

ea of
lopment
l sys-
anical
e., the
ly to

ngen-
paper
, and
 array

 bio-
e bio-
n and

ted in

.

SELF-REPLICATING AND SELF-REPAIRING
MULTICELLULAR AUTOMATA

Gianluca Tempesti†, Daniel Mange, André Stauffer
Logic Systems Laboratory

Swiss Federal Institute of Technology
CH-1015 Lausanne, Switzerland

Abstract

Biological organisms are among the most intricate structures known to
man, exhibiting highly complex behavior through the massively parallel coop-
eration of numerous relatively simple elements, the cells. As the development
of computing systems approaches levels of complexity such that their synthesis
begins to push the limits of human intelligence, engineers are starting to seek
inspiration in nature for the design of computing systems, both at the software
and at the hardware levels. This paper will present one such endeavor, notably
an attempt to draw inspiration from biology in the design of a novel digital cir-
cuit: a field-programmable gate array (FPGA). This reconfigurable logic circuit
will be endowed with two features motivated and guided by the behavior of
biological systems: self-replication and self-repair.

1 Introduction

Biological inspiration in the design of artificial machines is not a new concept: the id
robots and mechanical automata as man-like artificial creatures predates even the deve
of the first computers. With the advent of electronics, the attempts to imitate biologica
tems in computing machines did not stop, even if their focus shifted from the mech
world to the realm of information: since the physical substrate of electronic machines (i.
hardware) is not easily modifiable, biological inspiration was applied almost exclusive
information (i.e., the software).

Recent technological advances, in the form of programmable logic circuits, have e
dered a re-evaluation of biological inspiration in the design of computer hardware. This
introduces an attempt at exploiting this kind of inspiration in the design of digital circuits
more particularly of one such programmable logic device, a field-programmable gate
(FPGA) known as MuxTree (for tree of multiplexers).

The next section will contain an overview of our overall approach to the design of
inspired hardware in general and of ontogenetic circuits (that is, circuits inspired by th
logical processes involved in the development of a single organism, e.g., cellular divisio
cellular differentiation) in particular, introducing the Embryonics (for embryonic electronics)
project. We will then describe in more detail the two bio-inspired features we implemen
our FPGA circuit, before concluding with a short analysis of our results.

† Corresponding author. Phone: +41-21-6932676. Fax: +41-21-6933705. E-mail: tempesti@di.epfl.ch
Self-Replicating and Self-Repairing Multicellular Automata Page 1

Gianluca Tempesti
Text Box
Artificial Life. Vol. 4, No. 3, Summer 1998, pp. 259-282.

wn as

at of
3]. As
project
ial neu-

s

mong
. Typi-
able of

isting
ever,
ocesses
from a

n-

ell
 func-

on in

s,
od.
ms,

a
most
aral-
tion

ech-
. The
f natu-
 cells.
ion of
 iden-

ifted
r engi-

y the

as bio-
ed on

al
ul bio-
s:
2 Bio-Inspired Hardware and the Embryonics Project

The work presented in this paper is part of a more general research project, kno
Embryonics, which aims at establishing a bridge between the world of biology and th
electronics, and in particular between biological organisms and digital circuits [19, 20, 3
the possible intersections between these two worlds are manifold, so the Embryonics
advances along more than one research axis, investigating domains as diverse as artific
ral networks [10] and evolutionary algorithms [21].

At the core of the project lies the POE model [27], which classifies bio-inspired system
along three axes: phylogeny, ontogeny, and epigenesis. Along the phylogenetic axis we find
systems inspired by the processes underlying the evolution of species through time. A
the best-known examples of such systems are genetic and evolutionary algorithms [28]
cal examples of epigenetic systems, inspired by those biological systems which are cap
learning (e.g., the nervous and endocrine systems), are artificial neural networks [23].

The phylogenetic and epigenetic axes of the POE model cover the majority of ex
bio-inspired systems. The development of a multicellular biological organism, how
involves a set of processes which do not belong to either of these two axes. These pr
correspond to the growth of the organism, that is, to the development of an organism
single mother cell (the zygote) to a full-blown adult. The zygote divides, each offspring co
taining a copy of the genome (cellular division). This process continues (each new c
divides, creating new offspring, and so on), and each newly formed cell acquires a given
tionality (i.e., liver cell, epidermal cell, etc.) depending on its surroundings, i.e., its positi
relation to its neighbors (cellular differentiation). Ontogeny includes all these processe
which determine the development of an individual organism from the embryo to adultho

Cellular division is therefore a key mechanism in the growth of multicellular organis
impressive examples of massively parallel systems: the 6x1013 cells of a human body, each
relatively simple element, work in parallel to accomplish extremely complex tasks (the
outstanding being, of course, intelligence). If we consider the difficulty of programming p
lel computers (a difficulty that has led to a decline in their popularity), biological inspira
could provide some relevant insights on how to handle massive parallelism in silicon.

The work presented in this paper is concerned with the use of biologically-inspired m
anisms in the synthesis of digital circuits, and draws inspiration from two distinct sources
first, as we have seen, is the biological mechanism of ontogeny: the complex behavior o
ral organisms derives from the parallel operation of a multitude of simple elements, the
The second source of inspiration for our work is von Neumann’s concept of self-replicat
an universal computer, a mechanism which allows for the automatic creation of multiple
tical copies of a machine from a single initial copy.

2.1 Von Neumann’s Universal Constructor

The field of bio-inspired digital hardware was pioneered by John von Neumann. A g
mathematician and one of the leading figures in the development of the field of compute
neering, von Neumann dedicated the final years of his life on what he called the theory of
automata [36]. This research, interrupted by his untimely death in 1957, was inspired b
parallel between artificial automata, of which the paramount example are computers, and nat-
ural automata such as the nervous system, evolving organisms, etc.

Von Neumann conceived of a set of machines capable of many of the same feats
logical systems: evolution, learning, self-replication, healing, etc. His approach was bas
the development of self-replicating machines, that is, automata capable of producing identic
copies of themselves. Von Neumann identified a set of criteria to be met to obtain usef
logical-like behavior in artificial machines. These criteria rested on two basic assumption
Self-Replicating and Self-Repairing Multicellular Automata Page 2

so

-

eoreti-

at-

es

ating
evel-
rdware
e label

more
, bio-
 34].
vent of

d to be

ased

.
 logic
 these
f bio-
echa-

ploits
 self-

f the
ct.

re dif-
rrays
ever, in
n struc-
sing,

ll, for
tially
anism,
s.
• Self-replication should be a special case of construction universality. That is, the self-
replicating machines should be able not only to create copies of themselves, but al
to construct any other machine, given its description.

• The self-replicating machines should be universal computers, that is, capable of exe-
cuting any finite (but arbitrarily large) program. A class of automata capable of meet
ing this requirement was known to von Neumann: universal Turing machines [12].

Regrettably, the only machine von Neumann developed to any great extent was a th
cal model known as the universal constructor [5, 7, 25, 36], implemented using the mathem
ical framework of cellular automata (CA) [37]. Nevertheless, his theory of automata provid
even today a firm foundation for the development of bio-inspired systems.

2.2 Field-Programmable Gate Arrays

Von Neumann’s universal constructor was probably the first example of self-replic
computer hardware. Unfortunately, electronic technology in the fifties did not allow the d
opment of so complex a machine. As a consequence, research on self-replicating ha
waned for several years. In the eighties, bio-inspiration gained new momentum under th
of artificial life, a research field pioneered by Christopher Langton which is attracting
and more interest in the scientific community. Under the impulse of new technology
inspired hardware is also finally reaching the stage of physical realization [8, 11, 14, 19,

The key technology that today allows the development of such approaches is the ad
programmable logic devices, usually referred to as field-programmable gate arrays (FPGAs)
[4, 35]. These devices consist of two-dimensional arrays of identical elements, designe
able to implement different functions, depending on the value of their configuration, a string
of bits defined by the user at run-time. The size of an FPGA element (known as its grain) can
vary considerably from one device to the next, ranging from complex look-up table b
architectures (coarse grain) to much smaller hard-wired elements (fine grain). The elements
are connected to each other through a connection network which is itself programmable

A hardware designer can use an FPGA to implement just about any kind of digital
circuit by defining the functionality of each element as well as the connections between
elements at run-time. Therefore, they are the ideal platform for the development o
inspired hardware, which requires that the layout of the circuit be modified through m
nisms such as self-replication, evolution, or healing (self-repair).

The goal of the work presented herein is to develop an FPGA architecture which ex
biologically-inspired mechanisms to introduce two novel features: self-replication and
repair. The resulting circuit, a very fine-grained FPGA called MuxTree [19, 32, 33], was cre-
ated with a specific application in mind: its use as a platform for the implementation o
complex bio-inspired structures we developed in the framework of the Embryonics proje

2.3 Ontogenetic Hardware

The two sources of inspiration we described (ontogeny and von Neumann’s work) a
ferent in very fundamental way. Both rely on a mechanism of self-replication to obtain a
of elements which can be seen as processors, all executing an identical program. How
von Neumann’s case, the processors are universal Turing machines, and are identical i
ture as well as in functionality: the phenomenon of cellular differentiation is entirely mis
and the whole system can be seen as a self-replicating unicellular organism. In nature, cells
are different in structure and functionality (the appearance and behavior of a liver ce
example, are considerably different from that of an epidermal cell), but any cell is poten
capable of replacing any other cell because it contains the description of the entire org
i.e., the genome. Cellular differentiation is therefore at the very core of biological system
Self-Replicating and Self-Repairing Multicellular Automata Page 3

s: our
ave an
are)

realiza-
cess-
e). As

ogical
enetic

elop-
 bio-
 to the

o

m,
in-
se

 as a
l must
e same
al cir-

ce each
iration,
organ-
l: since
hus, if

eated by
uence,
ssor in
des an
 a set
l to all

cessors
).
ation
cop-
roces-
er, this
ocess-
uts of
In Embryonics, we developed a solution that tries to integrate the two approache
system consists of an array of artificial cells implemented by small processors which h
identical structure (the same hardware layout) but different functionality (different softw
[17, 18, 19, 33]. Our approach to creating ontogenetic hardware is thus based on the
tion of computing systems (the artificial organisms) using an array of relatively small pro
ing elements (the artificial cells), each executing the same program (the artificial genom
we will see, this approach allows us not only to respect the basic definitions of a biol
cell, but also to exploit some of the more specialized mechanisms on which the ontog
development of a cell is based.

2.3.1 The Artificial Organism

By demonstrating that it is possible to modify hardware using information, the dev
ment of FPGA circuits proved the feasibility of creating computer hardware inspired by
logical ontogeny. To find a practical approach to the design of such systems, we turned
essential features of biological organisms:

• In biology, an organism is a three-dimensional array of cells, all working in parallel
to give rise to global processes (i.e., processes involving the entire organism). T
respect the biological analogy, our artificial organism will be a two-dimensional array
of elements working in parallel to achieve a global task, i.e., a given application.

• In biology, each cell contains the entire genome, that is, the function of every cell in
the organism. To maintain the analogy between the genome and a computer progra
we must regard the elements of our electronic organism as processors, each conta
ing the same program. No single cell uses the entire genome, accessing only tho
portions needed for its function. Similarly, no single processor will execute all its
program, but access a subset determined by its position within the array.

Drawing inspiration from biological organisms has thus led us to define our organism
two-dimensional array of processing elements, all identical in structure (since each cel
be able to execute any subset of the genome) and each executing a different part of th
program. Such a system might not seem very efficient from the standpoint of convention
cuit design: storing a copy of the genome program in each processor is redundant, sin
processor will only execute a subset. However, by accepting the weaknesses of bio-insp
we can also partake of its strengths. One of the most interesting features of biological
isms is their robustness, a consequence of the same redundancy which we find wastefu
each cell contains a copy of the entire genome, it can theoretically replace any other. T
one or more cells die as a consequence of a trauma (e.g., a wound), they can be recr
any other cell. By analogy, if one or more of our processors should “die” (as a conseq
for example, of a hardware fault), they can theoretically be replaced by any other proce
the array. The redundancy introduced by the multiple copies of the genome thus provi
intrinsic support for self-repair, one of the main objectives of our research: by providing
of spare cells (i.e., processors that are inactive during normal operation, but are identica
others and contain the genome), we can (Fig. 1) reconfigure the array around faulty pro
(of course, as in living beings, too many dead cells will cause the death of the organism

Moreover, if the function of a cell depends on its coordinates, the task of self-replic
is greatly simplified: by allowing our coordinates to cycle (Fig. 2) we can obtain multiple
ies of an organism with a single copy of the program (provided, of course, that enough p
sors are available). Depending on the application and on the requirements of the us
feature can be useful either by providing increased performance (multiple organisms pr
ing different data in parallel) or by introducing an additional level of robustness (the outp
multiple organisms processing the same data can be compared to detect errors).
Self-Replicating and Self-Repairing Multicellular Automata Page 4

ic fea-
nt our

 mecha-

2.3.2 The Artificial Cell

Keeping in mind the requirements of the organism, we can now determine the bas
tures of our electronic cell. At the hardware level, all cells must be identical: since we wa
organism to be reprogrammable, we cannot fix a priori the functionality of our cell. In addi-
tion, it has to be able to store the genome program with a coordinate-dependent access
nism. The minimal features of our cells must therefore include (Fig. 3):

• A memory of configurable size to store the genome.

• An [X,Y] coordinate system, to allow the cell to find its position within the array,
and thus its function.

• An interpreter to read and execute the genome.

• An application-dependent functional unit for data processing.

• A set of connections handled by a routing unit.

1,3

(A) (B)

2,3 3,3 SPR

SPR3,22,21,2

1,1 2,1 3,2 SPR

1,3 XXX 2,3 3,3

3,2XXX2,21,2

1,1 2,1 3,2 SPR

SPARE CELL
ACTIVE CELL FAULTY CELL

ORGANISM

Figure 1: The electronic organism with no faults (A) and after reconfiguration (B).

1,2 2,2 3,2

3,12,11,1

1,2 2,2 3,2

3,12,11,1

1,2 2,2 3,2

3,12,11,1

1,2 2,2 3,2

3,12,11,1

1,2 2,2 3,2

3,12,11,1

1,2 2,2 3,2

3,12,11,1

Figure 2: Multiple copies of the organism through coordinate cycling.

ROUTING
UNIT

GENOME

MEMORY

FUNC

UNIT

INTERPRETER

X,Y
COORDS

Figure 3: Structure of an electronic cell.
Self-Replicating and Self-Repairing Multicellular Automata Page 5

e (the
theo-
stems
m the
llows

of the
 prop-
large

isters)
ersal

gical

ly, we
yer:
alogy
 pro-

rmore,
e) do
unlike
ystem

t, we

iolog-
rder
n of a

.

.

r arti-
 large
ire a

This cell is designed as a single element in a two-dimensional array of any finite siz
only limitation being the size of the coordinate registers). While the functional unit can
retically be of any size and structure, biological organisms are a powerful example of sy
whose complex behavior is derived not from the complexity of each component, but fro
parallel operation of many simple elements. We aim to show that biological inspiration a
us, without excessive difficulty, to design complex systems based on very simple cells.

To demonstrate our cellular system, we designed a prototype, known as MicTree [17, 19],
and used it to implement a set of applications which, while relatively simple because
small number of available cells, are nevertheless interesting in that they exhibit both the
erties of self-repair (if spare cells are available) and self-replication (if the array is
enough). The main limitation to their complexity is the fixed size of our cells: assigning a pri-
ori a maximum size for their components (e.g., its genome memory and coordinate reg
proved to be too restrictive to the versatility of the system. In order to obtain a truly univ
computing machine, we need to tailor the components of the cell to the application.

Once again, biology provides a possible solution: the physical structure of a biolo
cell is determined by chemical processes occurring at the molecular level. After artificial
organisms and artificial cells, we now need to define our artificial molecules. Fortunate
are already familiar with a type of circuit capable of implementing our molecular la
FPGAs. Using programmable logic as our molecular level allows us to maintain the an
with biology: whereas a living cell consists of a three-dimensional array of molecules, a
cessor consists of a two-dimensional array of programmable logic elements. Furthe
since in biology the most complex mechanisms of the cellular layer (notably, the genom
not concern the molecular layer, the structure of our electronic molecule need not be
that of conventional FPGA logic elements. We are thus confronted with a three-layer s
(Fig. 4), summarized in Table 1.

2.3.3 The Artificial Molecule

In order to design an FPGA tailored for the requirements of the Embryonics projec
needed to introduce two biologically-inspired features: self-replication and self-repair.

The first feature is directly related to von Neumann’s machine and is at the core of b
ical inspiration in Embryonics, since it allows the creation of arrays of artificial cells. In o
to achieve a physical realization of von Neumann’s machine, that is, the self-replicatio
universal computer, our system requires the following capabilities:

• It should construct multiple copies of a machine from the description of a single
specimen. Ideally, the machines themselves should generate and direct the process

• The process should be applicable to machines capable of executing any given task

• As a corollary, the process should be applicable to machines of any given size.

Our task in designing a self-replicating FPGA should therefore be obvious: since ou
ficial cells are indeed machines capable of executing any given task given a sufficiently
memory, in order to fulfill the requirements laid out by von Neumann our FPGA will requ
mechanism capable of constructing multiple copies from the description of a single cell.

Biology Electronics

Multicellular Organism Parallel computer system

Cell Processor

Molecule FPGA element

Table 1: Analogies between biological and electronic systems in Embryonics.
Self-Replicating and Self-Repairing Multicellular Automata Page 6

ptions,
roach,

a-
enever

ann’s
ns:

Self-repair, on the other hand, depends on a somewhat different set of assum
related more to engineering than to biology. In biology, as well as in von Neumann’s app
self-repair is achieved through the replacement of faulty cells. As we have seen, such a mech
nism is present in our machines: faulty cells are replaced by identical spare cells wh
necessary. Introducing self-repair in our FPGA is the equivalent of cicatrization at the molecu-
lar level, a phenomenon which has no direct parallel in either biology or in von Neum
work but is extremely interesting from an engineer’s point of view for a number of reaso

RU
GM

FU
1,1

INT RU
GM

FU
2,1

INT

RU
GM

FU
1,2

INT RU
GM

FU
2,2

INT

RU
GM

FU
1,1

INT RU
GM

FU
2,1

INT

RU
GM

FU
1,2

INT RU
GM

FU
2,2

INT

ORGANISM

COPY 1

ORGANISM

COPY 2

(A)

(B)

(C)

Figure 4: The three-level ontogenetic hardware: (A) organism (system) level, (B) cellular (processor)
level, and (C) molecular (FPGA) level.
Self-Replicating and Self-Repairing Multicellular Automata Page 7

-

-

lt
If
e

-repair
ecting

e).
that is,
ay. As
y faults

f

tional
ill be
eration
tively
 time

by the

 chal-
logic

, the
articu-
lf-rep-

ent
ngton
ellular
 com-

n’s.
sheath
irecting
culates

ance

e parent
ed, the
• A two-level self-repair system is likely to be more versatile and powerful than a sin-
gle-level one. Self-repair at the molecular level implies that we will not need to sacri
fice an entire cell (and thus a large amount of programmable logic) for every fault.

• Ideally, self-repair should be transparent to the user, occurring while the circuit is
operating. Such a requirement is more likely to be fulfilled through dedicated hard
ware, and therefore at the molecular level.

• Self-repair mechanisms, and particularly the self-test mechanisms involved in fau
detection, are very much dependent on the structure of the circuit being repaired.
most or all faults are detected at the molecular level, then achieving self-repair at th
cellular level becomes much simpler.

From these observations, we can begin to outline the basic features of our ideal self
mechanism. First of all, it will require a transparent self-test mechanism capable of det
as many faults as possible (ideally, all faults, but such a goal is not likely to be achievabl
Moreover, such a system should be able to determine the exact location of the fault (
which of the elements is faulty) so that self-repair can restore the functionality of the arr
far as the self-repair mechanism itself is concerned, it should be able to repair as man
as possible (again, it is unreasonable to assume that all faults will be repairable) and, in case o
failure at the molecular level, activate the self-repair process at the cellular level.

Obviously, both these features will introduce additional hardware as well as addi
delays in our circuit. Since our FPGA is, as we mentioned, extremely fine-grained, it w
very important to minimize the hardware overhead. On the other hand, the speed of op
is not an important factor in our research (biological systems, after all, operate rela
slowly). Our main effort in this project was therefore to minimize space (area) rather than
(delay), while respecting the considerable number of additional constraints imposed
biological inspiration of our system.

3 Self-Replication

The design of a self-repairing and self-replicating FPGA presents a considerable
lenge. While self-repair is a relatively well-investigated feature in the design of digital
circuits, which implies an existing knowledge base for the development of our system
same cannot be said for self-replication: research in this domain is relatively scarce, p
larly where hardware is concerned. This lack compelled us to develop an entirely new se
lication mechanism, allowing us to arrive at an efficient hardware realization.

3.1 Langton’s Loop

The complexity of Von Neumann’s constructor derived from the attempt to implem
self-replication as a particular case of construction universality. In 1984, Christopher La
re-approached the problem from a different angle, by attempting to define the simplest c
automaton capable exclusively of self-replication [16]. The automaton he developed,
monly known as Langton’s loop (Fig. 5), is orders of magnitude simpler than von Neuman

Langton’s loop derives its name from the dynamic storage of data inside a square
(the red elements in the figure). The data is stored as a sequence of instructions for d
the constructing arm, coded in the form of a set of three states. The data constantly cir
counterclockwise within the sheath, thus creating a loop.

The two instructions in Langton’s loop are extremely simple: one tells the arm to adv
by one position, while the other directs the arm to turn 90o to the left. Obviously, after three
such turns, the arm has looped back on itself, at which stage the connection between th
and the offspring is severed, concluding the replication process. Once the copy is finish
Self-Replicating and Self-Repairing Multicellular Automata Page 8

 while
s gen-
o repli-
arent

 initial
umber
 in the

gton’s

 falls

ir-

losely
ation.
plex

-
ang-

nsion,
 is to

 “mes-
s com-

senger
eplica-
ffspring
ation,
parent loop proceeds to construct a second copy of itself in a different cardinal direction,
the offspring itself starts to replicate. The sequential nature of the self-replication proces
erates a spiraling pattern in the propagation of the loop through space: each loop tries t
cate in the four cardinal directions, until it finds the place already occupied either by its p
or by the offspring of another loop, and dies (the data within the loop is destroyed).

Langton’s loop uses 8 states for each of the 86 non-quiescent cells making up its
configuration, a 5-cell neighborhood, and a few hundred transition rules (the exact n
depends on whether default rules are used and whether symmetric rules are included
count). Given its modest complexity, at least relative to von Neumann’s automaton, Lan
loop has been thoroughly simulated.

Langton’s loop is therefore of great interest for the Embryonics project. However, it
short of our requirements in two important aspects:

1. It is designed to operate in an infinite space, whereas the surface of an integrated c
cuit is necessarily finite.

2. It does not have any functionality beyond self-replication: the loop replicates and
then dies. It is thus more similar to a biological (or a software) virus than to a cell.

These drawbacks notwithstanding, Langton’s loop is the automaton that most c
approaches our requirements, and was the starting point of our research into self-replic

To overcome Langton’s loop’s lack of functionality, we developed a relatively com
automaton (known as Perrier’s loop) which exploits Langton’s loop as a “carrier” for a two
tape universal Turing machine [24] (Fig. 6). The first operation of the automaton is let L
ton’s loop generate an offspring (iteration 158: note that the copy is limited to one dime
since the second dimension is taken up by the Turing machine) whose main function
determine a location for the copy of the Turing machine. Once the new loop is ready, a
senger” runs back to the parent loop and start to duplicate the Turing machine, a proces
pletely disjoint from the operation of the loop. When the copy is finished, the same mes
activates the Turing machine in the parent loop (the machine had to be inert during the r
tion process in order to obtain a perfect copy). The process is then repeated in each o
until the space is filled (iteration 720: as the automaton exploits Langton’s loop for replic
meeting the boundary of the array causes the last machine to crash).

ADVANCE INSTRUCTION

TURN INSTRUCTION

SHEATH ELEMENT

CONSTRUCTING ARM
ITER=500

Figure 5: The initial configuration of Langton’s loop (iter. 0) and its replication pattern (iter. 500).
Self-Replicating and Self-Repairing Multicellular Automata Page 9

ct (as
which
 addi-
s. This
on-
tation.
, and

ace for
order of
t in a

ediate
 if it

 major

f the
d on a
rm, in
aton to
cation

.
g

The automaton thus becomes a self-replicating Turing machine, a powerful constru
we mentioned, a universal Turing machine is capable of executing any finite program)
is unfortunately handicapped by its complexity, requiring a very considerable number of
tional states (more than 60), as well as an important number of additional transition rule
kind of complexity, while still relatively minor compared to von Neumann’s universal c
structor, is nevertheless too important to be really considered for a hardware implemen
Adapting Langton’s loop to fit our requirements thus proved too complex to be efficient
we were forced to design a novel automaton to meet our requirements.

3.2 A Novel Self-Replicating Loop: Description

The self-replication mechanism of Langton’s loop assumes that there is enough sp
a copy of the loop, and the entire loop crashes upon meeting an obstacle (such as the b
a CA array). Modifying the automaton to overcome this drawback is very difficult: to exis
finite space, and assuming that the automaton has no a priori knowledge of the location of the
boundaries (a safe assumption, since CA elements have only knowledge of their imm
neighborhood), the automaton would need to be able to retract the constructing arm
detects a boundary during the self-replication process. Such a mechanism would require
modification to Langton’s loop: we thus decided to develop an entirely novel automaton.

In designing our self-replicating automaton [31, 33] (Fig. 7), we did maintain some o
more interesting features of Langton’s loop. Notably, we preserved the structure base
square loop to dynamically store information, as well as the concept of a constructing a
the tradition of von Neumann and his successors. However, in order to adapt the autom
our requirements, we were forced to completely redesign the dynamics of the self-repli
mechanism. To mention but a few of the more distinctive modifications:

• We extend four constructing arms in the four cardinal directions at the same time
When the arm meets an obstacle (e.g., the border of the array), it retracts, allowin
our automaton to operate in a finite space.

LANGTON LOOP

DATA TAPE

INSTRUCTION TAPE

ITER=158

ITER=720

Figure 6: A two-tape Turing machine appended to Langton’s loop (iter. 0) and its propagation.
Self-Replicating and Self-Repairing Multicellular Automata Page 10

p
e,
e

ct

d

ncept
erent
ber of
s that

loop

opera-
etters,
Obvi-
from
aton.

 of the

is

 the
r to the
losed.
 in his
es the
rm to
o sepa-
• The arm does not immediately construct the entire loop. It begins by building a
sheath of the same size as the original, and only then the data circulating in the loo
is duplicated and the copy is sent out to wrap around the new sheath. As we will se
dividing the self-replication process in two phases is an important advantage for th
transition to digital hardware.

• As a consequence of the above, rather than using all of the data in the loop to dire
the constructing arm, we need only four control elements. The remaining data ele-
ments can be used to implement other functions, allowing us to overcome the secon
drawback of Langton’s loop (its lack of functionality apart from self-replication).

As should be obvious from the above, while our loop owes to von Neumann the co
of a constructing arm and to Langton the basic loop structure, it is in fact a very diff
automaton, endowed with some of the properties of both. The complexity (i.e., the num
transition rules) of the basic configuration of our loop is of the same order of magnitude a
of Langton’s loop, with the proviso that it is likely to increase drastically if the data in the
is used to implement a function.

3.3 A Novel Self-Replicating Loop: a Functional Example

In Fig. 8, we illustrate an example of how the data states can be used to carry out
tions alongside self-replication. In this case, the operation is the construction of three l
LSL (the acronym of Logic Systems Laboratory), in the empty space inside the loop.
ously this is not a very useful operation from a computational point of view, but it is a far
trivial construction task which should suffice to demonstrate the capabilities of the autom

For this example, we used five data states, each an instruction for the construction
letters: advance, turn left, turn right, empty space, and a NOP (no operation) instruction. Th
program requires 330 additional rules and is fairly straightforward. When a certain initiation
sequence within the loop arrives to the top left corner of the loop, a “door” is opened in
internal sheath. As it loops, the program is duplicated and a copy sent through the doo
interior of the loop, where it constructs the letters. At the end of the process, the door is c

 The construction mechanism itself is somewhat similar to the method Langton used
own loop, and is based on a modified constructing arm. The “advance” instruction caus
arm to advance by one element, the “turn left” and “turn right” instructions cause the a
change direction, and the “empty space” instruction produces a gap in the arm (so as t
rate the letters).

CONTROL ELEMENT

SHEATH ELEMENT

DATA ELEMENTS

GATE ELEMENT

ITER=250

Figure 7: Our novel self-replicating loop and its propagation pattern.
Self-Replicating and Self-Repairing Multicellular Automata Page 11

inter-
ecute

ed as
ately it
ting

all the
ystem

of the
data),
eeds.
ating
ulated

ents:
d exe-
ever,
iew of
 of con-
ware,
e self-

echa-
can

FPGA
 if con-
we can
During the self-replication of the loop, the program is simply copied (as opposed to
preted as in the interior of the sheath) and arrives intact in the new loop, where it will ex
again exactly as it did in the parent loop.

This is a simple demonstration of one way in which the data in the loop could be us
an executable program. Of course, many other methods can be envisaged, but unfortun
would be very hard, if not impossible, to obtain computationally interesting self-replica
systems using “pure” cellular automata. In fact, CAs are, by definition, closed systems:
information must be present in the array at iteration 0 (in our case, all the data for the s
must be included in the initial loop). Since useful computation would require that each
offspring execute a different function (or at the very least, the same function on different
the requirement that all information be stored in the parent loop is too restrictive for our n

Therefore, at this stage we decided to stop further development of self-replic
machines in the cellular automaton environment, and attempt to transfer the accum
experience to the design of our FPGA.

3.4 The Membrane Builder

The self-replicating loop we developed corresponds for the most part to our requirem
it is a computing machine capable of self-replication which can exist in a finite space an
cute non-trivial functions. The transition from cellular automata to hardware, how
requires a process of synthesis: cellular automata are very inefficient from the point of v
an hardware realization, notably because every element needs to access a lookup table
siderable size. In order to find a viable approach to the realization of self-replicating hard
we therefore had to try to extract from our cellular automaton the essential features of th
replication mechanism, to use them as a basis for the design of an electronic circuit.

One of the main differences between our loop and Langton’s lies in the two-phase m
nism of self-replication. In fact, while in Langton’s loop the process is indivisible, we
identify two distinct phases in the self-replication of our loop: a structural phase, where the
“skeleton” of the offspring is set into the empty space, and a configuration phase, where the
functionality of the parent is copied into the offspring.

While the configuration phase, for a number of practical reasons, is not suited to an
implementation, the structural phase can indeed be adapted to hardware. In particular,
sider an FPGA before configuration as an array of CA elements in the quiescent state,

EMPTY SPACE

TURN RIGHT

TURN LEFT

NOP

INIT SEQUENCE

ADVANCE

ITER=440

Figure 8: Configuration of the LSL automaton at iteration 0 and its propagation.
Self-Replicating and Self-Repairing Multicellular Automata Page 12

ngle
ig. 9).
rans-
string
imen-

in the
f states,

, we
stage,
think of the structural phase of self-replication as a mechanism which partitions the FPGA
into identical blocks of molecules of programmable size (each block will then contain a si
artificial cell), a task which can be realized by an extremely simple cellular automaton (F

The automaton, simple enough to allow a trivial implementation in hardware, can t
form (through a simple process which we will not describe in detail) a one-dimensional
of states (analogous to a configuration bitstream residing in a memory chip) to a two-d
sional structure.

In order to integrate the automaton to our FPGA, we inserted the CA elements
spaces between the FPGA elements (Fig. 10). By entering the appropriate sequence o
we can then partition the array into identical blocks of variable size, creating a cellular mem-
brane which we can use to direct the propagation of the FPGA’s configuration (Fig. 11).

By exploiting the experience accumulated in designing our self-replicating loops
were thus able to create a very simple self-replication mechanism for our FPGA. At this
we turned our attention to the second bio-inspired feature of our FPGA: self-repair.

ITER=000 ITER=104

JUNCTION

WALL

Figure 9: The membrane builder at iteration 0 and after the end of propagation.

FPGA ELEMENTCA ELEMENT

CA CONNECTION

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

STATE

21 12 11 21 12 INPUT SEQUENCE

Figure 10: Definition of the membrane using a simple cellular automaton.
Self-Replicating and Self-Repairing Multicellular Automata Page 13

 next.
 using
ome

(that is,

cep-
 two-
ree’s

iversal

ate sub-

ulti-
 num-
 to the
 flip-

t con-
ication
nt ele-

.
tring,

ble

ctions
Tree

seful
e.
4 MuxTree and Self-Repair

The architecture of an FPGA element can vary considerably from one circuit to the
The only actual requirement is that it must be possible to implement any given function
one or more elements. In addition, it is customary, if not strictly required, to include s
form of memory in an element so as to be able to easily implement sequential systems
systems which contain sequential elements such as flip-flops, registers, etc.)

MuxTree [19, 32, 33], the FPGA we developed for the Embryonics project, is no ex
tion to this rule, but is unusual in that it is remarkably fine-grained: like all FPGAs, it is a
dimensional array of elements (the molecules of our three-level system) which, in MuxT
case, are particularly small. Each element, in fact, is capable of implementing the un
function of a single variable and of storing a single bit of information.

The basic element of our FPGA (Fig. 12) can be seen as composed of three separ
systems: the programmable function (FU), the programmable connections (SB), and the con-
figuration register (CREG).

The programmable function is realized using a single two-input multiplexer. The m
plexer being a universal gate (i.e., it is possible to realize any function given a sufficient
ber of multiplexers), the first requirement for an FPGA element is respected. In addition
multiplexer, each element is also capable of storing a single bit of information in a D-type
flop, thus fulfilling the second requirement.

As far as the programmable connection network is concerned, a MuxTree elemen
tains two separate sets of connections: a fixed short-distance network for commun
between immediate neighbors, and a programmable long-distance network for dista
ments. The latter is controlled by a switch box (SB) which can route the output NOUT of an
element to its four neighbors, as well as propagate signals in the four cardinal directions

The element’s function and connections are determined by a 17-bit configuration s
stored in the shift register CREG. These bits are sufficient to configure both the programma
function and the connection networks.

MuxTree’s most remarkable feature is probably the unusual structure of its conne
(and particularly of its fixed short-distance network), designed to allow an array of Mux
elements to be easily configured as a binary decision diagram (BDD) [3]. Since BDDs are
well-known representation methods for logic functions, this structure becomes very u
when calculating the configuration required to implement a given function using MuxTre

MEMBRANE

CFG 2 CFG 5 CFG 8 CFG 2 CFG 5 CFG 8

CFG 7CFG 4CFG 1CFG 7CFG 4CFG 1

CFG 0 CFG 3 CFG 6 CFG 0 CFG 3 CFG 6

BITSTREAM ENTRY POINTS

Figure 11:
Self-Replicating and Self-Repairing Multicellular Automata Page 14

exist-
ts [1],
to the
special
.
echa-
t site.

enting
 con-

eplaced
eplica-

n the
ain
posed

.
lf-test

ication
 an on-
is an
int was

d into
it.
4.1 Self-Test in MuxTree

Any literature search, however superficial, on the subject of testing will reveal the
ence of a considerable variety of approaches to implementing self-test in digital circui
including some which can be applied to FPGAs [2, 13, 29]. Even though we exploited
greatest possible extent this existing knowledge base in our system, we found that the
requirements of our bio-inspired systems prevented the use of off-the-shelf approaches

The first non-conventional constraint was imposed by the need of the self-repair m
nism to know not only that a fault has occurred somewhere in the circuit, but its exac
Thus, our system has to be able to perform not only fault detection, but also fault location.

A second constraint is that we desired our system to be completely distributed, prev
the use of a centralized control, very common in conventional self-test systems. This
straint is due to our approach to reconfiguration: by assuming that any element can be r
by any other (an assumption which, as we will see, is a direct consequence of our self-r
tion mechanism), we need our array to be completely homogeneous.

The relatively small size of the MuxTree elements also imposed a constraint o
amount of logic allowed for self-testing. While the minimization of the logic was not our m
goal, we nevertheless tried to keep the testing logic down to a reasonable size, which im
some rather drastic limitations on the choices available for the design of our mechanism

In addition to these “imposed” constraints, we also decided to attempt to design a se
mechanism capable of operating on-line, that is, while the system is executing the appl
and transparently to the user. This self-imposed constraint is extremely strong: to obtain
line self-test system while at the same time minimizing the amount of additional logic
extremely arduous task. As a consequence, in our actual implementation this constra
somewhat relaxed, and we will see that our self-test will occur on-line only partially.

Once again, we will exploit the observation that the MuxTree element can be divide
three subcircuits to separately analyze possible self-test mechanisms for each subcircu

SB

CREG

FU
FF
D1 D

Q

NOUT

SEL

NOUT

SIN

WIN

WOUT EIN

EOUT

EIB

NIBNOB

WOB

WIB

SOBSIB

CFG[16:0]

SIB
SOB
EIB
EOB

EOB

INPUT_SEL

Figure 12: Overall structure of a MuxTree element.
Self-Replicating and Self-Repairing Multicellular Automata Page 15

ing an
upies
e, we
l cop-
.
ask is
being

-
ver the

rison

red,
a sim-

 the
t least
ent’s
t, but
 not
 to be
ead, at

f
4.1.1 The Programmable Function

Thanks to the experience we acquired in the design of an integrated circuit contain
early prototype of MuxTree, we were able to determine that the functional part occ
approximately 10% of the total silicon area of an element. Considering its small siz
decided to test the function through duplication. Obviously, the presence of two identica
ies of the sub-circuit allows the detection of faults through a comparison of their outputs

Such a comparison would be sufficient to assure fault detection. However, our t
complicated by the need for self-repair: to allow the circuit to resume operation after
repaired, we must be able to preserve its state, i.e., the information stored in its memory ele
ments. This requirement forced us to introduce additional logic so as to be able to reco
value stored in the flip-flops should one of them prove faulty.

To this end, we had to add to our self-test logic (Fig. 13) an additional compa
between the inputs of the two flip-flops, so as to prevent an incorrect value from being sto
as well as a third copy of the flip-flop, so as to recover the correct memorized value with
ple 2-out-of-3 majority function.

4.1.2 The Programmable Connections

MuxTree is a relatively connection-intensive circuit. In fact, while the network joining
elements is not very complex, the small size of the functional part implies that a fault is a
as likely to occur in a connection as in the few logic gates which implement the elem
functionality. Solutions to the problem of testing connections in an FPGA do indeed exis
invariably require a considerable amount of redundancy through duplication. While
excluding the possibility of introducing it in the future, we deemed that the advantages
gained from the test of the connections did not justify the considerable hardware overh
least in our current implementation.

SB

NOUT
FF_IN

NOUT
FF_IN

COMP

D Q

MAJ

FAULT_DET

FU1
FF
D1 D

Q

NOUT

SEL

FD

NOUT

SIN

WIN

WOUT EIN

EOUT

EIB

NIBNOB

WOB

WIB

SOBSIB

CFG[16:0]

EOB

FU2
FF
D2D

Q

NOUT

SEL

FF_OUT FF_OUT

INPUT_SELINPUT_SEL

FF
D3

CREG

Figure 13: A third flip-flop and a 2-out-of-3 majority function allow us to recover the correct value even i
a fault has damaged one of the flip-flops.
Self-Replicating and Self-Repairing Multicellular Automata Page 16

(about
nt, the
eally
ement
t will
tains a

difies

 of a
ecided
irement
.
e con-
am a

l, will
erating
ndeed

 able
f only a

imple-
f not

tively

 very
ng a
 and a
nism to

ons to
ation

 inter-
ssible).

ry
tion to

nd the
o test
hase.
ful for
 of the
4.1.3 The Configuration Register

Testing the configuration register poses similar problems, but its considerable size
80% of the surface of an element) makes testing imperative. As for the rest of the eleme
register’s self-test mechanism must require a limited amount of additional logic, should id
be on-line and transparent, and should be compatible with self-repair. It is this last requir
which proved most restrictive: reconfiguring the array implies that a spare elemen
assume the function of the faulty one, and thus its configuration. Since each element con
single copy of the configuration register (its size precludes duplication), a fault which mo
the value stored in the register results in an unrecoverable loss of information.

So again we were not able to meet all our requirements. However, the probability
fault occurring in the register being greater than for any other part of the element, we d
that some degree of testing was indispensable. We determined that relaxing the requ
that the self-test occur on-line would allow us to design an extremely simple mechanism

Our approach is based on the observation that, when the circuit is programmed, th
figuration bitstream is shifted into the register. It is therefore simple to add to the bitstre
header, in the form of a dedicated testing configuration sent before the actual configuration (so
as to avoid any loss of information). This header, shifted into all the registers in paralle
consist of a pattern designed to exhaustively test that the configuration register is op
correctly. We will not describe the pattern in detail: suffice it to say that such a pattern (i
more than one) does exist, and is capable of detecting any fault in the register.

In conclusion, by relaxing the requirement that the detection occur on-line, we were
to design an extremely simple fault detection system (the hardware overhead consists o
few logic gates) which, as we will see, is perfectly compatible with self-repair.

4.2 Self-Repair in MuxTree

As was the case for self-test, there exist a number of well-known approaches to
menting self-repair in two-dimensional arrays of identical elements [9, 15, 22]. Most, i
all, rely on two main mechanisms: redundancy and reconfiguration. The system we developed
to implement self-repair in MuxTree is no exception, even if it had to satisfy a set of rela
non-standard constraints imposed by the unique features of our FPGA.

A mechanism which allows an electronic circuit to be repaired need obviously be
different from that exploited by nature in biological organisms. Since physically repairi
hardware fault is impossible, we must provide a set of spare elements (redundancy)
mechanism to let them replace faulty elements in the array, that is, we need a mecha
reroute the connections between the elements (reconfiguration).

As was the case for self-test, the small size of our elements imposes major limitati
the amount of logic we can introduce to implement a self-repair mechanism. This limit
has serious implications for the choice of possible reconfiguration schemes.

Unlike self-test, our self-repair process can occur off-line, that is, cause a temporary
ruption of the operation of the circuit (of course, the process should be as fast as po
However, it is fundamental that the state of the circuit (that is, the contents of all its memo
elements) be preserved through the self-repair process, so as to allow normal opera
resume after the reconfiguration is complete.

In practice, the only memory elements in our system are the configuration register a
flip-flop inside the functional part of the element. Since our self-test system allows us t
the register only during configuration, we can also limit its repair to the configuration p
The assumption that the register is fault-free during normal operation is extremely use
the reconfiguration of the array, and effectively reduces the requirement that the state
circuit be preserved to the need to prevent the loss of the value stored in the flip-flops.
Self-Replicating and Self-Repairing Multicellular Automata Page 17

irable,
ration
re ele-
quire-

ion of

t this

elf to
 add-
roach
 the
the CA
pability
 ele-
 spare

sfer the
in its

ough
f the
. The
ment
to the
ry sim-
trans-
n then
d.
4.2.1 Self-Replication Revisited

At this stage, we turned our attention back to the self-replication mechanism. A des
if not strictly necessary, constraint on our self-repair system would be that the reconfigu
be contained within each single block, and thus within each cell. In other words, the spa
ments should be part of each block and contained within the cellular membrane. This re
ment is far from trivial, since it implies that the location of the spare elements be a funct
the size of the block, which is programmable and thus unknown a priori. Fortunately, by
exploiting existing hardware, and notably the membrane-building CA, we can mee
requirement with a remarkably small amount of additional logic.

It is in fact fairly simple to modify the automaton so as to use the membrane its
define which of the columns of the array will contain spare elements (Fig. 14). Simply by
ing one additional state to the automaton, we obtain a very powerful system: this app
allows us not only to limit reconfiguration to the interior of a block, but also to program
robustness of the system. In fact, by adding or removing these special states to or from
input sequence, we are able to modify the frequency of spare columns, and thus the ca
for self-repair of the system. Without altering the configuration bitstream of the MuxTree
ments, we can introduce varying degrees of robustness, from zero fault tolerance (no
columns) to 100% redundancy (one spare column for each active column).

4.2.2 The Reconfiguration Mechanism

In order to take advantage of the spare elements, we require a mechanism to tran
information stored in a faulty element (notably, its configuration plus the value stored
flip-flops) to one of the spare elements.

Our mechanism for repairing faults relies on the reconfiguration of the network thr
the replacement of the faulty element by its right-hand neighbor: the configuration o
faulty element, together with the value stored in its flip-flop, are shifted into the neighbor
configuration of the neighbor will itself be shifted to the right, and so on until a spare ele
is reached (Fig. 15). Once the shift is completed, the faulty element “dies” with respect
network: the connections are rerouted to avoid it, an operation which can be effected ve
ply by diverting the north-south connections to the right and by rendering the element
parent to the east-west connections. The array, thus reconfigured and rerouted, ca
resume executing the application from the same state it held when the fault was detecte

MEMBRANE

CFG 2 CFG 5 SPARE CFG 2 CFG 5 SPARE

SPARECFG 4CFG 1SPARECFG 4CFG 1

CFG 0 CFG 3 SPARE CFG 0 CFG 3 SPARE

BITSTREAM ENTRY POINTS

SPARE
COLUMN

SPARE
COLUMN

Figure 14: Self-replication of the configuration bitstream in the presence of spare columns.
Self-Replicating and Self-Repairing Multicellular Automata Page 18

gura-
ption

nism,

 select
ration
 more
re col-
 fre-

ure,
pairable
nism at

ant to
 col-
es of
 (Fig.
mecha-
nisms
m.
When a fault is detected, the FPGA goes off-line for the time required by the reconfi
tion (somewhat like an organism becoming incapacitated during an illness), an interru
which can fortunately be minimized: the reconfiguration, being an entirely local mecha
can exploit a faster clock signal, thus limiting the duration of the process.

Rerouting the connections around a faulty element requires a set of multiplexers to
alternate connecting paths. To minimize the hardware overhead, we limit the reconfigu
to a single column, that is, we do not allow the configuration of an element to be shifted
than once, restricting the number of repairable faults to one per row between two spa
umns. This limitation, of course, is partially compensated by the programmability of the
quency of the spare columns,

4.2.3 MuxTree and MicTree

However versatile MuxTree’s self-repair system might be, it is still subject to fail
either because of saturation (if all spare elements are exhausted) or because a non-re
fault is detected. Should such a failure occur, we need to activate the self-repair mecha
the cellular level (see above in section 2.3.1). To this end, we designed a KILL signal which is
propagated through an entire column of blocks (Fig. 16). Since a block is ultimately me
contain one of our artificial cells, killing a column of blocks is equivalent to deactivating a
umn of cells. At the cellular level, this event will trigger a recomputation of the coordinat
all cells in the system, that is, will activate the cellular-level reconfiguration mechanism
17). In other words, the robustness of the system is not based on a single self-repair
nism, which might fail under extreme conditions, but rather on two separate mecha
which cooperate to prevent a fault from causing a catastrophic failure of the entire syste

1 1 0 0X X
DEAD CFG 4 CFG 7

X X
SPARE

1 1
CFG 2

CFG 0

1 1

CFG 2

1 1

CFG 3

0 0
SPARE

X X
CFG 6

1 1

CFG 1

0 0
DEAD

X X
CFG 7

0 0
CFG 4

1 1

CFG 5

0 0
CFG 8

1 1
SPARE

X X

CFG 0

1 1

CFG 2

1 1

CFG 3

0 0
SPARE

X X
CFG 6

1 1

CFG 1

0 0
CFG 4

1 0
SPARE

X X
CFG 7

0 0

CFG 5

0 0
CFG 8

1 1
SPARE

X X

Figure 15: A fault is detected and the array is reconfigured to avoid the faulty element.
Self-Replicating and Self-Repairing Multicellular Automata Page 19

ble of
et in

l cells
ng any
 of the
n pro-
re inte-
lf and
oal.
lf-test
ed to

han a
ircuit
still far

it can
ber of

hrough
 our
 which
e.
stems
tion,

led.
5 Conclusion

Our goal in this paper was to demonstrate the feasibility of designing an FPGA capa
self-replication and self-repair. As far as self-replication is concerned, our goal was m
most respects: our mechanism is capable of generating multiple copies of our artificia
from the description of a single specimen, of any given size and thus capable of executi
given task. The only compromise is the use of an external source for the configuration
cells (ideally it should be the cells themselves which generate and control the replicatio
cess). In our case, the replication process is indeed controlled by the dedicated hardwa
grated in our FPGA, but the configuration bitstream is generated outside the circuit itse
not by the cells. The achievement of such an “ideal” system remains a future research g

For self-repair, the results are not quite as close to optimal, notably where the se
mechanism is concerned. The constraints of biological inspiration, coupled with the ne
minimize the hardware overhead, proved too strong to allow on-line self-test of more t
relatively small part of the circuit. However, our system can detect faults in most of the c
(an accurate estimate of the fault coverage is impractical at this stage, as MuxTree is
from its final implementation) through off-line self-test during configuration.

On the other hand, the self-repair mechanism itself fully meets our requirements:
repair of a considerable number of faults (the coverage depends, of course, on the num
spares assigned by the user), it is capable of activating self-repair at the cellular level t
its global KILL signal, and, if not always transparent, it is remarkably fast. In addition,
system exceeds our requirements with the introduction of programmable redundancy,
allows the user to determine the amount of logic to be “sacrificed” for additional coverag

In conclusion, we designed an FPGA capable of realizing with ease complex sy
which, inspired by the ontogenetic processes of cellular division and cellular differentia
are capable of massively parallel operation and (almost) transparent fault tolerance.

DEAD

X X

DEAD

X X

DEAD

X X
DEAD

X X

DEAD

X X

DEAD

X X
DEAD

X X

DEAD

X X

DEAD

X X

0 0

CFG 2

1 1

CFG 0

0 1
CFG 6

1 1
DEAD

X X

CFG 1

0 0
DEAD

X X
CFG 7

0 0
CFG 4

1 1

DEAD

X X
CFG 5

0 0
CFG 8

1 1

KILL DEAD

X X

DEAD

X X

DEAD

X X

Figure 16: The saturation of the molecular-level repair mechanism causes a column of blocks to be kil

RU

1,3

RU

1,2

RU

1,1

RU

2,3

RU

2,2

RU

2,1

RU

2,3

RU

2,2

RU

2,1

Figure 17: The two-level self-repair system.
Self-Replicating and Self-Repairing Multicellular Automata Page 20

t-

,

bot-
.

s in

v-
ems”.

d

ble

}
sing
st

nce

ring

s: A
 and

0.
el
des,

fer, G.
ini,
References

[1] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital Systems Testing and Tes
able Design, Computer Science Press, New York, 1990.

[2] M. Abramovici and C. Stroud, “No-overhead BIST for FPGAs”, In Proc. 1st IEEE
International On-Line Testing Workshop, pp. 90-92, 1995.

[3] S. B. Akers, “Binary decision diagrams”, IEEE Transactions on Computers, c-27(6),
June 1978, pp. 509-516.

[4] Stephen D. Brown, Robert J. Francis, Jonathan Rose, Zvonko G. Vranesic, Field-pro-
grammable gate arrays, Kluwer Academic Publishers, Boston, 1992.

[5] A. Burks, ed., Essays on Cellular Automata, University of Illinois Press, Urbana, IL
1970.

[6] J. Byl, “Self-Reproduction in Small Cellular Automata”, Physica 34D, pp.295-299,
1989.

[7] E.F. Codd, Cellular Automata, Academic Press, New York, 1968.
[8] D. Floreano, “Reducing human design and increasing adaptivity in evolutionary ro

ics”, in T. Gomi, ed., Evolutionary Robotics, AAI Books, Ontario, Canada, 1997, pp
187-220.

[9] F. Hanchek, S. Dutt, “Methodologies for Tolerating Cell and Interconnect Fault
FPGAs”, IEEE Transactions on Computers, v. 47, n. 1, January 1998.

[10] M. H. Hassoun, Fundamentals of Artificial Neural Networks, The MIT Press, Cam-
bridge, MA, 1995.

[11] T. Higuchi, M. Iwata, I. Kajitani, H. Iba, Y. Hirao, T. Furuya, B. Manderick. “Evol
able Hardware and its Application to Pattern Recognition and Fault-Tolerant Syst
In E. Sanchez, M. Tomassini, eds., Towards Evolvable Hardware, Lecture Notes in
Computer Science, Springer, Berlin, 1996, pp. 118-135.

[12] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory Languages an
Computation, Addison-Wesley, Redwood City, CA, 1979.

[13] W.K. Huang, F. Lombardi, “An Approach for Testing Programmable/Configura
Field Programmable Gate Arrays”, IEEE VLSI Test Symposium, 1996.

[14] J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane, “Automated {WYWIWYG
Design of Both the Topology and Component Values of Electrical Circuits U
Genetic Programming”, in Genetic Programming 1996: Proceedings of the Fir
Annual Conference, The MIT Press, Cambridge, MA, 1996, pp.123-131.

[15] J. Lach, W.H. Mangione-Smith, M. Potkonjak, “Efficiently Supporting Fault-Tolera
in FPGAs”, Proc. FPGA 98, Monterey, CA, February 1998, pp. 105-115.

[16] C. G. Langton, “Self-Reproduction in Cellular Automata”, Physica 10D, pp.135-144,
1984.

[17] D. Mange, D. Madon, A. Stauffer, G. Tempesti, “Von Neumann Revisited: A Tu
Machine with Self-Repair and Self-Reproduction Properties”, Robotics and Autono-
mous Systems, Vol. 22, No. 1, 1997, pp. 35-58.

[18] D. Mange, M. Goeke, D. Madon, A. Stauffer, G. Tempesti, S. Durand. “Embryonic
New Family of Coarse-Grained Field-Programmable Gate Array with Self-Repair
Self-Reproducing Properties”. In E. Sanchez, M. Tomassini, eds., Towards Evolvable
Hardware, Lecture Notes in Computer Science, Springer, Berlin, 1996, pp. 197-22

[19] D. Mange, M. Tomassini, Eds., Bio-inspired Computing Machines: Towards Nov
Computational Architectures, Presses Polytechniques et Universitaires Roman
Lausanne, Switzerland, 1998.

[20] P. Marchal, P. Nussbaum, C. Piguet, S. Durand, D. Mange, E. Sanchez, A. Stauf
Tempesti. “Embryonics: The Birth of Synthetic Life”. In E. Sanchez, M. Tomass
Self-Replicating and Self-Repairing Multicellular Automata Page 21

er,

s

n

eural
6

ersal

ine”.

hibit

log-
ning

-
-

g

s”,

ech-

tion

 by
able

ro-

e

.

eds., Towards Evolvable Hardware, Lecture Notes in Computer Science, Spring
Berlin, 1996, pp. 166-197.

[21] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Program,
Springer-Verlag, Berlin, 3rd ed., 1996.

[22] R. Negrini, M. G. Sami, and R. Stefanelli, Fault Tolerance Through Reconguration i
VLSI and WSI Arrays, The MIT Press, Cambridge, MA, 1989.

[23] A. Perez-Uribe and E. Sanchez, “FPGA Implementation of an Adaptable-Size N
Network”, in Proc. International Conference on Artificial Neural Networks ICANN9,
Bochum, Germany, July 1996

[24] J.-Y. Perrier, M. Sipper, and J. Zahnd, “Toward a Viable, Self-Reproducing Univ
Computer”, Physica 97D, pp.335-352, 1996.

[25] U. Pesavento. “An Implementation of von Neumann’s Self-Reproducing Mach
Artificial Life, 2(4), 1995, pp. 337-354.

[26] J.A. Reggia, S.A. Armentrout, H.-H. Chou, Y. Peng, “Simple Systems That Ex
Self-Directed Replication”, Science, Vol.259, pp.1282-1287, 26 February 1993.

[27] E. Sanchez, D. Mange, M. Sipper, M. Tomassini, A. Perez-Uribe, A. Stauffer. “Phy
eny, Ontogeny, and Epigenesis: Three Sources of Biological Inspiration for Softe
Hardware”. In T. Higuchi, M. Iwata, W. Liu, eds., Proc. 1st Int. Conference on Evolv
able Systems: From Biology to Hardware (ICES96), Lecture Notes in Computer Sci
ence, vol. 1259, Springer-Verlag, Berlin, 1997, pp. 35-54.

[28] M. Sipper, Evolution of Parallel Cellular Machines: The Cellular Programmin
Approach, Springer-Verlag, Berlin, 1997.

[29] C. Stroud, S. Konala, and M. Abramovici, “Using ILA testing for BIST in FPGA
Proc. 2nd IEEE International On-Line Testing Workshop, Biarritz, July 1996.

[30] A. Stauffer, “Membrane building and binary decision machine implementation”, T
nical Report 247, Computer Science Department, EPFL, Lausanne, 1997.

[31] G. Tempesti, “A New Self-Reproducing Cellular Automaton Capable of Construc
and Computation”, Proc. 3rd European Conference on Artificial Life, Lecture Notes in
Artificial Intelligence, 929, Springer Verlag, Berlin, 1995, pp. 555-563.

[32] G. Tempesti, D. Mange, A. Stauffer, “A Robust Multiplexer-Based FPGA Inspired
Biological Systems”, Journal of Systems Architecture: Special Issue on Depend
Parallel Computer Systems, EUROMICRO, 43(10), 1997.

[33] G. Tempesti. A Self-Repairing Multiplexer-Based FPGA Inspired by Biological P
cesses.Ph.D. Thesis, Swiss Federal Institute of Technology, Lausanne, 1998.

[34] A. Thompson, “Silicon Evolution”, in Genetic Programming 1996: Proceedings of th
First Annual Conference, The MIT Press, Cambridge, MA, 1996, pp. 444-452.

[35] S. Trimberger, ed., Field-Programmable Gate Array Technology, Kluwer Academic
Publishers, Boston, 1994.

[36] J. von Neumann, The Theory of Self-Reproducing Automata, A. W. Burks, ed. Univer-
sity of Illinois Press, Urbana, IL, 1966.

[37] S. Wolfram, Cellular Automata and Complexity, Addison-Wesley, Reading, MA, 1994
Self-Replicating and Self-Repairing Multicellular Automata Page 22

	Self-Replicating and Self-Repairing Multicellular Automata
	Abstract
	1 Introduction
	2 Bio-Inspired Hardware and the Embryonics Project
	2.1 Von Neumann’s Universal Constructor
	2.2 Field-Programmable Gate Arrays
	2.3 Ontogenetic Hardware
	2.3.1 The Artificial Organism
	2.3.2 The Artificial Cell
	2.3.3 The Artificial Molecule

	3 Self-Replication
	3.1 Langton’s Loop
	3.2 A Novel Self-Replicating Loop: Description
	3.3 A Novel Self-Replicating Loop: a Functional Example
	3.4 The Membrane Builder

	4 MuxTree and Self-Repair
	4.1 Self-Test in MuxTree
	4.1.1 The Programmable Function
	4.1.2 The Programmable Connections
	4.1.3 The Configuration Register

	4.2 Self-Repair in MuxTree
	4.2.1 Self-Replication Revisited
	4.2.2 The Reconfiguration Mechanism
	4.2.3 MuxTree and MicTree

	5 Conclusion
	References

