
The Embryonics Project:

A Machine Made of Artificial Cells

Gianluca Tempesti†, Daniel Mange, André Stauffer

Logic Systems Laboratory
Swiss Federal Institute of Technology

Lausanne, Switzerland
Email: Name.Surname@epfl.ch

† Corresponding author. Phone: +41-21-693 2676. Fax: +41-21-693 3705.

Gianluca Tempesti
Text Box
Rivista di Biologia-Biology Forum, Vol. 92, No 1, January-April 1999, pp. 143-188.

Table of Contents

Abstract ... 1

1 Introduction... 2

2 Background: Basic Concepts .. 3

3 Artificial Cells... 5

3.1 Von Neumann’s Universal Constructor... 5

3.1.1 Von Neumann’s Self-Replicating Machines... 5

3.1.2 Von Neumann’s Cellular Model... 6

3.2 The Embryonics Project .. 8

3.2.1 Multicellular Machines.. 8

3.2.2 The Artificial Organism ... 9

3.2.3 The Artificial Cell .. 11

3.2.4 A Simple Example .. 12

4 Artificial Molecules .. 14

4.1 Field-Programmable Gate Arrays.. 15

4.2 An FPGA for the Embryonics Project: MuxTree .. 16

4.3 Self-Replication... 18

4.4 Self-Repair... 20

4.4.1 Self-Test in MuxTree .. 20

4.4.2 Self-Repair in MuxTree.. 22

4.4.3 MuxTree and MicTree.. 23

5 Biological Perspectives... 24

5.1 Biological Inspiration in Von Neumann’s Work... 24

5.2 Biological Inspiration in Embryonics.. 26

6 Conclusion .. 28

Acknowledgements ... 31

References ... 32

Sommario .. 35

Abstract

It is possible to trace the origins of biological inspiration in the design of electronic
circuits to the very dawn of the field of computer engineering, with the work of John
von Neumann in the 1940s. To his brilliance we owe not only the first methodical
attempts to define the electronic equivalents of many fundamental biological process,
but also the development of the first self-replicating computing machines.

Unfortunately, the electronic technology of the time would not allow a physical
realization of von Neumann’s machines, and it was not until the introduction of new
programmable circuits in the 1980s that the field of bio-inspired machines gained new
momentum.

In this article, we describe the Embryonics (embryonic electronics) project, an
attempt to draw inspiration from the ontogenetic processes that determine the growth
of multicellular organisms in the design of new, massively parallel arrays of
processors (theartificial cells). Our cells are simple processors, all based on an
identical hardware structure and all containing the same program (ourartificial
genome), but executing different parts of the genome depending on their spatial
coordinates within the array. As in living beings, the presence of the genome in every
cell allows the introduction of features such as self-replication and self-repair
(cicatrization). In addition, the cells are implemented using an array of programmable
elements (theartificial molecules), which allows their structure to be adapted to a
given application.

Through the parallel operation of many of these simple processors, we hope to
realize highly complex systems, the equivalent of multicellular organisms in the
natural world.

1 Introduction

Biological inspiration in the design of artificial machines is not a novel concept:
the idea of robots and mechanical automata as man-like artificial creatures predates
even the development of the first computers. With the advent of electronics, the
attempts to imitate biological systems in computing machines shifted from the
mechanical world to the realm ofinformation: since the physical substrate of
electronic machines (i.e., the hardware) is not easily modifiable, biological inspiration
was applied almost exclusively to information (i.e., the software).

Recent technological advances, in the form of reprogrammable logic circuits (see
below) have blurred of the distinction between software and hardware, and have
engendered a re-evaluation of the concept of bio-inspired hardware [13][16][30][38].
The work presented in this paper is just such an attempt: by drawing inspiration from
the ontogenetic processes which determine the growth of multicellular organisms, the
Embryonics (for embryonic electronics) project aims at developing a novel
methodology for the design of digital logic circuits [20][24][25][37].

The motivation behind this attempt should be obvious, since multicellular
organisms represent an impressive example of massively parallel systems: the 6x1013

cells of a human body, each a relatively simple element, work together to accomplish
extremely complex tasks (the most outstanding being, of course, intelligence). If we
consider the difficulty of programming parallel computers (a difficulty that has led to
a decline in the popularity of such systems), biological inspiration could provide some
relevant insights on how to handle massive parallelism in silicon. Moreover, the
outstanding capability of biological organisms to survive considerable amounts of
damage can be of great interest in the design of digital circuits, whose growing
complexity is bringing to the fore the problem of fault-tolerance (i.e., the ability to
continue operating in the presence of defects in the silicon substrate).

Of these two major bio-inspired features,self-repair (the implementation of fault
tolerance) is probably the more “conventional”: the concept of fault-tolerant digital
circuits is a relatively well-studied subject. This is far from being the case whereself-
replication, a necessary component in the development of multicellular machines, is
concerned. Research in the domain of self-replicating machines is very scarce and a
considerable amount of innovative and original research was required to integrate this
feature in our system.

We are extremely glad to have the opportunity to address a public of biologists.
We have attempted, within reason, to limit the “technical” contents of this paper to
make it (hopefully) understandable by non-engineers. We will begin by providing a
cursory definition of some of the engineering terms used in the remainder of the
paper, and then start dealing with the main subject by introducing our interpretation of
an artificial cell, drawing inspiration both from the biological process of ontogeny
and from the work of our predecessors, and notably of John von Neumann [40]. We
will then observe that, to obtain systems that are efficient from an engineer’s
perspective, we need to further borrow from nature the concept ofartificial molecules
as the constituent elements for our cells. We will then conclude with a few
observations on the biological inspiration of our system and on some future
developments.

2 Background: Basic Concepts

Writing about one’s own field of expertise to a public of non-specialists is not a
simple task: it is easy to take for granted the reader’s knowledge of many “standard”
terms and concepts. To try to avoid this pitfall, we will try to define in this section
some of the main engineering terms used in the rest of the paper. We hope that this
very cursory overview will be of aid for a better understanding of the subject matter,
apologizing in advance if it should not be the case1.

The design of computing systems rests upon two basic concepts:softwareand
hardware. It is very important to fully understand the distinction between these
concepts, which is not always as obvious as it might appear at first sight.

Software is the realm ofinformation, in digital form. As far as computer systems
are concerned, there exist two main kinds of information:programs and data.
Programs are executable sequences of instructions that tell a computer’s processor
what to do. Data is what the processor operates on, and can consist of images, sounds,
text, or just about any other kind of information.

It is however very important to remember that all software, independently of its
ultimate meaning, is coded as a sequence ofbits, that is, a one-dimensional string of
0s and 1s. There is no inherent difference between sequences representing, for
example, the word processor used to write this document (program) and the
document’s text (data). It is up to the computer’s processor (and thus the hardware) to
handle the two sequences differently.

A processor, the paramount example of digital hardware, is thus responsible for
manipulating (processing) data: it receives a sequence of bits which corresponds to a
sequence of instructions,interpretsthem to determine what it needs to do, and then
performs the required task on the appropriate data.

In reality, however, processors make up only a very small percentage of all the
digital circuits used in today’s world. The great majority of circuits, in fact, are
designed to execute (very rapidly) a single, specific task. They areapplication-
specificcircuits, as opposed togeneral-purposeprocessors.

The techniques of hardware design are not very well-known to the public, and this
is obviously not the right place for an in-depth description. Nevertheless, we will
devote a few paragraphs to the definition of some of the main terms used throughout
this article.

The basic primitive of digital hardware is thetransistor, which can be seen as a
simple switch, allowing or preventing the passage of electric current along a metal
wire2. Opening and closing the appropriate switches allows a line to hold the value 1
(the circuit’s operating voltage, conventionally 5 volts) or 0 (the circuit’s ground, 0
volts). All digital circuits are thus, basically, collections of switches.

1 Some much more complete efforts at vulgarization are of course available. See, for
example, [26] for an easy-to-read (but fairly complete) introduction to the design of digital
hardware aimed at the general public, or [11] for a more “serious” (but much more technical)
textbook.

2 In this context, a “wire” can be seen as a metal line on the silicon substrate of a chip.

The design of complex circuits using transistors, however, is extremely difficult.
As a consequence, transistors are usually grouped to formlogic elementsof varying
complexity, implementing small functions (Figure 1). To mention but a few:

• an inverteroutputs the inverse of its input;
• anAND gateoutputs a 1 if and only if all its inputs are 1;
• anOR gateoutputs a 0 if and only if all its inputs are 0;
• a multiplexer represents a choice, allowing a single one of its inputs,

selected by a control variable, to arrive at the output;
• a flip-flop is the basic unit for the storage of information, capable of

memorizing the value of a single bit of information;
• a registeris simply a group of flip-flops put side by side, thus allowing it to

store multiple bits of information;
• a shift register is a special kind of register where all the flip-flops are

chained together so that the value to be stored in the register can be entered
sequentially from one end.

A circuit containing no memory elements (flip-flops, registers) is called
combinational, as opposed tosequential. Sequential circuits are controlled by aclock,
which sets the frequency at which the values in the memory elements are updated.

The design of digital circuits thus consists of putting together these elements to
realize complex functions. As we mentioned, however, the distinction between
hardware and software is blurring, mainly as a consequence of the introduction of
programmable circuits, calledFPGAs. (Field-Programmable Gate Arrays) These
circuits, described below, do not have an inherent functionality. However, by
providing them with aconfigurationin the form of a string of bits (software), they can
assume any structure desired by the user. By allowing hardware to be modified by
software, FPGAs have opened the way to the development of bio-inspired hardware.

Figure 1: Some of the logic elements used in the design of digital circuits.

IN OUT
IN0

IN1

OUT[7:0]

IN[7:0]CLOCK

8-BIT
REGISTER

IN2
IN3

IN0 IN1 OUT
 0 0 0
 0 1 0
 1 0 0
 1 1 1

IN0 IN1 OUT
 0 0 0
 0 1 1
 1 0 1
 1 1 1

 IN OUT
 0 1
 1 0

 S0 S1 OUT
 0 0 IN0
 0 1 IN1
 1 0 IN2
 1 1 IN3

INVERTER
2-INPUT

AND GATE
2-INPUT
OR GATE

4-INPUT
MULTIPLEXER

OUT
IN0

IN1
OUT

IN0
IN1

S0
S1

OUT

CLOCK

IN OUT
FLIP
FLOP

COMBINATIONAL LOGIC

SEQUENTIAL LOGIC
OUT[7:0]

CLOCK

SEQ
IN

SEQ
OUT

8-BIT
SHIFT REGISTER

3 Artificial Cells

The work presented in this paper deals with the development of a new,
biologically-inspired design methodology for the synthesis of digital circuits, and
draws inspiration from two distinct sources. The first, as we have mentioned, is the
biological mechanism ofontogeny: the complex behavior of natural organisms
derives from the parallel operation of a multitude of simple elements, the cells. The
second source of inspiration for our work is John von Neumann’s concept ofself-
replication of a universal computer, a mechanism that allows for the automatic
creation of multiple identical copies of a machine from a single initial copy. As we
will see, these two sources of inspiration bear a remarkable similarity under close
analysis.

3.1 Von Neumann’s Universal Constructor

The field of bio-inspired digital hardware was pioneered by John von Neumann. A
gifted mathematician and one of the leading figures in the development of the field of
computer engineering, von Neumann dedicated the final years of his life on what he
called thetheory of automata[40]. This research, which was unfortunately interrupted
by his untimely death in 1957, was inspired by the parallel betweenartificial
automata, of which the paramount example are computers, andnatural automata
such as the nervous system, evolving organisms, etc.

To find a physical realization for his theory of automata, von Neumann conceived
of a set of machines capable of many of the same feats as biological systems:
evolution, learning, self-replication, self-repair, etc. At the core of his approach was
the development ofself-replicating machines, that is, machines capable of producing
identical copies of themselves.

3.1.1 Von Neumann’s Self-Replicating Machines

Von Neumann, confronted with the lack of reliability of computing systems,
turned to nature to find inspiration in the design of fault-tolerant computing machines.
Natural systems are among the most reliable complex systems known to man, and
their reliability is a consequence not of any particular robustness of the individual
cells (or organisms), but rather of their extreme redundancy. The basic natural
mechanism that provides such reliability isself-reproduction3, both at the cellular
level (where the survival of a single organism is concerned) and at the organism level
(where the survival of the species is concerned).

Thus von Neumann, drawing inspiration from natural systems, attempted to
develop an approach to the realization of self-replicating computing machines. In
order to achieve his goal, he imagined a series of five distinct models for self-
reproduction ([40], pp. 91-99), introduced on the occasion of a series of five lectures
given at the University of Illinois in December 1949:

3 You will note that we use the termsself-replication and self-reproduction
interchangeably. In reality, the two terms are not really synonyms: self-reproduction is more
properly applied to the reproduction of organisms, while self-replication concerns the cellular
level. In this context, the correct term would probably be self-replication, but since von
Neumann favored self- reproduction, we will ignore the distinction.

• The kinematicmodel is the most general. It involves structural elements
such as sensors, muscle-like components, joining and cutting tools, along
with logic (switch) and memory elements. Containing, as it does, physical
as well as electronic components, its goal was to define the theoretical
bases of self-replication, but was not designed in view of a possible
implementation.

• To find an approach to self-replication more amenable to a rigorous
mathematical treatment, von Neumann, following the suggestion of the
mathematician S. Ulam, developed acellular model. This model, based on
the use of the cellular automata4 environment, was probably the closest to
an actual realization and is the basis for all further research on the subject
of self-replication.

• The excitation-threshold-fatiguemodel was based on the cellular model,
but each element of the cellular automaton was replaced by a neuron-like
element. Von Neumann never defined the exact structure of the neuron, but
we can deduce that it would have borne a fairly close relationship to
today’s artificial neural networks [12].

• For the continuous model, von Neumann planned to use differential
equations to describe the process of self-reproduction. Again, the details of
this model are not known, but we can assume that von Neumann planned to
define systems of differential equations to describe the excitation, threshold
and fatigue properties of a neuron.

• The probabilistic model is the least well-defined of all the models. We
know that von Neumann intended to introduce a kind of automaton where
the transitions between states would be probabilistic rather than
deterministic. Such an approach would allow the introduction of
mechanisms such as mutation and thus of the phenomenon of evolution in
artificial automata.

Of all these models, the only one von Neumann developed in some detail was the
cellular model. Since it was the basis for the work of his successors, it deserves to be
examined more closely.

3.1.2 Von Neumann’s Cellular Model

In von Neumann’s work, self-reproduction is always presented as a special case of
universal construction(Figure 2): his machineUconstr is capable of building any
other machineM, provided it can access its descriptionD(M) .

This approach was maintained in the design of his cellular automaton, which is
therefore much more than a self-replicating machine. The complexity of its purpose is
reflected in the complexity of its structure, based on three separate components:

4 Cellular automata [7][42] are arrays of elements (commonly calledcells, a term we will
avoid so as not to generate confusion with our artificial cells) all behaving identically,
depending on the element’sstateat a given moment in time. At regular, discrete intervals
(iterations), the state of all elements is updated, depending on the current state of the element
itself and that of its neighbors, according to a set oftransition rules.

• A memory tape, containing the description (a one-dimensional string of
elements) of the machine to be built. In the special case of self-
reproduction, the memory contains a descriptionD(Uconstr) of the
universal constructor itself (Figure 3).

• The constructor itself, a very complex machine capable of reading the
memory tape and interpreting its contents.

• A constructing arm, directed by the constructor, used to build the offspring
(the machine described in the memory tape). The arm moves in space and
sets the state of the elements of the offspring to the appropriate value.

The implementation as a cellular automaton is no less complex. Each element has
29 possible states, and thus, since the next state of an element depends on its current
state and that of its four cardinal neighbors, 295=20,511,149 transition rules are
required to exhaustively define its behavior. If we consider that the size of von
Neumann’s constructor is of the order of 100,000 elements, we can easily understand
why a hardware realization of such a machine is not really feasible.

In fact, as part of the Embryonics project, we did realize a hardware imple-
mentation of a set of elements of von Neumann’s automaton [5][31]. By carefully
designing the hardware structure of each element, we were able to considerably
reduce the amount of memory required to host the transition rules. Nevertheless, our
system remains a demonstration unit, as it consists of a few elements only, barely
enough to illustrate the behavior of a tiny subset of the entire machine.

Figure 2: Von Neumann’s universal constructorUconstr can build any machineMfrom its
descriptionD(M) .

Figure 3: Von Neumann’s universal constructorUconstr can build a copy of itselfUconstr’ given
its own descriptionD(Uconstr) .

Uconstr

M

D(M)

Uconstr

Uconstr'

D(Uconstr)

D(Uconstr)

The constructor, as we have described it so far, has no functionality beyond self-
reproduction. Von Neumann recognized that a self-replicating machine would require
some sort of functionality to be interesting from an engineering point of view, and
postulated the presence of auniversal computerUcomp (in practice, a universal
Turing machine [14], an automaton capable of performing any finite computation)
alongside the universal constructor (Figure 4).

3.2 The Embryonics Project

If we consider von Neumann’s universal constructor from a biological viewpoint,
we can associate the memory tape with the genome, and thus the entire constructor
with a single cell (which would imply a parallel between the automaton’s elements
and molecules). Von Neumann’s constructor can thus be regarded as aunicellular
organism, containing a genome stored in the form of a memory tape, read and
interpreted by the universal constructor (the mother cell) both to determine its
operation and to direct the construction of a complete copy of itself (the daughter
cell).

The approach to the realization of bio-inspired hardware in the Embryonics project
is somewhat different. We decided to base our systems on simpler cells and to follow
nature’s example by achieving complex behavior through the parallel operation of
many cells. Our systems are therefore the artificial equivalent ofmulticellular
organisms.

3.2.1 Multicellular Machines

The development of a multicellular biological organism involves a set of processes
that determine the growth of the organism, that is, to the development of an organism
from a single mother cell (thezygote) to a full-blown adult. The zygote divides, each
offspring containing a copy of the genome (cellular division). This process continues
(each new cell divides, creating new offspring, and so on), and each newly formed
cell acquires a functionality (i.e., liver cell, epidermal cell, etc.) depending on its
surroundings, i.e., its position in relation to its neighbors (cellular differentiation).
With the label of ontogenywe refer to all these processes, which determine the
development of an individual organism from the embryo to adulthood.

Figure 4: A universal computerUcompcan be added to the constructorUconstr , which will build a
copy of the entire machine (Ucomp’+Uconstr’) from its descriptionD(Ucomp+Uconstr) .

UconstrUcomp

Uconstr'Ucomp'

D(Uconstr+Ucomp)

D(Uconstr+Ucomp)

In this respect, the two sources of inspiration we described (ontogeny and von
Neumann’s machines) are different in very fundamental way. Both rely on a
mechanism of self-replication to obtain arrays of elements that can be seen as
processors, all executing an identical program. However, in von Neumann’s case, the
processors are universal Turing machines, and are identical in structure as well as in
functionality: the phenomenon of cellular differentiation is entirely missing. In nature,
cells are different in structure and functionality (the appearance and behavior of a
liver cell, for example, are considerably different from that of an epidermal cell), but
any cell is potentially capable of replacing any other cell because it contains the
description of the entire organism, i.e., thegenome. Cellular differentiation is
fundamental for biological systems.

In Embryonics, we developed a solution that tries to integrate the two approaches,
based on a truly multicellular architecture capable of cellular divisionand of cellular
differentiation [20][21][24][37]. As we will see, our approach allows us not only to
respect many of the basic definitions of biology, but also to exploit some of the more
specialized mechanisms on which the ontogenetic development of an organism is
based.

3.2.2 The Artificial Organism

To find a practical approach to the design of computing systems inspired by the
operation of biological multicellular organisms, we attempted to determine some of
the essential features of such organisms:

• In biology, an organism is an array of cells, all performing their functions
in parallel to give rise toglobal processes(i.e., processes involving the
entire organism). To respect the biological analogy, our artificial organism
will also consist of an array of elements working in parallel to achieve a
global task, i.e., to execute a given application.

• In biology, each cell contains agenome, that is, the description of the
organism, which is decoded to determine the functionality of the cell. In
our system, cells are small processors, all decoding and executing the same
program, our artificial genome.

• In biology, no single cell uses the entire genome, accessing only those
portions necessary to perform its functions. Similarly, no single processor
will execute all the instructions in its program, but will use its position
within the array to identify which subset of the program to access.

Drawing inspiration from biological organisms thus led us to define our organism
as an array of processors, all identical in structure (since each cell must be able to
execute any subset of the genome program) and each executing a different part of the
same program, depending on its coordinates in the array.

At first glance, this kind of system might not seem very efficient from the
standpoint of conventional circuit design: storing a copy of the genome program in
each processor might seem redundant, since each processor will only execute a
subset. However, by accepting the weaknesses of bio-inspiration, we can also partake
of its strengths. One of the most interesting features of biological organisms is their
robustness, a consequence of the same redundancy that we find wasteful: since each
cell contains a copy of the entire genome, it can theoretically replace any other. Thus,

if one or more cells should die because of a trauma (such as, for example, a wound),
they can be recreated starting from any other cell. By analogy, if one or more of our
processors should “die” (as a consequence, for example, of a hardware fault), they can
theoretically be replaced by any other processor in the array.

The redundancy introduced by having multiple copies of the same program thus
provides an intrinsic support for self-repair, one of the main objectives of our
research: by providing a set of spare cells (i.e., cells that are inactive during normal
operation, but which are identical to all other cells and contain the same genome
program), we are able (Figure 5) to reconfigure the array around one or more faulty
processors (of course, as in living beings, too many dead cells will result in the death
of the entire organism).

Moreover, if the function of a cell depends on its coordinates, the task of self-
replication is greatly simplified: by allowing our coordinates to cycle (Figure 6) we
can obtain multiple copies of an organism with a single copy of the program
(provided, of course, that enough processors are available). Depending on the
application and on the requirements of the user, this feature can be useful either by
providing increased performance (multiple organisms processing different data in
parallel) or by introducing an additional level of robustness (the outputs of multiple
organisms processing the same data can be compared to detect errors).

Figure 5: When one of the cells of an organism dies, the column containing the faulty cell is
deactivated, and coordinates are recomputed throughout the array.

Figure 6: Cycling the coordinates automatically generates multiple copies of the organism, provided
enough cells are available.

1,3 2,3 3,3 SPR

SPR3,22,21,2

1,1 2,1 3,1 SPR

1,3 XXX 2,3 3,3

3,22,2XXX1,2

1,1 XXX 2,1 3,1

SPARE CELL
ACTIVE CELL FAULTY CELL

ORGANISM

1,2 2,2 3,2

3,12,11,1

1,2 2,2 3,2

3,12,11,1

1,2 2,2 3,2

3,12,11,1

1,2 2,2 3,2

3,12,11,1

1,2 2,2 3,2

3,12,11,1

1,2 2,2 3,2

3,12,11,1

3.2.3 The Artificial Cell

Keeping in mind the requirements of the organism, we can now determine the
basic features of our electronic cell. At the hardware level, all cells must be identical:
since we want our organisms to be able to efficiently execute a variety of
applications, we cannot fixa priori the functionality of our cell. In addition, they need
to store the genome program with a coordinate-dependent access mechanism.

The hardware structure of our cell will therefore have to be capable of executing
any given function, and it will be up to the genome and the coordinate system to
decide which parts of the circuit will be active at any given moment.

Obviously, there exist many possible approaches to the definition of an artificial
cell, but if we are to maintain the analogy with biology, it must necessarily include
(Figure 7):

• A memory to store the genome. The size of the genome is variable,
depending on the application to be executed.

• An [X,Y] coordinate system, to allow the cell to locate its position within
the array, and thus its function.

• An interpreterto read and execute the genome.
• A functional unit, to allow for data processing. Depending on the

application, it could contain a variety of logic elements, from a single
register to a full ALU (Arithmetic Logic Unit) and beyond5.

• A set of connections handled by arouting unit.
In order to demonstrate the features of our cellular system, we designed a

prototype, known asMicTree (Figure 8) [21][24], and used it to implement a set of
applications which, while relatively simple because of the limited size of our
prototype, are nevertheless interesting in that they exhibit both the properties of self-
repair (provided spare cells are available) and self-replication (if the array is large
enough to contain multiple copies of the organism).

5 While the functional unit can theoretically be of any size and complexity, biological
organisms provide a powerful example of systems capable of complex behavior derived not
from the complexity of each component, but rather from the parallel operation of many simple
elements. One of the goals of our project is to show that biological inspiration allows us,
without excessive difficulty, to design complex systems by combining very simple cells.

Figure 7: General structure of one of our artificial cells.

ROUTING
UNIT

GENOME

MEMORY

FUNC

UNIT

INTERPRETER

X,Y
COORDS

3.2.4 A Simple Example

To illustrate the design methodology of our system, we can use a very simple
organism, which we will call, for reasons that should soon become apparent, theSwiss
flag.

This example (Figure 9) contains 25 cells (a 5x5 array), with only two different
kinds of cells, red (dark gray in the figure) and white, distributed in a fixed pattern. In
a “real” application, of course, the cells would have a different behavior (i.e., perform
a different operation depending on their color), but for simplicity’s sake we will
assume the cells’ function is simply to determine their own color depending on their
coordinates within the array, thus demonstrating cellular differentiation.

The first step in the cells’ program is therefore to determine their own position
(i.e., their coordinates) within the array. The first, bottom-left cell detects that it has
no south and west neighbors, and thus fix its own coordinates (X,Y=1,1). It will
then increment these values and send them to its north and east neighbors, which in
turn will be able to compute their coordinates (X,Y=1,2 and X,Y=2,1 ,
respectively), increment them, and send them totheir neighbors. The process
continues until all the cells have determined their coordinates.

Figure 8: The Biodule 601, a prototype circuit containing a single artificial cell.
[Photo by André Badertscher]

Figure 9: TheSwiss flagorganism, a 5x5 array of cells.

5
4
3
2
1

1 2 3 4 5
Y

X

Probably the simplest representation for the cells’ differentiation is the so-called
truth table, or lookup table, an ordered, linear description of the color of each cell as a
function of its coordinates. Using binary code to represent the coordinates requires
three bits per coordinate (or six per pair of coordinates). We can then use six auxiliary
binary variables (X0, X1, X2, Y0, Y1, and Y2) to represent theX and Y
coordinates of each cell.

It can be shown that the truth table can trivially be transformed into an equivalent
form, known as abinary decision tree[3][19]. Such a tree is composed of two types
of elements: diamond-shapedtest elements, which select which branch of the tree
corresponds to the value of the tested variable (if the value is 0, the selected path is
the one identified by a small circle) and square-shapedoutput elements, which assign
a value (red or white) to a cell. Depending on the coordinates, different branches of
the tree will be executed by different cells, thus achieving cellular differentiation in
our simple organism.

Figure 10: Truth table (A) and binary decision tree (B) representation of theSwiss flagorganism.

Figure 11: The programOrg_genome executed in each of the organism’s cells.

X2

Y2

X0

Y1

Y0

Y2

X1

X0

Y0

Y1

X1

X0

Y0

1 0 0 1
1 0 0 1
1 0 0 1
1 0 0 1
1 0 0 1

2 0 1 0
2 0 1 0
2 0 1 0
2 0 1 0
2 0 1 0

3 0 1 1
3 0 1 1
3 0 1 1
3 0 1 1
3 0 1 1

4 1 0 0
4 1 0 0
4 1 0 0
4 1 0 0
4 1 0 0

5 1 0 1
5 1 0 1
5 1 0 1
5 1 0 1
5 1 0 1

1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1

1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1

1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1

1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1

1 0 0 1
2 0 1 0
3 0 1 1
4 1 0 0
5 1 0 1

X2 X1 X0 Y2 Y1 Y0YX FLAG

(A) (B)

Y = SY + 1

end

X = WX + 1

beginOrg_genome

Xcoord

Ycoord

Org_gene

At this stage, we can assemble our final genomeOrg_genome (Figure 11), the
program which will be executed within each cell. It consists of three subprograms:

• Xcoord , charged with incrementing the coordinateWXsent by the west
neighbor and of propagating it to the east;

• Ycoord , charged with incrementing the coordinateSY sent by the south
neighbor and of propagating it to the north;

• Org_gene , which contain the operational part of the genome (in this case,
the assignment of a cell’s color, but usually something more complex),
executed as a function of the cell’s coordinates.

The presence of a copy of the entire genome endows ourSwiss flagorganism with
all the properties we introduced above (Figure 12): it is capable, provided a set of
spare cells, to self-repair by scarring over columns containing faulty cells, while the
cycling of the coordinates can produce multiple copies of the organism, provided a
sufficient number of cells in the array.

4 Artificial Molecules

The experience accumulated in the design and use of our prototype cells taught us
an important lesson: fixinga priori the size and features of our artificial cells (i.e., the
size of the genome memory, the structure of the functional unit, etc.) is too strong a
constraint on the implementation of complex systems, as it necessarily limits the kind
of application which can be implemented using such an array. To find a solution to
this problem, once again we turned to nature. The structure of biological cells varies
according to their function, a consequence of the molecular structure of the cells:
since cells are made up of smaller elements (the molecules), by adding or removing
molecules the size and functionality of the cell can be altered.

We thus require, in addition to the electronic equivalent of a cell, to define the
concept of artificial molecules, that is, small electronic elements that can be
assembled to form one of our artificial cells. Finding the electronic equivalent of
molecules is, fortunately, not extremely difficult: there exists a class of
reprogrammable circuits, generally known asfield-programmable gate arrays
(FPGAs), which are remarkably well adapted to fulfill this function.

In this section we will provide a brief description of FPGAs in general, before
introducingMuxTree, the FPGA we developed for the Embryonics project to be able
to easily implement our artificial cells, and examine in detail the two features we
introduced to meet the requirements of our system: self-replication and self-repair.

Figure 12: Cicatrization (A) and replication (B) of theSwiss flagorganism.

Spares

5
4
3
2
1

1 2 3 4 5
Y

X

5
4
3
2
1

1 2 3 4 5(2)(5)

Scar Mother Daughter

5
4
3
2
1

1 2 3 4 5
Y

X
1 2 3 4 5

4.1 Field-Programmable Gate Arrays

The main obstacle to the implementation of ontogenetic hardware was the
necessity for bio-inspired systems to modify the structure of the hardware to
implement properties such as self-replication or evolution. Until recently, such
alterations were basically impossible: a circuit would be designed and constructed to
execute a single application or function.

In the late eighties, however, a new type of circuits was introduced. These circuits,
known as field-programmable gate arrays [6][26][39], are two-dimensional arrays of
logic elements6 that can be configured (i.e., programmed via software) to realize any
given function (that is, to implement any digital logic circuit).

While the exact structure of an FPGA can vary considerably from one
manufacturer to the next, some essential traits are constant (Figure 13):

• Each element can implement aprogrammable function, usually consisting
of some combinational logic plus one or more memory elements (flip-
flops) for sequential behavior. The complexity and the structure of the
programmable function can vary considerably from one FPGA to the next.

• Communication between the elements is handled throughprogrammable
connections, again of varying complexity depending on the type of FPGA.

• The functionality and the connections of an element are controlled by its
configuration, a sequence of bits (usually stored within a register) which
define what parts of the functional logic and which connections will be
active. Theconfiguration bitstream(the sum of all the configurations of the
FPGA’s elements) determines the global behavior of the circuit.

6 Once again, standard terminology is in conflict with the definitions used in the
Embryonics project: the elements of an FPGA are usually referred to ascells. We will avoid
the term so as not to engender confusion with our artificial cells.

Figure 13: Basic architectural structure of an FPGA.

PROGRAMMABLE
CONNECTIONS

PROGRAMMABLE
FUNCTIONS

CONFIGURATION

I/O ELEMENTSLOGIC
ELEMENTS

A given configuration will therefore assign different functions to each element,
then connect all the elements together to realize complex behavior. With the
appropriate configuration, an FPGA can implement any digital logic circuit, provided
enough elements are available or the circuit can be subdivided among different chips.
Moreover, in most cases, FPGAs are reprogrammable, that is, their configuration can
be erased and replaced by a new one, implementing a different circuit (a versatility
which makes FPGAs ideal platforms for the development of prototypes).

Obviously, the remarkable versatility of FPGAs comes at a price: speed. Circuits
implemented using FPGAs are necessarily much slower than dedicated VLSI circuits.
However, in some cases the versatility of FPGAs can overcome this shortcoming,
either because the circuit is not speed-critical, but could benefit from regular upgrades
or even dynamic alterations, or because the advantage of having dedicated (often
parallel) processors can easily compensate the additional delay (for example, specific
mathematical operations which would require many clock cycles in a general-purpose
processor, but could be executed in a single, if slower, clock cycle in a dedicated
processor).

The Embryonics project hopes to fall in this latter category: we hope that by
designing application-specific parallel processing systems, we will be able to
overcome the relative slowness of FPGAs. In fact, the reprogrammability of FPGAs is
the ideal solution to the problem of implementing an ontogenetic machine, as it
provides a way to modify the hardware structure of a system by altering information,
sidestepping the need to handle physical matter.

4.2 An FPGA for the Embryonics Project: MuxTree

As we have seen, any FPGA can implement, within reason, any digital logic
circuit. Therefore, any FPGA can, potentially, implement our arrays of artificial cells
(which, being small processors, are indeed digital circuits). However, off-the-shelf
FPGAs present some shortcomings that make their use in the Embryonics project if
not impossible, at least awkward7. We therefore decided to develop our own FPGA
circuit, designed specifically to implement arrays of our artificial cells.

The architecture of an FPGA element can vary considerably from one circuit to the
next. The only actual requirement is that it must be possible to implement any given
function using one or more elements. In addition, it is customary, if not strictly
required, to include some form of memory in an element to be able to easily
implement sequential systems.

MuxTree[24][35][36][37], the FPGA we developed for the Embryonics project, is
no exception to this rule, but is unusual in that it is remarkablyfine-grained: the
elements which make up the FPGA’s two-dimensional array (the molecules of our
bio-inspired system) are, in MuxTree’s case, particularly small. Each element, in fact,
is capable of implementing the universal function of a single variable and of storing a
single bit of information.

7 We will mention, for example, their lack of homogeneity and the difficulty of generating
the configuration bitstream for systems which span over multiple FPGAs, both serious
drawbacks for the implementation of arrays of identical processors.

The basic element of our FPGA (Figure 14) is composed of three separate
subsystems: the programmable function (FU), the programmable connections (SB),
and the configuration register (CREG).

The programmable function is realized using a single two-input multiplexer (the
name MuxTree stands fortree of multiplexers). The multiplexer being a universal
gate (i.e., it is possible to realize any function given a sufficient number of
multiplexers), the first requirement for an FPGA element is respected. In addition to
the multiplexer, each element is also capable of storing a single bit of information in a
flip-flop, thus fulfilling the second requirement.

As for the programmable connection network, a MuxTree element contains two
separate sets of connections: a fixed short-distance network for communication
between neighbors, and a programmable long-distance network for distant elements.
The latter is controlled by aswitch box(SB) which can route the output NOUT of an
element to its four neighbors and propagate signals in the four cardinal directions.

The element’s function and connections are determined by a 17-bit configuration
string, stored in the shift register CREG. These bits are sufficient to configure both
the programmable function and the connection networks. All the configuration
registers of all the elements are chained together to form a long shift register, and the
configuration bitstream enters the array at the lower left corner andpropagatesfrom
there to all the elements in the circuit.

On the surface, MuxTree is not necessarily more adapted to the implementation of
bio-inspired systems than any other FPGA. However, designing a dedicated FPGA
allows us to alter every detail of its architecture in order to meet our requirements
(something which would not be possible with a commercial FPGA).

Figure 14: The structure of a MuxTree element.

SB

CREG

FU
FF
D1 D

Q

NOUT

SEL

NOUT

SIN

WIN

WOUT EIN

EOUT

EIB

NIBNOB

WOB

WIB

SOBSIB

CFG[16:0]

SIB
SOB
EIB
EOB

EOB

INPUT_SEL

These requirements are fairly straightforward: we require an FPGA that can easily
be configured as an array of identical processors (our artificial cells, which have an
identical hardware structure). In other words, it must support self-replication, that is,
the creation of multiple identical copies of our cells. In addition, since the repair
mechanism at the cellular level is costly (the death of an entire column of processors
represents a considerable loss of hardware resources), it would be extremely
interesting for our molecules to be able to survive at leastsomefaults (defects in the
silicon substrate).

4.3 Self-Replication

The self-replication of the organism, achieved through the cycling of the cell’s
coordinates, is an immediate consequence of the architecture of our artificial cells. In
order to obtain the self-replication of the cells, we analogously decided to include
dedicated hardware in the architecture of our artificial molecules. This hardware will
then allow us to obtain multiple copies of our cell without excessive difficulty.
Unfortunately, the approach to follow in the implementation of such a mechanism
was not immediately obvious, as research in the field of self-replicating hardware is
relatively scarce.

Von Neumann’s universal constructor was probably the first example of self-
replicating computer hardware. Unfortunately, electronic technology in the fifties did
not allow the development of so complex a machine. As a consequence, research on
self-replicating hardware waned for several years. In the eighties, bio-inspiration
gained new momentum under the label ofartificial life , a research field pioneered by
Christopher Langton, and is attracting more and more interest in the engineering
community.

Langton approached the phenomenon of self-replication from a slightly different
angle: he tried to define the smallest machine capable exclusively of self-replication
(thus leaving aside von Neumann’s concept of universal computation and
construction). The result was a fairly simple cellular automaton known asLangton’s
loop [18], which was the basis for our own attempts to develop self-replicating
structures.

The first, theoretical phase in our research was therefore, to follow in the tradition
of our predecessors, based on the use of cellular automata, and resulted in the
development of a series of novel self-replicating loops considerably more versatile
and powerful than Langton’s [28][34][37].

The transition from cellular automata to hardware, however, required a careful
process of synthesis, since cellular automata are very inefficient from the point of
view of a hardware realization. We tried to identify the mechanisms at the core of our
cellular automata, in view of a possible simplification and adaptation to our molecular
FPGA.

The key observation of this process was that the self-replication of our loops
occurred through two distinct phases: astructural phase, where the “skeleton” of the
offspring is created in the empty CA space, and aconfiguration phase, where the
functionality of the parent (i.e., the operational information) is copied into the
offspring.

While the configuration phase, for a number of practical reasons, is not suited to an
FPGA implementation, the structural phase can indeed be adapted to hardware. In
particular, if consider an FPGA before configuration as an array of CA elements in
the quiescent state, we can think of the structural phase of self-replication as a
mechanism whichpartitions the FPGA into identicalblocks of molecules of
programmable size (each block will contain a single artificial cell), a task which can
be realized by an extremely simple cellular automaton (Figure 15) [33][37].

The automaton, simple enough to allow a trivial hardware realization, can
transform (through a simple process which we will not describe in detail) a one-
dimensional string of states (analogous to a configuration bitstream stored in a
memory chip) into a two-dimensional structure.

In order to integrate the automaton to our FPGA, we inserted the CA elements in
the spaces between the FPGA elements (Figure 16). By entering the appropriate
sequence of states, we can partition the array into identical blocks of variable size.

Figure 15: The membrane builder is a very simple cellular automaton capable of partitioning the CA
space into blocks of identical size.

Figure 16: The membrane builder is inserted among the MuxTree elements.

ITER=000 ITER=104

JUNCTION

WALL

FPGA ELEMENTCA ELEMENT

CA CONNECTION

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

STATE

21 12 11 21 12 INPUT SEQUENCE

The automaton can thus be seen as creating acellular membranethat will surround
each of our cells. Once the membrane is in place, we can use it to direct the
propagation of the FPGA’s configuration (Figure 17): since the configuration of each
cell is identical, we can send the bitstream in all the blocks in parallel, automatically
creating multiple copies of our cells and thus implementing self-replication.

By exploiting the experience accumulated in designing our self-replicating loops,
we were thus able to create a very simple self-replication mechanism for our FPGA.
At this stage, we turned to the second bio-inspired feature of our FPGA: self-repair.

4.4 Self-Repair

The development of a mechanism allowing MuxTree to self-repair is somewhat
different from that of self-replication: as we mentioned, self-repair is a much more
“conventional” property of digital circuits, and a considerable body of knowledge
exists. Its conception therefore did not require quite as much original research on our
part. On the other hand, the constraints of our project imposed considerable technical
difficulties, particularly where self-test (i.e., the ability to detect the presence and the
location of faults, a necessary prerequisite for any self-repair system) is concerned.

4.4.1 Self-Test in MuxTree

Any literature search, however superficial, on the subject of testing will reveal the
existence of a considerable variety of approaches to implementing self-test in digital
circuits [1], including some which can be applied to FPGAs [2][15][32]. Although we
exploited to the greatest possible extent this existing knowledge base in our system,
we found that the special requirements of our bio-inspired systems prevented the use
of off-the-shelf approaches.

Among the most rigid constraints we had to respect, we will mention the need for
fault location(that is, the need to determine not only that a defect is present, but also
its exact position, so that it can be repaired), the requirement that the system be
completelyhomogeneous(preventing the use of centralized control systems), and

Figure 17: The membrane is used to direct the configuration bitstream.

MEMBRANE

CFG 2 CFG 5 CFG 8 CFG 2 CFG 5 CFG 8

CFG 7CFG 4CFG 1CFG 7CFG 4CFG 1

CFG 0 CFG 3 CFG 6 CFG 0 CFG 3 CFG 6

BITSTREAM ENTRY POINTS

particularly our desire that the test occur, for the most part,on-line (that is, while the
circuit is operating, preventing the use of a separate test phase).

Analyzing MuxTree’s three subsystems separately, we developed the following
approach [35][36][37]:

• Considering its relatively small size (it occupies approximately 10% of the
total silicon area of an element), we decided to test theprogrammable
function through duplication (Figure 18), a technique as common in
computer design as it is in nature (see, for example, the DNA’s double-
helix structure). A simple comparison of the two outputs will then reveal
the presence of a fault. In addition, a third copy of the flip-flop is necessary
to guarantee that the correct value will be preserved for self-repair.

• Solutions to the problem of testing theprogrammable connectionsin an
FPGA do indeed exist, but invariably require a considerable amount of
redundancy through duplication. While not excluding the possibility of
introducing it in the future, we deemed that the advantages to be gained
from the test of the connections did not justify the considerable hardware
overhead, at least in our current implementation.

• Testing theconfiguration registerposes similar problems, but its size
(about 80% of the surface of an element) makes testing imperative and
prevents duplication-based approaches. The mechanism we settled on is
based on the use of a specialtest pattern, sent to all the registers ahead of
the configuration bitstream. Without describing the mechanism in detail,
we will mention that it is capable of detecting (albeit not on-line) any fault
in the register with a remarkably small amount of additional hardware.

Figure 18: The self-test logic for the programmable function in a MuxTree element.

SB

NOUT
FF_IN

NOUT
FF_IN

COMP

D Q

MAJ

FAULT_DET

FU1
FF
D1 D

Q

NOUT

SEL

FD

NOUT

SIN

WIN

WOUT EIN

EOUT

EIB

NIBNOB

WOB

WIB

SOBSIB

CFG[16:0]

EOB

FU2
FF
D2D

Q

NOUT

SEL

FF_OUT FF_OUT

INPUT_SELINPUT_SEL

FF
D3

CREG

In conclusion, even if we could not quite meet our goal of assuring on-line fault
detection (the test of the register occurs off-line during configuration), we were able
to design an extremely simple fault detection system (the hardware overhead is less
than 20% of an element’s silicon surface) which, as we will see, is perfectly
compatible with self-repair.

4.4.2 Self-Repair in MuxTree

As was the case for self-test, there exist a number of well-known approaches to
implementing self-repair in two-dimensional arrays of identical elements
[10][17][27]. Most rely on two mechanisms: since physically repairing a hardware
fault is impossible, we must provide a set of spare elements (redundancy) and a way
to let them replace faulty elements in the array, that is, to reroute the connections
between the elements (reconfiguration). The self-repair system we developed for
MuxTree is no exception, even if it had to satisfy a set of relatively non-standard
constraints imposed by the unique features of our FPGA.

To find an efficient mechanism to implement redundancy, we turned our attention
back to the self-replication mechanism. It is in fact fairly simple to modify the
automaton to use the membrane itself to define which of the columns of the array will
contain spare elements (Figure 19). Simply by adding one additional state to the
automaton, we obtain a very powerful system: this approach allows us not only to
limit reconfiguration to the interior of a block (a desirable feature), but also to
program the robustness of the system. In fact, by adding or removing these special
states to or from the CA input sequence, we can modify the frequency of spare
columns, and thus the fault tolerance of the system. Without altering the configuration
bitstream of the MuxTree elements (a major advantage, since generating a bitstream
is a time-consuming process), we can introduce varying degrees of redundancy, from
zero (no spare columns) to 100% (one spare for every active column).

To take advantage of the spare elements, we also require a mechanism to transfer
the information stored in a faulty element (its configuration plus the value stored in its
flip-flops) to one of the spare elements.

Figure 19: The membrane can define the frequency and position of the spare columns.

MEMBRANE

CFG 2 CFG 5 SPARE CFG 2 CFG 5 SPARE

SPARECFG 4CFG 1SPARECFG 4CFG 1

CFG 0 CFG 3 SPARE CFG 0 CFG 3 SPARE

BITSTREAM ENTRY POINTS

SPARE
COLUMN

SPARE
COLUMN

Our mechanism for repairing faults (Figure 20) relies on the reconfiguration of the
network through the replacement of the faulty element by its right-hand neighbor: the
configuration of the faulty element, together with the value stored in its flip-flop, are
shifted into the neighbor. The configuration of the neighbor will itself be shifted to
the right, and so on until a spare element is reached.

Once the shift is completed, the faulty element “dies” with respect to the network:
the connections are rerouted to avoid it, an operation which can be effected very
simply by diverting the north-south connections to the right and by rendering the
element transparent to the east-west connections. The array, thus reconfigured and
rerouted, can then resume executing the application from the same state it held when
the fault was detected. When a fault is detected, the FPGA therefore goes off-line for
the time required by the reconfiguration, somewhat like an organism becoming
incapacitated during an illness.

4.4.3 MuxTree and MicTree

However versatile MuxTree’s self-repair system might be, it is still subject to
failure, either because of saturation (if all spare elements are exhausted) or because a
non-repairable fault is detected. Should such a failure occur, we need to activate the
self-repair mechanism at the cellular level (described above).

Figure 20: The information stored in a faulty element and in its neighbors is shifted to a spare column.

1 1 0 0X X
DEAD CFG 4 CFG 7

X X
SPARE

1 1
CFG 2

CFG 0

1 1

CFG 2

1 1

CFG 3

0 0
SPARE

X X
CFG 6

1 1

CFG 1

0 0
DEAD

X X
CFG 7

0 0
CFG 4

1 1

CFG 5

0 0
CFG 8

1 1
SPARE

X X

CFG 0

1 1

CFG 2

1 1

CFG 3

0 0
SPARE

X X
CFG 6

1 1

CFG 1

0 0
CFG 4

1 0
SPARE

X X
CFG 7

0 0

CFG 5

0 0
CFG 8

1 1
SPARE

X X

To this end, we designed a KILL signal that is propagated through an entire
column of blocks. Since a block is ultimately meant to contain one of our artificial
cells, killing a column of blocks is equivalent to deactivating a column of cells. At the
cellular level, this event will trigger a recomputation of the coordinates of all cells,
that is, will activate the cellular-level reconfiguration mechanism (Figure 21).

In other words, the robustness of the system is not based on a single self-repair
mechanism, which might fail under extreme conditions, but rather on two separate
mechanisms which cooperate to prevent a fault from causing a catastrophic failure of
the entire system.

5 Biological Perspectives

In order to implement our bio-inspired systems, we had to select electronic
equivalents for many biological concepts. Often, our choices were dictated more by
the requirements of engineering than by our desire to be inspired by natural systems.
Nevertheless, we noticed that, in many cases, the most efficient solution from an
engineer’s perspective was indeed the same solution adopted in nature.

In this section, we will analyze some of the principal features of our system from
the standpoint of biological inspiration, noting the main points in common between
our machines and their natural equivalents.

5.1 Biological Inspiration in Von Neumann’s Work

In 1958, one year after John von Neumann’s death, two major events took place in
the history of molecular biology:

1. Francis Crick, one of the discoverers of the DNA double helix, put forward
what he called thecentral dogmaof molecular biology: proteins are not
made directly from genes, but require an intermediary, and this
intermediary is RNA [8]. DNA (deoxyribonucleic acid) contains the
information needed by a biological organism to carry out its functions. For
example, in the case of a multicellular organism, this includes the
information needed for the organism to differentiate (thereby growing from
a single cell (the zygote) to a mature multicellular entity), to reproduce, and
finally to die. This information is transcribed from DNA by enzymes to
generate another class of molecules called Ribonucleic Acids (RNA). From
there, it is translated to generate specific proteins, which are the molecules

Figure 21: The death of a column of blocks at the molecular level is equivalent to the death of a
column of cells at the cellular level.

RU

1,3

RU

1,2

RU

1,1

RU

2,3

RU

2,2

RU

2,1

RU

2,3

RU

2,2

RU

2,1

RibotypeGenotype Phenotype

Ribosomic RNA Ribosome Ribosome (copy)

that underlie the cell’s daily activities. Thus, DNA is thecarrier of
information, RNA is themessenger, and protein is theexecutioner(with
apparently but few exceptions). In short, the central dogma prescribes that
(Figure 22): DNA gives rise to RNA (transcription process), after which
RNA gives rise to proteins (translation process).

2. Roberts [29] coined the termribosomesto denote those elements that
decode the genetic information, i.e., translate the RNA string - a one-
dimensional chain of nucleotides, so as to produce the appropriate protein -
a three-dimensional structure of amino-acids.

In his provocative book, entitledThe Semantic Theory of Evolution[4], Marcello
Barbieri made the following observations:

• The role of ribosomes in molecular biology has been significantly
underestimated.

• In every cell the majority of nucleotides are devoted to the production of
ribosomes.

• He stated that: “...Nature had to invent the most sophisticated molecular
machine that has ever been assembled. The ribosomes are its crown jewels,
the ultimate result of all the molecular engineering that Nature has put into
life.”

• Finally, Barbieri proposed a new theory of evolution, based on the trinity
genotype-ribotype-phenotype (Figure 23).

Ribosomes are capable, in general, of translating RNA chains of any length into
proteins; in particular, they are capable of decoding a specific RNA string, the
ribosomic RNA, producing an exact copy of the ribosome itself, an archetypal self-
replication process (Figure 24).

Figure 22: The central dogma of molecular biology.

Figure 23: The genotype-ribotype-phenotype trinity.

Figure 24: Self-replication of the ribosome.

RNA Protein

Translation

DNA

Transcription

RibotypeGenotype Phenotype

UUA CGA AUU Ribosome Leu Arg Ile

(RNA) (Protein)

Von Neumann’s visionary work [40], carried out in the late 1940’s, predates those
of Crick, Roberts, Barbieri, and other biologists. We hold that his basic message with
respect to self-replicating automata concerns the underlying architecture of the
universal constructor, which is none other than the artificial version of the biological
ribosome. One can then discern the genotype-ribotype-phenotype trinity in von
Neumann’s cellular automaton world (Figure 25):

• The genotype is the (input) tape of the automaton, containing the
description (genome) of the machine to be built.

• The ribotype is the universal constructor itself.
• The phenotype is the ultimate construction, in the cellular space, of the

machine described on the tape.
Self-replication of the universal constructor occurs in analogy to nature: the

description (genotype) written on the input tape is translated via a ribosome (ribotype)
to create the offspring constructor (phenotype).

Thus, we claim that von Neumann’s quintessential message is [22]:
Genotype + Ribotype = Phenotype

From this point of view, the similarity between our two major sources of
inspiration (ontogeny and von Neumann’s automaton) should be apparent.

5.2 Biological Inspiration in Embryonics

A human being consists of approximately 60 trillion (6x1013) cells. At each instant,
in each of these 60 trillion cells, the genome, a ribbon of 2 billion characters, is
decoded to produce the proteins needed for the survival of the organism, a process
which occurs ceaselessly from the conception to the death of the individual.

This process, remarkable for its complexity and precision, relies on completely
discrete processes: the chemical structure of DNA (the chemical substrate of the
genome) is a sequence of four bases, designated with the letters A (adenine), C
(cytosine), G (guanine), and T (thymine). Each group of three bases isdecodedin the
cell to produce a particular amino acid, a future constituent of the final protein.

Figure 25: The genotype-ribotype-phenotype trinity in von Neumann’s constructor.

Uconstr

Machine

D(Machine)

Ribotype Genotype

Phenotype

The resemblance between the natural genome and a computer program is
immediately obvious (and was one of the starting points of the Embryonics project): a
program is a sequence of two states, designated with the digits 0 and 1, grouped into
instructions which are decoded by the processors to perform a given function.

In order to avoid confusion, we have so far used the termgenometo refer to the
program executed in each of our processors. With the introduction of our molecular
layer, however, this definition is no longer quite correct. In nature, in fact, the genome
containsall of the genetic information of an individual, including the instructions for
the constructionof the organism. Therefore, to be accurate, our artificial genome
consists of all the information required to create our systems, including the bitstream
used to configure our FPGA.

More precisely, our methodology for the design of a multicellular machine
requires three successive stages (Figure 26).

In a first stage, the specifications for the machine (i.e., the required functionality of
our system) are mapped into a homogeneous array of cells. The software (a program)
and the hardware (the architecture of the cell) are tailored to the application. In
biological terms, this program is theoperativepart of our genome., and consists of
three main subprograms:

• Thecoordinate genes, which handle the computation of the coordinates and
of the initial conditions, and are similar to thehomeoboxesor HOX genes
recently found to define the general architecture of living beings [41]. In
our Swiss flag example above, they correspond to theXcoord and
Ycoord subprograms.

• Theswitch genes, which select which part of the genome will be executed,
according to the cell’s position in the organism (that is, according to the
value of the cell's coordinates) [9]. In our example, they correspond to the
test elements in the binary decision tree.

Figure 26: The genome required for an artificial organism, including the molecular layer.

Ycoord

end

beginOrg_genome

MuxTree Configuration

Membrane Builder Data

Xcoord

Org_Gene

HOX
genes

Functional
genes

Switch
genes

Polymerase
genome

Ribosomic
genome

Operative
genome

• The functional genes, which implement the functionality of our artificial
organism, and are analogous to the genes which constitute the coding part
of the natural genome; in our example, they correspond to the output
elements in the binary decision tree (which, for theSwiss flag, were
extremely simple, but can become very complex depending on the
application).

In the second stage, the architecture of our cells is implemented using a
homogeneous array of molecules, the MuxTree elements. This operation generates the
configuration bitstream for all the elements of our array required to implement a cell
(in most cases, a cell requires a few hundred elements).

If we regard our artificial cell as being analogous to the ribosome of a natural cell
(more on this subject in the conclusion), decoding the operative part of the genome
(the genotype) to implement a given operation (the phenotype), the string of
configurations can be considered as theribosomicpart of the final genome. Spare
columns are then introduced in order to improve the global reliability.

Once the dimensions of the cells (i.e., the number of molecules required) and the
frequency of spare columns are known, a third stage consists of defining the string of
the data required by the membrane builder which creates the boundaries between
cells. As this information will allow to create all the daughter cells starting from the
first mother cell, it can be considered as equivalent to thepolymerasepart of the
genome.

Given the molecular array of MuxTree molecules, the corresponding programming
has to take place in reverse order:

• the polymerase part of the genome is inserted in order to define the
boundaries between cells;

• the ribosomic part of the genome is injected to configure the molecular
FPGA and obtain the hardware structure of our cells;

• the operative part of the genome is stored into the random access memory
of each cell (itself composed of molecules) in order to make the cell ready
to execute the specifications.

The existence of these different categories of genes is the consequence of purely
logical needs deriving from the conception of our multicellular automaton, and their
resemblance to biological structures is, in our opinion, further confirmation of the
efficiency of natural systems on one side and of the validity of our bio-inspired
approach on the other.

6 Conclusion

Our systems, in their current form, are based on three hierarchical layers of
complexity: the organism, the cell, and the molecule (Figure 27).

The artificial organism is a complete computing system consisting of a two-
dimensional array of cells (the cellular array) operating in parallel to execute a given,
programmable application. The size (i.e., the number of cells) of an organism is also
programmable and, given enough space (i.e., enough cells in the array), organisms
replicate automatically. Since the functionality of an organism is identical in each
replicated copy, this mechanism provides an intrinsic fault tolerance.

From a biological point of view, our organisms are truly multicellular beings (to
von Neumann’s unicellular). They are, in principle, specialized organisms, since they
are designed for a single specific application, but there is no intrinsic obstacle to the
development of general-purpose organisms. The replication mechanism can be seen
as addressing the issue of the survival of the species, even if (in the current
implementation) no evolution is possible. On the other hand, given an appropriate cell
structure, they could theoretically be capable of learning.

Figure 27: The 3 layers of Embryonics: (A) organisms, (B) cells, and (C) molecules.

RU
GM

FU
1,1

INT RU
GM

FU
2,1

INT

RU
GM

FU
1,2

INT RU
GM

FU
2,2

INT

RU
GM

FU
1,1

INT RU
GM

FU
2,1

INT

RU
GM

FU
1,2

INT RU
GM

FU
2,2

INT

ORGANISM

COPY 1

ORGANISM

COPY 2

(A)

(B)

(C)

The artificial cell is a simple but universal processor capable of executing any
given application. The hardware structure of the cell, realized using a two-
dimensional array of molecules (the molecular array), is programmable depending on
the application, as is its size, defined by a cellular membrane. All processors execute
the same program (the artificial genome), and select which instructions to execute
depending on their position (i.e., on their coordinates in the cellular array). Since the
genome is duplicated in each cell and all cells have an identical hardware structure, a
dead cell can be replaced by another simply by re-computing the cellular array’s
coordinates, thus providing fault-tolerance.

The parallel between our artificial cells and their biological equivalents is fairly
strong [23][24]. As in nature, our cells are capable of multiplication (cellular
division), since multiple copies will be created if enough space (i.e., enough
molecules) is available, of differentiation, since their functionality varies according to
their position, and of exchanging signals which alter their behavior. They contain
what can be seen as a nucleus (the genome memory), a cytoplasm (the genome’s
interpreter), and a cellular membrane. The cellular array is also capable of tolerating a
non-trivial amount of damage through a process analogous to cicatrization.

The molecule is a simple multiplexer-based FPGA element that can be
programmed to implement any digital logic circuit. Its regular structure and the
membrane mechanism make it an ideal platform for the development of cellular
arrays. A simple test and reconfiguration mechanism allows dead molecules to be
replaced by their neighbors (assuming, of course, that spare molecules are available in
the array), assuring yet another level of fault tolerance.

The biological parallel for our artificial molecules is probably less strong than for
cells, but there exist several common features. The configuration register can be seen
as defining the molecule’s structure (by activating or deactivating parts of the
element), and thus as differentiating molecules. As in biology, the theoretical number
of possible molecules is vast (the 17-bit register would allow 217=131072 different
configurations), but in practice only a subset of the total number is actually used. As
for the self-repair mechanism, the biological parallel is immediate: the DNA’s
double-helix structure is a typical example of duplication used to detect errors, and
redundancy is an extremely common approach to achieve reliability in natural
systems.

Viewed as a whole, we feel that our three-layer system bears a considerable
resemblance to biological systems, a resemblance which could in the future be
increased, for example by introducing mechanisms such as evolution or learning at
the cellular or organism layer, or even by adding an ulterior (atomic) layer to the
system.

However, before such far-reaching modifications can be introduced, a more
immediate improvement is required. In fact, the main goal of the project, that is, the
development of a multicellular system comparable to von Neumann’s universal
constructor, has not quite been reached in the current version of our system: we have
seen that von Neumann’s machine fully respects the central dogma of molecular
biology (Genotype + Ribotype = Phenotype), but, for the moment, the same cannot be
said of our machine.

If we consider the structure of our artificial cell as the ribotype, the genome
program as the genotype, and the functionality of the cell as the phenotype, we do
indeed respect, in appearance, the equation Genotype + Ribotype = Phenotype8.
Where our system falls short of the ideal is in the cellular self-replication process:
whereas von Neumann’s constructor is capable of creating fully functional copies of
itself ad infinitum, our cells are currently capable of self-replication only with the help
of a configuration bitstream (the polymerase and ribosomal genomes) provided from
outside the cells themselves.

In other words, our cells are not capable ofself-directed replication: we need to
develop a mechanism, residing within the cells themselves, capable of generating one
or more identical offspring without any external contribution.

Meeting this challenge will require a considerable effort, both conceptual and
technical (since it will affect all the layers of our system), and represents the next
major goal of the Embryonics project: with the introduction of self-directed
replication our system will fully respect the central dogma of molecular biology and
really become a multicellular realization of von Neumann’s machine.

Acknowledgements

We are grateful to all the people who have contributed to our project, including
Dominik Madon, Eduardo Sanchez, Moshe Sipper, and Jacques Zahnd, from the
Logic Systems Laboratory of the Swiss Federal Institute of Technology at Lausanne,
Switzerland, and Serge Durand, Pierre Marchal, and Christian Piguet, from the Centre
Suisse d’Electronique et de Microtechnique SA, Neuchâtel, Switzerland.

We also wish to thank Marcello Barbieri of the University of Ferrara, Italy, for his
invaluable suggestions and for his support.

This work was supported in part by grants 20-42270.94 and 2000-049349.96 from
the Swiss National Science Foundation.

8 It is interesting to note that the evolution of our system (the instruction syntax, the
molecular structure, etc.) is centered around the evolution of the architecture of our cells, and
thus around the evolution of our ribotype, an observation fully in accord with M. Barbieri’s
thesis [4].

References

[1] M. Abramovici, M. A. Breuer, A. D. Friedman [1990].Digital Systems Testing
and Testable Design. Computer Science Press, New York, 1990.

[2] M. Abramovici, C. Stroud [1995]. “No-overhead BIST for FPGAs”. InProc. 1st
IEEE International On-Line Testing Workshop, pp. 90-92, 1995.

[3] S. B. Akers [1978]. “Binary decision diagrams”.IEEE Transactions on
Computers, c-27(6), June 1978, pp. 509-516.

[4] M. Barbieri [1985]. The Semantic Theory of Evolution. Harwood Academic
Publishers, Chur, Switzerland, 1985. Published in Italian asLa Teoria
Semantica dell’Evoluzione. Ed. Boringhieri, Torino, Italy, 1985.

[5] J.-L. Beuchat, J.-O. Haenni [1998]. “Von Neumann’s 29-State Cellular
Automaton: A Hardware Implementation”.IEEE Trans. on Education.
Submitted.

[6] S.D. Brown, R.J. Francis, J. Rose, Z.G. Vranesic [1992].Field-Programmable
Gate Arrays. Kluwer Academic Publishers, Boston, 1992.

[7] A. Burks, ed [1970].Essays on Cellular Automata. University of Illinois Press,
Urbana, IL, 1970.

[8] F. H. C. Crick [1958]. On protein synthesis. Symposia of the Society for
Experimental Biology, 12:548-555, 1958.

[9] S.F. Gilbert [1991].Developmental Biology. Sinauer Associates, Inc., MA, 3rd
ed., 1991.

[10] F. Hanchek, S. Dutt [1998]. “Methodologies for Tolerating Cell and
Interconnect Faults in FPGAs”.IEEE Transactions on Computers, v. 47, n. 1,
January 1998.

[11] J.P. Hayes [1993]. Introduction to Digital Logic Design. Addison-Wesley,
Reading, MA, 1993.

[12] M. H. Hassoun [1995].Fundamentals of Artificial Neural Networks. The MIT
Press, Cambridge, MA, 1995.

[13] T. Higuchi, M. Iwata, I. Kajitani, H. Iba, Y. Hirao, T. Furuya, B. Manderick
[1996]. “Evolvable Hardware and its Application to Pattern Recognition and
Fault-Tolerant Systems”. In E. Sanchez, M. Tomassini, eds.,Towards Evolvable
Hardware, Lecture Notes in Computer Science, Springer, Berlin, 1996, pp. 118-
135.

[14] J. E. Hopcroft, J. D. Ullman [1979].Introduction to Automata Theory
Languages and Computation. Addison-Wesley, Redwood City, CA, 1979.

[15] W.K. Huang, F. Lombardi [1996]. “An Approach for Testing
Programmable/Configurable Field Programmable Gate Arrays”.IEEE VLSI Test
Symposium, 1996.

[16] J. R. Koza, F. H. Bennett III, D. Andre, M. A. Keane [1996]. “Automated
{WYWIWYG} Design of Both the Topology and Component Values of
Electrical Circuits Using Genetic Programming”. InGenetic Programming

1996: Proceedings of the First Annual Conference, The MIT Press, Cambridge,
MA, 1996, pp.123-131.

[17] J. Lach, W.H. Mangione-Smith, M. Potkonjak [1998]. “Efficiently Supporting
Fault-Tolerance in FPGAs”.Proc. FPGA 98, Monterey, CA, February 1998, pp.
105-115.

[18] C. G. Langton [1984]. “Self-Reproduction in Cellular Automata”.Physica 10D,
pp.135-144, 1984.

[19] D. Mange [1992].Microprogrammed Systems: An Introduction to Firmware
Theory. Chapman & Hall, London, 1992.

[20] D. Mange, M. Goeke, D. Madon, A. Stauffer, G. Tempesti, S. Durand [1996].
“Embryonics: A New Family of Coarse-Grained Field-Programmable Gate
Array with Self-Repair and Self-Reproducing Properties”. In E. Sanchez, M.
Tomassini, eds.,Towards Evolvable Hardware, Lecture Notes in Computer
Science, Springer, Berlin, 1996, pp. 197-220.

[21] D. Mange, D. Madon, A. Stauffer, G. Tempesti [1997]. “Von Neumann
Revisited: A Turing Machine with Self-Repair and Self-Reproduction
Properties”.Robotics and Autonomous Systems, Vol. 22, No. 1, 1997, pp. 35-58.

[22] D. Mange, M. Sipper [1998]. “Von Neumann’s Quintessential Message:
Genotype + Ribotype = Phenotype”.Artificial Life Journal. Accepted.

[23] D. Mange, M. Sipper, P. Marchal [1998]. “Embryonic Electronics”. Submitted.
[24] D. Mange, M. Tomassini, eds [1998].Bio-inspired Computing Machines:

Towards Novel Computational Architectures. Presses Polytechniques et
Universitaires Romandes, Lausanne, Switzerland, 1998.

[25] P. Marchal, P. Nussbaum, C. Piguet, S. Durand, D. Mange, E. Sanchez, A.
Stauffer, G. Tempesti [1996]. “Embryonics: The Birth of Synthetic Life”. In E.
Sanchez, M. Tomassini, eds.,Towards Evolvable Hardware, Lecture Notes in
Computer Science, Springer, Berlin, 1996, pp. 166-197.

[26] Maxfield, Clive [1995].Bebop to the Boolean Boogie. HighText Publications,
Solana beach, CA, 1995.

[27] R. Negrini, M. G. Sami, R. Stefanelli [1989].Fault Tolerance Through
Reconguration in VLSI and WSI Arrays. The MIT Press, Cambridge, MA, 1989.

[28] J.-Y. Perrier, M. Sipper, J. Zahnd [1996]. “Toward a Viable, Self-Reproducing
Universal Computer”.Physica 97D, pp.335-352, 1996.

[29] R. B. Roberts, ed [1958].Microsomal Particles and Protein Synthesis: Papers
Presented at the First Symposium of the Biophysical Society. Pergamon Press,
1958.

[30] E. Sanchez, D. Mange, M. Sipper, M. Tomassini, A. Perez-Uribe, A. Stauffer
[1997]. “Phylogeny, Ontogeny, and Epigenesis: Three Sources of Biological
Inspiration for Softening Hardware”. In T. Higuchi, M. Iwata, W. Liu, eds.,
Proc. 1st Int. Conference on Evolvable Systems: From Biology to Hardware
(ICES96), Lecture Notes in Computer Science, vol. 1259, Springer-Verlag,
Berlin, 1997, pp. 35-54.

[31] M. Sipper, D. Mange, A. Stauffer [1997]. “Ontogenetic Hardware”.BioSystems
44 (1997), pp. 193-207.

[32] C. Stroud, S. Konala, M. Abramovici [1996]. “Using ILA testing for BIST in
FPGAs”. Proc. 2nd IEEE International On-Line Testing Workshop, Biarritz,
July 1996.

[33] A. Stauffer [1997]. “Membrane building and binary decision machine
implementation”.Technical Report 247, Computer Science Department, EPFL,
Lausanne, 1997.

[34] G. Tempesti [1995]. “A New Self-Reproducing Cellular Automaton Capable of
Construction and Computation”.Proc. 3rd European Conference on Artificial
Life, Lecture Notes in Artificial Intelligence, 929, Springer Verlag, Berlin, 1995,
pp. 555-563.

[35] G. Tempesti, D. Mange, A. Stauffer [1997]. “A Robust Multiplexer-Based
FPGA Inspired by Biological Systems”.Journal of Systems Architecture:
Special Issue on Dependable Parallel Computer Systems, EUROMICRO,
43(10), 1997.

[36] G. Tempesti, D. Mange, A. Stauffer [1998]. “Self-Replicating and Self-repairing
Multicellular Automata”.Artificial Life. Accepted.

[37] G. Tempesti [1998].A Self-Repairing Multiplexer-Based FPGA Inspired by
Biological Processes. Ph.D. Thesis, Swiss Federal Institute of Technology,
Lausanne, 1998.

[38] A. Thompson [1996]. “Silicon Evolution”. InGenetic Programming 1996:
Proceedings of the First Annual Conference, The MIT Press, Cambridge, MA,
1996, pp. 444-452.

[39] S. Trimberger, ed [1994].Field-Programmable Gate Array Technology. Kluwer
Academic Publishers, Boston, 1994.

[40] J. von Neumann [1966].The Theory of Self-Reproducing Automata. A. W.
Burks, ed. University of Illinois Press, Urbana, IL, 1966.

[41] J.D. Watson, N.H. Hopkins, J.W. Roberts, J. Argetsinger Steitz, A.M. Weiner
[1987]. Molecular Biology of the Gene. Benjamin/Cummings, Menlo Park, CA,
4th edition, 1987.

[42] S. Wolfram [1994]. Cellular Automata and Complexity. Addison-Wesley,
Reading, MA, 1994.

Sommario

Per trovare i primi esempi di ispirazione biologica nella concezione di circuiti
elettronici è necessario risalire alle origini stesse dell’ingegneria elettronica, con il
lavoro di John von Neumann negli anni quaranta. Al suo genio dobbiamo non solo i
primi tentativi di definire gli equivalenti elettronici di molti processi biologici
fondamentali, ma anche la concezione delle prime macchine auto-replicanti.

Sfortunatamente, la tecnologia del periodo non permise una realizzazione fisica
delle macchine di von Neumann, e solo l’introduzione di una nuova generazione di
circuiti programmabili negli anni ottanta ha dato nuova vita ai tentativi di sviluppare
macchine bio-ispirate. La motivazione che spinge gli ingegneri a cercare nei processi
biologici un’ispirazione per la concezione di circuiti elettronici è ovvia, se si
considera che gli organismi biologici sono esempi impressionanti di macchine da
calcolo massivamente parallele.

In questo articolo vogliamo introdurre il progetto Embryonics (embryonic
electronics), un tentativo di ispirarsi ai processi ontogenetici che guidano la crescita
degli organismi multicellulari per lo sviluppo di nuove metodologie per la concezione
di matrici massivamente parallele di processori (lecellule artificiali). Le nostre
cellule sono processori molto semplici, basati su una identica struttura hardware. Ogni
cellula contiene lo stesso programma (ilgenoma artificiale), ma ne esegue parti
differenti a seconda della sua posizione all’interno della matrice. Come negli esseri
viventi, la presenza di una copia del genoma in ogni cellula permette l’introduzione
di processi quali l’auto-replicazione e l’auto-riparazione (cicatrizzazione).

Come in natura, la struttura delle nostre cellule può essere adattata alla funzione
che deve eseguire. Questa versatilità è ottenuta, seguendo di nuovo l’esempio della
natura, con l’introduzione di molecole artificiali, piccoli elementi logici
programmabili che possono essere messi insieme per realizzare circuiti complessi.
L’introduzione del livello molecolare dà origine a un’organizzazione a tre livelli
(organismo, cellula, molecola) che presenta notevoli somiglianze con
l’organizzazione degli esseri viventi.

Lo scopo del nostro progetto è di ottenere sistemi complessi basati sull’operazione
parallela di molti semplici processori, realizzando dunque l’equivalente elettronico
degli organismi multicellulari in natura.

