
Implementation of a Self-Replicating

Universal Turing Machine

Hector Fabio Restrepo1,2, Daniel Mange1, and Gianluca Tempesti1

1 Logic Systems Laboratory, Swiss Federal Institute of Technology
CH–1015 Lausanne, Switzerland
E-mail: {name.surname}@epfl.ch

2 Grupo de Percepción y Sistemas Inteligentes
Escuela de Ing. Eléctrica y Electrónica Universidad del Valle
E-mail: farestre@eiee.univalle.edu.co

Summary. The goal of this contribution is to describe how a universal Turing ma-
chine was embedded into a hardware system in order to verify the computational
universality of a novel architecture. This implementation was realized with a multi-
cellular automaton inspired by the embryonic development of living organisms. In
such an architecture, every artificial “cell” contains a complete copy of the descrip-
tion of the machine, a redundancy that allows the introduction of the properties
of self-repair and self-replication. These properties were coupled with a modified
version of the W-machine to realize a robust, self-replicating universal computer in
actual hardware.

1 Introduction

In the 1930’s, before the advent of digital computers, several logicians (Kurt
Gödel, Alonzo Church, Stephen Kleene, Emil Post, and Alan Mathison Tur-
ing) began to think about the theoretical limits of computation. Alonzo
Church and Alan Turing independently arrived, through different approaches,
at equivalent conclusions. Both solutions described computability, but while
Church (1932-34) described it with λ-calculus, Turing’s idea (1936) was based
on a mathematical model of a machine that could compute any computable
function: the Turing machine [20,3].

Throughout the history of computer science, the Turing machine has re-
mained a vital benchmark in the validation of novel architectures. Most no-
tably, in the historical work of John von Neumann in the 1950’s [22], the
computational universality of the Turing machine was coupled with another
fundamental property: constructional universality, that is, the ability to con-
struct any kind of machine, given its description. The most remarkable prod-
uct of the coupling of these two properties was the development of the ma-
chine known as Von Neumann’s Universal Constructor, essentially a cellular
automaton capable of self-replication and of realizing a universal Turing ma-
chine.

Although the complexity of von Neumann’s implementation makes it un-
suitable for a hardware implementation (indeed, even a software simulation

Gianluca Tempesti
Text Box
In C. Teuscher, Ed., "Alan Turing: Life and Legacy of a Great Thinker", pp.241-269.Springer, Berlin, 2003.

2 Restrepo et al.

remains almost beyond the possibilities of modern computer systems), the
self-replication of computing machines remains an interesting solution to
the problem of realizing “perfect” systems from imperfect components. In
fact, the predicted introduction of extremely complex systems realized at the
molecular level through, for example, nanotechnology processes is bringing
this issue to the leading edge of research.

The contents of this contribution are the result of our research in the
domain of computing machines inspired by the properties of biological or-
ganisms within a project called Embryonics (for “embryonic electronics”).
In particular, we shall describe an approach based on the development of
complex machines (our artificial organisms) implemented by a multi-cellular

architecture. In this architecture, organisms are two-dimensional arrays of
cells, where each cell is a small processing unit that stores a complete copy
of the machine’s genome in the form of a microprogram. Each cell then ex-
ecutes only a specific part of the program (the cell’s gene) depending on
its spatial position within the organism (a mechanism analogous to cellular
differentiation in living beings), as determined by a set of coordinates.

We have shown in the past that our architectures are capable of imple-
menting the properties of self-replication and of self-repair [6]. To demon-
strate the computational universality of our machines we were naturally led,
as was von Neumann fifty years ago, to show that our architecture can re-
alize a universal Turing machine [13–15]. Unlike von Neumann, however, we
will go beyond pencil-and-paper and implement our self-replicating Turing
machine in hardware, demonstrating not only the feasibility but also the ef-
ficiency of our approach. The goal of this contribution is the description of
our implementation of such a machine.

In Section 2 we present a brief introduction to the concept and structure
of Turing machines, from the specialized, application-specific machines to the
universal version that is the main topic of this contribution. In Section 3 we
introduce the basic features of Embryonics architectures, based on multicel-
lular arrays of cells, along with the architecture of an ideal and of an ac-
tual universal Turing machine able to self-replicate exploiting the features of
the Embryonics machines. In Section 4 we then describe the PICOPASCAL
language and a hardware implementation of a PICOPASCAL interpreter,
necessary in order to understand our Embryonics implementation. Section 5
describes the detailed implementation of a self-replicating universal Turing
machine. A discussion of our results follows in the final section (Section 6).

2 Turing Machines

2.1 Specialized Turing Machines

In his 1936 paper [21], A. M. Turing defined the class of abstract machines
that now bear his name: a specialized Turing machine (Figure 1), or simply
a Turing machine, is a finite-state machine (the program, to use Turing’s

Implementation of a Self-Replicating Universal Turing Machine 3

T a p e
.

M o b i l e h e a d

Fig. 1. A specialized Turing machine

terminology) controlling a mobile head, which operates on a tape. The tape,
composed of a sequence of locations (rectangles in the figure), contains a
string of symbols (the data). The tape should theoretically be considered as
infinite in both directions. However, for all practical purposes, we can assume
that, when the machine starts operating, the tape will be blank except for
some finite number of squares. With this assumption, we can consider the
tape as finite at any given moment, but capable of being infinitely extended
whenever the machine comes to an end of the finite portion (an important
assumption in view of the planned hardware implementation).

The head is situated, at any given moment, on a single square of the tape
and has to carry out three operations to complete one step of the computation
(one operation cycle of the finite-state machine). These operations are:

1. reading the symbol stored in the accessed location on the tape;
2. writing a symbol in the accessed location, erasing the previous symbol

(of course, the latter can be preserved if the machine writes the same
symbol that was read);

3. deplacing the head left or right to an adjacent location (which becomes
the accessed location for the next computation step).

A Turing machine can therefore be described by three functions f1, f2, f3:

Q+ = f1(Q, S)
S+ = f2(Q, S)
D+ = f3(Q, S)

where Q and S are, respectively, the current internal state of the finite state
machine (FSM) and the current input symbol (the symbol in the accessed
location on the tape), and where Q+, S+, and D+ are, respectively, the next
internal state of the FSM, the symbol to be written in the accessed location,
and the direction (left or right) of the head’s deplacement [12].

As a consequence, a set of quintuples can be used to specify what the
machine will do for each possible combination of symbol and state. These
quintuples have the following form:
(current state, current symbol, next state, next symbol, direction of motion)

or, equivalentely:

4 Restrepo et al.

(Q, S, Q+, S+, D+)

where the third, fourth, and fifth symbols are determined by the first and
second according to the three functions f1, f2, and f3 mentioned above.

These quintuples indicate that if a Turing machine is currently in the
internal state Q, and if the current input symbol is S, the machine will change
its internal state to the state Q+, replace the input symbol on the tape by the
symbol S+, and move the read/write head by one location in the direction
D+. If a Turing machine is in a condition for which it has no instruction, it
halts.

The information contained in the set of quintuples is often represented
in the form of a state table, defining the behavior of the machine for each
possible combination of symbol and state.

An important observation, in view of the definition of the universal Turing
machine that will follow in the next subsection, is that, because the head can
move either way along the tape, it is possible for it to return to a previously
printed location to recover the information inscribed there. This ability pro-
vides the machine a sort of rudimentary memory in a sense that the machine
can look up the previous symbols and change them if necessary. Since the
tape is as long as desired, this memory is potentially infinite.

2.2 Universal Turing Machines

Turing had the idea of the universal Turing machine (UTM), capable of
simulating the operation of any specialized Turing machine, and gave an
exact description of such a UTM in his paper [21]. The importance of the
universal Turing machine is clear. We do not need to have an infinity of
different machines doing different jobs. A single one will suffice [2].

A universal Turing machine, U, is a Turing machine with the property of
being able to read the description (on its tape) of any other Turing machine,
T, and to behave as T would have. The machine U consists of a finite-state
machine (the program of U) controlling a mobile head, which operates on a
tape. The data on the tape completely describe the machine T to be simulated
(the data of T and the program of T, i.e., the three functions Q+, S+, and
D+ describing T).

Figure 2 shows the organization of U’s tape. To the left is a semi-infinite
region containing the data of T’s tape. Somewhere in this region is a marker
M indicating where T’s head is currently located. The middle region contains
the current internal state Q and the current input symbol S of T. The right-
hand region is used to record the description of T, i.e., the three functions
Q+, S+, and D+ for each combination of Q and S.

The subject of this contribution is the realization of a universal Turing
machine in hardware. The requirements of digital electronics in general and
of the Embryonics architectures in particular have had an impact on the im-
plementation choices for our UTM. For example, while theoretically a single

Implementation of a Self-Replicating Universal Turing Machine 5

T ' s d a t a

C u r r e n t
s t a t e

C u r r e n t
 s y m b o l D e s c r i p t i o n o f T

Q S Q + , S + , D +

M a r k e r

. . .

T ' s p r o g r a m

Q + , S + , D + . . .M

Fig. 2. Universal Turing machine’s tape, describing the specialized machine T

tape is sufficient to store both the data and the program, an alternative but
equivalent architecture separates the program tape from the data tape. It is
this latter architecture, better suited to our Embryonics machines, that we
adopted for our implementation.

3 Self-Replication of a Universal Turing Machine on a

Multicellular Array

3.1 Embryonics Architectures

Living organisms are complex systems exhibiting a range of desirable charac-
teristics, such as evolution, adaptation, and fault tolerance, that have proved
difficult to realize using traditional engineering methodologies. The last three
decades of investigations in the field of molecular biology (embryology, genet-
ics, and immunology) has brought a clearer understanding of how living sys-
tems grow and develop. The principles used by Nature to build and maintain
complex living systems are now available for the engineer to draw inspiration
from [10].

The growth and the operation of all living beings are directed through the
interpretation, in each of their cells, of a chemical program, the DNA. This
program, called genome, is the blueprint of the organism and consists of a
complex sequence written with an alphabet of four characters: A, C, G, and
T. This process is the source of inspiration for the Embryonics (embryonic

electronics) project [6,16,5,9], whose final objective is the conception of very
large scale integrated circuits endowed with properties usually associated
with the living world: self-repair and self-replication.

The MICTREE (for tree of micro-instructions) cell is a new kind of coarse-

grained field-programmable gate array (FPGA), developed in the framework
of the Embryonics project, which will be used for the implementation of
multicellular artificial organisms with biological-like properties, i.e., capable
of self-repair and self-replication [7,17].

6 Restrepo et al.

Fig. 3. MICTREE block diagram; SB: switch block; BDM: binary decision machine;
RAM: random access memory; REG3:0 : state register; X3:0 : horizontal coordinate;
Y3:0 : vertical coordinate

MICTREE is a truly cellular automaton and its conception derives from
the study of the multicellular living beings. It relies on three fundamental
features: multicellular organization (the artificial organism is decomposed
into a finite number of cells, where each cell realizes a unique function, de-
scribed by a sub-program called the gene of the cell), cellular differentiation
(the behavior of the cell depends on the physical position of the cell in the
two-dimensional space, i.e., on its coordinates), and cellular division (starting
from a mother cell, storing the one and only copy of the genome, a new cell
can be programmed to store an exact copy of the genome).

The environment in which our quasi-biological artificial cells will develop
consists of a finite (but as large as desired) two-dimensional space of silicon.
This space is divided into rows and columns whose intersections define the
cells. Since such cells (small processors and their memory) have an identical
physical structure, i.e., an identical set of logic operators and of connections,
the cellular array is homogeneous. Only the state of the cell, that is, the
content of its registers, can differentiate it from its neighbors.

In all living beings, the string of characters which makes up the DNA,
the genome, is executed sequentially by a chemical processor, the ribosome.
Drawing inspiration from this mechanism, MICTREE is based on a binary

decision machine (BDM) [4] (our ribosome), which sequentially executes a
microprogram (our genome). In addition, the artificial cell is composed of a
random access memory (RAM), and a communication system implemented
by a switch block (SB) (Figure 3).

The binary decision machine executes a microprogram of up to 1024 in-
structions (the format of these instructions will be detailed later), which is
stored in the RAM. The microprogram itself is decomposed in sub-programs
that are equivalent to the different parts of the genome: the genes. The ex-

Implementation of a Self-Replicating Universal Turing Machine 7

Fig. 4. BIODULE 601 demonstration module

ecution of a specific gene depends on the physical position of the cell in the
two-dimensional array, i.e., on its coordinates.

As in nature, the entire microprogram of the organism is stored in each
cell. This redundancy enormously simplifies the implementation of the desired
properties of self-repair and self-replication:

• A set of BIST (Built-In Self-Test) techniques [1,11,19,18] detects the pres-
ence of faults within a cell. The column of cells containing the faulty cell
is deactivated, and its functionality taken up by the column to its right,
whose functionality is itself shifted to the right, and so on until a spare

column is reached. The presence of the entire genome in each cell im-
plies that this self-repair mechanism needs only a re-computation of the
coordinates, without complex data transfers.

• The self-replication of an artificial organism rests on two hypotheses: (1)
there exists a sufficient number of spare cells (i.e., the array is sufficiently
large to hold more than one copy of the organism) and (2) the calculation
of the coordinates produces a cycle. If these two hypotheses are met,
the computation of the coordinates in the array automatically creates
multiple copies of the artificial organism.

The MICTREE cell has been embedded into a plastic demonstration mod-
ule, the BIODULE 601 (Figure 4). Each module can be easily joined with
others, like a LEGO, to build larger artificial organisms. The size of the arti-
ficial organism embedded in an array of MICTREE cells is limited in the first
place by the coordinate space (X = 0...15, Y = 0...15), that is, a maximum of
256 cells for the BIODULE 601 implementation), and then by the size of the
memory of the binary decision machine storing the genome microprogram
(1024 instructions).

8 Restrepo et al.

d oi f i f e n d i f e n d. . .d o e l s e

00 0 1 0

F i x e d h e a d
P r o g r a m t a p e

D a t a t a p e

Fig. 5. Universal Turing machine architecture

3.2 Multicellular Architecture of a Universal Turing Machine

As we have seen, conventional universal Turing machines [12] consist of a
finite but arbitrarily long tape, and a single read/write mobile head controlled
by a finite-state machine, which is itself described on the tape (Figure 2). In
order to implement a universal Turing machine in an array of MICTREE
artificial cells, we made three fundamental architectural choices (Figure 5):

1. The read/write head is fixed; the tapes are mobile.
2. The data of the given application (the specialized Turing machine to be

simulated) are placed on a mobile tape, the data tape; this tape can shift
right, shift left, or stay in place.

3. The finite-state machine for the given application is translated into a very
simple program written in a language called PICOPASCAL (Section 4);
each instruction of this program is placed in a square of a second mobile
tape, the program tape; this tape just needs to shift left. The transfor-
mation of a state table into such a program is directly inspired by the
W-machine [23] with the major contribution of avoiding the jumps re-
quired by the if 1 then (n) else (next) instructions.

The fixed head, which is in fact an interpreter of the PICOPASCAL lan-
guage, has to continuously execute cycles consisting of four operations:

1. reading and decoding an instruction on the program tape;
2. reading a symbol on the data tape;
3. interpreting the current instruction, and writing a new symbol on the

data tape;
4. shifting the data tape (left, or right, or not at all) and the program tape

(left).

3.3 An Application: a Binary Counter

In order to test our UTM implementation (Figure 5), we used, as a simple
but non-trivial example, a binary counter [12], a machine that writes out the

Implementation of a Self-Replicating Universal Turing Machine 9

binary numbers 1, 10, 11, 100, etc., the size of the numbers being limited only
by the dimensions of the data tape. The counter’s state table (Figure 6) has
two internal states (Q ∈ {0 →, 1 ←}) and two input states (S ∈ {0, 1}), S

being the value of the current square read on the data tape. In this example we
combined the internal state Q with the direction of the tape. For Q = {0→}
the data tape will move to the right, for Q = {1←} the data tape will move to
the left. Depending on the values of Q and S, the specialized Turing machine
will:

1. write a new binary value S+ (0, 1) on the current square of the data tape;
2. move its data tape to the right (Q+ = 0→) or to the left (Q+ = 1←),

which is equivalent to moving a mobile head to the left or to the right,
respectively;

3. go to the next state Q+ (0→, 1←).

1
0 0

0
, 0
, 1

1 , 1
, 01

Q + , S + S = 0 S = 1
Q =
Q =

Fig. 6. State table of the binary counter

The PICOPASCAL program equivalent to the state table (Figure 6) is
given in Figure 7.

0 0
0 1
0 2
0 3
0 4
0 5
0 6
0 7
0 8
0 9
0 A
0 B
0 C
0 D
0 E
0 F
1 0
1 1

A D R D A T A P R O G R A M
5
5
A
9
4
B
8
6
4
5
B
9
4
A
8
6
6
2

i f (Q)
 i f (S)
 d o 0 (S)
 d o 1 (Q)
 e l s e
 d o 1 (S)
 d o 0 (Q)
 e n d i f
e l s e
 i f (S)
 d o 1 (S)
 d o 1 (Q)
 e l s e
 d o 0 (S)
 d o 0 (Q)
 e n d i f
e n d i f
e n d

Fig. 7. PICOPASCAL program equivalent to the state table of Figure 6

10 Restrepo et al.

3.4 An Ideal Architecture for the Universal Turing Machine

A universal Turing machine architecture, ideal in the sense that it is able to
deal with applications of any complexity, is characterized by:

1. a finite, but arbitrarily long data tape;

2. a read/write head able to interpret a PICOPASCAL program of any
complexity;

3. a finite, but arbitrarily long program tape.

It must be pointed out that, for any application, the program tape and the
read/write head (the PICOPASCAL interpreter) are always characterized by
finite and defined dimensions; only the data tape can be as long as desired,
as is the case for the binary counter, whose growth is potentially infinite.

An ideal architecture, embedding the current example, but compatible
with any other application, could be the following (Figure 8):

1. The data tape, able to shift right, to shift left, or hold, is folded on itself.
The initial state is defined in Figure 8 by QL3:0, QC, QR0:3 = 000010000,
where QL are the squares to the left of the central square QC, and QR

are the squares to the right of QC; the data tape is able to grow to the
left of QC, i.e., to the right of QL3 (QL4,QL5, ...) and to the right of QC

(QR4, QR5, ...), as can be appreciated in Figure 8.

2. The fixed read/write head, which will be detailed in Section 5, is basically
composed of a state register Q,S (storing the current values of internal
and input states Q,S, respectively, with an initial state Q,S = 01) and a
stack ST1:3 characterized by a 1-out-of-3 code (one-hot encoding). At the
start of the execution of the PICOPASCAL program (i.e., in Figure 7, at
address ADR = 00), the stack is in an initial state ST1:3 = 100. Roughly
speaking, each if instruction will involve a PUSH operation, each endif

a POP operation, and each else a LOAD operation. When ST1 = 1, the
do instructions are executed. The main characteristic of the stack is its
scalability: for any program exhibiting n nested if instructions, the stack
is organized as a n+1 squares shift register. Both the ST1:3 stack and the
Q,S register are able to grow to accommodate more complex applications.

3. The program tape is folded on itself; it is able to grow to accommodate
more complex applications.

This ideal architecture is moreover compatible with the Embryonics con-
cept: self-replication may be accomplished along the vertical axis, self-repair
along the horizontal axis, and the scalable properties of both the data tape
and the fixed head (stack and Q,S registers) are compatible with the limited
number of distinct coordinates (a scalable and regular architecture may be
described by repetition of the same type of cells, i.e., of the same coordinates).

Implementation of a Self-Replicating Universal Turing Machine 11

i f i f e l s e

Q L 0 = 0

Q C = 1 Q R 0 = 0

. . .

. . .
P r o g r a m
t a p e

i fe n d e n d i f

Q L 1 = 0

Q R 1 = 0

S T 1 = 1

Q = 0 S = 1

S T 2 = 0 S T 3 = 0
F i x e d
h e a d

D a t a
t a p e

S t a c k

Q , S
r e g i s t e r

. . .

. . .

. . .

. . .

Q L 2 = 0 Q L 3 = 0

Q R 2 = 0 Q R 3 = 0

Fig. 8. UTM’s ideal architecture

1 2 3 4 5 6 7 8 9 9

 S p a r e c e l l s
s c

Y

X

e n d
p r o g

e n d i f
p r o g

e n d i f
p r o g

d o 0
p r o g

d o 0
p r o g

e l s e
p r o g

d o 1
p r o g

d o 1
p r o g

i f
p r o g s c

i f
p r o g

i f
p r o g

d o 0
p r o g

d o 1
p r o g

e l s e
p r o g

d o 1
p r o g

d o 0
p r o g

e n d i f
p r o g

e l s e
p r o g

0
S T 3

0
S T 2

1
S T 1

0
Q

1
S

0 0 0 0
Q L 3 : 0

1
Q C

0 0 0 0
Q R 0 : 3

s c

s cs c

1

2

3 º 0

s e l f - r e p l i c a t i o n

s e l f - r e p a i r

G e n e
(s u b p r o g r a m) I n i t i a l

s t a t e

W X =
X =

1 2 3 4 5 6 7 8 90

0

1

2
YS Y

Fig. 9. UTM’s actual implementation for the binary counter example on a multicel-
lular array of 27 MICTREE cells plus 3 spare cells (sc). WX: horizontal coordinate
of the western neighboring cell; SY : vertical coordinate of the southern neighboring
cell

3.5 An Actual Implementation of the Universal Turing Machine

In order to implement the binary counter application with a limited number
of MICTREE artificial cells, we have somewhat relaxed the requirements of
the ideal architecture described earlier. Our final architecture is made up of
three rows (Y = 1...3) and nine columns (X = 1...9) organized as follows
(Figure 9):

• The 18 instructions of the PICOPASCAL program (Figure 7) are placed
in the program tape, using the two lower rows (Y = 1, 2) of the array.

12 Restrepo et al.

1 2 3 4 5 6 7 8 9 9Y

X s e l f - r e p l i c a t i o n

s e l f - r e p a i r

e n d
p r o g

e n d i f
p r o g

e n d i f
p r o g

d o 0
p r o g

d o 0
p r o g

e l s e
p r o g

d o 1
p r o g

d o 1
p r o g

i f
p r o g s c

i f
p r o g

i f
p r o g

d o 0
p r o g

d o 1
p r o g

e l s e
p r o g

d o 1
p r o g

d o 0
p r o g

e n d i f
p r o g

e l s e
p r o g

0
S T 3

0
S T 2

1
S T 1

0
Q

1
S

0 0 0 0
Q L 3 : 0

1
Q C

0 0 0 0
Q R 0 : 3

s c

s cs c

W X =
X =

1 2 3 4 5 6 7 8 90

1

2

3 º 0

0

1

2

YS Y

e n d
p r o g

e n d i f
p r o g

e n d i f
p r o g

d o 0
p r o g

d o 0
p r o g

e l s e
p r o g

d o 1
p r o g

d o 1
p r o g

i f
p r o g s c

i f
p r o g

i f
p r o g

d o 0
p r o g

d o 1
p r o g

e l s e
p r o g

d o 1
p r o g

d o 0
p r o g

e n d i f
p r o g

e l s e
p r o g

0
S T 3

0
S T 2

1
S T 1

0
Q

1
S

0 0 0 0
Q L 3 : 0

1
Q C

0 0 0 0
Q R 0 : 3

s c

s cs c

1

2

3 º 0

0

1

2

D a u g h t e r
a u t o m a t o n

M o t h e r
a u t o m a t o n

Fig. 10. Self-replication of the UTM’s actual implementation for the binary counter
example. WX: horizontal coordinate of the western neighboring cell; SY: vertical
coordinate of the southern neighboring cell

• The read/write head is composed of a ST1:3 stack and of the Q,S register
(X = 1...5, Y = 3), while the data tape is implemented by three cells
(X = 6...8, Y = 3) storing 9 bits QL3:0, QC, QR0:3.

In order to demonstrate self-repair, we added spare cells to each row,
at the right-hand side of the UTM, all identified by the same horizontal
coordinate (X = 9 in Figure 9). As previously mentioned, more cells may be
used not only for self-repair, but also for a UTM necessitating a growth of
the tape of arbitrary, but finite, length.

Self-replication rests on two hypotheses (Figure 10):

• there exist a sufficient number of spare cells (unused cells at the upper
side of the array, at least 3 × 9 = 27 for our example);
• the calculation of the coordinates produces a cycle at the cellular level

(in our example: Y = 1→ 2→ 0→ 1→ 2→ 0).

Given a sufficiently large space, the self-replication process can be re-
peated for any number of specimens in the Y axis. With a sufficient number
of cells, it is obviously possible to combine self-repair (or growth) towards
the X direction and self-replication towards the Y direction.

In the next section we will present the PICOPASCAL language and a
PICOPASCAL interpreter architecture, which are necessary for the under-
standing of our Embryonics implementation.

Implementation of a Self-Replicating Universal Turing Machine 13

4 PICOPASCAL

4.1 The PICOPASCAL Language

The PICOPASCAL language consists of a minimal subset of the MODULA-2
language [24]. PICOPASCAL is thus a high-level language: it does not make
use of explicit addressing and provides a great simplicity of use. PICOPAS-
CAL is, moreover, a structured language and thus guarantees, because of its
structure, a rigorous and efficient notation. In conformity with this last fea-
ture, PICOPASCAL has three fundamental constructs, described below: (1)
the sequence, (2) the choice or alternative, and (3) the iteration.

The assignment do..., realizing the synchronous transfer of a constant
into a register, is a structured program. The sequence (or composition) of
two such instructions P1 and P2, written do P1P2, is a structured program,
described by the flowchart and by the mnemonic program of Figure 11a. This
last notation consists of a linear succession of instructions, displayed in the
growing order of addresses ADR.

The choice (or alternative) of P1 or P2, where P1 and P2 are two assign-
ments, is a structured program, written if a then P1 else P2. It is repre-
sented symbolically by the flowchart of Figure 11b, and realized by the linear
succession of the instructions of the corresponding functional diagram and
mnemonic program. To facilitate comprehension, and unlike programs writ-
ten in a low-level language using explicit addresses, there is no jump (notably,
to avoid the instruction P1 when a = 0 or the instruction P2 when a = 1): all
instructions are read sequentially, from ADR=0 to ADR=4, and the execu-
tion of the assignments P1 or P2 depends on the value of a signal EXEC (for
EXECUTE) which, in turn, depends on the value of the test variable a. This
process will be revisited in detail in the description of the interpreter of the
PICOPASCAL language (Subsection 4.2).

The last construct of structured programming, the conditional iteration

while a do P1, is thus not necessary in the PICOPASCAL language. How-
ever, since our program must be continually executed, notably to allow self-
repair, we allow the loop illustrated by the flowchart of Figure 11c, which in
fact introduces a non-conditional iteration on the entire program.

In conclusion, the PICOPASCAL language is described by the syntactic

diagram of Figure 11d, where we can count ten different terminal symbols
(ovals), which make up the instructions of the language: begin, end, NOP,
do 0, do 1, do 0→, do 1←, if, else, endif. The NOP (No operation) in-
struction represents the execution of a neutral operation.

Figure 12a shows the operating code (OPC) for the instructions of the
PICOPASCAL language. Figure 12b and Figure 12c show the binary decision
diagram of the binary counter example and its PICOPASCAL description,
derived from the state table in Figure 6.

14 Restrepo et al.

P 1

P 2

A D R = 0

1

A D R

d o P 21

P I C O P A S C A L
d o P 10

(a)

P 1

a

P 2

a

P 1

e l s e

P 2

A D R = 0

e n d i f

2

1

3

4

A D R

e l s e2

d o P 11

d o P 23

e n d i f4

P I C O P A S C A L
i f a0

(b)

P 1
P 2

A D R = 0

1

n

b e g i n

e n d

(c)

b e g i n

e n d

p r o g r a m

s t a t e m e n t

s t a t e m e n t

s t a t e m e n t

e l s e

s t a t e m e n t

s t a t e m e n t

N O P d o 0 i f

e n d i f

d o 1 d o 0 d o 1

(d)

Fig. 11. PICOPASCAL language. (a) Sequence of two assignment instructions: do

P1P2. (b) Choice of either P1 or P2: if a then P1 else P2. (c) Non-conditional
iteration loop. (d) Syntactic diagram

Implementation of a Self-Replicating Universal Turing Machine 15

O P C 3 : 0 O P C I n s t r u c t i o n O P C 3 : 0 O P C I n s t r u c t i o n
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1

0
1
2
3
4
5
6
7

N O P
b e g i n
e n d

e l s e
i f
e n d i f

1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

8
9
A
B
C
D
E
F

d o 0
d o 1
d o 0
d o 1

(a)

b e g i n

S =

Q

S

1 0
0 1

Q =

e n d

S

1
1 0

0

b e g i n
i f (Q)

i f (S)
d o 0
d o 1

e l s e
d o 1
d o 0

e n d i f
e l s e

i f (S)
d o 1
d o 1

e l s e
d o 0
d o 0

e n d i f
e n d i f
e n d

(b) (c)

Fig. 12. PICOPASCAL language. (a) Opcodes for the ten instructions of the PI-
COPASCAL language. (b) Binary decision diagram of the binary counter example.
(c) PICOPASCAL description

4.2 PICOPASCALINE: an Interpreter for the PICOPASCAL

Language

Figure 13 suggests a possible hardware architecture to execute the ten in-
structions of the PICOPASCAL language. From now on, we will refer to this
machine as PICOPASCALINE. The instruction end, as well as the pseudo-
instruction begin (not executed), have the same effect: jumping to the in-
struction at address 0 (note that in this architecture the begin instruction is
not necessary and can thus be removed). The if instruction does not require a
test variable, since the hardware is capable of presenting the correct variable
at the right time. There exist therefore nine distinct types of instruction to
interpret.

16 Restrepo et al.

e n d
p r o g

e n d i f
p r o g

e n d i f
p r o g

d o 0
p r o g

d o 0
p r o g

e l s e
p r o g

d o 1
p r o g

d o 1
p r o g

i f
p r o g

i f
p r o g

i f
p r o g

d o 0
p r o g

d o 1
p r o g

e l s e
p r o g

d o 1
p r o g

d o 0
p r o g

e n d i f
p r o g

e l s e
p r o g

O P C 3 : 0

S T A C K = S T 3 : 1

N O P0
B E G I N1
E N D2

3
E L S E4
I F5
E N D I F6

7
8
9
A
B
C
D
E
F

E X E C

I N I T

B U S 1 = 0 Q C
(D a t a t a p e)

1

0

1

P r o g r a m
t a p e

E L S EI F
I FE N D I F R 0

D O 1 R

D O 0
D O 0

E N D

D O 1

D O 1

D M U X 1

D O 0
D O 1

D O 0
D O 1

N O P0
B E G I N1
E N D2

3
E L S E4
I F5
E N D I F6

7
8
9
A
B
C
D
E
F

E X E C D M U X 2

B U S 2 = 0 1
I n i t i a l c o n d i t i o n

M U X

I F R 1

I N I T

R E G I S T E R = Q , SR
R 0
R 1

H E A D R E G = Q S

Q 3 Q 2

R
S 0
S 1 D 3 : 2 L 0

2

R E G I S T E R =
Q L 3 : 0 , Q C , Q R 0 : 3

Q C

Q C

E N D I F
I F

D O 0
D O 1

D O 0D O 0
D O 1

D O 1D O 0
D O 1

B A B A

L 0

S 0 S 1

E N D

D O 1

0 R

Fig. 13. PICOPASCALINE: PICOPASCAL interpreter for the ten instructions of
the language

To decode the instructions (OPC3:0) on the program tape, the PICO-
PASCALINE consists of the following elements (Figure 13):

• A state register REGISTER storing the current values of the internal and
input states Q, and S respectively, with an initial state Q,S = 01.
• A register REGISTER storing the values QL3:0,QC,QR0:3 of the data

tape, with an initial state QL3:0,QC,QR0:3 = 000010000.
• A stack STACK characterized by a 1-out-of-3 code (one-hot encoding),

with an initial state STACK = ST3:1 = 001.
• A decoder DMUX1 controlled by the 4 bits of the operating code OPC3:0,

which generates the signals controlling the STACK (signals IF, ELSE,
and ENDIF).
• A decoder DMUX2 controlled by the 4 bits of the operating code OPC3:0

and by the EXEC signal. This decoder generates the signals controlling
the (Q,S) and (QL3:0,QC,QR0:3) REGISTERs (signals DO 0, DO 1,
DO 0→, DO 1←, IF, and ELSE).
• A multiplexer MUX controlled by the signal INIT, which selects one of

the two input busses, BUS1 coming from the data tape, or BUS2 which is
a constant used for initialization purposes. At the start of the execution

Implementation of a Self-Replicating Universal Turing Machine 17

the signal INIT has the value 1 and the (Q,S) REGISTER is initialized,
whereas the rest of the execution this variable takes the value 0 and the
value QC coming from the (QL3:0,QC,QR0:3) REGISTER is assigned to
the (Q,S) REGISTER.

The signal EXEC controls the execution of the assignment instructions do

and thus depends on the succession of values of the internal and input states
Q and S. We will now examine this process for the example of the program
of Figures 7 and 12, whose detailed execution is shown in Figure 14. We
assume that the values of the test variables are Q=1 and S=0, and that these
values do not change during the execution of the microprogram. Disposing of
a stack (STACK) of 1-bit wide and three levels deep, we observe the following
chronology:

• At the start of the program’s execution, the three levels of the stack are
initialized to the value ST3:1=001. The signal EXEC, which is the value
at the top of the STACK, i.e., ST1, is thus equal to 1.
• The first logic test (if Q) produces a value 1 which is placed at the top

of the stack (operation PUSH). EXEC keeps the value 1.
• The second test (if S) produces a value 0 which in turn is placed at the

top of the stack (PUSH). EXEC is reset to 0.
• Since the EXEC signal is 0, the assignment do 0, and do 1← are not

executed (NOP): the stack remains in a neutral state (NOP operation)
and the EXEC signal is still 0.
• The instruction else indicates the passage from the left branch of the

test (if S then P1) to the right branch (else P2). It corresponds to a
COMPLEMENT operation, where the top of the STACK (ST1 = EXEC)
is inverted, while the content is changed to maintain the 1-out-of-3 code.
The signal EXEC is again set to 1.
• Since EXEC is now 1, the assignments do 1, and do 0→ are executed.
• The instruction endif controls the popping of the stack (POP operation).

The signal EXEC keeps the value 1 to maintain the 1-out-of-3 code.
• The execution of the program then continues as above until the final

instruction end, where the stack finds again its initial state, with its first
level in the state 1 (EXEC=1).

The operation table of Figure 15a describes the global operation of the
stack, while the logic diagram of Figure 15b describes a possible realization
of the stack, according to the table of operations of Figure 15a. With the
exception of the first and second levels, we note the iterative nature of this
stack, which contains six levels in this implementation and is thus capable of
successively testing up to six variables (six is therefore the highest number
of nested tests in this implementation).

The intrinsic limitations of the PICOPASCALINE interpreter are deter-
mined by the number and size of the registers, as well as by the number of

18 Restrepo et al.

e l s e

i f (Q)

i f (S)

d o 0 (S)

d o 1 (Q)

e l s e

d o 1 (S)

d o 0 (Q)

e n d i f

e l s e

i f (S)

d o 1 (S)

d o 1 (Q)

e l s e

d o 0 (S)

d o 0 (Q)

e n d i f

e n d i f

e n d

1
0
0
1
0
0
0
1
0
0
1
0
0
1
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
1
0
1
0
0

Q

S

0

1

1

0

e l s e

S

1

1

e n d i f

e l s e

0

0

e n d i f

e n d i f

e n d

E X E C = 1

E X E C U T E

E X E C U T E

N O P

N O P

N O P

N O P

1

0

0

0

1

1

1

1

0

0

0

0

0

0

0

0

1

N O P

N O P

S T A C K
S T 1 = E X E C
S T 2
S T 3 = i f (1)

= i f (0)

= i f (0)

Fig. 14. Interpretation of the program of Figures 7 and 12. The values of the test
variables are Q=1 and S=0 (these values do not change during the execution of the
PICOPASCAL program)

tested variables which can be stored in the stack. A detailed description of
the operation of the stack can be found in [13].

Implementation of a Self-Replicating Universal Turing Machine 19

S T A C K 6 : 3 S T A C K 2 S T A C K 1
B o p e r a t i o n O P C

0 1 S H I F T R I G H T e n d i f
01 S H I F T L E F T i f

1 1 L O A D F

0 0 H O L D o t h e r s
A B o p e r a t i o n O P C

0 1 e n d i f
01 e l s e

1 1 L O A D i f

0 0 H O L D o t h e r s
A B o p e r a t i o n O P C

0 1 S H I F T R I G H T e l s e
01 S H I F T L E F T e n d i f

1 1 L O A D i f

0 0 H O L D o t h e r s
A

S H I F T R I G H T
S H I F T L E F T

r e p r e s e n t s t h e " d o n ' t c a r e " c o n d i t i o n F

(a)

B

0

1

2

3

A

D Q

Q

B

0

1

2

3

A

D Q

Q

S T A C K 1 = E X E CS T A C K 2

Q = H E A D R E G

S T A C K 6 : 3

S T A C K 3

LS 1 S 0

E N D I FI F

R

0

P R ' = C L R '

C L R '
C L R

C L R '

12

S T A C K 4
S T A C K 5

S T A C K 6
5 4 36

(b)

Fig. 15. 6-level PICOPASCALINE stack. (a) Operation tables. (b) Detailed archi-
tecture

The PICOPASCAL language and its interpreter were used to realize the
architecture described in Section 3 and thus implement our self-replicating
universal Turing machine. In the next section we will describe in some more
detail the structure and operation of the genome microprogram of our organ-
ism.

5 Detailed Implementation of a Universal Turing

Machine

5.1 The Genome Microprogram

As shown in Figure 9, the actual implementation of our UTM architecture
consists of 27 cells, where each cell contains the entire genome of the organism
and, depending on its position in the array, can interpret the genome and
extract and execute the gene which configures it.

The genome microprogram thus consists of three main parts, as shown in
the flowchart UTMgenome of Figure 16: first, the initial conditions for the
machine are set, then the coordinates are computed (left loop: this process
requires several iterations to allow for the propagation of the coordinates
through the array), and finally the operative genome is executed (right loop).
The latter can itself be decomposed into the distinct genes required by our

20 Restrepo et al.

artificial organism (Figure 9): the program tape genes, the stack genes, the
register genes, and the data tape genes.

G
G

X Y I n i t i a l L o c a l -
 C o n f i g

Y = 0

X = 0

R E G = 0

K t i m e s

U T M g e n o m e

I n i t i a l c o n d i t i o n s

L e f t l o o p :
R i g h t l o o p :

M i d d l e l o o p :

O p g e n o m e

G G. . .

Fig. 16. Complete genome microprogram (UTMgenome) flowchart

The definition of the initial conditions assures that:

• all the state registers of the array are set to 0 (REG = 0);
• the coordinates X and Y are set to 0 (X = 0, Y = 0).

The microprogram then executes one of three loops, controlled by the
variable G (the global clock):

1. For the first period of G, while G = 1, at least K executions of the left-
hand loop are necessary to ensure that the rightmost and the uppermost
cells of the organism correctly compute their coordinates, their initial
conditions, and their local configurations (as defined by the sub-program
XYInitialLocalConfig). K is the largest of Xmax and Ymax (Xmax

and Ymax are, respectively, the maximum number of rows and columns
of the artificial organism). In our example, K = 10 (Figure 10).

2. At the falling edge of G (G = 1 → 0), the right loop is selected and the
operational part of the genome is executed. To assure the synchroniza-
tion of all the cells, tests are performed throughout the half-period when
G = 0, but no assignment is made until the rising edge of G (G = 0→ 1),
when all the registers REG are updated simultaneously.

Implementation of a Self-Replicating Universal Turing Machine 21

3. At the rising edge of G (G = 0 → 1), after the update of the registers,
the middle loop is executed. The program stays in this loop until the next
falling edge of G (G = 1 → 0) arrives, selecting the right-hand loop and
starting a new cycle.

The following subsections will describe in detail the calculation of the
operative genome in general, and of the program tape genes in particular. A
detailed decription of the calculation of the other components of the genome
(e.g., the computation of the coordinates and the definition of the initial
conditions) can be found in [13].

5.2 Computing the Operative Genome

From the description of Figure 9, we can observe that our artificial organism
is composed of four main parts:

• The program tape realizes the PICOPASCAL program tape and is im-
plemented by the two lower rows (Y = 1, 2) of the array. Its architecture
consists of a shift register, based on three different kinds of cells.
• The stack is implemented by three cells ST3:1 (X = 1..3, Y = 3). Each

of these three cells is different and is described by a specific gene.
• The register is implemented by two different cells Q,S (X = 4, 5, Y = 3)

and is therefore described by two specific genes.
• The data tape is implemented by three different cells QL3:0, QC, QR0:3

(X = 6..8, Y = 3) and is described by three specific genes.

Cellular differentiation (i.e., the definition of which part, or gene, of the
complete genome will be executed in each cell) occurs through the vertical
coordinate, computed as a function of the coordinate SY of the preceding cell
(the southern neighbor), and through the horizontal coordinate, computed as
a function of the coordinate WX of the preceding cell (the western neighbor).
From Figure 9, we can show that the vertical coordinate SY can be used
to differentiate the stack genes, the register genes, and the data tape genes
(SY=2) from the program tape genes (SY=1,0).

The specifications of Figure 9 allow us to derive directly the Karnaugh
map of Figure 19a, which defines the placement of the stack (ST3:1), register
(Q,S), and data tape (QL3:0, QC, QR0:3) genes into the cellular space. The
sub-tree contained by the leftmost dashed square of Figure 19b implements
this Karnaugh map. To find the different genes of the program tape, we need
to analyze in more detail its particular architecture.

Each cell of our program tape (Y = 1, 2) implements one PICOPASCAL
instruction (stored in the four-bit REG register) and at each program step
every instruction has to be shifted anticlockwise. From Figure 17, which shows
the routing path established between each cell to transfer the instruction to
its neighbor, we have to consider three different situations, which will be used
to identify the position of the three specific genes:

22 Restrepo et al.

1 2 3 . . .

1

2

3 º 0

W X =
X =

1 2 . . .
8 9 9
7 8 90

0

1

2
YS Y S T 3 S T 2 S T 1 Q Q R 0 : 3 s cs c

R E GR E G R E GR E G R E G R E G R E G

O P C 3 : 0

R E GR E G R E G

W I 3 : 0 W I 3 : 0 W I 3 : 0 W I 3 : 0 W I 3 : 0 W I 3 : 0

R E G R E G R E G R E G

E I 3 : 0 E I 3 : 0 E I 3 : 0 E I 3 : 0 E I 3 : 0E I 3 : 0

O P C 3 : 0
S I 3 : 0

. . .

N I 3 : 0 N I 3 : 0 N I 3 : 0 N I 3 : 0 N I 3 : 0 N I 3 : 0N I 3 : 0

Fig. 17. Routing path established between the cells of the program tape (SY = 0,1)
to implement the anticlockwise shift of the PICOPASCAL program

0 1

0

1

S Y 0

W X 3

S O U R C E

N I

N I

E I

S I

(a)
I n s t S o u r c e

S Y 0 , W X 3

S Y 0

W X 3

S I N I
S I E I N I

I n s t S o u r c e

E I

I n s t S o u r c e

(b)

Fig. 18. InstSource program for the differentiation of the tape genes. (a) Kar-
naugh map. (b) Binary decision diagram and flowcharts

• the cells at coordinates (WX = 0..7, SY = 1) will receive, decode and
store (in the REG register) the instruction of the east neighbor through
the input bus EI3:0;

Implementation of a Self-Replicating Universal Turing Machine 23

• the cells at coordinates (WX = 8,9, SY = 1) will receive, decode and
store (in the REG register) the instruction of the south neighbor through
the input bus SI3:0;
• the cells at coordinates (WX = 0..9, SY = 0) will receive, decode and

store (in the REG register) the instruction of the north neighbor through
the input bus NI3:0.

The functionality of each group of cells of the program tape can be ex-
pressed as a function of the horizontal coordinate (WX3) and of the vertical
coordinate (SY0). We therefore have to solve a problem of two variables, as
shown by Karnaugh map of Figure 18a. Figure 18b shows the resulting binary
decision diagram.

By joining the binary decision diagram of Figure 18b (InstSource) and
the binary decision diagram derived from the Karnaugh map of Figure 19a
(sub-tree contained by the leftmost dashed square of Figure 19b), we can
generate the binary decision diagram and flowchart of Figure 19b describing
the complete operational part of the genome of our UTM implementation
(Opgenome).

5.3 Computing the Program Tape Genes

Figure 9 (Y = 1, 2) shows that the program tape, in our implementation, is
composed of 18 cells and features three different genes (EI, SI, and NI).
Since the begin instruction is not executed and the NOP instruction is not
used, these cells have to deal with a program composed of eight different
kinds of PICOPASCAL instructions (Figure 12a).

Therefore, each cell has to decode the instruction coming from its neighbor
(east, south, or north) and store it in the REG register. The Karnaugh map
of Figure 20a shows the binary coding proposed for the eight PICOPASCAL
instructions stored in the program tape. Figure 20b shows the generic binary
decision diagram that we use to decode the instruction to be assigned to the
register REG. In consequence, we can implement the three genes EI, SI,
and NI, of the program tape by decoding the instructions coming from the
east, south, and north neighbors respectively, that is, by replacing OPC3:0

(Figure 20b) by EI3:0, SI3:0, and NI3:0 respectively.
To assure the synchronization of all the registers, tests are performed

throughout the half-period when G = 0, but no assignment is made until
the rising edge of G (G = 0 → 1), when all the registers REG are updated
simultaneously.

As shown in Figure 9, the stack part of our cellular UTM implementation
is composed of the three cells ST3:1 (X = 1..3, Y = 3), each featuring
a different gene (ST1, ST2, and ST3). The Embryonics implementation of
the STACK part of our artificial organism (the PICOPASCALINE stack)
has to reproduce the behavior described by the stack operation tables in
Figure 15a and by the stack architecture presented in Figure 15b. From the

24 Restrepo et al.

0 1

0 0

0 1

W X 3 : 2

W X 1 : 0

1 1

1 0

0 0

S

Q L

Q

Q C

1 1 1 0

S T 2

S T 3

S T 1

Q R

F

F

F

F

F

F

F

F

(a)

O p g e n o m e
S Y 1 : 0
W X 3 : 0

· · ·

O p g e n o m e

 O p g e n o m e

W X 1

W X 0 W X 0

W X 1

W X 0 W X 0

W X 2

S Y 1

S Y 0

W X 3

Q R Q C Q L S Q S T 1 S T 2 S T 3 S I E I N I

Q R N I

s t a c k , r e g i s t e r , a n d d a t a t a p e g e n e s p r o g r a m t a p e g e n e s
I n s t S o u r c e

(b)

Fig. 19. Computing the genome’s operational part (sub-program Opgenome). (a)
Karnaugh map for stack (ST3:1), register (Q,S), and data tape genes (QL3:0, QC,
QR0:3). (b) Binary decision diagram and flowchart of the genome’s operational
part

tables we obtain the information to build the Karnaugh maps decoding the
PICOPASCAL instructions related with each stack gene (ST1, ST2, ST3),
and from the architecture we obtain the logic part and the corresponding
control signals.

Implementation of a Self-Replicating Universal Turing Machine 25

0 1

0 0

0 1

O P C 3 : 2

O P C 1 : 0

1 1

1 0

0 0

F 4

F 5

F F

2 6

F 8

9

1 1 1 0

F

F

F A

B

D e c o d e
(a)

D e c o d e

D e c o d e
O P C 3 : 0

B 2

O P C 1

O P C 0

B A 9

O P C 0

8R E G =

R E G = · · ·

D e c o d e

O P C 2

O P C 0

5 6 4

O P C 1

2

O P C 3

G G G G G G G G

G G

(b)

Fig. 20. Generic decoding of the instruction to be assigned to REG. (a) Karnaugh
map. (b) General binary decision diagram and flowcharts (Decode)

6 Conclusion

In this contribution we showed that it is possible to embed a universal Turing
machine into a multicellular array based on MICTREE artificial cells, thus
obtaining a self-repairing and self-replicating universal Turing machine.

The mapping of the universal Turing machine onto our multicellular array
was made possible thanks to the introduction of a modified version of the W-
machine [23], i.e., an interpreter of the PICOPASCAL language. We showed
that an ideal architecture (i.e., an architecture with a semi-infinite data tape)
was able to deal with applications of any complexity. We also presented an
actual implementation in which we relaxed somewhat the requirements of the
ideal architecture in order to use a smaller number of our MICTREE artificial

26 Restrepo et al.

Fig. 21. Final universal Turing machine implementation. This implementation con-
tains six rows and ten columns of MICTREE cells, allowing us to verify self-
replication (one copy) and self-repair (one spare column)

cells. We slightly simplified our implementation by presenting the example of
the binary counter in which the data are binary-coded and where the direction
of the head’s motion coincides with the internal state (in general, functions
Q+ and D+ are independent). A picture of the final implementation is shown
in Figure 21.

The UTM was completely implemented and the binary counter fully
tested. The values obtained correspond exactly to the results presented by
Minsky in [12], assuming that the tape register is limited to 9 bits with fixed
boundary conditions (R=L=0 in Figure 13). The measured sequence ends in
a final “quiescent” state (where all the symbols on the data tape are 0’s),
which constitutes a fixed point for the system.

The complete genome microprogram describing our artificial organism is
composed of 377 16-bit-wide instructions, implying a configuration bit string
of 6032 bits.

We tested the self-repair capabilities of our implementation (Figure 9),
made possible by the spare column at the right edge of our artificial organism.
Using this spare column, our organism is able to tolerate at least one fault
in any cell of the array, and up to three faulty cells in the same column.

Implementation of a Self-Replicating Universal Turing Machine 27

The self-replication of our UTM was tested with one copy of the original
organism, as shown Figure 10. For this test, the cellular array contained
6x10 = 60 MICTREE cells (Figure 21).

The property of universal construction, another challenge laid down by
von Neumann’s original self-replicating automaton, raises issues of a different
nature, since it requires that a MICTREE cell be able to realize organisms of
any dimension (the largest possible organism in the implementation described
herein consists of 16x16 cells). This challenge, which lies outside of the scope
of this contribution, can be met by decomposing a cell into molecules and
tailoring the structure of cells to the requirements of a given application [6,8].

Of course, current technology does not allow all these properties (universal
construction, universal computation, self-repair) to be implemented, as in na-
ture, by physically modifying the underlying hardware: they are implemented
at a logical level by exploiting redundant spare hardware. The predicted de-
velopment of technologies based on the manipulation of physical matter at
the molecular level, however, will allow the realization of circuits of such
complexity as to require the development of novel computational paradigms
and architectures. The validation of the computational universality of these
architectures is a fundamental step in their development: Turing machines
are thus once again becoming a useful research tool in the field of computing.

References

1. M. Abramovici and C. Stroud. No-overhead BIST for FPGAs. In Proceedings
of First IEEE International On-Line Testing Workshop, pages 90–92, 1995.

2. D. C. Ince, editor. Mechanical Intelligence: Collected Works of A. M. Turing,
chapter Intelligent Machinery, pages 107–128. North-Holland, 1992.

3. S. C. Kleene. Turing’s Analysis of Computability, and Major Applications of
It. In R. Herken, editor, The Universal Turing Machine a Half Century Survey,
pages 15–49. Springer-Verlag, second edition, 1995.

4. D. Mange. Microprogrammed Systems: An Introduction to Firmware Theory.
Chapman & Hall, London, 1992. (First published in French as “Systèmes
microprogrammés: une introduction au magiciel”, Presses Polytechniques et
Universitaires Romandes, 1990).

5. D. Mange, M. Goeke, D. Madon, A. Stauffer, G. Tempesti, and S. Duran.
Embryonics: A New Family of Coarse-grained Field-Programmable Gate Ar-
ray with Self-Repair and Self-Reproducing Properties. In E. Sanchez and
M. Tomassini, editors, Towards Evolvable Hardware, pages 197–220. Springer-
Verlag, Berlin, 1996.

6. D. Mange, M. Sipper, A. Stauffer, and G. Tempesti. Towards Robust Integrated
Circuits: The Embryonics Approach. Proceedings of the IEEE, 88(04):516–541,
April 2000.

7. D. Mange, A. Stauffer, and G. Tempesti. Embryonics: A Macroscopic View of
the Cellular Architecture. In M. Sipper, D. Mange, and A. Prez-Uribe, editors,
Evolvable Systems: From Biology to Hardware, volume 1478 of Lecture Notes
in Computer Science, pages 174–184. Springer-Verlag, Berlin, 1998.

28 Restrepo et al.

8. D. Mange, A. Stauffer, and G. Tempesti. Embryonics: A Microscopic View of
the Cellular Architecture. In M. Sipper, D. Mange, and A. Prez-Uribe, editors,
Evolvable Systems: From Biology to Hardware, volume 1478 of Lecture Notes
in Computer Science, pages 185–195. Springer-Verlag, Berlin, 1998.

9. P. Marchal, P. Nussbaum, C. Piguet, S. Duran, D. Mange, E. Sanchez,
A. Stauffer, and G. Tempesti. Embryonics: The Birth of Synthetic Life. In
E. Sanchez and M. Tomassini, editors, Towards Evolvable Hardware, pages 166–
196. Springer-Verlag, Berlin, 1996.

10. P. Marchal, A. Tisserand, P. Nussbaum, B. Girau, and H. F. Restrepo. Array
processing: A massively parallel one-chip architecture. In Proceedings of the
Seventh International Conference on Microelectronics for Neural, Fuzzy, and
Bio-Inspired Systems, pages 187–193, Granada, Spain, April 1999.

11. E. J. McCluskey. Logic Design Principles with Emphasis on Testable Semicus-
tom Circuits. Prentice-Hall, Englewood Cliffs, New Jersey, 1986.

12. M. L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, En-
glewood Cliffs, New Jersey, 1967.

13. H. F. Restrepo. Implementation of a Self-Repairing Universal Turing Machine.
Swiss Federal Institute of Technology at Lausanne (EPFL), Lausanne, Switzer-
land, 2001. Ph.D. Thesis No 2457.

14. H. F. Restrepo and D. Mange. An Embryonic Implementation of a Self-
Replicating Universal Turing Machine. In Evolvable Systems: From Biology
to Hardware (ICES01), volume 2210 of Lecture Notes in Computer Science,
pages 74–87. Springer-Verlag, Berlin, October 2001.

15. H. F. Restrepo, D. Mange, and M. Sipper. A Self-Replicating Universal Turing
Machine: From von Neumann’s Dream to New Embryonic Circuits. In M. A.
Bedau, J. S. McCaskill, N. H. Packard, and S. Rasmussen, editors, Seventh In-
ternational Conference on Artifivial Life, pages 3–12. MIT Press, Cambridgre,
August 2000.

16. M. Sipper, E. Sanchez, D. Mange, M. Tomassini, A. Perez-Uribe, and A. Stauf-
fer. An Introduction to Bio-Inspired Machines. In D. Mange and M. Tomassini,
editors, Bio-Inspired Computing Machines: Toward Novel Computational Ar-
chitectures, pages 1–12. Presses Polytechniques et Universitaires Romandes,
Lausanne, Switzerland, 1998.

17. A. Stauffer, D. Mange, M. Goeke, D. Madon, G. Tempesti, S. Durand, P. Mar-
chal, and C. Piguet. MICROTREE: Towards a Binary Decision Machine-
Based FPGA with Biological-like Properties. In Proceedings of the Interna-
tional Workshop on Logic and Architecture Synthesis, pages 103–112, Grenoble,
France, December 1996.

18. G. Tempesti. A Self-Repairing Multiplexer-Based FPGA Inspired by Biolog-
ical Processes. PhD thesis, Swiss Federal Institute of Technology, Lausanne,
Switzerland, 1998.

19. G. Tempesti, D. Mange, and A. Stauffer. A robust multiplexer-based fpga
inspired by biological systems. Journal of Systems Architecture, 43(10):719–
733, 1997.

20. B. A. Trakhtenbrot. Comparing the Church and Turing Approaches: Two
Prophetical Messages. In R. Herken, editor, The Universal Turing Machine a
Half Century Survey, pages 557–582. Springer-Verlag, second edition, 1995.

21. A. M. Turing. On Computable Numbers, with an Application to the Entschei-
dungsproblem. Proceedings of the London Math. Soc., 42:230–265, 1936.

Implementation of a Self-Replicating Universal Turing Machine 29

22. J. von Neumann. The Theory of Self-Reproducing Automata. University of
Illinois Press, Urbana, Illinois, 1966. Edited and completed by A. W. Burks.

23. H. Wang. A Variant to Turing’s Theory of Computing Machines. Journal of
the ACM, IV:63–92, 1957.

24. N. Wirth. Programming in MODULA-2. Springer-Verlag, Berlin, 1983.

