
A Dynamic Routing Algorithm for a

Bio-Inspired Reconfigurable Circuit

Yann Thoma1,3, Eduardo Sanchez1, Juan-Manuel Moreno Arostegui2, and
Gianluca Tempesti1

1 Swiss Federal Institute of Technology at Lausanne (EPFL), Lausanne, Switzerland
2 Technical University of Catalunya (UPC), Barcelona, Spain

3 Corresponding author. E-mail: yann.thoma@epfl.ch

Abstract. In this paper we present a new dynamic routing algorithm
specially implemented for a new electronic tissue called POEtic. This re-
configurable circuit is designed to ease the implementation of bio-inspired
systems that bring cellular applications into play. Specifically designed
for implementing cellular applications, such as neural networks, this cir-
cuit is composed of two main parts: a two-dimensional array of basic
elements similar to those found in common commercial FPGAs, and a
two-dimensional array of routing units that implement a dynamic rout-
ing algorithm which allows the creation of data paths between cells at
runtime.

1 Introduction

Life is amazing in terms of complexity and of adaptability. After the fertilization
of an ovule by a spermatozoid, a simple cell is capable of recursively dividing itself
to create an entire living being. During its lifetime, an organism is also capable of
self-repair in case of external or internal aggressions. Living beings possessing a
neural network can learn tasks which allow them to adapt to their environment.
And finally, at the population level, evolution allows a population to evolve
in order to survive in an ever-changing environment. The aim of the POEtic
project [7][8][10] is to design a new electronic circuit, drawing inspiration from
these three life axes: Phylogenesis (evolution) [6], Ontogenesis (development) [9],
and Epigenesis (learning) [4].

Ontogenetic methods, which are used to develop a self-repair circuit, need
to change the functionality of the circuit at runtime. Epigenetic mechanisms,
using neural networks, could also need to create new neurons, and therefore
new connections between neurons at runtime. As commercially FPGAs usually
don’t have any dynamic self-reconfiguration capabilities, a new circuit capable
of self-configuration is essential.

In the next section, we present the general architecture of the POEtic chip,
decomposed into two subsystems. In section 3, we describe the basic elements of
the circuit: the molecules. Section 4 fully explains the dynamic routing algorithm
implemented in order to ease the creation of long distance paths into the chip.

Gianluca Tempesti
Text Box
In P. Y. K. Cheung, G. A. Constantinides, J. T. de Sousa, Eds.13th International Conference on Field-Programmable Logic and Applications (FPL03), pp. 681-690. LNCS 2778, Springer-Verlag, Berlin, 2003.



2 Structural Architecture

The POEtic circuit is composed of two parts (figure 1): the organic subsystem,
which is the functional part of the circuit, and the environmental subsystem.
Cells, and thus organisms, are implemented in the organic subsystem. It is com-
posed of a grid of small molecules and of a cellular routing layer. Molecules are
the smallest unit of programmable hardware which can be configured by soft-
ware, while dedicated routing units are responsible for the inter-cellular com-
munication. The main role of the environmental subsystem is to configure the
molecules. It is also responsible for the evolution process, and can therefore ac-
cess and change every molecule’s state in order to evaluate the fitness of an
organism.

Each cell of an organism is a collection of molecules, which are the basic
blocks of our circuit. The size and contents of the cells depend on the application.
Therefore, for each application, a developer will have to design cells fitting into
the molecules.

lut[0]

lut[1]

lut[2]

lut[3]

lut[4]

lut[5]

lut[6]

lut[7]

lut[8]

lut[9]

lut[10]

lut[11]

lut[12]

lut[13]

lut[14]

lut[15]

partial

LUT

lut[0]

lut[1]

lut[2]

lut[3]

lut[4]

lut[5]

lut[6]

lut[7]

lut[8]

lut[9]

lut[10]

lut[11]

lut[12]

lut[13]

lut[14]

lut[15]

partial

LUT

lut[0]

lut[1]

lut[2]

lut[3]

lut[4]

lut[5]

lut[6]

lut[7]

lut[8]

lut[9]

lut[10]

lut[11]

lut[12]

lut[13]

lut[14]

lut[15]

partial

LUT

lut[0]

lut[1]

lut[2]

lut[3]

lut[4]

lut[5]

lut[6]

lut[7]

lut[8]

lut[9]

lut[10]

lut[11]

lut[12]

lut[13]

lut[14]

lut[15]

partial

LUT

lut[0]

lut[1]

lut[2]

lut[3]

lut[4]

lut[5]

lut[6]

lut[7]

lut[8]

lut[9]

lut[10]

lut[11]

lut[12]

lut[13]

lut[14]

lut[15]

partial

LUT

lut[0]

lut[1]

lut[2]

lut[3]

lut[4]

lut[5]

lut[6]

lut[7]

lut[8]

lut[9]

lut[10]

lut[11]

lut[12]

lut[13]

lut[14]

lut[15]

partial

LUT

lut[0]

lut[1]

lut[2]

lut[3]

lut[4]

lut[5]

lut[6]

lut[7]

lut[8]

lut[9]

lut[10]

lut[11]

lut[12]

lut[13]

lut[14]

lut[15]

partial

LUT

lut[0]

lut[1]

lut[2]

lut[3]

lut[4]

lut[5]

lut[6]

lut[7]

lut[8]

lut[9]

lut[10]

lut[11]

lut[12]

lut[13]

lut[14]

lut[15]

partial

LUT

lut[0]

lut[1]

lut[2]

lut[3]

lut[4]

lut[5]

lut[6]

lut[7]

lut[8]

lut[9]

lut[10]

lut[11]

lut[12]

lut[13]

lut[14]

lut[15]

partial

LUT

lut[0]

lut[1]

lut[2]

lut[3]

lut[4]

lut[5]

lut[6]

lut[7]

lut[8]

lut[9]

lut[10]

lut[11]

lut[12]

lut[13]

lut[14]

lut[15]

partial

LUT

lut[0]

lut[1]

lut[2]

lut[3]

lut[4]

lut[5]

lut[6]

lut[7]

lut[8]

lut[9]

lut[10]

lut[11]

lut[12]

lut[13]

lut[14]

lut[15]

partial

LUT

lut[0]

lut[1]

lut[2]

lut[3]

lut[4]

lut[5]

lut[6]

lut[7]

lut[8]

lut[9]

lut[10]

lut[11]

lut[12]

lut[13]

lut[14]

lut[15]

partial

LUT

lut[0]

lut[1]

lut[2]

lut[3]

lut[4]

lut[5]

lut[6]

lut[7]

lut[8]

lut[9]

lut[10]

lut[11]

lut[12]

lut[13]

lut[14]

lut[15]

partial

LUT

lut[0]

lut[1]

lut[2]

lut[3]

lut[4]

lut[5]

lut[6]

lut[7]

lut[8]

lut[9]

lut[10]

lut[11]

lut[12]

lut[13]

lut[14]

lut[15]

partial

LUT

lut[0]

lut[1]

lut[2]

lut[3]

lut[4]

lut[5]

lut[6]

lut[7]

lut[8]

lut[9]

lut[10]

lut[11]

lut[12]

lut[13]

lut[14]

lut[15]

partial

LUT

lut[0]

lut[1]

lut[2]

lut[3]

lut[4]

lut[5]

lut[6]

lut[7]

lut[8]

lut[9]

lut[10]

lut[11]

lut[12]

lut[13]

lut[14]

lut[15]

partial

LUT

out out

out out

system

interface

organic subsystemenvironmental subsystem

AMBA

POEtic tissue

processor

Fig. 1. The POEtic chip, composed of an environmental and an organic subsystems.

2.1 Environmental Subsystem

The environmental subsystem is primairly composed of a micro-controller: a 32-
bit RISC-like processor. Its function is to configure the molecules, to run the
evolutionary mechanisms, and to manage chip input/output. In order to speed
up evolution processes, a random number generator has been added directly in
the hardware. An AMBA bus [1] is used to connect the processor to a system
interface that takes care of the communication between the processor and the
organic subsystem. This bus is also connected to external pins in order to allow
multi-chip communication, as well as the use of an external RAM.



2.2 Organic Subsystem

lut[0]

lut[1]

lut[2]

lut[3]

lut[4]

lut[5]

lut[6]

lut[7]

lut[8]

lut[9]

lut[10]

lut[11]

lut[12]

lut[13]

lut[14]

lut[15]

partial

LUT

lut[0]

lut[1]

lut[2]

lut[3]

lut[4]

lut[5]

lut[6]

lut[7]

lut[8]

lut[9]

lut[10]

lut[11]

lut[12]

lut[13]

lut[14]

lut[15]

partial

LUT

lut[0]

lut[1]

lut[2]

lut[3]

lut[4]

lut[5]

lut[6]

lut[7]

lut[8]

lut[9]

lut[10]

lut[11]

lut[12]

lut[13]

lut[14]

lut[15]

partial

LUT

lut[0]

lut[1]

lut[2]

lut[3]

lut[4]

lut[5]

lut[6]

lut[7]

lut[8]

lut[9]

lut[10]

lut[11]

lut[12]

lut[13]

lut[14]

lut[15]

partial

LUT

lut[0]

lut[1]

lut[2]

lut[3]

lut[4]

lut[5]

lut[6]

lut[7]

lut[8]

lut[9]

lut[10]

lut[11]

lut[12]

lut[13]

lut[14]

lut[15]

partial

LUT

lut[0]

lut[1]

lut[2]

lut[3]

lut[4]

lut[5]

lut[6]

lut[7]

lut[8]

lut[9]

lut[10]

lut[11]

lut[12]

lut[13]

lut[14]

lut[15]

partial

LUT

lut[0]

lut[1]

lut[2]

lut[3]

lut[4]

lut[5]

lut[6]

lut[7]

lut[8]

lut[9]

lut[10]

lut[11]

lut[12]

lut[13]

lut[14]

lut[15]

partial

LUT

lut[0]

lut[1]

lut[2]

lut[3]

lut[4]

lut[5]

lut[6]

lut[7]

lut[8]

lut[9]

lut[10]

lut[11]

lut[12]

lut[13]

lut[14]

lut[15]

partial

LUT

lut[0]

lut[1]

lut[2]

lut[3]

lut[4]

lut[5]

lut[6]

lut[7]

lut[8]

lut[9]

lut[10]

lut[11]

lut[12]

lut[13]

lut[14]

lut[15]

partial

LUT

lut[0]

lut[1]

lut[2]

lut[3]

lut[4]

lut[5]

lut[6]

lut[7]

lut[8]

lut[9]

lut[10]

lut[11]

lut[12]

lut[13]

lut[14]

lut[15]

partial

LUT

lut[0]

lut[1]

lut[2]

lut[3]

lut[4]

lut[5]

lut[6]

lut[7]

lut[8]

lut[9]

lut[10]

lut[11]

lut[12]

lut[13]

lut[14]

lut[15]

partial

LUT

lut[0]

lut[1]

lut[2]

lut[3]

lut[4]

lut[5]

lut[6]

lut[7]

lut[8]

lut[9]

lut[10]

lut[11]

lut[12]

lut[13]

lut[14]

lut[15]

partial

LUT

lut[0]

lut[1]

lut[2]

lut[3]

lut[4]

lut[5]

lut[6]

lut[7]

lut[8]

lut[9]

lut[10]

lut[11]

lut[12]

lut[13]

lut[14]

lut[15]

partial

LUT

lut[0]

lut[1]

lut[2]

lut[3]

lut[4]

lut[5]

lut[6]

lut[7]

lut[8]

lut[9]

lut[10]

lut[11]

lut[12]

lut[13]

lut[14]

lut[15]

partial

LUT

lut[0]

lut[1]

lut[2]

lut[3]

lut[4]

lut[5]

lut[6]

lut[7]

lut[8]

lut[9]

lut[10]

lut[11]

lut[12]

lut[13]

lut[14]

lut[15]

partial

LUT

lut[0]

lut[1]

lut[2]

lut[3]

lut[4]

lut[5]

lut[6]

lut[7]

lut[8]

lut[9]

lut[10]

lut[11]

lut[12]

lut[13]

lut[14]

lut[15]

partial

LUT

out out

out out

Routing Unit

Molecule

Fig. 2. The organic subsystem is composed of 2 layers: the molecules and the routing
units.

The organic subsystem is made up of 2 layers (cf. figure 2): a two-dimensional
array of basic logic elements, called molecules, and a two-dimensional array of
routing units. Each molecule has the capability of accessing the routing layer
that is used for inter-cellular communication. This second layer implements a
dynamic routing algorithm allowing the creation of data paths between cells at
runtime.

3 Molecular Structure

As briefly presented above, the first layer of the POEtic tissue is a two-dimen-
sional array of small programmable units, called molecules. Each molecule is
connected to its 4 neighbors and to a routing unit (4 molecules for 1 routing
unit), and contains a 16-bit look-up table (LUT) and a flip-flop (DFF). This
structure, while seemingly very similar to standard FPGAs [2], is however spe-
cially designed for POEtic applications: different running modes let the molecule
act like a memory, a serial address comparator, a cell input, a cell output, or oth-
ers. With a total of 8 modes, these molecules allow a developer to build cells that
are capable of communicating with each other, of storing a genome, of healing,
and so on.



The 8 modes of operation of the molecule are the following:

– Normal : the LUT is a simple 16-bit look-up table.

– Arithmetic: the LUT is split into two 8-bit look-up tables: one for the
molecule output, and one for a carry. A carry-chain physically sends the
carry to the south neighbor, allowing rapid arithmetic operations.

– Communication: the LUT is split into one 8-bit shift register and one 8-
bit look-up table. This mode can be used to implement a packet routing
algorithm that will not be presented in this paper.

– Shift memory : the LUT is considered as a 16-bit shift register. This mode is
very useful to efficiently store the genome in every cell. Shift memories can
be chained in order to create memories of depth 32, 48, etc.

– Configure: the molecule has the capability of reconfiguring its neighbor.
Combined with shift memory molecules, this mode can be used to differenti-
ate the cells. A selected part of the genome, stored in the memory molecules,
can be shifted to configure the LUT of other molecules (for instance to assign
weights to neural synapses).

– Input address : the LUT is a 16-bit shift register and is connected to the
routing unit. The 16 bits represent the address of the cell from where the
information arrives. The molecule’s output is the value coming from the
inter-cellular routing layer (this mechanism will be detailed in the next sec-
tion).

– Output address : the LUT is a 16-bit shift register and is connected to the
routing unit. The 16 bits represent the address of the cell, and the molecule
sends the value of one of its inputs to the routing unit (this mechanism will
be detailed in the next section).

– Trigger : the LUT is a 16-bit shift register, and is connected to the routing
unit. Its task is to supply a trigger every n clock cycles (where n is the number
of bits of the addresses), needed by the routing algorithm for synchronization.

To be capable of self-repair and growth, an organism needs to be able to create
new cells and to configure them. The configuration system of the molecules can
be seen as a shift register of 80 bits split into 5 blocks: the LUT, the selection of
the LUT’s input, the switch box, the mode of operation, and an extra block for
all other configuration bits. Each block contains, as shown in figure 3, together
with its configuration, one bit indicating whether the block has to be bypassed
in the case of a reconfiguration coming from a neighbor. This bit can only be
loaded from the micro-processor, and remains stable during the entire lifetime
of the organism.

The special configure mode allows a molecule to partially reconfigure its
neighborhood. It sends bits coming from another molecule to the configuration
of one of its neighbors. By chaining the configurations of neighboring molecules, it
is possible to modify multiple molecules at the same time, allowing, for example,
the synaptic weights in a neuron to be changed.



partial

LUT

partial

LUT-inputs

partial

Mode Others

conf_in

partial

SwitchBox

Fig. 3. All configuration bits of a molecule, split up into 5 blocks. The partial config-
uration bits of blocks 2 and 4 are set, enabling the reconfiguration of the LUT inputs
and of the mode of operation by a neighboring molecule.

4 Dynamic Routing

As presented above, our circuit is composed of a grid of molecules, in which
cells are implemented. In a multi-cellular system, cells need to communicate
with each other: a neural network, for example, often shows a very high density
of connections between neurons. Commercial FPGAs have trouble dealing with
these kinds of applications, because of their poor or nonexistent dynamic routing
capacity. Given the purpose of the POEtic tissue, special attention was payed
to this problem. Therefore, a second layer was added on top of the molecules,
implementing a distributed dynamic routing algorithm. This algorithm uses an
optimized version of the dynamic routing presented by Moreno in [5], to which we
supplied a distributed control to where there is no global control of the routing
process.

4.1 From Software to Hardware

Our dynamic routing algorithm finds the shortest path between two points in the
routing layer. In 1959, Dijkstra proposed a software algorithm to find the shortest
path between two nodes in a graph in which every branch has a positive length
[3]. If we fix all branches to have a weight of 1, we can dramatically simplify the
algorithm. It then becomes a breadth-first search algorithm, as follow:

1: paint all vertices white;

2: paint the source grey and enqueue it;

3: repeat

4: dequeue vertex v;

5: if v is the target, we found a path - exit the algorithm;

6: paint v black;

7: for each white neighbor w of v

8: paint w grey;

9: set parent w to v;

10: enqueue w

11: until the queue is empty

12: if we haven’t yet exited, we didn’t find the target



This algorithm acts like a gas expanding in a labyrinth, but in a sequential
manner, one node being expanded at a time, with a complexity of O(V+E) where
V is the number of vertices and E is the number of edges. Taking advantage of
the hardwares’ intrinsic parallelism, it is possible, based on the same principle
as the breadth-first search algorithm, to expand all grey nodes at the same time.
This dramatically decreases the time needed to find the shortest path between
two points, the complexity becoming O(N+M), for a NxM array.

Finding the shortest path is not enough for the POEtic tissue, since we
don’t have a God telling us which routing unit is the source and which one is
the target. In order to have a standalone circuit capable of self-configuration,
we need a mechanism to start routings. Molecules, as explained in the previous
section, have special modes to access the routing layer. Therefore, input or output
molecules have the capability of initiating a dynamic routing.

4.2 Routing Algorithm

The dynamic routing system is designed to automatically connect the cells’ in-
puts and outputs. Each output of a cell has a unique identifier at the organism
level. For each of its inputs, the cell stores the identifier of the source from which
it needs information. A non-connected input (target) or output (source) can ini-
tiate the creation of a path by broadcasting its identifier in the case of an output,
or the identifier of its source in the case of an input. The path is then created
using a parallel implementation of the breadth-first search algorithm presented
above. When all paths have been created, the organism can start operation and
execute its task until a new routing is launched, for example after a cell addition
or a cellular self-repair.

Our approach has many advantages compared to a static routing process.
First of all, a software implementation of a shortest path algorithm, such as
Dijkstra’s, is very time-consuming for a processor, while our parallel implemen-
tation requires a very small number of clock cycles to finalize a path. Secondly,
when a new cell is created it can start a routing process without the need of recal-
culating all paths already created. Thirdly, a cell has the possibility of restarting
the routing process of the entire organism if needed (for instance after a self-
repair). Finally, our approach is totally distributed without any global control
over the routing process, so that the algorithm can work without the need of the
central micro-processor.

The routing algorithm is executed in three phases:

Phase 1: Finding a Master

In this phase, every target or source that is not connected to its correspon-
dent partner tries to become master of the routing process. A simple priority
mechanism chooses the most bottom-left routing unit to be the master, as shown
in figure 4. Note that there is no global control for this priority, every routing
unit knows whether or not it is the master. This phase is over in one clock cycle,
as the propagation of signals is combinational.



next first step next first step

Fig. 4. Three consecutive first steps of the algorithm. The black routing unit will be
the master, and therefore perform its routing.

Phase 2: Broadcasting the Address

Once a master has been selected, it sends its address in the case of a source,
or the address of the needed source in the case of a target. As shown in section
3, the address is stored in a molecule connected to the routing unit. It is sent
serially, in n clock cycles, where n is the size of the address. The same path as
in the first phase is used to broadcast the address, as shown in figure 5.

Fig. 5. The propagation direction of the address: north → south ‖ east → south, west,
and north ‖ south → north ‖ west → north, east, and south ‖ routing unit → north,
east, south, and west.

Every routing unit, except the one that sends the address, compares the in-
coming value with its own address (stored in the molecule underneath). At the
end of this phase, that is, after n clock cycles, each routing unit knows if it is
involved in this path. In practice, there has to be one and only one source, and
at least one target.

Phase 3: Building the Shortest Path

The last phase, largely inspired by [5], creates a shortest path between the se-
lected source and the selected targets. An example involving 8 sources and 8
targets is shown in figure 6, for a densely connected network.

A parallel implementation of the breadth-first search algorithm allows the
routing units to find the shortest path between a source and many targets.
Starting from the source, an expansion process tries to find targets. When one
is reached, the path is fixed, and all the routing resources used for the path will
not be available for the next successive iterations of the algorithm.

Figure 7 shows the development of the algorithm, building a path between
a source placed in column 1, row 2 and a target cell placed in column 3, row 3.



T6 T8
T7

T5

S1 S4
S3 S2

S5 S7 S8
S6

T2
T3 T4 T1

Fig. 6. Test case with a densely connected network.

After 3 clock cycles of expansion, the target is reached, and the path is fixed,
prohibiting the use of the same path for a successive routing.

5 Conclusion

In this paper we presented a new electronic circuit dedicated to the implemen-
tation of bio-inspired cellular applications. It is composed of a RISC-like micro-
processor and of two planes of functional and routing units. The first one, a
two-dimensional array of molecules, is similar to standard FPGAs and makes
the circuit general enough to implement any digital circuit. However, molecules
have self-configuration capabilities that are not present in commercial FPGAs
and that are important for the growth of an organism and for self-repair at
the cellular level. The second plane is a two-dimensional array of routing units
that implement a dynamic routing algorithm. It is used for the inter-cellular
communication, letting the tissue dynamically create paths between cells. This
algorithm is totally distributed, and hence does not need the control of a micro-
processor. Moreover, its scalability allows the creation of cellular networks of
any size.

This circuit has been tested with a simulation based on the VHDL files
describing the entire system. The next step of the project, which is currently
under way and which should be completed by the time the conference will take
place, is to develop, from the VHDL files, the VLSI layout and to realize a
testchip to validate the design of our circuit.

Due to financial considerations, the first prototype of the POEtic chip will
only contain approximately 500’000 equivalent gates. This size will not have
enough molecules in one chip for complex designs. It will only be possible to im-
plement a very simple organism on such a small number of molecules. Therefore,
we included in the design the possibility of implementing a multi-chip organism
by seamlessly joining together any number of chips (figure 8).



(a) (b)

(c) (d)

Fig. 7. Step (a) one, (b) two, (c) three and (d) four of the path construction process
between the source placed in column 1, row 2 and target cell placed in column 3, row
3.

routing

plane

molecular

plane

Fig. 8. A multi-chip organism shows the inter-cellular connections.



6 Acknowledgements

This project is funded by the Future and Emerging Technologies programme
(IST-FET) of the European Community, under grant IST-2000-28027 (POETIC).
The information provided is the sole responsibility of the authors and does not
reflect the Community’s opinion. The Community is not responsible for any use
that might be made of data appearing in this publication. The Swiss participants
to this project are supported under grant 00.0529-1 by the Swiss government.

References

[1] ARM: Amba Specification, rev 2.0. Advanced RISC Machines Ltd (arm).
http://www.arm.com/armtech/amba spec, 1999.

[2] Brown, S., Francis, R., Rose, J., Vranesic, Z.: Field Programmable Gate Arrays.
Kluwer Academic Publishers, 1992.

[3] Dijkstra, E.W.: A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1:269–271, 1959.

[4] Eriksson, J., Torres, O., Villa, A. E. P.: Spiking Neural Networks for Reconfigurable
POEtic Tissue. In A.M. Tyrrell, P.C. Haddow, and J. Torresen, editors, Evolvable
Systems: From Biology to Hardware. Proc. 5th Int. Conf. on Evolvable Hardware
(ICES 03), volume 2606 of LCNS, pages 165–173, Berlin, 2003, Springer-Verlag.

[5] Moreno Arostegui, J. M., Sanchez, E., Cabestany, J.: An In-system Routing Strat-
egy for Evolvable Hardware Programmable Platforms. In Proc. 3rd NASA/DoD
Workshop on Evolvable Hardware, pages 157–166. IEEE Computer Society Press,
2001.

[6] Roggen, D., Floreano, D., Mattiussi, C.: A Morphogenetic System as the Phy-
logenetic Mechanism of the POEtic Tissue. In A.M. Tyrrell, P.C. Haddow, and
J. Torresen, editors, Evolvable Systems: From Biology to Hardware. Proc. 5th Int.
Conf. on Evolvable Hardware (ICES 03), volume 2606 of LCNS, pages 153–164,
Berlin, 2003, Springer-Verlag.

[7] Sanchez, E., Mange, D., Sipper, M., Tomassini, M., Perez-Uribe, A., Stauffer, A.:
Phylogeny, Ontogeny, and Epigenesis: Three Sources of Biological Inspiration for
Softening Hardware. In T. Higuchi, M. Iwata, and W. Liu, editors, Evolvable
Systems: From Biology to Hardware, volume 1259 of LCNS, pages 33–54, Berlin,
1997. Springer-Verlag.

[8] Sipper, M., Sanchez, E., Mange, D., Tomassini, M., Perez-Uribe, A.: A Phyloge-
netic, Ontogenetic, and Epigenetic View of Bio-inspired Hardware Systems. IEEE
Transactions on Evolutionary Computation, 1:1:83–97, 1997.

[9] Tempesti, G., Roggen, D., Sanchez, E., Thoma, Y., Canham, R., Tyrrell, A.M.: On-
togenetic Development and Fault Tolerance in the POEtic Tissue. In A.M. Tyrrell,
P.C. Haddow, and J. Torresen, editors, Evolvable Systems: From Biology to Hard-
ware. Proc. 5th Int. Conf. on Evolvable Hardware (ICES 03), volume 2606 of LCNS,
pages 141–152, Berlin, 2003, Springer-Verlag.

[10] Tyrrell, A.M., Sanchez, E., Floreano, D., Tempesti, G., Mange, D., Moreno
Arostegui, J.-M., Rosenberg, J., Villa, A.E.P.: Poetic Tissue: An Integrated Ar-
chitecture for Bio-inspired Hardware. In A.M. Tyrrell, P.C. Haddow, and J. Tor-
resen, editors, Evolvable Systems: From Biology to Hardware. Proc. 5th Int. Conf.
on Evolvable Hardware (ICES 03), volume 2606 of LCNS, pages 129–140, Berlin,
2003, Springer-Verlag.




