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1 Arithmetic Operations with
Self-Replicating Loops

Enrico Petraglio, Gianluca Tempesti and Jean-Marc Henry

We present a possible collision-based implementation of arithmetic functions using
a self-replicating cellular automaton capable of construction and computation. Our
automaton makes use of some of the concepts developed by Langton for his self-
replicating automaton, but provides the added advantage of being able to perform
independent constructional and computational tasks along with self-replication.
Our automaton is capable, like Langton’s automaton and with comparable com-
plexity, of simple self-replication, but it also provides (at the cost, naturally, of
increased complexity) the option of attaching to the automaton an executable pro-
gram which will be duplicated and executed in each of the copies of the automaton.
The arithmetic functions that we have implemented are performed by storing a
dedicated program (sequence of states) on self-replicating loops, and letting the
loops retrieve the operands, exchange data among themselves, and perform the cal-
culations according to a set of rules. To determine the rules required for addition
and multiplication, we exploited an existing algorithm for collision-based compu-
tation in the cellular automata environment and adapted it to exploit the features
of self-replicating loops. This approach allowed us to study a variety of issues (syn-
chronization, data exchange, etc.) related to the use of self-replicating machines for
complex operations.

The motivations behind the study of self-replication in the environment of
cellular automata is not immediately obvious, since this environment presents
many features (e.g., the imbalance between the size of the memory required to
store the transition rules and the functionality of a single cell) which render it
somewhat cumbersome for most practical applications. Nevertheless, cellular
automata (CA) do provide a rigid mathematical framework which can be
very useful to systematically develop new approaches to the problem of self-
replication, approaches which can then be transferred to more “conventional”
and “practical” environments.

This is, in fact, the motivation of our own research into the field of self-
replicating automata within the framework of the Embryonics (embryonic
electronics) project [4,5,10]. In particular, we have attempted to develop novel
automata capable not only of self-replication, but also of performing useful
computational tasks, and this in order to analyze the mechanisms involved
in the replication process and to find a way to adapt these mechanisms to
the development of very large-scale integrated circuits.
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The history of self-replicating cellular automata basically begins with
John von Neumann’s research in the field of complex self-replicating ma-
chines. Advised by the mathematician Stanistaw Ulam, he applied his con-
cepts in the framework of a “cellular space”, a two-dimensional grid of iden-
tical elements where each element (cell) is a finite state automaton whose
next state is a function of its present state and of the present state of its four
neighboring cells. Within this framework, von Neumann was able to conceive
a self-replicating automaton endowed with the properties of both computa-
tional and constructional universality [11]. Unfortunately, the automaton was
of such complexity that, further simplifications notwithstanding, even today’s
state-of-the-art computers lack the power to simulate it in its entirety.

The next significant event in the history of self-replicating automata
was the development of the automaton commonly referred to as “Lang-
ton’s loop” [3]. By dropping the requirements of computational and construc-
tional universality, Langton created an automaton capable of non-trivial self-
replication, that is an automaton where the replication is actively directed by
the automaton itself, rather than being a mere consequence of the transition
rules.

The automaton we introduce seeks to go beyond Langton’s loop, which is
capable exclusively of duplicating itself, by adding computational and con-
structional capabilities to self-replication. In fact, while our automaton is
based on the utilization of a “loop” similar to that of Langton’s automaton,
we have modified the self-replicating mechanism so that it requires only a
fraction of the data circulating in the loop to perform its task, thus making
the remaining data available for other purposes. We will illustrate this novel
capability using first a simple example of a program embedded into our self-
replicating automaton, and then a much more complex application in which
Steiglitz’s collision-based computing model [8] is used in conjunction with a
slightly modified version of our automaton to execute binary additions and
multiplications.

This chapter is structured in two main parts, reflecting the two papers
from which it is derived [6,9]. In the first part, we will begin (Sect. 1.1) with an
overview of the cellular automata mentioned above (Von Neumann’s universal
constructor and Langton’s loop), and a description of the main differences
between these automata and our novel automaton. We will then (Sect. 1.2)
describe in detail the operation of our self-replicating automaton, and provide
an example of its constructional capabilities. Then, in the second part of the
chapter, after introducing the collision-based computing model we adopted
(Sect. 1.3), we will show how our automaton can be adapted to exploit this
model in order to execute simple computational functions (Sect. 1.4).
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1.1  Self-Replicating Cellular Automata

1.1.1 Von Neumann’s Automaton

Von Neumann’s self-replicating cellular automaton was a result of his interest
in complex machines and their behavior [11]. His research led to the conclu-
sion that the following characteristics should be present in a self-replicating
machine:

e Computational universality, that is the ability to operate as a universal
Turing machine, and thus to execute any computational task.

e Constructional universality, that is the ability to construct any kind of
configuration in the cellular space starting from a given description; self-
replication is then a particular case of universal construction.
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Fig.1.1. Von Neumann’s self-replicating automaton.

To implement these properties in a cellular automaton, von Neumann
set out to design a universal constructor, i.e. an automaton capable of con-
structing, through the use of a “constructing arm”, any configuration whose
description can be stored on its input tape (Fig. 1.1). This universal con-
structor, therefore, is able, given its own description, to construct a copy of
itself, thus achieving self-replication.

The automaton developed by von Neumann used tens of thousands of
29-state cells and a 5-cell neighborhood (the cell itself plus its four cardinal
neighbors). Codd [2] and others managed to reduce the complexity of von
Neumann’s machine, but the automaton retains a level of complexity too
high for simulation. In fact, while parts of the machine have been successfully
simulated, the task of simulating the whole automaton is only now becoming
barely feasible, given current technology.

Realizing von Neumann’s dream of a self-replicating universal computing
machine in actual hardware is one of the main goals of our Embryonics project
[5].
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1.1.2 Langton’s Loop

Langton’s automaton [3] is based on one of the components of Codd’s univer-
sal constructor, namely the “periodic emitter” [2]. The automaton (Fig. 1.2)
is essentially a square loop, with internal and external sheaths, where the data
necessary for the construction of a duplicate loop circulate counterclockwise.
Duplication is achieved by extending a constructing arm which will be forced
to turn 90 degrees to the left at regular intervals corresponding to the size
of one side of the loop. After three such turns the arm will have folded upon
itself. When the new loop is closed, the constructing arm will retract and the
new loop will be active, that is will be able to replicate itself as the original
loop did. The original loop will then repeat the process by creating a second
copy of itself in another direction, and finally “die” by losing the information
within the loop. Given sufficient time, the automaton will replicate itself to
fill the available space.
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Fig. 1.2. Langton’s Loop.

Langton’s loop uses 8 states for each of the 86 non-quiescent cells making
up its initial configuration, a 5-cell neighborhood, and a few hundred transi-
tion rules (the exact number depends on whether default rules are used and
whether rotated rules are included in the count). Further simplifications to
the automaton were introduced by Byl [1], who eliminated the internal sheath
and reduced the number of states per cell, the number of transition rules, and
the number of non-quiescent cells in the initial configuration. Reggia et al. [7]
managed to remove also the external sheath. Given their low complexity, at
least relative to von Neumann’s automaton, all of the mentioned automata
have been thoroughly simulated.

The main drawback of Langton’s loop from our point of view is, of course,
its inability to perform any task beyond self-replication, a drawback that we
had to address in the development of our novel self-replicating automaton.

1.1.3 The New Automaton

Our automaton uses some of the concepts found in Langton’s loop. In particu-
lar, we retain the concept of loop, which Langton himself derived from Codd’s
periodic emitter, to store the data dynamically. However, there are some sub-
stantial differences between our loop and Langton’s automaton (Fig. 1.3):
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Fig.1.3. Our Loop.

e We use a 9-cell neighborhood (the cell itself plus its 8 neighbors).

e Asin Byl’s version of Langton’s loop, we use only one sheath, but contrary
to Byl, we retain the internal sheath and eliminate the external one. This
allows us to let the data in the loop circulate without the need for leading
or trailing states (the Os in Langton’s loop). In addition to the internal
sheath, we have four “gate cells” (in the same state as the sheath) outside
the loop at the four corners of the automaton. These cells are initially in
the “open” position, and will shift to the “closed” position once the copy
is accomplished.

o We extend four constructing arms in the four cardinal directions at the
same time, and thus create four copies of the original automaton in the
four directions in parallel. When the arm meets an automaton already in
place where the copy should be (which happens for all but the original
automaton), it simply retracts and puts the corresponding gate cell in
the closed position.

e Rather than being directed to advance, our constructing arm advances
by default. As a consequence, it is necessary only to direct it to turn at
the appropriate moment. This is done by sending periodic “messengers”
to the tip of the constructing arm, which advanced at a slower pace with
respect to the messengers.

e The arm does not immediately construct the entire loop. Rather, it con-
structs a sheath of the same size as the original. Once the sheath is ready,
the data circulating in the loop is duplicated and the copy is sent along
the constructing arm to wrap around the new sheath. When the new loop
is completed, the constructing arm retracts and shifts the corresponding
gate cell to the closed position.

e Asa consequence of the above, rather than using all of the data in the loop
to direct the constructing arm, we use only four of the cells circulating in
the loop to generate the messengers. Since the only operation performed
on the remaining data cells is duplication, they do not have to be in any
particular state. In particular, they can be used as a “program”, i.e., a
set of states with their own transition rules which will then be applied
alongside the self-replication to execute some function.

e Unlike Langton’s loop, our loop does not “die” once duplication is com-
plete, as the circulating data remains untouched by the self-replication
process. Therefore, any program stored in the loop will be able to con-
tinue to execute. Also, it is possible to force the loop to try and duplicate
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again in any of the four directions simply by shifting the corresponding
gate cell back to the open position.

e When the duplicated loops arrive next to the border of the array, the
constructing arm detects the border and retracts without attempting
to duplicate the data. Thus, our automaton, unlike Langton’s, does not
crash when the duplication process reaches the edge of the cellular space.

e Because the replication process occurs in the four directions at the same
time, the growth of the colony follows a symmetric pattern (Fig. 1.4),
unlike the spiraling pattern of Langton’s automaton.
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Fig. 1.4. Growth pattern.

As should be obvious from the above, while our loop owes to von Neumann
the concept of constructing arm and to Langton (and/or Codd) the basic loop
structure, it is in fact a very different automaton, endowed with some of the
properties of both. This observation is valid both for the functionality of
the automaton, which is capable of embarking on complex programs (unlike
Langton’s loop) but not physically separate machines (unlike von Neumann’s
constructor), and for its complexity.

In fact, as far as the complexity of the automaton is concerned, its esti-
mation is more difficult than for Langton’s loop, as it depends on the data
circulating in the loop. The number of non-quiescent cells making up the
initial configuration depends directly on the size of the circulating program.
The more complex (i.e. the longer) the program, the larger the automaton.
It should be noted, however, that the complexity of the self-replication pro-
cess does not depend on the size of the loop. The number of states also
depends on the complexity of the program. To the five “basic states” used
for self-replication (see description below) must be added the “data states”
(at least one) used in the program, which must be disjoint from the basic
states. The number of transition rules is obviously a function of the number
of data states: in the basic configuration, i.e., one data state, the automaton
needs 692 rules (173 rules rotated in the four directions). By default, all cells
remain in the same state.
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The complexity of the basic configuration is therefore in the same order
as that of Langton’s and Byl’s loops, with the proviso that it is likely to
increase drastically if the data in the loop is used for some purpose. In fact,
the number of rules in the automaton we have described grows as D*, where
D is the number of data states. A different version of the automaton limits the
growth to D? (at the expense of some versatility), but the increase remains
substantial.

In the next section we will describe in some detail the operation of the
automaton in a small, basic configuration, and illustrate an example of a
loop where a program has been included in the loop to demonstrate the
construction capabilities of our automaton.

1.2  Description of the Automaton

1.2.1  Cellular Space and Initial Configuration

As for von Neumann’s and Langton’s automata, the ideal cellular space for
our automaton is an infinite two-dimensional grid. Since we realize that a
practical implementation of such a cellular space might prove difficult, we
added some transition rules to handle the collision between the constructing
arm and the border of the array. On meeting the border, the arm will retract
without attempting to make a copy of the parent loop.

The cells of the array require five basic states and at least one data state
(see Fig. 1.4 at time 0). State 0 is the “quiescent state” and is represented by
a blank space in the figures. State 1 is the “sheath state”, that is the state of
the cells making up the sheath and the four gates. State 2 is the “activation
state”. The four cells in the loop directing the replication are in state 2, as
are the messengers which will be used to command the constructing arm and
the tip of the constructing arm itself for the first phase of construction, after
which the tip of the arm will pass to state 3, the “construction state”. State
3 will construct the sheath that will receive the copy of the loop, signal the
parent loop that the sheath is ready, and lead the duplicated data to the new
loop. State 4, the “destruction state”, will destroy the constructing arm once
the copy is ready. In addition to these states, we have labeled ‘d’ the data
state, with the understanding that this one symbol might in fact represent
any set of states not including states 0 to 4.

The initial configuration is in the form of a square loop wrapped around a
sheath. The size of the loop is a variable that for our example has been set to
8x8. The loop is a sequence of data states in which four cells in the activation
state are placed at a distance from each other equal to the side of the loop.
Near the four corners of the loop we have placed four cells in the sheath state.
These are the gate cells, and the position they occupy signifies that the gates
are open (that is, that the automaton should attempt to duplicate itself in
all four directions).



8 Petraglio, Tempesti and Henry

1.2.2 Operation

Once the cellular space starts operating, the data starts turning around the
loop. Nothing happens until the first 2 reaches a corner, where it finds the
gate open. Since the gate is open, the 2 splits into two identical cells. One
cell continues turning around the loop, while the second starts extending the
arm (Fig. 1.5a). The arm advances by one cell each two time periods. Once
the arm has started extending, each 2 that arrives to a corner will again split
and one of the copies (the “messenger”) will start running along the arm,
advancing by one cell per cycle (Fig. 1.5b). Since the arm is extending at half
the speed of these messengers and the messengers are spaced 8 cells apart
(the length of one side of the loop), the messengers will reach the tip of the
arm at regular intervals corresponding to the length of one side of the loop.
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Fig. 1.5. Cellular duplication. (a) The constructing arm starts extending. (b) The
first messenger leaves the loop. (c¢) The first messenger reaches the tip of the con-
structing arm.

When the first messenger reaches the tip of the arm, the tip, which was
until then in state 2, passes to state 3 and continues to advance at the same
speed (Fig. 1.5¢). This transformation tells the arm that it has reached the
location of the offspring loop and to start constructing the new sheath.

The next two messengers will force the tip of the arm to turn left
(Fig. 1.6), while the fourth will reach the tip as the arm is closing upon
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Fig. 1.6. The second messenger forces the arm to turn to the left.
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Fig.1.7. The arm closes the new loop.

itself (Fig. 1.7). It causes the sheath to close and then runs back along the
arm to signal to the original loop that the new sheath is ready.

Once the return signal arrives at the corner of the original loop, it waits
for the next 2 to arrive (Fig. 1.8). When the 2 sees the 3 waiting by the gate,
again it splits, one copy staying around the loop, the other running along the
arm. This time, however, rather than running along the arm in isolation as
a messenger, it carries behind him a copy of the data in the loop.

Always followed by the data, the messenger runs around the sheath until
it has reached the junction where the arm folded upon itself (Fig. 1.9). On
reaching that spot, it closes the loop and sends a destruction signal (the 4)
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Fig. 1.9. The data warps around the new loop and the arm is destroyed.
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back along the arm. The signal will destroy the arm until it reaches the corner
of the original loop, where it closes the gate (Fig. 1.10).

Meanwhile, the new loop is already starting to replicate itself in three
of the four directions. One direction (down in the figures) is not necessary
since another of the new loops will always get there first, and therefore its
corresponding gate will be set to the closed position.

After 121 time periods the gates of the original automaton will be closed
and it will enter an inactive state, with the understanding that it will be
ready to replicate itself again should the gates be opened.

1.2.3 Example

In Fig. 1.11, we illustrate an example of how the data states can be used to
carry out operations alongside self-replication. The operation in question is
the construction of three letters, LSL (the acronym of Logic Systems Labora-
tory), in the empty space inside the loop. Obviously this is not a very useful
operation from a practical point of view, but it is a non-trivial case of con-
struction that should demonstrate some of the capabilities of the automaton.

For this example, we have used 5 data states, which have brought the
number of transition rules to 35202 (note that this figure is reached through
an automatic generation of multiple rules, covering every possible combina-
tion of the 5 data states: far fewer rules are likely to be actually required).
Of these, 326 are new rules which control the behavior of the program, and
do not concern self-replication. The loop size is 20x 20, and a full replication
of a loop requires 321 time periods.

The operation of the program is fairly straightforward. When a certain
“initiation sequence” within the loop arrives at the top left corner of the
loop, a “door” is opened in the internal sheath. The rest of the program,
as it passes by the door in its rotation around the loop, is duplicated and
one of the copies enters the interior of the loop, where it is treated as a
sequence of instructions which direct the construction of the three letters. The
construction mechanism is somewhat similar to the method Langton used in
his own loop, with single-cells instructions such as “turn left”, “advance”, etc.
The construction ends when a “termination sequence” arrives at the door.
At that stage, the door is closed and a flag is set in the sheath to warn that
the program has already executed.

During the process of replication, the program is simply copied (as op-
posed to interpreted as in the interior of the cell) and arrives intact in the
new loop, where it will execute again exactly as it did in the parent loop.

This is a simple demonstration of one way in which the data in the loop
could be used as an executable program. However, it should be noted that, in
the above example, the automaton executes a program devoid of any external
inputs, and thus relatively uninteresting from a computational point of view.
In the next sections we will illustrate another, more complex but also much
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more useful, example of how the automaton’s data states can be used to store
and execute programs capable of computing arithmetic functions.

1.3 Collision-Based Computing: Theoretical Notions

To show that it is indeed possible to perform computationally-useful tasks
using self-replicating automata, we wished to adapt our programmable au-
tomaton to execute some arithmetical operations, notably addition and mul-
tiplication, on binary numbers. In order to implement these features, we opted
for a slightly modified version of the particle model developed by Steiglitz
et al. [8], briefly described in this section. We selected this particular model
because it is a model designed to operate within the cellular automaton envi-
ronment and it can easily be adapted to self-replicating automata. Obviously,
the details of the operation of Steiglitz’s algorithm had to be modified to fit
the automaton, but we essentially maintained untouched the overall approach
to the execution of addition and multiplication.

1.3.1 Binary Addition

To explain the mechanism used to add binary numbers, we will start with a
simple example of a sum of two one-bit numbers. This example is shown in
Fig 1.12.

To effect the sum, the two bits are stored in two cells, that imitate sig-
nals moving towards each other. When the two cells collide, the right one is
destroyed and the left one is transformed into a new right-moving cell which
contains the result of the collision. The carry remains in place in the cell
where the collision took place. In our example the left cell represents the
value 1 and the right one the value 0. Following the collision the sum is made
and the new right-moving cell represent the value 1, the result of the com-
putation. For the sum of binary numbers coded on more than one bit, the
left and the right addends are represented by a sequence of cells, each signal
representing a bit (one or zero). The two cells move towards each other. A
processor cell is placed between the two sequences of signals (Fig. 1.13). In
each number, the least-significant bit leads the sequence, so that when the
two numbers collide head-on at the processor cell, this can add the bits in
order of increasing significance.

After a collision, the two incoming cells are destroyed and the processor
cell computes the result and generates a new left-moving cell, which encodes
the result of the first addition. After the creation of the “result” cell, the
processor stores the value of the carry bit, which it will use to compute the
result of the next collision between the bits of the two operands.
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Fig. 1.12. Sum of two one-bit numbers.
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Fig.1.13. Two data streams collide in one processor cell.

1.3.2 Binary Multiplication

For binary addition, we have seen that a single processor cell was sufficient
for the computation. In the case of binary multiplication, we need a stream
of processor cells, and more precisely twice the number of bits of the multi-
plicands. Figure 1.14 shows the starting configuration of the multiplication.

left multiplicand processor stream right multiplicand

— — — . — a—
Fig. 1.14. Two data sequences collide in a processor stream.

In this figure the left-and right-moving sequences of cells represent the
two multiplicands and the processor stream is placed between the two se-
quences. To effect the multiplication, the two multiplicands travel across all
the processor cells. When two cells collide in a processor cell, this last com-
putes the result according to the rules shown in Table 1.1. The two data cells
then continue to travel across the processor stream. When all the cells have
traveled through the entire processor stream, the result of the multiplication
is represented by the states of the processor stream’s cells. Figure 1.15 shows
an example of the multiplication of two 2-bit numbers.

In Fig. 1.15, each row represents the state of the multiplication at the
time t. In this example, the processor cells can have three different states. At
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Table 1.1. Rules for the processor cells.
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Fig. 1.15. 3x3 binary multiplication.

the beginning (t=0), the cells’ state is empty, while after the first collision
the cells’ state can be “1” or “0”. At the end of the computation all of the
processor cells are set to “1” or “0”, and we can read the result on the
processor stream: 11 x 11 = 1001, that is, in decimal notation, 3 x 3 = 9.

1.4 Implementation on Self-Replicating Loops

In this section, we will show how Steiglitz’s model was implemented using
the support of our self-replicating loops. As we will see, both the operation
of our loop and that of Steiglitz’s model had to be slightly modified to allow
them to be merged, but the modifications were fairly minor and the basic
concepts were not in the least altered.
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1.4.1 Addition

To execute this function, one automaton is charged with computing the result
of a single collision between two data cells, unlike the original algorithm in
which a single processor cell computed the entire result. The initial configura-
tion of the adder (Fig. 1.16a) consists of a single loop, containing the program
which implements the sum. This first loop is a slightly modified version of
the original loop, in that it replicates in one direction only (downwards).

As time progresses, a column of loops will be created. The replication
process ends when the last automaton finds, in the place where it should
replicate, a special cell (Fig. 1.16b). Upon finding this special cell, the bottom
automaton generates a START signal which propagates upwards to the first
automaton to tell it to begin the operation.
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Fig. 1.16. Stream of automata.

Once the first automaton has received the START signal, it looks to its left
to find the bits it needs to add. It extends its constructing arm (Fig. 1.17a),
retrieves the first bit it finds (least significant bit of the first number) and
adds it to the second bit it finds (least significant bit of the second number).
The arm then leaves in place the result of the computation and brings the
carry bit back to the loop (Fig. 1.17b), which will propagate it to the next
automaton (Fig. 1.17c).

The process continues until the bottom loop is reached, signaling the end
of the sum. Once the operation is complete, the bottom loop will extend an
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arm downwards (as if to propagate the carry bit). The arm will meet one of
three kinds of cells: a new START cell, which will activate a new sum, an
END cell, which halts the operation of the automata, or an ACTIVATE cell,
whose functionality will be explained below.

carry _
-~ — OOEOOED | o | [ ™ IRH ” ” I_
B B OO |;;| 0L I;g )/1/? Bl |;;| 0001 |;§ » §§ §§
nm O mim (I L] m[n
o result Emmama RO
OO0 CECON
I [ I | o % 0 H
~ g © g AH
8 "~ Next automaton O The autematon -
arm waiting for arm retrieves
carry cell the carry cell
(a) (b) (c)

Fig.1.17. Computation of a collision.

1.4.2  Multiplication

As for the sum, the multiplication starts with a single loop, which replicates
towards the right (unlike the sum) to create a stream of 2N automata (where
N is the number of bits of the multiplicands). The multiplication algorithm
requires that the first collision between the data cells occur at a specific
automaton, notably the Nth automaton from the right. This introduces some
synchronization problems which complicate the execution considerably. The
first complication is that a sequence of temporization signals, in the form of
N — 1 shifting cells, needs to be added in front of the left operand (Fig. 1.18).

The multiplication begins when the self-replication process has ended,
i.e., when the replicating automata have filled all the available space, and
the leftmost automaton has received a START signal. At this point, the
leftmost automaton (which we will call Loop 1) starts retrieving the data
cells of the left operand and propagating them to the right. Throughout the
multiplication, Loop 1 will keep retrieving and propagating the data cells at
a frequency of one data cell every three time steps (where one time step is
the time required for an automaton to extend and retract its constructing
arm). The first shifting cell (the first cell of the left operand to be retrieved)
propagates then to the right until it reaches the rightmost automaton (which
we will call Loop 2N). Upon receiving the shifting cell, Loop 2N retrieves the
first cell of the right operand and stores it. Each of the shifting cells traversing
the automata will cause the right operand data cells to be shifted from the
loop they are on to the loop to its left and a new data cell to be retrieved by
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Fig. 1.18. Starting point of multiplication.

Loop 2N. After N — 1 shifting cells have gone through, each of the bits of
the right operand (except for the last one) are thus distributed on the N —1
rightmost loops. When the first left operand data cell arrives (behind the
shifting cells) on Loop N + 1 (the Nth automaton from the right), the first
collision occurs (Fig. 1.19).

The collision process occurs between a data cell A on one loop and a data
cell B on the loop to its right, according to the rules shown in Tab. 1. At
the end of the collision process, the result of the collision and data cell B are
stored on the left loop, along with a possible carry bit (which will be taken
into account when computing the next collision), while data cell A has been
propagated to the right loop, where it will be used for the next collision. Each
left operand data cell will thus collide with each right operand data cell, and
the right operand will be shifted by one automaton to the right after being
traversed by each left operand data cell. At the end of the multiplication,
the right operand, stored on the N rightmost loops of the automaton, will
be deleted by a special CLEAR cell, and the result will be stored on each of
the loops.

1.4.3 Combinations of Multiplication and Addition

In order to render its operation more “useful”, our automaton was conceived
so as to be able to realize combinations of operations. In particular, it can
compute the multiplication of two results of sums. That is, it can compute
any function of the form:

(A+B+.)x(a+b+..) (1.1)

In order to compute this kind of function, we need a starting configura-
tion similar to Fig. 1.20, which expands to the machine shown in Fig. 1.21
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after self-replication. When the left and the right automata have completed
their sums, they leave a special ACTIVATE cell (mentioned above) for the
multiplier to retrieve. The latter will interpret this cell as a START signal,
and execute the multiplication.

The two operations can thus be chained without difficulty, the only new
feature being a carriage cell which will “reformat” the data generated by the
adders into a form which the multiplier can use as an input (Fig. 1.22).

The use of self-replicating loops as a support for this kind of computation
simplified considerably the design of our machines, and the same approach
could be applied to the development of further mathematical functions and
further combinations of such functions.

This development, however, is not as simple as it should be: the cellular
automata environment, even with the support of the self-replicating loops,
sorely lacks the tools that would be necessary to automate the design of these
kind of complex machines.

1.5 Conclusion

The goal of the work presented in this chapter was to show that it is pos-
sible, and indeed not exceedingly difficult, to exploit the capabilities of self-
replicating automata (and notably our self-replicating programmable loops)
to perform complex mathematical operations. To demonstrate this, we im-
plemented the arithmetic operations of addition and multiplication using the
algorithm described by Steiglitz et al. [8]. The resulting machines, while rel-
atively complex (the final number of states required for combined sum and
multiplication exceeds 30, including the states used only for self-replication),
are nevertheless simple enough to be entirely simulated, and the use of the
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support provided by the programmable loops considerably simplified the find-
ing of the relevant transition rules. It should be noted that, while the au-
tomaton we designed is simple enough for simulation, it is extremely unlikely
that such a system would ever be actually used for real-world computing. As
we have mentioned, in fact, cellular automata are a useful environment for
theoretical research but its real-world applications are few and not usually
concerned with complex mathematical operations. Moreover, “pure” cellular
automata do not contemplate the existence of external inputs, i.e., of data,
such as mathematical operands, which is not present in the cellular space at
time 0 (for example, in our system, the operands should clearly be inserted as
needed, which would simplify considerably the operation of the automata).
Our aim, however, was not to develop a cellular automaton to be used in real-
world applications. As mentioned in the introduction, our goal in studying
these kind of structures is to determine what the advantages and constraints
are in the use of self-replicating machines for complex operations, so as to be
able to transfer these observations to the design of self-replicating integrated
circuits. From this perspective, the work we presented is indeed interesting,
in that it allows a number of observations:

e Self-replication can be advantageously exploited to realize application-
specific parallel systems by associating a self-replication mechanism and
an execution unit.
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e The execution units need not be very powerful, as complex operations can
be performed by many small identical units (the fundamental principle
of parallelism).
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e Self-replication allows the systems to adapt their architecture to the prob-

lem (for example, by producing the correct number of execution units to
exactly fit a given problem).

e The problem of synchronizing the operation of all the units of the system

is a major issue, as is the communication between the units.

This kind of information has been, and will be, extremely useful in the

development of self-replicating machines and in our attempt to realize von
Neumann’s dream.
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