. E. Long, “Advanced automation for
space missions,” in Proc. 7th Int. Joint Conf. on Artificial Intelligence
(IJCAI81). Morgan Kaufmann, 1981, pp. 803-808.

[7]
[8]

[9]
(10]

[11]

(12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

18

R. A. Freitas Jr. and R. C. Merkle, Kinematic Self-Replicating Machines.
Georgetown, TX: Landes Bioscience, 2004.

W. R. Buckley and A. Mukherjee, “Constructibility of signal-crossing
solutions in von Neumann’s 29-state cellular automata,” in Proc. 2005
Int. Conf. on Computational Science (ICCS2005), ser. LNCS, vol. 3515.
Springer Verlag, 2005, pp. 395-403.

C. G. Langton, “Self-reproduction in cellular automata,” Physica D,
vol. 10, pp. 135-144, 1984.

J. Byl, “Self-reproduction in small cellular automata,” Physica D,
vol. 34, pp. 295-299, 1989.

J. A. Reggia, S. L. Armentrout, H.-H. Chou, and Y. Peng, “Simple
systems that exhibit self-directed replication,” Science, vol. 259, pp.
1282-1287, 1993.

G. Tempesti, “A new self-reproducing cellular automaton capable of
construction and computation,” in Advances in Artificial Life: Proc.
3rd European Conf. on Artificial Life (ECAL95), ser. LNCS, vol. 929.
Srpinger Verlag, 1995, pp. 555-563.

J.-Y. Perrier, M. Sipper, and Z. J., “Toward a viable, self-reproducing
universal computer,” Physica 97D, pp. 335-352, 1996.

J. Ibanez, D. Anabitarte, 1. Azpeitia, O. Barrera, A. Barrutieta,
H. Blanco, and F. Echarte, “Self-inspection based reproduction in cellu-
lar automata,” in Proc. 3rd European Conf. on Artificial Life (ECAL9S5),
ser. LNCS, vol. 929. Springer Verlag, 1995, pp. 564-576.

K. Morita and K. Imai, “Self-reproduction in a reversible cellular space,”
Theoret. Comput. Sci., vol. 168, pp. 337-366, 1996.

F. Peper, T. Isokawa, N. Kouda, and N. Matsui, “Self-timed cellular
automata and their computational ability,” Future Generation Computer
Systems, vol. 18, no. 7, pp. 893-904, 2002.

Y. Takada, T. Isokawa, F. Peper, and N. Matsui, “Universal construction
and self-reproduction on self-timed cellular automata,” International
Journal of Modern Physics C, vol. 17, no. 7, pp. 985-1007, Feb. 2006.
S. R. Park and W. Burleson, “Configuration cloning: Exploiting regular-
ity in dynamic DSP architectures,” in Proc. ACM/SIGDA International
Symposium on Field Programmable Gate Arrays. ACM Press, 1999,
pp- 81-89.

G. Tempesti, “A self-repairing multiplexer-based FPGA inspired by
biological processes,” Ph.D., Ecole Polytechnique Fédérale de Lausanne
(EPFL), 1998.

D. Mange, M. Sipper, A. Stauffer, and G. Tempesti, “Towards robust
integrated circuits: The embryonics approach,” Proceedings of the IEEE,
vol. 88, no. 4, pp. 516-541, 2000.

L. Durbeck and N. Macias, “The cell matrix: an architecture for
nanocomputing,” Nanotechnology, no. 12, pp. 217-230, 2001.

N. Macias and P. Athanas, “Application of self-configrability for au-
tonomous, highly-localized self-regulation,” in Proc. 2007 NASA/ESA
Conf. on Adaptive Hardware and Systems (AHS2007). 1EEE Computer
Society Press, 2007, pp. 397-404.

D. Mange, A. Stauffer, E. Petraglio, and G. Tempesti, “Self-replicating
loop with universal construction,” Physica D, vol. 191, pp. 178-192,
2004.

D. Mange, A. Stauffer, L. Peparolo, and G. Tempesti, “A macroscopic
view of self-replication,” Proceedings of the IEEE, vol. 12, no. 92, pp.
1929-1945, 1992.

A. Stauffer and M. Sipper, “The data-and-signals cellular automaton and
its application to growing structures,” Artificial Life, vol. 10, no. 4, pp.
463-477, 2004.

A. Tyrrell, E. Sanchez, D. Floreano, G. Tempesti, D. Mange, J.-M.
Moreno, J. Rosenberg, and A. Villa, “POEtic tissue: An integrated
architecture for bio-inspired hardware,” in Proc. 5th Int. Conf. on
Evolvable Systems: From Biology to Hardware (ICES2003), ser. LNCS,
vol. 2606. Springer Verlag, 2003, pp. 129-140.

Y. Thoma, E. Sanchez, J.-M. Moreno Arostegui, and G. Tempesti, “A
dynamic routing algorithm for a bio-inspired reconfigurable circuit,” in
Proc. 13th Int. Conf. on Field-Programmable Logic and Applications
(FPLO3), ser. LNCS, vol. 2778. Springer Verlag, 2003, pp. 681-690.
E. Sanchez, D. Mange, M. Sipper, M. Tomassini, A. Pérez-Uribe, and
A. Stauffer, “Phylogeny, ontogeny, and epigenesis: Three sources of
biological inspiration for softening hardware,” in Proc. Ist Int. Conf. on
Evolvable Systems: From Biology to Hardware (ICES96), ser. LNCS,
vol. 1259. Springer Verlag, 1997, pp. 35-54.

M. Sipper, E. Sanchez, D. Mange, M. Tomassini, and A. Perez-Uribe, “A
phylogenetic, ontogenetic, and epigenetic view of bio-inspired hardware
systems,” IEEE Trans. on Evolutionary Computation, vol. 1, no. 1, pp.
83-97, 1997.

J.-M. Moreno, E. Sanchez, and J. Cabestany, “An in-system routing
strategy for evolvable hardware programmable platforms,” in Proc. 3rd



(31]

(32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

NASA/DoD Workshop on Evolvable Hardware (EHOI). 1EEE Computer
Society, 2001, pp. 157 — 166.

H. Corporaal and H. Mulder, “MOVE: A framework for high-
performance processor design,” in Proc.1991 Int. Conf. on Supercom-
puting, 1991, pp. 692-701.

H. Corporaal, Microprocessor Architectures — from VLIW to TTA. John
Wiley & Sons, 1998.

D. Tabak and G. J. Lipovski, “MOVE architecture in digital controllers,”
IEEE Transactions on Computers, vol. C-29, no. 2, pp. 180-190, Feb.
1980.

G. Tempesti, D. Mange, E. Petraglio, A. Stauffer, and Y. Thoma,
“Developmental processes in silicon: An engineering perspective,” in
Proc. 2003 NASA/DoD Conference on Evolvable Hardware (EH-2003).
IEEE Computer Society Press, Los Alamitos, CA, 2003, pp. 255-264.
L. Prodan, G. Tempesti, D. Mange, and A. Stauffer, “Biology meets
electronics: The path to a bio-inspired FPGA,” in Proc. 3rd Int. Conf. on
Evolvable Systems: From Biology to Hardware (ICES2000), ser. LNCS,
vol. 1801. Springer Verlag, 2000, pp. 187-196.

H. Restrepo, “Implementation of a self-repairing universal Turing ma-
chine,” Ph.D., Ecole Polytechnique Fédérale de Lausanne (EPFL), 2001.
H. Restrepo, G. Tempesti, and D. Mange, “Implementation of a self-
replicating universal Turing machine,” in Alan Turing: Life and Legacy
of a Great Thinker, C. Teuscher, Ed. Berlin, DE: Springer, 2003, pp.
241-269.

A. Stauffer, D. Mange, and G. Tempesti, “Bio-inspired computing
machines with self-repair mechanisms,” in Proc. 2nd Int. Workshop on
Biologically-Inspired Approaches to Advanced Information Technology
(Bio-ADIT06), ser. LNCS, vol. 3853. Springer Verlag, 2006, pp. 128—
140.

J. Rossier, Y. Thoma, P.-A. Mudry, and G. Tempesti, “Move processors
that self-replicate and differentiate,” in Proc. 2nd Int. Workshop on
Biologically-Inspired Approaches to Advanced Information Technology
(Bio-ADIT06), ser. LNCS, vol. 3853.  Berlin, DE: Springer Verlag,
2006, pp. 328-343.

A. Stauffer, D. Mange, and J. Rossier, “Design of self-organizing bio-
inspired systems,” in Proc. 2007 NASA/ESA Conf. on Adaptive Hardware
and Systems (AHSO7). 1EEE Computer Society, 2007, pp. 413-419.
A. Stauffer, D. Mange, E. Petraglio, and F. Vannel, “DSCA implementa-
tion of 3D self-replicating structures,” in Proc. 6th Int. Conf. on Cellular
Automata for Research and Industry (ACRI0O4), ser. LNCS, vol. 3305.
Springer Verlag, 2004, pp. 698-708.

A. Stauffer, D. Mange, E. Petraglio, and G. Tempesti, “Self-replication
of 3D universal structures,” in Proc. 6th NASA/DoD Workshop on
Evolvable Hardware (EH04). 1EEE Computer Society, 2004, pp. 283—
287.

G. Tempesti, P.-A. Mudry, and G. Zufferey, “Hardware/software co-
evolution of genome programs and cellular processors,” in Proc. Ist
NASA/ESA Conf. on Adaptive Hardware and Systems (AHS’06). 1EEE
Computer Society, 2006, pp. 129-136.

19

Joél Rossier has a BSc/MSc in Communication
Systems from Ecole Polytechnique Fédérale de Lau-
sanne (EPFL), Switzerland, obtained in 2004. His
master thesis at the Logic Systems Laboratory (LSL)
focused on a new type of cellular automaton. He
joined the LSL-CARG in May 2004 for a PhD
thesis. He is currently working on the hardware
application of bio-inspired concepts, particularly on
the development of self-replicating processors.

André Stauffer (S’68-M’69) received the M.S.
and Ph.D. degrees from the Ecole Polytechnique
Fédérale de Lausanne (EPFL), Switzerland. He spent
one year as a Visiting Scientist at the IBM T.J.
Watson Research Center, Yorktown Heights, NY,
in 1986. He is Senior Lecturer in the School of
Computer and Communication Sciences at the Swiss
Federal Institute of Technology. He is a Professor at
the HES-SO University of Applied Sciences in Yver-
don, Switzerland. In addition to digital design, his
research interests include cellular automata, circuit

reconfiguration, and bio-inspired systems.

Gianluca Tempesti received a B.S.E. in electrical
engineering from Princeton University in 1991 and
a ML.S.E. in computer science and engineering from
the University of Michigan at Ann Arbor in 1993. In
1998 he received a Ph.D. from the Ecole Polytech-
nique Fédérale de Lausanne (EPFL), Switzerland
with a thesis on the design of fault-tolerant bio-
inspired FPGAs. In 2003 he was granted a young
professorship award from the Swiss National Sci-
ence Foundation (FNS). He joined the Department
of Electronics at the University of York as a Reader

in Intelligent Systems in 2006. His research interests include bio-inspired
digital hardware, built-in self-test and self-repair, programmable logic, and
cellular automata, and he is author of over 75 articles in these areas.



