
ELSEVIER Robotics and Autonomous Systems 22 (1997) 35-58

III i i 1 |

Robotics and

Autonomous
Systems

Von Neumann revisited: A Turing machine with self-repair and
self-reproduction properties

Daniel Mange *, Dominik Madon, Andr6 Stauffer, Gianluca Tempesti
Logic Systems Laboratory, Swiss Federal Institute of Technology, lNN-Ecublens. CH 1015 Lausanne, Switzerland

Abstract

The growth and the operation of all living beings are directed through the interpretation, in each of their cells, of a chemical
program, the DNA. This program, called genome, is the blueprint of the organism and consists of a sequence of tour discrete
characters: A, C, G, and T. This process is the source of inspiration for the Embryonics (embryological electronics) project,
whose final objective is the conception of very large scale integrated circuits endowed with properties usually associated
with the living world: self-repair (cicatrization) and self-reproduction. Within this framework, we will present a new family
of coarse-grained field-programmable gate arrays. Each cell is a binary decision machine whose microprogram represents
the genome, and each part of the microprogram is a gene whose execution depends on the physical position of the cell
in the array, i.e. on its coordinates. The considerable redundancy introduced by the presence of a genome in each cell has
significant advantages: self-reproduction (the automatic production of one or more copies of the original organism) and
self-repair (the automatic repair of one or more faulty cells) become relatively simple operations. Both self-reproduction
and self-repair will be illustrated by a classical example of a special-purpose Turing machine: a parenthesis checker. Even
if the described system seems exceedingly complex, we believe that computer architectures inspired by molecular biology
will allow the development of new FPGAs endowed with quasi-biological properties extremely useful in environments where
human intervention is necessarily limited (nuclear plants, space applications, etc.).

Kew,ords: Von Neumann: Turing machine; Self repair; Self reproduction

i . Introduction

1.1. Towards" embr)'onics

A human being consists of approximately 60 trillion
(60 × 1012) cells. At each instant, in each of these 60
trillion cells, the genome, a ribbon of 2 billion char-
acters, is decoded to produce the proteins needed for
the survival of the organism. This genome contains the
ensemble of the genetic inheritance of the individual

* Corresponding author. Tel.: 4121 693 26 39; fax: 4121 693
37 05: e-mail: mange@di.epfl.ch.

and, at the same time, the instructions for both the con-
struction and the operation of the organism. The par-
allel execution of 60 trillion genomes in as many cells
occurs ceaselessly from the conception to the death of
the individual. Faults are rare and, in the majority of
cases, successfully detected and repaired.

This process is remarkable for its complexity and
its precision. Moreover, it relies on completely dis-
crete processes: the chemical structure of DNA (the
chemical substrate of the genome) is a sequence of
four bases, usually designated with the letters A (ade-
nine), C (cytosine), G (guanine), and T (thymine).
Each group of three bases is decoded in the cell to

0921-8890/97/$17.00 © 1997 Elsevier Science B.V. All rights reserved
PII S0921-8890(97)00015-8

36 D. Mange et al./Robotics and Autonomous 5)'stems 22 (1997) 35-58

produce a particular amino acid, a future constituent
of the final protein (thus, the triplet ACG will produce
threonine [32J).

Our research is inspired by the basic processes of
molecular biology [26]. By adopting certain features
of cellular organization, and by transposing them to the
two-dimensional world of integrated circuits on sili-
con, we will show that properties unique to the living
world, such as self-reproduction and self-repair, can
also be applied to artificial objects (integrated circuits).

To the best of our knowledge, the word emb~on-

ics was coined by de Garis [6] to mean embryologi-

cal electronics. Our work constitutes a first concrete
approach to embryonics and aims at the realization
of a new family of coarse-grained field-programmable
gate arrays (FPGAs) endowed with quasi-biological
properties.

1.2. Objectives and contents

Two main stages characterize the development of
self-reproducing automata [27]:
• Von Neumann and his successors (Burks, Thatcher,

Lee, Codd, Banks, etc.) developed universal com-
puting automata, that is, self-reproducing automata
capable of simulating a universal Turing machine;
unfortunately, the complexity of these automata is
such that no physical implementation has yet been
possible, and only partial simulations have been
realized.

• Langton and his successors (Byl, Reggia et al.)
developed self-reproducing automata which are
much simpler and which have been simulated in
their entirety; these machines, however, lack any
computing ability and are capable exclusively of
self-reproduction.
The purpose of our research is to propose a third

approach, called Embryonics. Borrowing three fea-
tures (multicellular organization, cellular differentia-
tion, and cellular division) from living organisms, we
introduce the architecture of a new cellular automaton,
complex enough for universal computation, but simple
enough for a physical implementation through the use
of commercially available digital integrated circuits.
The method of construction, serf-reproduction, and
self-repair of an artificial organism will be illustrated
through the example of a specialized Turing machine,
and will lead to a realistic physical implementation.

We will conclude by suggesting to interested biologists
to analyze a first specimen of an artificial genome,

Our research aims at reaching two main objectives:
• A technical objective, i.e. the conception and imple-

mentation of high-complexity integrated circuits en-
dowed with quasi-biological properties (self repair,
self-reproduction). These two properties, character-
istic of the living world, seem particularly desir-
able for very complex artificial systems meant lbr
hostile (nuclear plants) or inaccessible (space) en-
vironments. Self-reproduction allows the complete
reconstruction of the original device in case of a
major fault, while self-repair allows a partial recon-
struction in case of a minor fault.

• A scientific objective, i.e. the establishment of the
logical conditions which must be satisfied by a
cellular automaton endowed with self-reproduction
and universal computation capability.
Section 2 recalls the two main stages in the develop-

ment of self-reproducing automata and recapitulates
the main results obtained by yon Neumann, Langton,
and their successors.

Section 3 introduces the fundamental features of
Embryonics, a project based on three features, which
roughly duplicate the process of cellular development:
multicellular organization, cellular differentiation, and
cellular division.

In all living beings, the string of characters which
makes up the DNA is executed sequentially by a
chemical processor, the ribosome. Drawing inspira-
tion from this mechanism, we will use a microprogram
to calculate first each gene of the artificial organism,
then its coordinates, and, finally, its complete genome.
Section 4 applies this method to the example of a
specialized Turing machine, a parenthesis checker.

In Section 5 we present a summary of the main fea-
tures of the MICROTREE cell, the basic unit of our
new coarse-grained programmable logic array. This
ceil is based on a binary decision machine which ex-
ecutes microprograms of up to 1024 instructions. The
instructions are essentially tests and assignments (for
the calculation of the genes, of the coordinates, and
of the genome) and configuration directives (tbr the
programming of the busses connecting each cell to
its immediate neighbors). The MICROTREE cell is
then embedded into a demonstration module, the BIO-
DULE 601. Finally, we will show that the special-
ized Turing machine, implemented with an array of

D. Mange et al./Robotics and Autonomous Systems 22 (1997) 35-58 37

BIODULES 601, is capable of self-repair and self-
reproduction.

In Section 6, we conclude by demonstrating that
universal computation, that is the capability of realiz-
ing, repairing, and reproducing a universal Turing ma-
chine, can be verified with our multicellular automaton
despite some limitations due to the actual hardware
implementation.

2. Historical survey

2.1. Von Neumann's self-reproducing cellular
automaton

The early history of the theory of self-reproducing
machines is basically the history of John yon
Neumann's thinking on the matter [8]. Von Neumann's
cellular automaton [31], as well as all the machines
described in this article, is based on the following
general hypotheses:
(a) the automaton deals exclusively with the flow of

information; the physical material (usually a sili-
con substrate) and the energy (power supply) are
given a priori;

(b) the physical space is two-dimensional and as large
as desired;

(c) the physical space is homogeneous, that is com-
prised by identical elements, all of which have
the same internal architecture and the same con-
nections with their neighbors; only the state of
an element (the combination of the values in its
memories) can distinguish it from its neighbors;

(d) the reproduction is asexual: the daughter automa-
ton is identical to the mother automaton.

To avoid conflicts with biological definitions, we do
not use the term "celt" to indicate the parts of a cellu-
lar automaton, opting rather for the term "element"; in
fact, in biological terms, a "cell" can be defined as the
smallest part of a living being which carries the com-
plete blueprint of the being, that is the being's genome.

The element of yon Neumann's automaton is a fi-
nite state machine with 29 states. The future state of
an element depends on the present state of the ele-
ment itself and of its four cardinal neighbors (North,
East, South, West). The exhaustive definition of the
future state, the transition table, thus contains 295 =
20511 149 lines.

In his historic work [31], yon Neumann succes-
sively showed that a possible configuration (a set of
elements in a given state) of his automaton can imple-
ment a universal constructor (Uconst) endowed of the
three following properties: constructional universality
(Fig. l(a)), self-reproduction of the universal construc-
tor (Fig. l(b)), and self-reproduction of a universal
calculator (Ucomp) (Fig. l(c)).

According to the biological definition of a cell, it
can be stated that:
(a) yon Neumann's automaton is a unicellular organ-

ism: its genome is composed of the description of
the universal constructor and computer D(Uconst
+ Ucomp) written in the memory M (Fig. t(c));
as each element of this description needs five el-
ements of the genome [31], it can be estimated
that the genome is composed of approximately
five times the number of elements of the universal
constructor and computer;

(b) the dimensions of von Neumann's automaton are
substantial (in the order of 200 000 elements) [12];
it has thus never been physically implemented and
has been simulated only partially [5.28];

(c) the automaton implements the self-reproduction
of a universal computer (a universal Turing
machine).

If yon Neumann and his successors Burks [3,31],
Thatcher [3], Lee [14], Codd [5], Banks [2], Nourai
and Kashef [24] demonstrated the theoretical possibil-
ity of realizing self-reproducing automata with univer-
sal calculation, a practical implementation requires a
sharply different approach. It was finally C. Langton,
who opened a second stage in this field of research in
1984.

2.2. Langton's self-reproducing loop

In order to construct a self-reproducing automa-
ton simpler than this of von Neumann, Langton [13]
adopted more liberal criteria. He dropped the condi-
tion that the self-reproducing unit must be capable
of universal construction and computation. Langton's
mechanism is based on an extremely simple config-
uration in Codd's automaton [5] called the periodic
emitter, itself derived from the periodic pulser or-
gan in von Neumann's automaton [31]. The element
of Langton's automaton is a finite state machine
with only eight states. The future state, as for yon

38 D. Mange et al./Robotics and Autonomous Systems 22 (t997) 35-58

U~ ~
(a)

Uconst ["'
I ~ -J M

(b)

~Daughter cell ! uooo. I

L Genome
(=)

M'

Fig. 1. The three properties of yon Neumann's automaton. (a) Constructional universality: a possible configuration can implement
a universal constructor Uconst. Then, given the description D(Ucomp) of any one machine UComp, including a universal Turing
machine, the universal constructor can build a specimen of this machine (Ucomp') in the cellular space. (b) Self-reproduction of the
universal constructor: given the description D(Uconst) of the constructor itself, it is then possible to build a copy of the constructor
in the cellular space: the constructor interprets first the description D(Uconst) to build a copy Uconsr whose memory M' is empty
(translation process), and then copies the description D(Uconst) from the original memory M to the new memory M' (transcription
process). (c) Self-reproduction of a universal calculator: by attaching to the constructor a universal computer Ucomp (a universal
Turing machine), and by placing the description D(Uconst + Ucomp) in the original memory M, the universal constructor produces
a copy of itself (Uconst') and a copy of the universal computer (Ucomp') through the mechanism described above (interpretation
and then duplication of the description D).

Neumann ' s automaton, depends on the present state
of the element itself and of its four cardinal neighbors.
The exhaustive definition of the future state, the tran-
sition table, comprises only 219 lines, a very small
subset of the theoretically possible 85 = 262 144 lines.

Langton proposes a configuration in the form of a
loop (Fig. 2), endowed notably with a constructing
arm (pointing to the north in the left loop and to the
east in the right loop) and of a replication program
or genome, which turns counterclockwise. After 151
clock periods, the left loop (the mother loop) produces
a daughter loop, thus obtaining the self-reproduction
of Langton 's loop.

Again referring to biological definitions, we can ob-
serve that:
(a) Langton 's self-reproducing loop is a unicellular

organism; its genome, defined in Fig. 2, requires

28 elements and is a subset of the complete loop
which requires 94 elements;

(b) the size of Langton 's loop is perfectly reasonable,
since it requires 94 elements, thus allowing com-
plete simulation;

(c) there is no universal construction nor calculation:
the loop does nothing but reproduce itself; com-
paring Figs. l(b) and 2 reveals that Langton 's self-
reproducing loop represents a special case of yon
Neumann ' s self-reproduction of a universal con-
structor; the loop is a non-universal constructor,
capable of building, on the basis of its genome, a
single type of machine: itself.

More recently, Byl [4] proposed a simplified version
of Langton 's automaton. Last, but not least, Reggia
et al. [27] discovered that having a sheath surrounding
the data paths of the genome (the "2" signals in Fig. 2)

D. Mange et al./Robotics and Autonomous Systems 22 (1997)35-58 39

Mother cell °

2
2 1 2
2 2

.2 22

2 I 21o12
211 12 ~ 2171 2171~
21012 . ~ 21°1 2111 ~
21412 ~ . J 2111 210p
21112 , . - - _ 2171 2171~
2 1 o ~ o I 211~
214 I 0 7 1 0 7 I] 210 ;

2 2 2 , 2 2 2 2 2

Daughter cel l

Genome

2 2 2 1 2 2 2 7
7 0 1 4 0 1 4 1 2
2 2 2 2 2 21012
2 ~ .~ 21112
2 ~ 21112
2 ~ J 21112
2 - - 21112
~ 1 1 2 2 2 2 2
7 1 0 7 1 0 7 1 1 1 1 1 2

2 2 2 2 2 2 2 2 2 2 2 2 2
B~ 000

Fig. 2. Langton's self-reproducing loop. The genome, which
turns counterclockwise, is characterized by the sequence, read
clockwise: 170 170 170 170 170 170 140 140 1111. The sig-
nals "t'" are ignored, the signals "70" cause the extension of
the constructing arm by one element, while the signals "40",
repeated twice, cause the arm to turn 90 ° counterclockwise.
After 151 clock periods, the left loop (the mother loop) pro-
duces a daughter loop, thus obtaining the self-reproduction of
Langton's loop. The genome is both interpreted (construction
of a copy at the end of the constructing arm: translation pro-
cess) and copied (duplication at the junction of arm and loop:
transcription process).

universality, self-reproduction of a universal calcula-
tor) and the simplicity of Langton's loop (reasonable
size, allowing not only a complete software simu-
lation, but also a physical realization through exist-
ing digital integrated circuits). This objective can be
approached by introducing a new architecture, a mul-
ticellular automaton, roughly derived from the struc-
ture of multicellular living beings, and based on the
following three characteristics: multicellular organiza-
tion, cellular differentiation, and cellular division. The
proposed automaton meets all the general hypothe-
ses described above for yon Neumann's automaton.
The element is a true "cell", according to the biolog-
ical definition: it contains a random access memory
(RAM), which stores the microprogram of the com-
plete genome. This microprogram is executed by a
small processor, a binary decision machine analogous
to the ribosome of the living cell. The microprogram
itself is decomposed in sub-programs which are equiv-
alent to the different parts of the genome, i.e. the genes.

was not essential, and that its removal led to smaller
self-reproducing structures which also have simpler
transition functions. Moreover, they found that relax-
ing the strong symmetry requirement consistently led
to transition functions that required fewer rules than
the corresponding strong symmetry version.

These last months, new attempts have been made
to redesign Langton's loop in order to embed some
calculation possibilities I30], or even some kind of
Turing machine [25].

In the same vein, but with a completely differ-
ent methodology, Morris [23] used the concept of
typogenetics, first introduced by Hofstadter [11], to
reproduce strings of characters analogous to those
of DNA in a one-dimensional environment. In all
these constructions (Langton's, Byl's, Reggia's two-
dimensional, and Moms ' one-dimensional), the initial
configurations "do nothing but propagate" [23].

3. The foundations of embryonics

Our final objective is the realization of a computing
machine offering at the same time the original prop-
erties of yon Neumann's automaton (constructional

3.1. First feature: MuIticellular organization

The first feature is multicellular organization: the
artificial organism is divided into a finite number of
cells (Fig. 3(a)), where each cell realizes a unique
function, described by a sub-program called the gene
of the cell. The same organism can contain multiple
cells of the same kind (in the same way as a living
being can contain a large number of cells with the same
function: nervous cells, skin cells liver cells, etc.).

In this presentation, for clarity's sake, we will
confine ourselves to a simple example of a two-
dimensional artificial organism (Fig. 3(a)): a spe-
cialized Turing machine, a parenthesis checker [22],
implemented with 10 cells and featuring two distinct
genes, the tape gene and the head gene. Each cell is
associated with some initial condition; in our example
the head cells are distinguished by the initial values
"0" and "--+", the tape cells by "A", "(", and ")" values.

The design of these genes will be analyzed in detail
later: let us simply state here that the gene is part of
the global program of the cell, the genome, and that
the execution of a particular gene, as well as the deter-
mination of the value of the initial condition, depend
only on the position of the cell in the whole array, that
is, on its coordinates.

40 D. Mange et al./Robotics and Autonomous Systems 22 (1997) 35-58

X

I o , I

Gene
/(sub-program)

(' ~ Initial
[0 [4---condition

1 2 3 4 5

(a)

y = ~ Mother cell
1 2 3 4 5

X
(b)

Fig. 3. The three characteristics of the new multicellular automaton: example of a specialized Turing machine, a parenthesis checker.
(a) Multicellular organization. (b) Cellular differentiation and cellular division; t l t5: five successive divisions.

3.2. Second feature: Cellular differentiation

Let us call genome the set of all the genes of an
artificial organism, where each gene is a sub-program
characterized by a set of instructions, by an initial
condition, and by a position (its coordinates X, Y).
Fig. 3(a) then shows the genome of our Turing ma-
chine, with the corresponding horizontal (X) and
vertical (Y) coordinates. Let then each cell contain the
entire genome (Fig, 3(b)): depending on its position
in the array, i.e., its place in the organism, each cell
can interpret the genorne and extract and execute the
gene (with its initial condition) which configures it.

In summary, storing the whole genome in each cell
makes the cell universal: it can realize any gene of
the genome (including the initial condition), given the
proper coordinates.

3.3. Third feature: cellular division

At startup, the mother cell or zygote (Fig. 3(b)),
arbitrarily defined as having the coordinate X, Y =
l, 1, holds the one and only copy of the genome. At
time t 1, the genome of the mother cell is copied into
the two neighboring (daughter) cells to the North and
to the East. The process then continues until the two-
dimensional space is completely programmed. In our
example, the furthest cell is programmed at time t5.

As in the embryological development of living mul-
ticellular beings, each mother cell produces a maxi-
mum of two daughter cells. It should be noted that,
while the biological division of a mother cell in one
or two daughter cells occurs to the detriment of the
mother cell, which disappears, the artificial system
which we propose allows it to survive.

D. Mange et al,/Robotics and Autonomous Systems 22 (1997) 35-58 4t

~ Read/wdte head

I. I(I(I IAI
(a)

H+,T+

- >

0<-

I<-

A,

H

T
X (A) 0

->,X ->,(I<-,A 0<-,X , -,-

0<-,X ->,X A, ,0 0<-,) -,- -,-

l<-,X a,,O a ,1 -,- -,- -,-

,. , ., .,_ A, ,0 A,,1

(b)

tO

t l

t2

H state

T state

0 0 0 -> 0

A (() A

0 0 0<- 0 0
t3 t4

A ((X A

L

(
0 0 0 1 < - ! 0

t6
A (X X A

t5

t7
0 0 1 < - 0

A (X X

0 0 0 0 -> 0 1<- 0 0
t8

A (X X A A (X X

. . . .

0 0 0 -> 0 0 ,A 0 0 0
t9

A (X X A A 0 X X A

O

0
i

A

Fig. 4. A parenthesis checker: (a) general overview; (b) state table; H: head state, T: tape state; (c) successive H and T states during
a 10-step sequence (tO t9).

4. An example of Turing machine: A parenthesis
checker

4.1. Description

According to Minsky [22, pp. 121-123], the prob-
lem is to decide whether a sequence of left (open)
and right (closed) parentheses is well-formed. A good
procedure for checking parentheses consists in search-
ing to the right for a right (closed) parenthesis, then
searching to the left for its mate (open), and removing

both. This procedure is repeated until no more pairs
are found. If any unmatched symbols remain, the ex-
pression is not well-formed, and conversely.

A specialized Turing machine for checking paren-
theses consists of a tape, decomposed in squares, and a
finite-state machine with a read/write head. For check-
ing the expression "(0", for example, we prepare the
tape in the form of Fig. 4(a), where the beginning and
end of the expression are marked by "A" symbols.

The read/write head starts by reading the first left
parenthesis (Fig. 4(a)); the initial state of the finite

42 D. Mange et al./Robotics and Autonomous Systems 22 (1997) 35-58

Parenthesis checker (initial state) Spare cells

SY Y

Fq m rq E] rq \

X 1 , ~ A 2 . ~ i 3 ~...A 4 .,.,,,,, 5 ,,,~ 6 ~ A 6

WX 0 1 2 3 4 5 6

Head cells
(H state)

>Tape cells
(T state)

Fig. 5.10-cell (X = 1,.. . . 5) parenthesis checker with four spare cells (X = 6); WX: horizontal coordinate of the western neighboring
cell; SY: vertical coordinate of the southern neighboring cell.

state-machine (Fig. 4(b)) is the "---~" state. For each
couple H,T (head state, tape state), the state table
of Fig. 4(b) produces a new couple H+, T + giving
the next head state H+, belonging to the set {---~,
0 +--, 1 +-, t} and the next tape state T+, belonging
to the set {X, (, A,), 0,1}.

The initial couple H,T (Fig. 4(c)): time tO) is de-
fined in our example as H,T-----+, (and produces a
next couple H + , T + -- --+,(. The result of this compu-
tation may be illustrated as follows (Fig. 4(c): time
tl):
• the next head state H + is "----~"; the read/write head

moves one square to the right and displays this state
in the new square;

• the next tape state T + is "("; the square of the tape
read by the head at time tO is unchanged.
For the moment, we assume that the read/write

head can move and has, at a given time, one single
position; all the squares with H - - 0 are, therefore,
without any physical significance. This process con-
tinues until time t9, when no more changes are
possible. After going through the head states "--~"
(move to the right), "0 +-" (move to the left, 1st
type), "1 +--" (move to the left, 2nd type), the finite-
state machine reaches finally the " t " state (hold).
During this process, the read/write head has replaced
on the tape all the left "(" and right ")" parenthe-
ses by the symbol "X". As the expression "(0"
is not well-formed, the last symbol written on the
tape by the head is "0". Conversely, if the expres-
sion were well-formed, the last symbol would be
"1".

4.2. Cellular implementation

Conventional Turing machines consist of a tape, not
infinite, but as long as desired, and a single read/write
mobile head controlled by a finite-state machine.

In order to obtain a cellular implementation for our
parenthesis checker which would be compatible with
the homogeneous cellular space defined above, we will
realize our Turing machine as follows (Fig. 5):
• The cellular space is divided in two rows, identi-

fied by the vertical coordinate Y (Y = 1 or 2), and
by N columns, identified by the horizontal coordi-
nate X (X = 1 N). In our example, defined
by Fig. 4(a), N = 5. In order to demonstrate self-
repair, we have decided to add two spare cells in
each row, to the right of the Turing machine, all
identified by the same horizontal coordinate N + I
(X = 6 in our example); for technical reasons, each
cell also contains the coordinates W X of its western
neighbor and S Y of its southern neighbor. By def-
inition, the mother cell always has the coordinates
X , Y - 11, i.e. W X , S Y = 00.

• The upper row, identified by Y - 2, realizes the
moving read/write head; all the cells of this row are
in a new quiescent head state (H = 0), except for
one cell which implements the moving head with a
non-quiescent state (H = "--~", "0 ,---", "'l +--'" or
"U).

• The lower row, identified by Y -- 1, realizes the
conventional tape. At the start, all the cells of this
row are in one of the three tape states T = "A",
"(" or ")"; the spare cells are in the quiescent tape

D. Mange et al./Robotics and Autonomous Systems 22 (1997) 35-58 43

state (T---X), At the end of the computation pro-
cess, all the cells in the "(" and ")" states are re-
placed by "X" state, except for the unique cell giv-
ing the final result (T : 1 for a well-formed expres-
sion, T = 0 in the contrary).
In conclusion, each cell of the upper row (the head

cell) must contain the complete information for cal-
culating the next head state H+, while each cell of
the lower row (the tape cell) must contain the whole
information for calculating the next state T+.

It must finally be pointed out that the spare cells, at
the right of the cellular space, may be used not only
for self-repair, as in our example, but also for other
examples of Turing machines necessitating a growth
of the tape of any, but non-infinite, length.

4.3. Computing the coordinates

The test instruction is defined by an address ADR
and a test variable VAR. Each instruction of this kind
has one input and two outputs defining the address
of the instruction to be executed next: ADR + I when
VAR = 1 (increment) or ADR0 when VAR = 0. Thus,
the mnemonic expression of a test instruction is:

IF VAR ELSE ADR0 (1t

or, in the more convenient format typical of the as-
sembly language used below:

if VAR else LABEL (2)

where LABEL identifies a unique line in the program,
and, therefore, a unique memory address.

The non-conditional jump is a particular case of
the test instruction where the test variable is the logic
constant 0. Its mnemonic expression is simply:

In all living beings, the string of characters which
makes up the DNA is executed sequentially by a chem-
ical processor, the ribosome. Drawing inspiration from
this biological mechanism, we will use a micropro-
gram to compute first the coordinates of the artificial
organism, then the initial conditions of each cell, the
tape gene and the head gene, and finally the complete
genome.

The local horizontal coordinate (X) of a given cell
is computed as a function of the horizontal coordinate
of its western neighbor (WX) . If we represent the co~
ordinate W X in its binary form W X 2 : 0, the specifica-
tions of Fig. 5 allow us to derive directly the Karnaugh
map for X (Fig. 6(a)). A "don't care" condition (~,)
is specified for the unused value W X 2 : 0 = 11 1.

The use of Karnaugh map for simplifying binao,

decision trees [16,17] generates a tree with seven
branches (Fig. 6(b)), each represented by a block in
the map. Each test element of the tree, represented
by a diamond and defined by a test variable, has a
single input, a true output (test variable equal to 1),
and a complemented output (test variable equal to 0),
identified by a small circle. The leaf elements, repre-
sented as squares, define the output value of the given
function (X in our example).

For a microprogrammed realization, the binary de-
cision tree of Fig. 6(b), is the flowchart for the gene
of X coordinate. The software implementation of this
flowchart requires two kinds of instructions: a test in-
struction and an assignment instruction.

goto LABEL (3)

The assignment instruction is defined by an address
ADR and a synchronous assignment X +-DATA,
where X specifies the X coordinate register and DATA
an output state (a decimal constant). Each instruction
of this kind has one input and one output defining
the address ADR + I (increment) of the instruction to
be executed next. The mnemonic expression of this
assignment instruction is:

do X = DATA (4)

The sub-program, (or gene) Xcoord calculating the
X coordinate can then be written using the mnemonic
expressions (2)-(4), and the labels X30, X54, X4, X 10,
X2, X0 and End (Fig. 6(c)). The local vertical coordi-
nate (Y) of a given cell is computed as a function of
the vertical coordinate of its southern neighbor (SY).
Unlike the organization of the rows, which requires
the placement of spare cells (for self-repair and/or
extension of the tape), we wish to design a cycle on
the vertical coordinate in order to demonstrate self-
reproduction (see Section 5.3). Such a cycle can be
described by the expression Y = 1 --, 2 --~ I, which
can be coded in the following binary form (Figs. 5 and
20):

Y = 1 -+ 0 ---~ 1 (5)

The trivial Karnaugh map of Fig. 7(a), therefore,
defines Y as a function of SYO (the unique binary

44 D. Mange et al . /Robotics and Autonomous Sv.vterns 22 (1997) 35-58

WX•O
~x2": 1

00

°

1

01 11 10

®
×

(a)

Xcoord

x[

~ 0

r r i
~ v i,- I

E~

(b)

Xcoord: if WX2 else X30

if WXl else X54

do X =6

goto End

X54: if WX0 else X4

do X =6

go to End

X4: do X =5
goto End

X30: if WX] else XI0

if WX0 else X2

do X =4

goto End

X2: do X =3

go to End

Xl0: iZ WXO else X0

do X =2

goto End

X0: do X =i

End: ...

(c)

I

Fig. 6. Computing the horizontal X coordinate (sub-program Xcoord): (a) Karnaugh map; (b) binary decision tree and flowcharts:
(c) assembly language sub-program.

SYO
0

Ycoord

- - - -

(a) (b)

Fig. 7. Computing the vertical Y coordinate (sub-program Ycoord): (a) Karnaugh map; (b) binary decision tree and flowcharts.

D. Mange et al./Robotics and Autonomous Systems 22 (1997) 35 58

Initcond

SYO• WX2:I
[30 01 11 10

WXO,

® o ® ®
0, o o r o o ? }
,, O O ½ °J
10 0 0 ~ @ - - ~ } Tstates

REG
(a)

<
<

nEa F

o <

45

'0

S¥o

REG=I,..I/T I ~ " " ~1.~ I

(b)

Fig. 8. Computing the initial conditions (sub-program lnitcond): (a) Karnaugh map; fb) binary decision tree and flowcharts.

variable describing SY) and leads to the final binary
decision tree and flowchart of Fig. 7(b). For the ver-
tical coordinate Y, we define a new but symmetrical
assignment instruction whose mnemonic expression
is:

do Y = DATA (6)

The sub-program (or gene) Ycoord can then be ex-
pressed using the mnemonics (2), (3) and (6).

4.4. Computing the initial conditions

The difficulty of setting the cellular space in an ini-
tial configuration is generally underestimated. Starting
self-reproduction with the historical von Neumann's
automaton [31] would require the assignment of a
given state out of 29 to approximately 200000 ele-
ments. In our case, computing the initial conditions,
i,e. setting each cell of the cellular space in a given
head state H or type state T according to Fig. 5, is a
part of the complete microprogram. In other words, it
is a gene of the complete genome.

The methodology is roughly the same as that used
above for computing the coordinates. The initial state
of each cell of the cellular space (Fig. 5) is expressed
as a function of the horizontal coordinate of its west-
ern neighbor (WX) and of the vertical coordinate of
its southern neighbor (S1O. If we represent the coordi-

nate WX in its binary form WX2 : 0 and SY as SYO, the
specifications of Fig. 5 allow us to derive directly the
Karnaugh map for REG (Fig. 8(a)), i.e. the state reg-
ister of each cell (REG = H for head cells, REG = T
for tape cells). A "don't care" or ~,-condition is spec-
ified for the unused value WX2:0 = 111. The 12
blocks of the Karnaugh map generate a simplified bi-
nary decision tree with 12 branches, which in turn
generates the flowchart of the Initcond sub-program
(Fig. 8(b)). This flowchart required the introduction of
a new type of assignment instruction realizing a syn-
chronous transfer REG +--DATA, where REG speci-
fies the cell state register (H register or T register) and
DATA an output state. The mnemonic expression of
such an assignment instruction is simply:

do REG = DATA (7)

For technical reasons, the final binary coding of
the H and T states will be chosen later (Section 4.5).
To avoid any confusion between H and T states (for
example H = ~ and T = (will be coded with the
same 4 bit word 000 I), we have kept the original H and
T values in the assignment instructions of Fig. 8(b).

It must finally be pointed out that Figs. 8(a) and
(b) illustrate the particular example of Fig. 5. For any
other initial conditions related to the same parenthe-
sis checker, this part of the microprogram must be re-
designed to meet the new specifications.

46 D. Mange et al./Robotics and Autonomous Systems 22 (1997) 35-58

Tapegene

X (A) 0 1 T
T+ 000 001 011 010 100 101 111 110 T2:0

-> 0001

0<- 0100

1<- 1100

A, 0010

0 0000

H H3:0

r

NOP NOP NOP NOP

(a)

<

PIE

(
(:

d

.,>

)o

. 2 ' --'

T1:0 , ~

(b)

Fig. 9. Tape gene computation (sub-program Tapegene): (a) Karnaugh map; (b) binary decision tree and flowcharts•

4.5. Computing the tape gene

Starting from the state table of Fig. 4(b), we wish
to express the next tape state T+ as a function of the
present tape state T and the present head state H. Us-
ing the Karnaugh map of Fig. 9(a), we first must add
the new head state H - 0, which is the quiescent head
state introduced above (Section 4.2) for the cellular
realization of our Turing machine. The new Karnaugh
map is then derived from the original state table ac-
cording to the following additions and tranformations:
• The row for the head state H----0 is completed. Ex-

amination of the sequence in Fig. 4(c) shows that
T + is a neutral or no-operation state (NOP) or a
"don't care" condition (~).

• Values for T+ are borrowed from Fig. 4(b). When
T+ = T, the next tape state T + can be replaced by
a NOP state; a dash is replaced by a "don't care"
condition (~) .

• A binary coding is proposed for both T and H states.
This coding has been chosen in order to obtain the
usual configuration for a Karnaugh map; this map is
completely developed for the eight columns (eight
T states) and partially for the five rows (in order to
obtain simple boolean expressions, we introduce a

non-minimal coding and use only a small subset of
the 16 possible H3 : 0 states).
We therefore obtain a partial 7-variable Karnaugh

map, which is convenient enough for our simplifi-
cation needs. Recalling that the two half-maps (for
T2 = 0 and T2 = 1) are adjacent, we obtain nine blocks
in the Karnaugh map, a binary decision tree with nine
branches and the corresponding flowchart (Fig. 9(b)).
Writing the sub-program Tapegene does not require
additional instructions beyond those defined above.

4.6. Computing the head gene

As illustrated in Fig. 4(c), we have to keep in mind
that the head moves to the fight if the next head state
H + is equal to "-+", and to the left if H + is equal to
"0 +--" or "l +-". We therefore have to consider three
different situations which will be combined to obtain
the final microprogram calculating the next head state
H+:
• If the next head state H + is the hold state " t ' , the

head does not move and the cell keeps its "']'" state;
we therefore rewrite all the occurrences of H + = ~"
from the original state table of Fig. 4(b) in the new
Karnaugh map of Fig. lO(a). If the next state H +

D. Mange et al./Robotics and Autonomous Systems 22 (1997) 35-58 47

-> 0001

0 < - 010(]

1<- 110(]

0010

0 0000

H H3:0

X (A)
000 001 011 010

0 - - 1 T
100 101 111 110 T2:0

Cerr~al cell

(a)

-> 0001

0<- 0100

1<- 1100

00,10

0 0000

WH WH3:0

X (A) 0 - 1 W . T ~ 2 ..0 000 001 011 010 t00 101 111 110

o.. ~ _~ o..~,ot,,~
East neighbor

West height)or

(b)

H+

-> 000~

0<- 0100

1<- 1100

0010

0 0 0 0 ~

EH EH3:0

X (A)
000 001 011 010

0<:- 0<-

0 0 0 0

0 - ~ l El"
100 101 111 110 ET2:0

neighbor

Fig. 10. Head gene computation (sub-program Headgene): (a) Karnaugh map for the central cell; (b) Karnaugh map for the Wesl
neighboring cell; (c) Karnaugh map for the East neighboring cell.

in Fig. 4(b) is "--+", "0 ~---" or "1 +--", the head
moves (right or left) and therefore leaves the present
square, and the next state H + of the actual cell will
be "0". All the dashes of Fig. 4(b) become "don't
care" conditions (q~) in Fig. 10(a). Finally, if the
present H state is the quiescent "0" state, its next
value H + will depend on the next state of its two
West and East neighbors (WH+ and EH+).

• A first test is then performed on the West neigh-
bor. All occurrences of the next head state W H + =

are rewritten from the original state table of
Fig. 4(b), depending in that case on the W T 2 : 0
and W H 3 : 0 variables, in the new Karnaugh map of
Fig. 10(b) which completes Fig. 10(a). Except for
the q~-conditions, all other next states W H + pro-
duce the value H + = 0 in this new map. Finally,
if the West neighbor cell is itself in the quiescent
state WH = 0, a last test is performed on the East
neighbor.

• All the occurrences of the next head state E H + =
0 <--- or 1 ~-- are rewritten from the original state
table in the new Karnaugh map of Fig. 10(c), which
concludes the description of the next head state H +
of the central cell. Except for the q~-conditions, all
other next state E H + produce the value H + = 0.
The three Karnaugh maps of Figs. 10(a)-(c) may

be simplified and produce seven blocks each, that is a

binary decision tree with 21 branches (Fig. 11).
It is possible to introduce further, and more tedious

simplifications. As an example, the block defined by
W H 3 : 0 = 0010 in Fig. lO(b) requires a test on the
variable WH1 in the tree of Fig. 11. Such a test may
be suppressed for the following reason:
• If WH3 : 0 -- 0010, the West neighbor cell is in the

hold state WH = t and the next head state H + will
be 0.

• If this test is ignored, the microprogram will test
the East neighbor cell which is obviously in a qui-
escent state (EH--0) , producing the same final re-
sult: H + -- 0 (remember that the read/write head
has a single position on the tape).
If we suppress the above-mentioned test on the

WH1 variable, the final binary decision tree, as well
as the corresponding flowchart, consist of 20 branches
(Fig. 11). Writing the sub-program l-Ieadgene does
not require additional instructions beyond those de-
fined above.

4.7. Computing the genome

Cellular differentiation occurs, in our example, only
through the vertical coordinate which, for technical
reasons, is computed as a function of the coordinate
S Y of the preceding cell (the southern neighbor). From

48 D. Mange et al./Robotics and Autonomous Systems 22 (1997) 35-58

Heaa~e
Cerl'al cell

/

H3:O ~ T1 .0
WH3:2,WH0 WT1:0

West neighbor I-h. - • •
i

~O'- ~ WH3.O-0010

, ,

- - |

Fig. I1. Head gene computation: binary decision tree and flowcharts (sub-program Headgene).

Opgenome

I

T+

Fig. I2. Flowcharts of the genome operational part (sub-program Opgenome).

the description of Fig. 5, the two main genes Head-
gene for the head cells and Tapegene for the tape cells
can be discriminated by the single SYO variable. The
final flowchart for the operational part of the genome,
Opgenome, which includes the sub-programs Head-
gene and Tapegene, is illustrated in Fig. 12.

4.8. Physical configuration: The MICROTREE cell

The original specifications of our specialized Turing
machine, a parenthesis checker, allowed us to generate
five genes, realized by five sub-programs:

• The Xcoord and Ycoord genes, dedicated to the
computing of the coordinates, and the Initcond
gene, required for the calculation of the initial
conditions of both the tape states and head states,
The Xcoord and Initeond genes depend strongly
on the given example, in our case the short "(()"
expression.

• The Tapegene and Headgene, which calculate the
original state table of the parenthesis checker as
designed by Minsky. These genes are independent
of the chosen example and constitute the invariant
part of the final microprogram; they are differenti-
ated by the coordinate variable SYO and generate

D. Mange et al./Robotics and Autonomous Systems 22 (t997) 35-58 4 9

Noah

West o o East

tu

= S03:0 SI3:0

South

(a)

W13:0

NI3:0 NO3

SI3:0

(b)

El3:0

Fig. 13. MICROTREE cell: (a) four neighboring cells connection diagram; REG3 : 0: state register; (b) output variable NO3 example:
16 different sources programming capability.

the sub-program Opgenome, the operational part of
the genome.
Thus the dynamic part of our microprogram is ba-

sically complete. We must now define the static part
of the final microprogram, which will fix the connec-
tions between cells and realize the final physical con-
figuration of the cellular space.

Each cell is implemented as a new kind of
coarse-grained programmable logic network (field-
programmable gate array), called MICROTREE (for
tree of micro-instructions). Each MICROTREE cell
(Fig. 13(a)) has four neighbors (to the South, West,
North, and East). Four 4-bit busses enter the cell
from its neighbors (SI3 :0 from the South, W I 3 : 0
from the West, NI3 :0 from the North, and EI3 :0
from the East) and, correspondingly, four output
busses go out in the four cardinal directions (SO3:0
to the South, W O 3 : 0 to the West, N O 3 : 0 to the
North, and EO3 : 0 to the East).

Each MICROTREE cell has, therefore, 16 outputs
SO3 EO0. Each of these outputs can be pro-
grammed to take a value from one of the 16 possible
sources (Fig. 13(b)). For example, output NO3 can
take one of the following 16 values:
• the four bits R E G 3 : 0 of the state register REG;
• the four bits SI3 : 0 of the south input bus SI;

• the four bits WI3 : 0 of the west input bus WI;
• the four bits E I3 :0 of the east input bus El.

Note that it is impossible for NO3 to get the value
of one of the four bits NI3 :0 of the input bus corre-
sponding the same cardinal direction.

In our assembly language, a single assignment in-
struction is sufficient to perform this operation. The
mnemonic expression for this instruction is:

do VAROUT -- VARIN (8)

4.9. Global configuration

A physical configuration is global when it is re-
alized in all the MICROTREE cells of the array,
independently of the value of the coordinates (X
and/or Y).

For computing the initial conditions, we need a
boolean variable INIT (see the complete micropro-
gram in Fig. 17). This variable will be introduced in
the north side of the cellular space and must reach
each cell. We thus have the global configuration of
Fig. 14, described by an assignment instruction of
type (8):

do SOl : Nil (9)

50 D. Mange et al./Robotics and Autonomous Systems 22 (1997) 35-58

I N I T

IREG3:01

SOl=NIl

Fig. 14. Parenthesis checker: global configuration.

4,10. Local configuration

A physical configuration is local if it is realized by
a subset of the MICROTREE cells of the array. Such
a configuration depends therefore on the value of the
X and/or Y coordinates.

The architecture of our Turing machine (Fig. 5)
consists of two cellular rows which are uniform, i.e.,

characterized by cells with identical structure and be-
havior (Fig. 15):
• for SYO = 0 (Y = 1), the tape cells calculate

the tape state R E G 3 : 0 = T3:0 . According to
Figs. 9(b) and 11, bits of T3 : 0 are needed for the
calculation of T+ itself (but do not need any pro-
grammable connection) and for the calculation of
the next state H + of the central ceil. In this case
(Fig. 11), we need connections from the central
tape cell to the central head cell (Tl :0 via the bus
NO1:0) , from the West tape cell to the central head
cell (WT0 via the EO0 and NO3 busses, WTt via
the NOt bus), from the East tape cell to the central
head celt (ET0 via the WOO and NO2 busses, ET1
via the NO I bus). The corresponding assignment
instructions may be written as follows:

Tapeloealconfig :
d o N O 0 = R E G 0 (~ T 0)
do NOI = REGI (= TI)(--- W T I) (= ETI)
do EO0 = REG0 (~ WT0) (l 0)
do NO3 -- WI0 (~ WT0)
do WOO =- REG0 (~= ET0)
do NO2 = El0 (- ET0)

For SYO = I (Y - 0), the head cells calculate
the head state R E G 3 : 0 = H3:0 . According to
Figs. 9(b) and 11, bits of H 3 : 0 are needed for the
calculation of the next tape state T+ (H3 : 2 and H0

I
West cells ~ _ r 1 E a s t ceils

EOO REG0 (WHO) I ~ ~ ' ~ ' - " ~ ' ~ I J
EOI:REG2 (WH2) : I ~ ; - :

• . EO2-REG3 (WH3) I
Head cells RE-~-~"H3"O EO3-SI1 (WT1) I RI~G3:O=H3.O [WOO-REGO (EHO)

(svo-~) i ! L, t I I I
[~ =, I I I I WO2-REG3 (EH3)

t : "~ II I I WO3=SII (ET1)

(SO1-NI1-iNrr)/1~
SO2-REG2 (H2) J I , NCX~-REGO (TO)
SO3"REG3 (H3) I I II NOI-REGI ('rl)No2=,EIO (ErO)

NOI-REGI (WTI) J'11 ~II NO3-WIO (WT0) NO1-REGI (ETI)

WOO-REGO (ETO)
Tape(sYO=O)~ [REGal :0=WT3.t) EOO-REGO (WT0 r~ REG3:0-E'r~:o

L,
INIT

Fig. 15. Parenthesis checker: local conliguration.

D. Mange et al./Robotics and Autonomous Systems 22 (1997) 35-58 51

via the SO3:2 and SO0 busses) and for the calcu-
lation of the next state H + of the central cells. In
this last case, we need connections from the central
head cell itself (H 3 : 0 : n o programmable connec-
tion is needed), from the West head cell to the cen-
tral head cell (WH3 : 2, 0 via the EO2 : 0 bus, WT1
via the EO3 bus), from the East head cell to the cen-
tral head cell (EH3 : 2, 0 via the W O 2 : 0 bus, ET1
via the WO3 bus). The corresponding assignment
instructions may be written as follows:

Ycoordlocalconfig

1 ff I

Fig. 16. Flowcharts for Y coordinate and local configuration
calculation (Ycoordlocalconfig sub-program).

Headlocalconfig :
do SO0 = REG0 (~ H0)
do SO2 = REG2 (~ H2)
do SO3 : REG3 (-= H3)

do EO0 = REG0 (- WHO)
do EOI = REG2 (-= WH2)
do EO2 = REG3 (= WH3)
do EO3 = SII (___ WT1)

do WOO = REG0 (~ EH0)
do WOI = REG2 (-- EH2)
d o W O 2 = REG3 (-- EH3)
do WO3 = SII (-- ET1)

(11)

Given the characteristics of a MICROTREE cell
(Fig. 13(a)), we observe that routing the different
busses between head cells and tape cells is not a
trivial task; in fact, we remark that, except the north
side, we use all the input/output capabilities of the
MICROTREE head cells. A minor simplification,
such as that mentioned in Section 4.6 (WH1 test), is
of great interest, as the central cell may be indepen-
dent of the WHI variable, thus saving one crucial bus
connection.

The vertical coordinate SYO performs the dif-
ferentiation between the local configuration of tape
cells and head cells. It is therefore possible to add
to the previous Yeoord sub-program (Fig. 7(b))
the new Tapeloealeonfig and Headlocaleonfig sub-
programs determined above. We obtain then the final
sub-program (or gene) Ycoordiocalconfig (Fig. 16),
which combines the calculation of Y coordinate and
of the local configuration depending on this vari-
able. The realization of this flowchart does not re-
quire additional instructions beyond those defined
above.

4.11. Microprogram of the complete genome

The complete genome is represented by the final
flowchart Turinggenome of Fig. 17. It starts with clear
conditions assuring that:
• all the state registers of the array are set to 0 (REG =

0);
• the coordinates X and Y are set to 0 (X = 0, Y =

0).
The microprogram then executes the single global

configuration instruction (SOl = Ni l) and, for
I N I T = I, the left loop (initialization loop). If K is
the largest value for either the X or the Y coordinate
(according to Fig. 5, K = 6 in our example), the left-
hand loop must be executed at least K = 6 times: at
the start of the microprogram, or when a repair involv-
ing a change of coordinates occurs, the coordinates
are recomputed starting from the mother cell (with
WX, SY = 00). At least K executions of the left-hand
loop are necessary to ensure that the right-most (or
upper-most) cell computes the correct coordinates.
This computation occurs in the sub-programs Xcoord
and Ycoordlocaleonfig, and is immediately followed
by the calculation of the initial conditions (Initcond).

When the initial conditions have been computed
and/or recomputed after self-repair, it is possible to
set INIT = 0; the microprogram executes either the
middle or the right loop, depending on the value of
the G variable, the global clock signal charged with
synchronizing the Turing machine. Each rising edge
of G allows the transition from a present tape state T
or head state H to a next tape state T + or head state
H+.

The fight-hand loop, the operational part of the
genome (Opgenome), is executed once every period
of the global clock signal G. To assure the synchro-
nization of all the cells, tests are performed throughout

52 D. Mange et al./Robotics and Autonomous Systems 22 (1997) 35-58

Turinggenome
I

[REG=OI I 1
L x=0 I

I
n ,,.o I

[so l=N, I
. k
" l

~_ INIT~,NI1

Left loop: ~ Middle loop: G¢- O

Clear conditions

Global configuration

Opgenome

Fig. 17. Flowchart of the complete genome microprogram (Turinggenome).

the half-period when G = 0, but no assignment is
made until the rising edge of G (G = 0 ~ 1), when
all the registers REG (i.e., the H and T states of the
cells) are updated simultaneously.

5. A new f ie ld-programmable gate array based on
a binary decision machine

5.1. General description

While our long-term objective is the conception
of very large scale integrated circuits, we started
by realizing a demonstration system in which each
MICROTREE cell is embedded into a plastic con-
tainer called BIODULE (type 601) (Fig. i8) [10,15].

The MICROTREE cell consists essentially of a bi-
nary decision machine [16], executing the micropro-
grams wirtten using the following set of instructions,
defined above in the conception of the parenthesis
checker, plus the null instruction nop (no operation):

• i f VAR else LABEL (2)
• goto LABEL (3)
• do R1EG = DATA [on MASK] (7)
• do X -- DATA (4)
• do Y = DATA (6)
• do VAROUT -- VARIN (8)
• nop (12)

The state register REG and both coordinate registers
are 4-bit wide (REG3 : 0, X3 : 0, and Y3 : 0). The 4 bits
of MASK in expression (7) allow us to select which of
the bits of REG3 : 0 will be affected by the assignment.
By default, MASK = l I t 1 (all bits are affected).

The variables VAROUT correspond to the four car-
dinal output busses, for a total of 16 bits (Fig. 13(a)):

VAROUT E {SO3 : 0, WO3 : 0, NO3 : 0, EO3 : 0}

(13)

while the variables VARIN in expression (8) corre-
spond to the four cardinal input busses and the register
REG, for a total of 20 bits:

D. Mange et al,/Robotics and Autonomous Systems 22 (1997) 35-58 53

BYP G CLR' CK DOUT Y

:::::::::::::::::::::::::-:L: ::;-~:i::.::~:i:~:::~:~:-:]:!i:~&~

0 0 0 0 0 0

-- / o
ADR t' U l ' q , m ' t B " I I

REG
BIODULE 601 O CK COORD(X,Y)

0 0 0 0 0 0
BYP G CLR CK DIN SY

1 -
O
CK

] & ®

0 KJLL

binary decision machine, while the signal BYP (by-
pass), connecting all the cells of a column, is used for
self-repair.

The size of the artificial organism embedded in
an array of MICROTREE cells is limited in the first
place by the coordinate space (X = 0 t5, Y =
0 15, that is, a maximum of 256 cells in our cur-
rent implementation), and then by the size of the mem-
ory of the binary decision machine storing the genome
microprogram (1024 instructions).

An editor, a compiler for the assembly language,
and a loader [10,15] simplify the task of writing and
debugging the microprograms and generating the
genome's binary code, charged serially through the
DIN input of the mother cell.

5.2. Self-repair

Fig. 18. BIODULE 601 demonstration module including a
MICROTREE cell.

VARIN E {SI3 : 0, W I 3 : 0 , N I 3 : 0 , E I 3 : 0 ,

R E G 3 : 0 } (14)

remembering that VAROUT and VARIN can never
refer to the same cardinal direction (Fig. 13(b)).

The test variables VAR include the set VARIN and
the following additional variables:

VAR ~ {VARIN, WX3 : 0, S Y 3 : 0 , G} (15)

where G is a global variable, usually reserved for the
synchronization clock.

The coordinates are transmitted from cell to cell se-
rially, but are computed in parallel. Therefore, each
cell performs a series-to-parallel conversion on the
incoming coordinates W X and S Y of the western
and southern neighbors respectively, and a parallel-
to-series conversion of the coordinates X and Y it
computes and propagates. By default (that is, with the
external connections WX and S Y not connected), the
mother cell recognizes the values WX --- S Y = O.

The genome microprogram is also coded serially. It
enters through the DIN pin of the mother cell and is
then propagated through its DOUT pin, according to
the cellular division path determined by the user (as
in Fig. 3(b)).

The pins CK and CLR' are used for the propa-
gation of the clock signal and of the clear of the

In the BIODULES 601 (Fig. 18), the existence of
a fault is decided by the human user by pressing the
KILL button of a cell. Therefore, fault detection and
fault location, two features which will be indispensable
in the final system, where they will be implemented
using BIST (Built-In-Self-Test) techniques [1,7,21],
are not present in the BIODULES 601.

To implement self-repair, we have chosen, favoring
simplicity, the following process (Figs. 18 and 19):
• pressing the KILL button identifies the faulty cell

(the KILL light, normally green, becomes red);
• the entire column to which the faulty cell belongs is

considered faulty, and is deactivated (column X =
3 in Fig. 19; all the KILL lights become red);

• all the functions of the MICROTREE cell are shifted
by one column to the right.
Obviously, this process requires as many spare

columns, to the right of the array, as there are faulty
columns to repair (two spare columns in the example
of Fig. 19). It also implies some modifications to the
MICROTREE cell, so as to add the capability of by-
passing the faulty cell and shifting to the right all or
part of the original cellular array.

With the present and rather simple realization of our
parenthesis checker, self-repair may only occur during
the initialization process (left loop in Fig. 17). As soon
as the calculation of the genome has begun, it is no
longer possible to save intermediate results in case of
repair, and the computation process, i.e. the check of
parentheses, must be restarted.

54 D. Mange et al,/Robotics and Autonomous Systems 22 (1997) 35-58

X

New automaton New automaton
~11

Odginal automaton ~ ¢ Spare cells

I -> I I 0 I

I) I

L o !

m

I o I

1 2 (3) (4) 3 (5) 4 (6) 5

Faulty column

Fig. 19. Self-repair of a 10-cell parenthesis checker in a 14-BIODULE array.

x

i i

1 2 3 4 5

Daughter
automaton

Mother
automaton

Fig. 20. Self-reproduction of a 10-cell parenthesis checker in a 20-BIODULE array.

5.3. Self-reproduction

The self-reproduction of an artificial organism, for
example the specialized Turing machine of Fig. 3(a),
rests on two hypotheses: (I) there exists a sufficient
number of spare cells (unused cells at the upper side
of the array, at least 10 for our example) and (2) the
calculation of the coordinates produces a cycle (Y =
1 --+ 0 -+ 1 in Fig. 20).

As the same pattern of coordinates produces the
same pattern of genes (with the initial conditions),
self-reproduction can be easily accomplished if the

microprogram of the genome, associated to the ho-
mogeneous network of cells, produces several occur-
rences of the basic pattern of coordinates (Y = 1 --,
2 in Fig. 3(a)). In our example, the repetition of the
vertical coordinate pattern, i.e., the production of the
pattern Y = 1 ~ 0 --+ l --+ 0 (Fig. 20), produces
one copy, the daughter automaton, of the original or
mother automaton. Given a sufficiently large space,
the self-reproduction process can be repeated for any
number of specimens in the Y axis (remember that X
axis is reserved for self-repair and/or for a possible
growth of the Turing machine).

D. Mange et al./Robotics and Autonomous Systems 22 (1997) 35-58 55

With a sufficient number of MICROTREE cells, it is
obviously possible to combine self-repair (or growth)
toward the X direction and self-reproduction toward
the Y direction.

6. Conclusions

6.1. Results

The main result of our research is the development
of a new family of coarse-grained FPGAs called MI-
CROTREE and based on a binary decision machine
capable of executing a microprogram of up to 1024
instructions. The original features of this FPGA are
essentially:
• a completely homogeneous organization of the cel-

lular array;
• an integration of the routing into each cell, both for

the short- and the long-distance (bus) connections;
• a sequential execution of microprograms methodi-

cally derived from a chosen representation, the bi-
nary decision tree or diagram.
Our FPGA satisfies all the general hypotheses de-

scribed in von Neumann's automaton (Section 2.1),
as well as the three features of the Embryonics project
(Section 3): multicellular organization, cellular dif-
ferentiation, and cellular division. The MICROTREE
cell, itself realized with a commercial FPGA and a
RAM, was finally embedded into a demonstration
module called BIODULE 601 and we showed that an
array of BIODULES 601 is capable of self-repair and
self-reproduction.

The trivial applications of the MICROTREE family
are those in which all the cells in the array contain the
same gene: the genome and the gene then become in-
distinguishable and the calculation of the coordinates
is superfluous. In this case, the cellular array is not
limited in space. One-dimensional (Wolfram's) and
two-dimensional (life, Langton's loop, etc.) uniform
cellular automata are natural candidates for this kind
of realization. The non-trivial applications are those in
which the cells of an array have different genes: the
genome is then a collection of genes, and the coor-
dinates become necessary. The cellular array is then
limited by the coordinate space (16 × 16 -- 256 cells
in the proposed realization). One-dimensional (like the
example of a random number generator described in

[18]) and two-dimensional non-uniform cellular au-
tomata (like the present Turing machine) fall within
this category. Let us also mention that the realization
of uniform cellular automata with a pre-determined
initial state is an important special case which also re-
quires separate genes and a coordinate system: the cel-
lular realization of our parenthesis checker (head row
or tape row), represents an application of this kind.

In the first phase of the Embryonics project [19,20,
29], we have proposed a first kind of BIODULE (type
600). The main drawback of this realization was the
lack of balance between the application layer (a cell
based on a multiplexer with a single control variable,
realizing the universal function of a single variable)
and the configuration layers (a processor storing and
interpreting the genome program). In the new MI-
CROTREE cell we have introduced (BIODULE type
60l), the application and configuration layers are in-
distinguishable. A single microprogram, describing
the entire genome, realizes at the same time the op-
erations described by the specifications (the check of
parentheses, in our example) and the control of these
actions (the calculation of the coordinates, the differ-
entiation of the genes and of the physical configura-
tion). By accepting a sacrifice in execution speed (the
binary decision trees are no longer arrays of multi-
plexers working in parallel, but rather microprograms
executed sequentially), we obtain a considerable gain
in computational power (1024 executable instructions
per cell instead of a multiplexer, equivalent to a single
test instruction).

6.2. Historical and theoretical perspectives

Coming back to biology, it should be recalled that
the cell is the smallest part of a living being con-
taining the complete blueprint of the creature, the
genome. On the basis of this definition, it has been
shown that von Neumann's automaton is a unicellu-

lar organism, since it contains a single copy of the
genome, i.e., the description of the universal construc-
tor and computer D(Uconst + Ucomp) (Figs. l(c) and
21 (a)). Each element of the automaton is thus a part
of the cell, or, in biological terms, a molecule. Von
Neumann's automaton, therefore, is a molecular au-

tomaton; universal construction and self-reproduction
are complex processes, as they are caused by the inter-
action of thousands of elements, the molecules, each

56 D. Mange et al./Robotics and Autonomous Systems 22 (1997) 35-58

i

Molecule Genome
(a) (b)

Fig. 21. Comparison between von Neumann's molecular automaton and the new multicellular automaton. (a) Von Neumann'~
automaton is a unicellular artificial organism, containing a single copy of the genome+ Each element of this automaton, a finite slate
machine with 29 states, is thus a part of the unicellular organism, i.e. a molecule: this automaton is molecular. Each square in the
figure symbolicaJly represents an element, and thus a molecule. (b) Our automaton contains as many copies of the genome as there
are elements (10 in the case of the parenthesis checker). Each element of this automaton, a binary decision machine with the genome
memory, is a cell in the biological sense: this automaton is multicellular.

one realized by a finite-state machine with 29 states.

In contrast, the automaton we propose is a multicellu-

lar organism, as each of its elements contains a copy

of the genome (10 copies in the case of the Turing

machine of Figs. 3(b) and 21(b)). Each element of

an automaton is thus a cell in the biological sense,

and our automaton is truly a multicellular automaton.

Self-reproduction and self-repair are simple, even triv-

ial, processes, as the MICROTREE cell has been con-

ceived especially to carry out globally the operations

of cellular differentiation and division.

The property of universal computation, that is, the

possibil i ty of realizing, repairing, and reproducing a

universal Turing machine, can be verified with the MI-

CROTREE cell subject to the following limitations:

• The setting of the initial conditions is l imited by the
finite dimensions of the X coordinate register (X =

0 15); however, yon Neumann and his succes-

sors assumed that the initial configuration was given
a priori, and thus this l imitation has no theoretical

significance.
• A universal Turing machine, as described by

Minsky [22], obviously requires a redesign of our
operative genome O p g e n o m e (Section 4.7). The

new design involves a larger number of variables
for calculating the head and tape states (H,T) and

thus a new and more complex architecture of the
cellular space (Fig. 15) and /o r of the basic MI-
CROTREE cell as designed for our simple example

of a parenthesis checker.
The property of universal construction poses prob-

lems of a different nature, since it requires (always ac-
cording to von Neumann) that MICROTREE cells be

able to implement artificial organisms of any dimen-

sion. The finite dimensions of our ceils (memories,

registers, etc.) are, for the moment, preventing us from

meeting this requirement, a challenge which remains

one of our main concerns. We will therefore be led to

the design of a new cell with a flexible architecture,
whose specifications will be part of the genome. The

biological inspiration then becomes straightforward:

as the interpreter of the genome, the ribosome, is it-

self built by the instructions of a first part of the DNA

(the ribosomic DNA), we will be studying a two-stage

process (Fig. 22):

• In a first stage, a ribosomic genome will program

a fine-grained FPGA, for example a multiplexer-

based or MUXTREE FPGA [19,20,29]. We thus

obtain the RAM and the binary decision ma-
chine which make up a MICROTREE cell with an

~ e ~

/ I I t \

Cellular level
(~. MICROTREE)

Molecular level
(MICROTRE=
T_, MUXTREE)

I molecule
(MUXTREE)

Fig. 22. Two-level hierarchical organization tot universal
construction.

D. Mange et al./Robotics and Autonomous Systems 22 (1997) 35-58 57

I I ~ ~ _ , ~ r ~ r , I I l

~. HOX genes

~, Switch genes
~ Functional genes

Fig. 23. The artificial genome of the parenthesis checker.

architecture appropriate to our example: this is the
molecular level, where each FPGA cell is equiva-
lent to a molecule, without any genome memory.

• In a second stage, the operative genome will pro-
gram the MICROTREE cell in order to execute the
given specifications: this is the cellular level, where
each cell is equivalent to a living cell, with genome
memory and interpretation.
We hope that von Neumann's dream can become a

hardware reality in a near future.

6.3. A bridge between molecular biology and

computer science

As engineers, we have derived our inspiration from
the rough organization of multicellular living beings
to propose a realistic artificial object. We now want to
offer to interested biologists the following considera-
tions:
• the contents of the random access memory of the

MICROTREE cell, i.e. the genome, are written in
the classical form of a sequential program, compris-
ing a series of instructions;

• in order to limit the number of connections, this
program is copied from one cell to another serially
(bit by bit); the genome can thus be seen in the form
of a linear succession of bits.
We thus obtain a sort of artificial genome in the

form of a string of binary bases or bits (Fig. 23). In
this genome, we can identify:
• coordinate genes (Xcoord, Ycoordloealcordig,

Initcond), which handle the computation of the
coordinates and the calculation of the initial con-
ditions; these genes are similar to the homeoboxes

or HOX genes recently found to define the general
architecture of living beings [32];

• switch genes (G and SYO tests), used to express the
functional genes according to the cell 's position in

the organism (that is, according to the value of the
cell 's coordinates [9]);

• funct ional genes, producing the operative functions
of our artificial organism (i.e. calculating head and
tape states), analogous to the genes which constitute
the coding part of the natural genome.
The existence of these different categories of genes

is a consequence of purely logical needs deriving from
the conception of our multicellular automaton. We
hope that this bridge between computer science and
molecular biology could perhaps bring something to
biology itself.

Acknowledgements

This work was supported by the Swiss National
Science Foundation, grant Nos. 21-36200.92 and 20-
39391.93.

References

[IIM. Abramovici and C. Stroud, No-overhead BIST for
FPGAs, in: Proc. Ist IEEE Int. On-line Testing Workshop
(1995) 90-92.

[2] E.R. Banks, Universality in cellular automata, in: IEEE
Conf. Record of l l th Ann. Symp. on Switching and
Automata Theory (1970) 194--215.

[3] A.W. Burks, ed., Essays on Cellular Automata (Univ. of
Illinois Press, Urbana, 1970).

[4] J.Byl, Self-reproduction in small cellular automata.
Physica D 34 (1989) 295-299.

[5] E. Codd, Cellular Automata (Academic Press, New York,
1968).

[6] H. de Garis, Evolvable hardware, in: Proc. Artificial Neural
Nets and Genetic Algorithms (1993) 441-449.

[7] S. Durand and C. Piguet, FPGA with self-repair
capabilities, in Proc. FPGA'94, 2nd Int. ACM/SIGDA
Workshop on Field-Programmable Gate Arrays (1994)
1--6.

I8] R.A. Freitas and W.P. Gilbreath, eds, Advanced
Automation for space Missions, fNASA Conference
Publication 2255, 1982).

58 D. Mange et al./Robotics and Autonomous Systems 22 (t997) 35-58

[9] S.E Gilbert, Developmental Biology, 3rd ed, (Sinauer
Associates, Sunderland, MA, 1991.

[10l M. Goeke, BIODULE 2: documentation technique, Tech.
Rep., Logic Systems Laboratory, Swiss Federal Institute
of Technology, Lausanne, 1995.

[11] D. Hofstadter, Godel, Escher, Bach (Basic Books, New
York, 1979).

[12] J.G. Kemeny, Man viewed as a machine, Scientij~c
American 192 (1995) 58-67.

|13] C.G. Langton, Self-reproduction in cellular automata,
Physica D 10 (1984) 135-144.

[14] C. Lee, Synthesis of a cellular computer, in: J.J. Tou, ed.,
Applied Automata Theory (Academic Press, London, 1968)
217-234.

[15] D. Madon, BIODULE 2: description et utilisation, Tech.
Rep., Logic Systems Laboratory, Swiss Federal Institute
of Technology, Lausanne, 1995.

[16] D. Mange, Microprogrammed Systems: An Introduction to
Firmware Theory (Champman & Hall, London, 1992).

[t7] D. Mange, Teaching firmware as a bridge between
hardware and software, IEEE Trans. Education 36 (1)
(1993) 152-157.

[18] D. Mange, M. Goeke, D. Madon, A. Stauffer, G. Tempesti
and S. Durand, Embryonics: A new family of coarse-
grained field-programmable gate array with self-repair and
self-reproducing properties, in: E. Sanchez, M. Tomassini,
eds., Towards Evolvable Hardware. Lecture Notes in
Computer Science (Springer, Berlin, 1996) 197-220.

[19] D. Mange, E. Sanchez, A Stauffer, G. Tempesti, S. Durand,
R Marchal and C. Piguet, Embryonics: A new methodology
for designing field-programmable gate arrays with self-
repair and self-reproducing properties, Tech. Rep. 95/152,
Computer Science Department, Swiss Federal Institute of
Technology, Lausanne, October 1995, submitted.

[20] R Marchal and A. Stauffer, Binary decision diagram
oriented FPGAs, in: Proc. FPGA'94, 2nd Int. ACM/
SIGDA Workshop on b~eld-Programmable Gate Arrays
(1994) 1-10.

[2 !] E.J. McCluskey, Logic Design principles with Emphasis on
Testable Semicustom Circuits (Prentice-Hall, Englewood
Cliffs, NJ, 1986).

[22] M.L Minsky, Computation: Finite and Infinite Machines
(Prentice-Hall, Englewood Cliffs, NJ, 1967).

[23] H.C. Morris, Typogenetics: A logic for artificial life,
in: C.G. Langton, ed., Artificial Life (Addison-Wesley,
Redwood City, 1988) 369-395.

[241 E Nourai and R.S. Kashef, A universal four-state cellular
computer, IEEE Trans, Computers C-24 (1975) 766-776.

[25] J.-Y. Pettier, M. Sipper and J. Zahnd, Toward a viable,
self-reproducing universal computer, Physica D 97 (1966)
335-352.

[26] R. Ransom, Computers and Emb~os (Wiley, Chichester,
1981).

[27] J.A. Reggia, S.L. Armentrout, H.-H. Chou and Y. Peng,
Simple systems that exhibit self-directed replication,
Science 259 (1993) 1282-1287.

[28] J. Signorini, Complex computing with cellular automata.
Springer Proceedings in Physics 46 (1990) 57-72.

[29] A. Stauffer, D. Mange, E. Sanchez, G. Tempesti, S.
Durand, R Marchal and C. Piguet, Embryonics: towards
new design methodologies for circuits with biological-
like properties, in: Proc~ Int. Workshop on Logic and
Architecture Synthesis~ Grenoble (1995) 299-306.

[30] G. Tempesti, A new self-reproducing cellular automaton
capable of construction and computation, in: Lecture Notes
in Art![~cial Intelligence, Vol. 929 (Springer. Berlin, 1995)
555-563.

[31] J. von Neumann, The Theor 3' o[Self-Reproducing Automata
(Univ. of Illinois Press, Urbana, 1966).

[32] J.D. Watson, N.H. Hopkins, J.W. Roberts, J. Argetsinger
Steitz and A.M. Weiner, Molecular Biology of the Gene,
(Benjamin/Cummings, Menlo Park, 1987).

Daniel Mange.

?/

:iiiii~:i

Andr~ Stauffer.

Gianluca Tempesti.

Dominik Madon.

