
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 6, NO. 3, SEPTEMBER 1998 387

Embryonics: A New Methodology for Designing
Field-Programmable Gate Arrays with

Self-Repair and Self-Replicating
Properties

Daniel Mange,Member, IEEE,Eduardo Sanchez,Member, IEEE,André Stauffer,Member, IEEE,
Gianluca Tempesti,Member, IEEE,Pierre Marchal,Member, IEEE,and Christian Piguet

Abstract—The growth and the operation of all living beings
are directed through the interpretation, in each of their cells, of
a chemical program, the DNA string or genome. This process
is the source of inspiration for the Embryonics (embryonic
electronics) project, whose final objective is the conception of
very large scale integrated circuits endowed with properties
usually associated with the living world: self-repair (cicatriza-
tion) and self-replication. We will begin by showing that any
logic system can be represented by an ordered binary deci-
sion diagram (OBDD), and then embedded into a fine-grained
field-programmable gate array (FPGA) whose basic cell is a
multiplexer with programmable connections. The cellular array
thus obtained is perfectly homogeneous: the function of each cell
is defined by a configuration (or gene) and all the genes in the
array, each associated with a pair of coordinates, make up the
blueprint (or genome) of the artificial organism. In the second
part of the project, we add to the basic cell a memory and
an interpreter to, respectively, store and decode the complete
genome. The interpreter extracts from the genome the gene of
a particular cell as a function of its position in the array (its
coordinates) and thus determines the exact configuration of the
relative multiplexer. The considerable redundancy introduced by
the presence of a genome in each cell has significant advantages:
self-replication (the automatic production of one or more copies
of the original organism) and self-repair (the automatic repair
of one or more faulty cells) become relatively simple operations.
The multiplexer-based FPGA cell and the interpreter are finally
embedded into an electronic module; an array of such modules
make it possible to demonstrate self-repair and self-replication.

Index Terms—Embryonic electronics, field-programmable gate
arrays (FPGA’s), multiplexer-based FPGA’s, ordered binary de-
cision diagrams, self-repairing FPGA’s, self-replicating FPGA’s.

I. INTRODUCTION

A. Toward Embryonics

A HUMAN being consists of approximately 60 trillion
(60 1012) cells. At each instant, in each of these 60

trillion cells, the genome, a ribbon of 2 billion characters,

Manuscript received October 18, 1995; revised May 18, 1998. This work
was supported by the Swiss National Science Foundation under Grants 21-
36’200.92 and 20-39’391.93.

D. Mange, E. Sanchez, A. Stauffer, and G. Tempesti are with the Logic
Systems Laboratory, Swiss Federal Institute of Technolgy, Lausanne CH 1015
Switzerland.

P. Marchal and C. Piguet are with the Centre suisse d’électronique et de
microtechnique SA, Neuchâtel CH 2007 Switzerland.

Publisher Item Identifier S 1063-8210(98)05984-8.

is decoded to produce the proteins needed for the survival
of the organism. This genome contains the ensemble of the
genetic inheritance of the individual and, at the same time,
the instructions for both the construction and the operation of
the organism. The parallel execution of 60 trillion genomes in
as many cells occurs ceaselessly from the conception to the
death of the individual. Faults are rare and, in the majority
of cases, successfully detected and repaired. This process is
remarkable for its complexity and its precision. Moreover, it
relies on completely discrete processes: the chemical structure
of DNA (the chemical substrate of the genome) is a sequence
of four bases, usually designated with the letters A (adenine),
C (cytosine), G (guanine), and T (thymine).

Our research is inspired by the basic processes of molec-
ular biology [16]. By adopting certain features of cellular
organization, and by transposing them to the two-dimensional
(2-D) world of integrated circuits on silicon, we will show
that properties unique to the living world, such as self-
replication and self-repair, can also be applied to artificial
objects (integrated circuits).

B. Objectives and Strategy

Our final objective is the development of very large scale
integrated (VLSI) circuits capable of self-repair and self-
replication. These two properties seem particularly desirable
for complex artificial systems meant for hostile (nuclear plants)
or inaccessible (space) environments. Self-replication allows
the complete reconstruction of the original device in case of
a major fault, while self-repair allows a partial reconstruction
in case of a minor fault.

Section II introduces the fundamental features of the Em-
bryonics project (for embryonic electronics), which is based on
a general hypothesis, defining the silicon environment in which
the quasi-biological development occurs, and on three features,
which roughly mimic the process of cellular development:
multicellular organization, cellular differentiation, and cellular
division.

To represent and implement a given digital system on a
FPGA we select, in Section III, an efficient and universal
representation: the ordered binary decision diagram (OBDD).
We will show that the use of such a representation greatly
simplifies the realization of a new family of FPGA’s, based

1063–8210/98$10.00 1998 IEEE

388 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 6, NO. 3, SEPTEMBER 1998

on a fine-grained cell. This cell, called MUXTREE, contains
essentially a multiplexer with one control variable and a
nontrivial programmable connection network. Section IV de-
scribes in detail the MUXTREE cell, which in fact constitutes
the application layer of the FPGA, and its 20 configuration
bits. According to our biological approach, these 20 bits are
the gene of the cell and all the genes of a given digital system
are its genome.

Section V introduces the two configuration layers which
will perform the computation of the gene of each cell. The first
layer computes the coordinates of a given cell from the coordi-
nates of its neighbors. The second layer determines, from the
complete genome and from the local coordinates of the cell,
its gene. This is the equivalent of the process of cellular dif-
ferentiation, and is implemented through the use a very simple
binary decision machine, which we call NANOPASCALINE,
charged with the execution of the GENOME program. Finally,
Section VI briefly describes the realization of the cellular
division process, that is, the duplication of the genome of a
mother cell into one or two neighboring daughter cells.

The final cell, made up of an application layer (MUX-
TREE) and two configuration layers (NANOPASCALINE), is
finally embedded into a demonstration module: the BIODULE.
Section VII shows that any given digital system implemented
by an array of BIODULES is endowed with the properties
of self-repair and self-replication. Section VIII illustrates the
limitations of the current project and outlines the ongoing
research, aimed at the development of an integrated circuit
endowed with quasi-biological properties.

II. THE FOUNDATIONS OF EMBRYONICS

A. The General Hypothesis about the Environment

The general hypothesis describes the environment in which
the quasi-biological development occurs. In the framework of
electronics, it consists of a finite (but as large as desired)
2-D space of silicon, divided into rows and columns. The
intersection of a row and a column defines acell, and all
cells have an identical structure, i.e., an identical network
of connections and an identical set of logic operators. The
physical space orcellular array is thereforehomogeneous,
that is, made up of absolutely identical cells: only thestate
of a cell can differentiate it from its neighbors.

B. First Feature: Multicellular Organization

The first feature is that ofmulticellular organization: the
artificial organism is divided into a finite number of cells
[Fig. 1(a)], where each cell realizes a unique function, de-
termined by a number called thegeneof the cell. Fig. 1(a)
illustrates the example of a simple artificial organism, an
up–down counter, realized with nine cells, each cell being
defined by a different gene (a five-digit hexadecimal number).
The calculation of these genes will be analyzed in detail later.

C. Second Feature: Cellular Differentiation

Let us callgenomethe set of all the genes of an artificial
organism, where each gene is characterized by its value and

(a)

(b)

Fig. 1. The three features of embryonics applied to the example of an
up–down counter. (a) Multicellular organization with a nine-gene genome. (b)
Cellular differentiation with the complete genome in every cell and cellular
division copying the genome of the mother cell into daughter cells (t1 � � � t4:
clock periods).

its position (its coordinates). Fig. 1(a) then shows
the genome of the up–down counter, with the corresponding
horizontal and vertical coordinates. Let then each
cell contain the entire genome [Fig. 1(b)]: depending on its
position in the array, each cell interprets the genome and
extracts the gene which configures it.

In summary, storing the whole genome in each cell makes
this cell universal: it can realize any gene of the genome,
given the proper coordinates.

D. Third Feature: Cellular Division

At startup, the mother cell [Fig. 1(b)], arbitrarily defined as
having coordinates , holds the one and only copy
of the genome. At time , the genome of the mother cell is
copied into the two neighboring (daughter) cells to the north
and to the east. The process then continues until the 2-D space
is completely programmed. In our example, the furthest cell
is programmed at time .

III. SYNTHESIS OF ORDERED BINARY

DECISION DIAGRAMS (OBDD)

To fit our demands, we needed to find a method capable of
generating, starting from a set of specifications, the configu-

MANGE et al.: EMBRYIONICS: A NEW METHODOLOGY FOR DESIGNING FPGA’S 389

ration for a homogeneous network of cells, where each cell
is defined by an identical architecture and a usually distinct
function (gene).

To meet our requirements, we have selected a particular
representation: theordered binary decision diagram(OBDD).
This representation, with its well-known intrinsic properties
such as canonicity [2], [4], was chosen for two main reasons
[see, for example, Fig. 2(c)]: on one hand, it is a graphical
representation which exploits well the 2-D space and imme-
diately suggests a physical realization on silicon; on the other
hand, its structure leads us to a natural decomposition into
cells realizing a logic test (a diamond), easily implemented by
a multiplexer.

We will illustrate the handling of ordered binary decision
diagrams through a simple example, an up–down counter. Our
choice will lead us to define our new FPGA as a homogenous
array where each cell contains a programmable multiplexer
with one control variable, implementing precisely a logic test.
Such an FPGA is said to befine-grained.

A. Example of a Modulo-4 Up–Down Counter

As an example, let us consider the realization of the above-
mentioned modulo-4 up–down counter, defined by the follow-
ing sequences:

for

(counting up);

for

(counting down) (1)

This definition is equivalent to the two state tables of Fig. 2(a),
defining the future states and .

B. Ordered Binary Decision Trees and Diagrams

We define acomplete (or canonical) binary decision treeas
a tree for variables having branches corresponding to the

possible input states; for the tree of Fig. 2(b), representing
, we have and . Each test element of the tree

is represented by a diamond and defined by a test variable:
it has a single input, a “true” output (test variable equal to
“1”) and a “complemented” output (test variable equal to “0”),
identified by a small circle. The leaf elements, represented as
squares, define the output value of the given function (
in our example).

In our case, the use of Karnaugh maps for simplifying
trees [8], [9] shows that no simplification of is possible
(Fig. 2(a): there is no block, i.e., no pattern formed by
adjacent “0”’s or “1”’s). On the other hand, the Karnaugh map
for [Fig. 2(a)] reveals one block of four “0”’s and one
block of four “1”’s, which gives us to theminimal simplified
tree of Fig. 2(b), representing and containing only two
branches.

A more detailed analysis of the Karnaugh maps of Fig. 2(a)
reveals two types ofblocks of blocks(ST0 and ST1), rep-
resenting subtrees of the tree of [Fig. 2(b)]. It can be
observed, moreover, that the function is equal to the
subtree .

(a)

(b)

(c)

(d)

Fig. 2. Modulo-4 up–down counter. (a) State table (Karnaugh map). (b)
Canonic(Q1+) and minimal(Q0+) binary decision trees. (c) Ordered binary
decision diagrams forQ1+ andQ0+. (d) Multiplexer implementation of the
OBDD’s.

The sharing of identical subtrees implies the convergence
of branches of the tree and its transformation into a new
representation: the binary decision diagram (BDD). Finally,

390 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 6, NO. 3, SEPTEMBER 1998

the sharing of a subtree (ST0) belonging to the two functions
and and the permutation of the “0” and “1” outputs

of certain diamonds lead us to the final diagram of Fig. 2(c),
which represents aforest of binary decision diagrams.

In the above discussion, we have implied that the binary
decision diagrams and trees wereordered, that is, characterized
by a fixed position for the test variables: at the lower
level, at the middle level, and at the upper level. Using
Bryant’s notation [4], we will write

(2)

It can be observed that all logic systems, combinational or
sequential, of variables will require a cellular network of

rows. On the other hand, the minimal number of columns
will depend on the simplification method adopted to obtain the
ordered binary decision diagrams from the original specifica-
tions. For problems of up to six variables, the Karnaugh map
allows a relatively simple manual computation [8], [9]. Beyond
six variables, more complex analytical methods require the use
of a computer [4], [5].

C. Hardware Implementation

Our design decision has been to implement directly the
ordered binary decision diagrams on silicon, and to build our
fine-grained basic cell around a test element (a diamond). Such
an implementation is possible if one replaces each test element
with a 2-to-1 multiplexer, keeps the same interconnection
diagram, and assigns the values of the leaf elements to the
corresponding multiplexer inputs [8]. Fig. 2(d) shows the
direct multiplexer implementation of the up–down counter.
The two state functions and are available at
the outputs of the top multiplexers: the ordered diagrams of
Fig. 2(c) are read bottom-up in Fig. 2(d).

IV. A N EW FIELD-PROGRAMMABLE GATE

ARRAY BASED ON A MULTIPLEXER CELL

A. General Remarks

A simple examination of Fig. 2(d) allows us to identify the
main features of the programmable cell, henceforth referred to
as MUXTREE (for multiplexer tree).

• Each of the two inputs of the multiplexer (labeled “0”
and “1”) will be programmable. The input will be either a
logic constant (“0” or “1”) or the output of the multiplexer
of one of the neighboring cells to the south, southeast, or
southwest.

• The output of the multiplexer will be, therefore, connected
to the inputs of the multiplexers in the neighboring cells
to the north, northeast, and northwest.

• The realization of sequential systems requires the pres-
ence, in each cell, of a synchronous memory element,
a -type flip-flop, which will allow, in our example, to
obtain directly the values and (instead of
and) needed for the display and for the retroaction
of the secondary variables.

• Long-distance connections are necessary to connect a
cell to any other cell in the array. In our example, the

variable (itself obtained at the output of the mentioned
flip-flop) must be brought back to the inputs of the
multiplexers of the middle row of cells. This type of
connection demands a system of universal buses, running
through the entire array.

In brief, the heart of the cell remains the 2-to-1 multiplexer,
optionally followed by a flip-flop. Inputs and outputs are
programmable and can be connected either to immediate
neighbors, according to a topology proper to binary decision
diagrams (where information flows from the bottom to the top),
or to faraway cells through a network of perfectly symmetric
universal buses.

To facilitate the detailed description of the MUXTREE
cell, we will separate it into two levels: thelogic level, that
is, the basic multiplexer and its immediate connections, and
the connection level, that is, the bus network for faraway
connections.

B. Description of the Logic Level

The MUXTREE cell (Fig. 3) is based on a 2-to-1
multiplexer (in the lower part of the test block TB) and
a -type flip-flop (in the memory block MB) for clocked
sequential behavior. Connections to the inputs of the main
multiplexer are defined using the 8-to-1 multiplexers of the
connection block CB. The 6 bits LEFT2:0 and RIGHT2:0
select one out of eight inputs for the left and right branches
of the main multiplexer. The second 2-to-1 multiplexer of
TB selects one of the east buses (EOBUS, EIBUS) to control
the main multiplexer. The 2-to-1 multiplexer of the output
block OB allows the connection of the output of the main
multiplexer or the output of the flip-flop to the north output
(NOUT). A switch block SB, described in Section IV-C,
provides interconnections between the input buses (NIBUS,
EIBUS, SIBUS, WIBUS), as well as the output NOUT, and
the output buses (NOBUS, EOBUS, SOBUS, WOBUS).
Finally, the field-program bit REG (Fig. 3) controls the
combinational or sequential behavior of the cell, while the
field-program bit PRESET determines if an action on the INIT
signal implies an asynchronous set or reset of the flip-flop.

C. Description of the Bus Level and Global Representation

In order to implement long connections, the bus network
includes one switch block SB per cell. Fig. 4(a) symbolizes
the interconnection possibilities between the four input and
four output oriented buses. All connections are possible, with
the exception only of “U-turns.” Fig. 4(b) shows the internal
realization of the block. This realization, which also allows the
north output (NOUT) to be connected to the four output buses,
is realized using four 4-to-1 multiplexers. Each multiplexer is
controlled by two field-program bits selecting one of the four
possible inputs (the other directions input buses and the north
output NOUT).

Fig. 11(b) summarizes the input and output signals of
the MUXTREE cell. In order to facilitate the hexadecimal
representation of its gene, the 17 field-program bits of the cell
are organized as a 20-bit data GENE19:0 (Fig. 3).

MANGE et al.: EMBRYIONICS: A NEW METHODOLOGY FOR DESIGNING FPGA’S 391

(a)

(b)

Fig. 3. MUXTREE cell. (a) Detailed architecture (the switch block SB is described in Fig. 4). (b) The 20-bit data GENE19:0 with P= PRESET,
R = REG, and EB = EBUS.

D. Application: Modulo-4 Up–Down Counter

It can be immediately seen that the counter described by the
ordered decision diagrams of Fig. 2(c) can be realized using
an array of three lines and three columns (that is, by a total
of nine MUXTREE cells).

Fig. 2(c) is modified and leads to the final diagram
[Fig. 5(a)] where we have the following:

• the use of two -type flip-flops, symbolized with a
square around the corresponding diamonds, generates the
variables and in place of and ;

• a cell is completely unused, while another cell is used
exclusively as a direct connection (transmission of).

Using the bus level notation defined in a detailed description
of the MUXTREE cell [11], we can then draw the connection
layout of the counter [Fig. 5(b)].

Combining the information of Fig. 5(a) and (b) allows
us to compute manually the 17 control bits of each gene,
according to the format defined in Fig. 3, and finally produces

the genomeof Fig. 1(a). For all indifferent conditions (-
conditions), the corresponding bits were set to “0.”

E. Conclusion

Thanks to the conception of the new family of field-
programmable gate arrays (FPGA’s) MUXTREE, we are cur-
rently able to realize any given logic system using a completely
homogeneous cellular network. This realization is simplified
by the direct mapping of the ordered binary decision diagrams
onto the array. Thus, we have satisfied the general hypothesis
on the environment described in Section II-A, as well as the
first feature of the Embryonics project, that is, multicellular
organization [Section II-B and Fig. 1(a)].

The manual computation of the genes can be very awkward.
Two software tools (running on an Apple Macintosh) have
been devised to overcome this problem. The first is a graphical
editor, capable of determining the individual 20-bit genes
for the MUXTREE implementation of any given function

392 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 6, NO. 3, SEPTEMBER 1998

(a)

(b)

Fig. 4. The switch block SB. (a) Interconnection possibilities. (b) Detailed
architecture.

(a)

(b)

Fig. 5. Nine-cell implementation of the up–down counter. (a) Logic level
and (b) bus level.

Fig. 6. Hierarchical overview of the three layers and the corresponding block
schemes of the final embryonic cell.

represented by an OBDD. The second is a numerical simulator,
allowing the functional verification of the implementation.

To this date, two physical realizations of arrays of MUX-
TREE cells have been implemented. The first consists of 20
programmable ACTEL 1020A circuits, realizing a homoge-
neous surface of cells. The second,
realized in collaboration with the CMP-Grenoble (Circuits
multi projets, Prof. B. Courtois), is an integrated circuit
MUXCHIP consisting of cells. The chip was
fabricated at an SGS-Thomson Microelectronics facility [6].

V. CELLULAR DIFFERENTIATION: GENOME INTERPRETATION

A. A Hierarchical Overview

Rather than describing our final cell as a whole, we will,
for the sake of simplicity, decompose it in three components
or layers(Fig. 6) and describe each of these layers separately.
The top layer is used to compute the local coordinates
of the cell, usually by adding 1 to the coordinate of the
western neighbor and to the coordinate of the southern
neighbor. The middle layer contains a random access memory
(RAM) and is used to store the entire genome: the memory
stores a single gene per address, i.e., per pair of coordinates

. Finally, the selected gene controls the bottom layer,
which contains the functional cell (i.e., the MUXTREE cell
defined in the preceding section).

During normal operation, the top (address computation) and
middle (genome) layers are fixed and the values they compute
(and coordinates, gene GENE19:0) are constant. We
will say that these two layers, which are in factconfiguration
layers, are idle during operation. Modifications can only be
effected at initialization (programming of the FPGA) or during
the self-repair and self-replication processes.

On the other hand, the bottom layer is the operational part
or application layer. Its values usually change with time.

MANGE et al.: EMBRYIONICS: A NEW METHODOLOGY FOR DESIGNING FPGA’S 393

(a)

(b)

(c)

Fig. 7. Computation and genome representation. (a) Gene computation, (b)X coordinate computation, and (c) up–down counter genome.

B. Microprogrammed Realization

In all living beings, the genome is executed sequentially by
a chemical processor, theribosome. Drawing inspiration from
this biological process, we will use a microprogram to compute
the local coordinates and and to extract from our artificial
genome, as a function of the coordinates, the gene GENE19:0.

The artificial genome [for our example, that of the up–down
counter of Fig. 1(a)] can be considered as atruth table
(or look-up table) whose input states are the coordinates or
addresses and , and whose output states are the genes
GENE19:0.

If we express the values of the coordinatesand in
pure binary code, using the logic variables
and , we may apply the traditional simplification methods
for binary decision trees [8], [9], and we finally obtain the

structured subprogram GENE of Fig. 7(a), represented
symbolically in the program of Fig. 7(c).

Assuming that the mother cell has coordinates
we observe the following (Fig. 6):

• each cell computes its horizontal coordinate as a
function of the horizontal coordinate of its western
neighbor;

• each cell computes its vertical coordinateas a function
of the vertical coordinate of its southern neighbor;

• the sequence of horizontal coordinatesis incremented
and limited to a cycle by the
width of the cellular array;

• the sequence of vertical coordinatesis incremented and
limited to a cycle by the height

of the cellular array.

394 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 6, NO. 3, SEPTEMBER 1998

We can then write two subprograms realizing the expres-
sions

mod (3)

mod (4)

where in the example of the up–down counter
[Fig. 1(a)].

If we express the coordinates and in pure
binary code, using the logic variables and ,
the simplification of the binary decision tree generates the
structured subprogram of Fig. 7(b). An identical computation
can be performed on the coordinate described
by (4).

Merging the subprogram GENE [Fig. 7(a)] and the
two subprograms which implement the increment of as
in (3) and of as in (4) generates the final structured
microprogram or genome for the example of the up–down
counter [Fig. 7(c)].

C. NANOPASCAL: A High-Level Language
for Structured Microprogramming

We will now define a programming language particularly
well suited for the description, the interpretation and the du-
plication of the genome. This language, called NANOPASCAL
for historical reasons, consists in fact of an absolutely minimal
subset of the MODULA-2 language [15].

The NANOPASCAL language is described by thesyntactic
diagram of Fig. 8(a), where we can count seven distinct
terminal symbols (ovals), which make up the instructions of
the language

(5)

The pseudo-instructionbegin is in fact never executed, and
simply indicates the start of the program. The instructionend
forces an unconditional jump to address “0” (this is in fact
the only jump implemented by the language). TheNOP (No
operation) instruction represents the execution of a neutral
operation. The assignmentdo realizes the synchronous
transfer REG OUT of a constant OUT in a register REG
of address . Since no jumps are allowed by the language, all
of the instructions making up the conditional constructif
then else (where is a test variable and and are
assignments) are read, and the execution ofor depends
on the value of a signal EXEC (for EXECUTE) which, in turn,
depends on the preceding values of the test variable.

As an example, Fig. 8(b) shows the shape of the mnemonic
program GENOME, realizing choosen parts of the final micro-
program [Fig. 7(a) and (b)] in the syntax of the NANOPAS-
CAL language.

Writing the microprogram for a relatively large genome can
be a bothersome endeavor. Therefore, we have developed two
software tools which successively allow the following:

• the compilation, starting from the truth table of the
genome (Fig. 1(a), for example), of the complete
NANOPASCAL mnemonic program, including the
computation of the and addresses [Fig. 8(b)];

(a)

(b)

Fig. 8. NANOPASCAL language. (a) Syntactic diagram and (b) micropro-
gram GENOME.

• the translation of the above-mentioned mnemonic pro-
gram into a binary program directly executable by the
interpreter (Section V-D).

D. NANOPASCALINE: An Interpreter for
the NANOPASCAL Language

Fig. 9(a) suggests a possible format and operating code
(OPC) for the six types of executable instructions of the
NANOPASCAL language defined in (5). These six types of
instruction are executed by abinary decision machineor inter-
preterof the NANOPASCAL language (NANOPASCALINE).
It consists mainly of the following elements [Fig. 9(a)].

• A program memory RAM of 256 words of 8 bits.
• An address counter (CNT), whose output is the memory

address ADR; ADR is incremented at each clock period
(there are no jumps, with the exception of the instruction

MANGE et al.: EMBRYIONICS: A NEW METHODOLOGY FOR DESIGNING FPGA’S 395

(a)

(b)

Fig. 9. NANOPASCALINE: NANOPASCAL interpreter. (a) Detailed architecture with format and operation code (OPC) for the six instructions of the
language. (b) Stack operation table.

end which assures the jump to the address ADR0
through the signal SYNCLR 1).

• Eight assignment registers of 4 bits each (:
GENE19:0; : coordinates ; : display).
The selection of one register out of eight is made by
a demultiplexer DMUX and will only be effective if both
the following two conditions are met: 1) an instruction

do (signal DO=1) is being decoded and 2) the order
of execution EXEC=1 is set. This last signal is crucial,
and its value depends on the sequence of values of the
test variable : the computation of the value of EXEC
is performed by the stack STK described below.

• A stack STK of eight levels of 1 bit for the computation
of the signal EXEC. If we call STK[1] the variable of the

396 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 6, NO. 3, SEPTEMBER 1998

top level of the stack, and STK[2, ,8] the values of
the levels below, then the table of Fig. 9(b) describes the
global operation of the stack. The logic product

EXEC STK STK STK STK STK

STK STK STK (6)

which controls the execution of the assignment instruc-
tions do REG OUT depends therefore on the succes-
sion of values of the test variable .

• A multiplexer MUX which selects one out of 16 test
variable .

• A decoder DEC, controlled by the five bits of the op-
erating code OPC4:0, which will generate the signals
controlling the address counter CNT (signal END), the
demultiplexer DMUX (signal DO) and the STK (signals
IF, ELSE, and ENDIF).

In conclusion, our NANOPASCALINE is limited to the
computation of artificial organisms composed of at most

MUXTREE cells.

E. Conclusion

Our choice for the execution of the NANOPASCAL lan-
guage is thus the following: the interpreter executes linearly
all the instructions of the microprogram by incrementing the
address ADR of the memory. The synchronous assignments
REG OUT are executed only if the signal EXEC, generated
by the stack, is one. This choice provides two main advantages:

• the time of execution of the microprogram GENOME is
constant and the same for all the cells;

• the duplication of the microprogram of a mother cell
into an daughter cell can be executed in parallel with
its interpretation (cellular division).

The time of execution of such a program is obviously greater
than that of an equivalent program with jumps. This drawback
is less important in our case, since the GENOME micropro-
gram is active only during the configuration of the FPGA, and
not during its operation.

VI. CELLULAR DIVISION: DUPLICATION OF THE GENOME

The duplication of the GENOME microprogram is accom-
plished automatically, in parallel with its interpretation. A
register, controlled by the configuration clock CCK, is asso-
ciated with the RAM in the NANOPASCALINE interpreter
of each cell. At each rising edge of CCK, an instruction of
the GENOME microprogram is copied into the cell through
one of the SDATA or WDATA inputs selected by a physical
jumper, manually set before start-up [Fig. 11(b)]. The copy of
the instruction is then available on both of the NDATA and
EDATA outputs.

The GENOME microprogram is thus duplicated in perma-
nence, resulting in a great simplicity of wiring and an excellent
reliability, since an eventual transient fault (copy error) during
a cycle will be corrected in the next cycle.

(a)

(b)

Fig. 10. Properties of the up–down counter. (a) Self-replication and (b)
self-repair.

In the symbol of the NANOPASCALINE interpreter
[Fig. 11(b)], KO 1 characterizes a faulty cell.

VII. SELF-REPLICATION AND SELF-REPAIR PROPERTIES

A. Self-Replication

The self-replication of an artificial organism, for example
the up–down counter of Fig. 1(a), rests on two hypotheses: 1)
there exists a sufficient number of spare cells (unused cells at
the right hand side of the array, at least three columns of three
cells for our example) and 2) the calculation of the coordinates
produces a cycle [in Fig. 7(b)].

As the same pattern of coordinates produces the same
pattern of genes, self-replication can be easily accomplished if
the microprogram GENOME, associated to the homogeneous
network of cells, produces several occurrences of the basic
pattern of coordinates [and/or

in Fig. 1(a)]. In our example, the repetition of the
horizontal coordinate pattern, i.e., the production of the pattern

[Fig. 10(a)], produces
one copy, thedaughter automaton, of the original ormother
automaton. Given a sufficiently large space, the self-replication
process can be repeated for any number of specimens, both

MANGE et al.: EMBRYIONICS: A NEW METHODOLOGY FOR DESIGNING FPGA’S 397

(a)

(b)

Fig. 11. BIODULE: demonstration artificial digital cell. (a) The front panel
and (b) detailed architecture.

in the and the axes. For a given cell, the dimensions
of the artificial organism are limited in the first place by the
coordinate space (and , that is,
at most 256 cells in our implementation), and then by the
dimensions of the RAM which will contain the GENOME
microprogram (256 words of 8 bits in our case).

B. Self-Repair

Even if our long-term objective is the development of very
large scale integrated circuits, we have started by realizing a
demonstration system, based onartificial digital cells called
BIODULES [Fig. 11(a)]. In this context, the existence of a
fault is decided by the human user by pressing the KILL
button of a cell. Therefore, fault detection and fault loca-
tion, two features which will be indispensable in the final
system, where they will be implemented using BIST (built-
in self-test) techniques [1], [11]–[13], are not present in the
BIODULES.

To implement self-repair, we have chosen, favoring simplic-
ity, the following process [Figs. 10(b) and 11(a)]:

• pressing the KILL button identifies the faulty cell;
• the entire column to which the faulty cell belongs is

considered faulty, and is deactivated (column in
Fig. 10(b) in the example of the up–down counter);

• all the functions of the application layer (MUXTREE)
and of the configuration layers (NANOPASCALINE) of
the column are shifted by one column to the right.

Obviously, this process requires as many spare columns,
to the right of the array, as there are columns to repair [one
spare column in the example of Fig. 10(b)]. It also implies
some modifications to the application and configuration layers,
so as to add the capability of jumping the faulty column and
shifting to the right all or part of the original cellular array
[Fig. 11(b)].

Finally, it should be mentioned that the final BIODULE
[Fig. 11(a)] also realizes the series-parallel conversion of the
data (DATA) and of the coordinates at the input, and
the opposite conversion at the output. This conversion mini-
mizes the number of connections between each BIODULE.

VIII. C ONCLUSION

A. Results

The first result of our research is the development of a
new family of FPGA’s called MUXTREE and based on a
fine-grained cell containing a multiplexer with one control
variable. The original features of this FPGA are essentially
the following:

• a completely homogenous organization of the cellular
array;

• an integration of the routing into each cell, both for the
short- and long-distance (bus) connections;

• a cell architecture allowing the direct mapping of binary
decision diagrams onto the array.

The FPGA satisfies both the general hypothesis (Section II-
A) and the first feature of the Embryonics project, that of
multicellular organization (Section II-B). Two physical im-
plementations have been realized: a prototype array of 240
cells, itself implemented using FPGA’s of the ACTEL family,
and a complementary metal–oxide–semiconductor (CMOS)
integrated circuit containing 64 cells.

The second result is the realization of a quasi-biological
cell based on an application layer (the MUXTREE cell) and
two configuration layers computing, as a function of the local

398 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 6, NO. 3, SEPTEMBER 1998

coordinates and of the genome, the specific gene controlling
the application layer MUXTREE. The configuration layers are
realized using a binary decision machine called NANOPAS-
CALINE, which interprets the GENOME microprogram. The
three layers of application and of configuration are finally
embedded into a complete cell, implemented using an FPGA
and a RAM, and then built as a demonstration module called
BIODULE. We then show that an array of BIODULES satis-
fies the second and third features of the Embryonics project
(Sections II-C and -D: cellular differentiation and division)
and that it is endowed with the properties of self-replication
and self-repair.

The interest of self-repair is immediately obvious, as this
property allows the repair of isolated faults, for example, the
fault of a single cell. The importance of self-replication is less
evident, and can be justified by the following:

• the complete reconstruction of a device, in case of mas-
sive faults;

• the automatic realization of homogeneous 2-D cellular
automata, by repetition of the same basic cell;

• the simplicity of moving a device in the cellular array by
the simple alteration of the coordinates of the mother cell.

B. Future Perspectives

The main drawback of the BIODULE cell is the lack of
balance between the application layer (MUXTREE), which
realizes the universal function with a single variable, and the
configuration layers (NANOPASCALINE), which store and
interpret a rather complex microprogram. The development
of a new coarse-grained FPGA cell will aim at correcting
this imbalance [11]. The second drawback of the BIODULE,
which is primarily a demonstration system, is the absence
of a system for the detection and location of faults. While
such a system could be implemented using relatively well-
known techniques, we are trying to exploit the peculiar features
of FPGA’s (homogeneous cellular organization, possibility of
reconfiguration) to obtain a BIST realization capable of being
embodied into the integrated circuit which will finally have to
possess all the computational power of an array of BIODULES
[1], [11]–[13].

C. Historical and Theoretical Perspectives

The early history of the theory of self-replicating machines
is basically the history of John von Neumann’s thinking on
the matter [7], [14]. Von Neumann’s automaton is in accord
with the general hypothesis outlined in Section II-A, as each
of its elements is a finite state machine with 29 states. In
his historic work [14], von Neumann successively showed
that a possible configuration (a set of elements in a given
state) of his automaton can implement auniversal constructor
endowed with the three following properties: constructional
universality, self-replication of the universal constructor and
self-replication of a universal calculator. In biology, thecell is
the smallest part of a living being containing the complete
blueprint of the being, thegenome. On the basis of this
definition, it can be shown that von Neumann’s automaton
is a unicellular organism, since it contains a single copy of

the genome, i.e., the description of the universal constructor
and computer [11]. Each element of the automaton is thus
a part of the cell, or, in biological terms, amolecule. Von
Neumann’s automaton, therefore, is amolecular automaton,
and universal construction and self-replication are complex
processes, as they are caused by the interaction of thousands
of elements, the molecules, each one realized by a finite state
machine with 29 states.

Arbib [3] was the first to suggest a truly “cellular” au-
tomaton, in which every cell contains a complete copy of
the genome, and a hierarchical organization, where each
cell is itself decomposed into smaller and regular parts, the
“molecules.” Following this concept, the automaton we pro-
pose is a multicellular organism, as each of its elements
contains a copy of the genome [nine copies in the case of the
up–down counter of Fig. 1(a)]. Each element of our automaton
is thus acell in the biological sense, and our automaton is
truly amulticellular automaton. Self-replication and self-repair
are straightforward processes, as the BIODULE cell has been
conceived especially to carry out globally the operations of
cellular differentiation and division.

The property ofuniversal computation, that is, the possibil-
ity of realizing, repairing, and replicating a universal Turing
machine, can theoretically be verified with the BIODULE cell.
But the implementation of such a machine will be strongly
simplified by the creation of a second generation of cells,
coarse-grained [10].

The property ofuniversal constructionposes problems of
a different nature, since it requires (always according to von
Neumann) that BIODULE cells be able to implement artificial
organisms of any dimension. The finite dimensions of our cells
(memories, registers, etc.) are, for the moment, preventing us
from meeting this requirement, a challenge which remains one
of our main concerns and which could be solved, according
to Arbib’s suggestion, by decomposing a cell into molecules.

REFERENCES

[1] M. Abramovici and C. Stroud, “No-overhead BIST for FPGA’s,” in
Proc. 1st IEEE Int. On-Line Testing Workshop, July 1995, pp. 90–92.

[2] S. B. Akers, “Binary decision diagrams,”IEEE Trans. Comput., vol.
C-27, pp. 509–516, June 1978.

[3] M. A. Arbib, Theories of Abstract Automata. Englewood Cliffs, NJ:
Prentice Hall, 1969.

[4] R. E. Bryant, “Symbolic boolean manipulation with ordered binary-
decision diagrams,”ACM Computing Surveys, vol. 24, no. 3, pp.
293–318, 1992.

[5] M. Davio, J.-P. Deschamps, and A. Thayse,Digital Systems with
Algorithm Implementation. New York: Wiley, 1983.

[6] S. Durand, “Muxchip,” Logic Syst. Lab., Swiss Federal Inst. Technol.,
Lausanne, Switzerland, Tech. Rep., Oct. 1994.

[7] R. A. Freitas and W. P. Gilbreath, Eds., “Advanced automation for space
missions,” inProc. Nasa Conf., no. 2255, 1982.

[8] D. Mange, Microprogrammed Systems: An Introduction to Firmware
Theory. London, U.K.: Chapman and Hall, 1992.

[9] D. Mange, “Teaching firmware as a bridge between hardware and
software,” IEEE Trans. Educ., vol. 36, pp. 152–157, Mar. 1993.

[10] D. Mange, D. Madon, A. Stauffer, and G. Tempesti, “Von Neumann
revisited: A turing machine with self-repair and self-replication proper-
ties,” Robot. Autonomous Syst., vol. 22, no. 1, pp. 35–58, 1997.

[11] D. Mange and M. Tomassini, Eds.,Bio-Inspired Computing Machines.
Lausanne, Switzerland: Polytechniques et Universitaires Romandes
Press, 1998.

[12] E. J. McCluskey,Logic Design Principles with Emphasis on Testable
Semicustom Circuits. Englewood Cliffs, NJ: Prentice Hall, 1986.

MANGE et al.: EMBRYIONICS: A NEW METHODOLOGY FOR DESIGNING FPGA’S 399

[13] G. Tempesti, D. Mange, and A. Stauffer, “A robust multiplexer-based
FPGA inspired by biological systems,”J. Syst. Architecture, vol. 43, no.
10, pp. 719–733, 1997.

[14] J. von Neumann,Theory of Self-Reproducing Automata. Urbana, IL:
University of Illinois Press, 1966.

[15] N. Wirth, Programming in MODULA-2, 2nd ed.Berlin, Germany:
Springer-Verlag, 1983.

[16] L. Wolpert,The Triumph of the Embryo. New York: Oxford University
Press, 1991.

Daniel Mange (M’94) received the M.S. and Ph.D.
degrees from the Swiss Federal Institute of Tech-
nology, Lausanne, Switzerland.

Since 1969, he has been a Professor at the Swiss
Federal Institute of Technology. He held a position
as Visiting Professor at the Center for Reliable
Computing, Stanford University, Stanford, CA, in
1987. He is currently Director of the Logic Sys-
tems Laboratory, Swiss Federal Institute of Technol-
ogy, and his chief interests include firmware theory
(equivalence and transformation between hardwired

systems and programs), cellular automata, artificial life, and embryonics
(embryonic electronics).

Eduardo Sanchez (M’84) received the Diploma
in electrical engineering from the Universidad del
Valle, Cali, Colombia, and the Ph.D. degree from the
Swiss Federal Institute of Technology, Lausanne,
Switzerland.

He is Professor of Computer Science in the
Logic Systems Laboratory, Swiss Federal Institute
of Technology, where he is engaged in teaching
and research. His chief interests include computer
architecture, VLIW processors, reconfigurable logic,
and evolvable hardware.

Andr é Stauffer (S’68–M’69) received the Diploma
in electrical engineering and the Ph.D. degree from
the Swiss Federal Institute of Technology, Lau-
sanne, Switzerland.

He spent one year as a Visiting Scientist at
the IBM T. J. Watson Research Center, Yorktown
Heights, NY, in 1986. He is a Senior Lecturer
in the Department of Computer Science at the
Swiss Federal Institute of Technology. In addition to
digital design, his research interests include circuit
reconfiguration and bio-inspired systems.

Gianluca Tempesti (M’95) received the B.S.E.
degree in computer engineering from Princeton Uni-
versity, Princeton, NJ, in 1991 and the M.S.E.
degree from the University of Michigan, Ann Arbor,
in 1993.

Since 1994, he has been working as a Teach-
ing and Research Assistant at the Logic Systems
Laboratory in the Department of Computer Science,
Swiss Federal Institute of Technology, Lausanne,
Switzerland. His research interests include self-test
and self-repair, programmable logic circuits, proces-

sor design, and parallel computer architecture.

Pierre Marchal (M’94) received the M.S. degree in
computer science from the University of Grenoble,
France, in 1980 and the Ph.D. degree in computer
science from the Institut National Polytechnique,
Grenoble, France, in 1983.

He joined the Microcomputing Laboratory
of the Swiss Federal Institute of Technology,
Lausanne, Switzerland, in 1987 and the Advanced
Microelectronics Division of the CSEM Centre
Suisse d’Electronique et de Microtechnique S.A.,
Neucĥatel, Switzerland, in 1991. He is presently

involved in the design of low-power circuits, reconfigurable architectures,
self-structuring circuits, and on-line arithmetics.

Christian Piguet received the M.S. and Ph.D.
degrees in electrical engineering from the Swiss
Federal Institute of Technology, Lausanne, Switzer-
land.

He is Head of the Ultra-Low-Power Sector
at the CSEM Centre Suisse d’Electronique et de
Microtechnique S.A., Neuchâtel, Switzerland. His
main interests include the design of very low-power
microprocessors, low-power standard cell libraries,
gated-clock and low-power techniques, as well as
asynchronous design.

