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Abstract

After a survey of the theory and some realizations of self-replicating machines, this paper presents a novel self-replicating
loop endowed with universal construction properties. Based on the hardware implementation of the so-called Tom Thumb
algorithm, the design of this loop leads to a new kind of cellular automaton made of a processing and a control units. The
self-replication of the “LSL” acronym serves as an artificial cell division example of the loop and results in a new and
straightforward methodology for the self-replication of computing machines of any dimensions.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction and survey

1.1. Self-replicating loops

The main goal of this paper is to present a new
self-replicating loop endowed with universal construc-
tion properties. While the early history of the theory
of self-replicating machines is basically the history of
von Neumann’s thinking on the matter[18], a practical
implementation requires a sharply different approach.
It was finally Langton, in 1984, who opened a second
stage in this field of research. In order to construct
a self-replicating automaton simpler than this of von
Neumann, Langton[6] adopted more liberal criteria.
He dropped the condition that the self-replicating unit
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must be capable of universal construction and compu-
tation.

Langton proposes a configuration in the form of a
loop, endowed notably of a constructing arm and of
a replication program or genome, which turns coun-
terclockwise. After 151 time steps, the original loop
(mother loop) produces a daughter loop, thus obtain-
ing the self-replication of Langton’s loop.

To avoid conflicts with biological definitions, we do
not use the term “cell” to indicate the parts of a cellu-
lar automaton, opting rather for the term “molecule”.
In fact, in biological terms, acell can be defined as
the smallest part of a living being which carries the
complete blueprint of the being, that is the being’s
genome.

According to the biological definitions of a cell, we
end up with the following observations:

• Langton’s self-replicating loop is a unicellular or-
ganism: its genome requires 28 molecules and is
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a subset of the complete loop which requires 94
molecules.

• The size of Langton’s loop is perfectly reasonable,
since it requires 94 molecules, thus allowing com-
plete simulation.

• There is no universal construction nor calculation:
the loop does nothing but replicate itself. Langton’s
self-replicating loop represents therefore a special
case of von Neumann’s self-replication of a uni-
versal constructor. The loop is a non-universal con-
structor, capable of building, on the basis of its
genome, a single type of machine: itself.

As did von Neumann, Langton emphasized the two
different modes in which information is used, inter-
preted (translation) and uninterpreted (transcription).
In his loop, translation is accomplished when the in-
struction signals are executed as they reach the end
of the construction arm, and upon collision of signals
with other signals. Transcription is accomplished by
duplication of signals at the arm junctions.

More recently, Byl[1] proposed a simplified ver-
sion of Langton’s automaton. Last but not least Reggia
et al.[11] discovered that having a sheath surrounding
the data paths of the genome was not essential, and
that its removal led to smaller self-replicating struc-
tures which also have simpler transitions functions.
Moreover, they found that relaxing the strong sym-
metry requirement consistently led to transition func-
tions that required fewer rules than the corresponding
strong symmetry version.

1.2. Self-replicating loops with computing
capabilities

All the previous loops lack any computing and
constructing capabilities, their sole functionality be-
ing that of self-replication. Lately, new attempts have
been made to redesign Langton’s loop in order to
embed such calculation possibilities. Tempesti’s loop
[16] is thus a self-replicating automaton, with an
attached executable program that is duplicated and
executed in each of the copies. This was demonstrated
for a simple program that writes out (after the loop’s
replication) “LSL”, acronym of the Logic Systems
Laboratory. Finally, Perrier et al.’s self-replicating

loop[10] shows some kind of universal computational
capabilities. The system consists of three parts, loop,
program, and data, all of which are replicated, fol-
lowed by the program’s execution on the given data.

So far, all self-replicating loops are lacking univer-
sal construction, i.e. the capability of constructing a
computing machine of any dimensions, even if this
goal is of highest interest for developing new cellu-
lar automata, for example three-dimensional reversible
cellular automata designed by Imai et al.[5] for the
emerging field of nanotechnologies.

1.3. Self-replicating loop with universal construction

Our main goal is to show that a new algorithm, the
Tom Thumb algorithm, will make it possible to design
a self-replicating loop with universal construction eas-
ily implemented into silicon.

A second goal is to generalize the notion of the clas-
sical “cellular automaton” by introducing thedata and
signals of cellular automatonwhich perfectly suits the
specifications of our basic molecule. Moreover, such
an automaton will allow a straightforward and system-
atic methodology for synthesizing cellular automata, a
methodology which completely lacks at the moment.

In Section 2, our new algorithm will be described
by means of a minimal mother cell composed of four
molecules which will grow and then divide for trigger-
ing the growth of two daughter cells. This example is
sufficient for deriving the detailed architecture of the
basic molecule.Section 3deals with the generalization
of the methodology previously described and its ap-
plication to a real example, the self-replication of the
“LSL” acronym. Universal construction and computa-
tion are briefly demonstrated.Section 4will conclude
by opening new avenues based on the self-replicating
loop with universal construction.

2. The Tom Thumb algorithm for cell division

2.1. Cell division in living organisms

Before describing our new algorithm for the division
of an artificial cell, let us remember the two key roles
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that cellular division plays in the existence of living
organisms:

• The construction of two daughter cells in order to
grow a new organism or to repair an existing one
(genometranslation).

• The distribution of two identical sets of chromo-
somes in order to create two copies of the genome
from the mother cell aimed at programming the
daughter cells (genometranscription).

Starting with a minimal cell made up of four ar-
tificial molecules, we will propose a new algorithm,
theTom Thumb algorithm, aimed at constructing both
the daughter cells and the associated genomes. This
algorithm will finally allow us to derive the detailed
architecture of our final molecule. A tissue of such
molecules will in the end be endowed of both univer-
sal construction and computation properties.

2.2. Initial conditions

The minimal cell compatible with our algorithm is
made up of four molecules, organized as a square of

M

: empty data

: molcode data

: branch activation and north connection flag

: north branch and east connection flag

: east branch and west connection flag

: north connection flag

: east connection flag

: south connection flag

: west connection flag

- : don't care data

: flag dataF

(1 ... E)

(1 ... 7)

(8 ... E)

(0)

(8)

(9)

(A)

(B)

(C)

(D)

(E)

(a)

: mobile data : fixed data- -

(b)

Fig. 2. The 15 characters forming the alphabet of an artificial genome: (a) graphical and hexadecimal representations of the 15 characters;
(b) graphical representation of the status of each character.

21 3 4

t = 0

Fig. 1. The minimal cell (2× 2 molecules) with its genome at the
start (t = 0).

2 rows× 2 columns (Fig. 1). Each molecule is able to
store in its four memory positions four hexadecimal
characters of our artificial genome, and the whole cell
thus embeds 16 such characters.

The original genome for the minimal cell is orga-
nized as a string of eight hexadecimal characters, i.e.
half the number of characters in the cell, moving coun-
terclockwise by one character at each time step (t =
0, 1, 2, . . . ).

The 15 used hexadecimal characters composing
the alphabet of our artificial genome are detailed in
Fig. 2. They are eitherempty data(0), molcode data
(for molecule code data, from 1 to 7) orflag data
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(from 8 to E). Molcode data will be used for con-
figuring our final artificial organism, while flag data
are indispensable for constructing the skeleton of the
cell. Furthermore, each character is given a status and
will eventually bemobile data, indefinitely moving
around the cell, orfixed data, definitely trapped in a
memory position of a molecule.

2.3. Constructing the cell

At each time step, a character of the original genome
is shifted from right to left and simultaneously stored
in the lower leftmost molecule (Figs. 1 and 3). Note
that, due to our algorithm, the first, third, etc., char-
acter of the genome (i.e. each odd character) is al-
ways a flag F, while the second, fourth, etc., character
(i.e. each even character) is always a molcode M. The
construction of the cell, i.e. storing the fixed data and
defining the paths for mobile data, depends on two
major patterns (Fig. 4).

• If the two, three or four rightmost memory posi-
tions of a molecule are empty (blank squares), the
characters are shifted by one position to the right
(shift data).

• If the rightmost memory position is empty, the char-
acters are shifted by one position to the right (load
data). In this situation, the rightmost F′ and M′ char-
acters are trapped in the molecule (fixed data), and a
new connection is established from the second left-
most position toward the northern, eastern, southern
or western molecule, depending on the fixed flag
information (F′ = 8 or C, 9 or D, A, B or E).

At time t = 16, 16 characters, i.e. twice the con-
tents of the original genome, have been stored in the
16 memory positions of the cell (Fig. 3). Eight char-
acters are fixed data, forming the phenotype of the
final cell, and the eight remaining ones are mobile
data, composing a copy of the original genome, i.e.
the genotype. Bothtranslation(i.e. construction of the
cell) andtranscription(i.e. copy of the genetic infor-
mation) have been therefore achieved.

The fixed data trapped in the rightmost memory
position of each molecule remind us of the pebbles
left by Tom Thumb for memorizing his way.

2.4. Dividing the mother cell into two daughter
cells

In order to grow an artificial organism in both hor-
izontal and vertical directions, the mother cell should
be able to trigger the construction of two daughter
cells, nothward and eastward.

At time t = 11 (Fig. 3), we observe a pattern of
characters which is able to start the construction of the
northward daughter cell; the upper leftmost molecule
is characterized by two specific flags, i.e. a fixed flag
indicating a north branch (F= D) and the branch
activation flag (F= C). This pattern is also visible in
Fig. 5 (northward signal, third row). The new path to
the northward daughter cell will start from the second
leftmost memory position.

At time t = 23, another particular pattern of charac-
ters will start the construction of the eastward daugh-
ter cell; the lower rightmost molecule is characterized
by two specific flags, i.e. a fixed flag indicating an east
branch (F= E), and the branch activation flag (F=
C). This pattern appears also inFig. 5(eastward signal,
third row). The new path to the eastward daughter cell
will start from the second leftmost memory position.

The other patterns inFig. 5 are needed for con-
structing the inner paths of the minimal cell (Fig. 3)
as well as a cell more complex than the minimal cell,
for example that ofFig. 11b.

2.5. Growing a multicellular organism

In order to analyze the growth of a multicellular
artificial organism, we are led to carefully observe the
interactions of the different paths created inside and
outside each individual cell.

As for the initial conditions, we suppose that at
time t = −1 a first path is constructed from the shift
register storing the original genome (Fig. 1) to the
lower leftmost molecule. After each period of eight
time steps (i.e.t = 7, 15, 23, . . . ), the same order will
trigger again the construction of this path (Fig. 6a).

The construction of the cell is characterized by the
successive launch of four inner paths northward (t =
3), eastward (t = 7), southward (t = 11), and west-
ward (t = 15) (Fig. 6a). Due to our algorithm, this
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Fig. 3. Constructing the minimal cell (t = 4: north path,t = 8: east path,t = 12: south path and north branch,t = 16: west path and loop
completion,t = 24: east branch,t = 28: north branch cancellation,t = 40: east branch cancellation).
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Fig. 4. The two memory patterns for constructing a cell.

construction is carried out only once, and these paths
are never reactivated. Just notice the collision between
the two signals at timet = 15 where priority is given
to the westward inner path.

Finally, the division of the mother cell into two
daughter cells will trigger a northward outer path at
time t = 11. Due to our algorithm, this path is re-
activated periodically every eight time steps, i.e.t =
19, 27, 35, . . . . For the same reason, the cell division
will trigger another eastward outer path at timet = 23;
this path is also reactivated periodically every eight
time steps, i.e.t = 31, 39, . . . .

A macroscopic representation of the mother cell is
given in Fig. 6b where the different activation times
of the initial path (ti = −1, 7, 15, 23, 31, 39, . . . ),
the northward outer path (tn = 11, 19, 27, 35, . . . ),
the eastward outer path (te = 23, 31, 39, . . . ), and
the inner path closing the loop (tc = 15) are summa-
rized. It is then possible to derive the number of time
steps�tn between the occurrence of the first initial
path (ti = −1) and the first northward outer path
(tn = 11):

�tn = tn − ti = 12. (1)

M
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Fig. 5. Patterns of characters triggering the paths to the north, east, south and west molecules.

The number of time steps�te, until the first eastward
outer path, becomes

�te = te − ti = 24, (2)

while�tc, the one until the inner path closing the loop,
corresponds to

�tc = tc − ti = 16. (3)

Fig. 7a shows the macroscopic representation of a mul-
ticellular organism made up of 2× 2 = 4 cells where
each path activation (northward, eastward, and closing
the loop) is given its precise timing according to the
temporal characteristics of the minimal cell (Fig. 7b).
In this cell tn, te andtc are defined as follows:

tn = ti + �tn + K.8 = ti + 12+ K.8, (4)

te = ti + �te + K.8 = ti + 24+ K.8, (5)

tc = ti + �tc = ti + 16, (6)

whereK is an integer (0, 1, 2, 3, . . . ).

2.6. Defining the priorities between cells

When two or more paths are simultaneously acti-
vated, a clear priority should be established. We have
therefore chosen three growth patterns (Fig. 7a):

• For cells in the lower row (1.1 and 2.1) a collision
occurs at timetc = ti + �tc = ti + 16 between
the closing loop and the path entering the lower
leftmost molecule. As already mentioned, the inner
loop, i.e. the westward path, will have the priority
over the eastward path.

• At the exception of the mother cell 1.1, for cells
in the leftmost column (1.2), the inner loop, i.e.
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Fig. 6. Macroscopic representations of the mother cell: (a) activated path fromt = −1 to t = 40; (b) number of time steps�tn, �te and
�tc.

the westward path, will take the priority over the
northward path.

• For all other cells (2.2), two types of collisions may
occur, between the northward and eastward paths
(2-signal collision) or between these two paths and
a third one, the closing loop at timetc (3-signal
collision). In this case, the northward path will have
priority over the eastward path (2-signal collision),
and the westward path will have priority over the
two other ones (3-signal collision).

The results of such a choice are as follows: a clos-
ing loop has priority over all other outer paths, which
makes the completed loop entirely independent of its
neighbors, and the organism will grow by developing
bottom-up vertical branches. This choice is quite ar-
bitrary and may be changed according to other speci-
fications.

It is now possible to come back to the detailed
representation of a multicellular organism made up
of 2 × 2 minimal cells (Fig. 8) and exhibit the
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Fig. 7. Macroscopic representations of a multicellular organism:
(a) the 2×2 organism; (b) temporal characteristics of the minimal
cell with the different activation times of the initial path (ti ), the
northward outer path (tn), the eastward outer path (te), and the
inner path closing the loop (tc).

latter at different time steps in accordance with the
above-mentioned priorities.

2.7. Toward a hardware implementation: the data
and signals cellular automaton (DSCA)

We are now able to describe the detailed architecture
of our actual molecule (Fig. 9a) which is made up of
two main parts, an upper part orprocessing unit(PU)
and a lower part orcontrol unit (CU) (Fig. 9b). The
processing unititself consists of three units:

• An input unit, the multiplexer DIMUX, selecting
one out of the four input data (NDI3:0, EDI3:0,
SDI3:0 or WDI3:0), plus the empty data 0000;

this selection is operated by a 3-bit control signal
I2:0.

• A 4-level stack organized as twogenotypic regis-
ters GA3:0 and GB3:0 (for mobile data), and two
phenotypic registersPA3:0 and PB3:0 (for fixed
data) according to the definitions ofFig. 4. The two
phenotypic registers are idle (i.e. performing the
HOLD operation) only when the rightmost mem-
ory position of the molecule is a flag (i.e. HOLD=
PB3= 1).

• An output unit, the buffer DOBUF, which is either
active (PB3= 1, flag in the rightmost memory po-
sition) or inhibited.

The control unit is itself decomposed into two
units:

• An input encoder ENC, a finite state machine cal-
culating the 3-bit control signal I2:0 from the four
input signals NSI, ESI, SSI, and WSI. The specifi-
cation of this machine, which depends on the pri-
orities between cells as mentioned above(Figs. 6a
and 7a), is described by the state graph ofFig. 9d.
The five internal states QZ, QN, QE, QS, and QW
will control the multiplexer DIMUX for choosing
the input value 0000 or the input data NDI3:0,
EDI3:0, SDI3:0 or WDI3:0, respectively.

• An output generator GEN, which is a combina-
tional system producing the northward, eastward,
southward, and westward signals (NSO, ESO, SSO,
and WSO) according to the patterns described in
Fig. 5.

The processing unit (PU) and control unit (CU) as
well as the final molecule are represented at macro-
scopic levels inFig. 9b and c; these figures define a
new kind of generalized cellular automaton, thedata
and signals cellular automaton(DSCA) [15].

2.8. What’s new with the data and signals cellular
automaton (DSCA)?

A look at Fig. 9a allows the calculation of the
number of the state variables involved in the molecule
(each sequential register being represented by a
small triangle), i.e. 16 for the stack (GA3:0, GB3:0,
PA3:0, PB3:0) and three for the control signals of the
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Fig. 8. Analyzing a multicellular organism made up of 2× 2 minimal cells (t = 32: cell 1.2 closed on itself and independent of its mother
cell 1.1, t = 40: cell 2.1 closed on itself and independent of its mother cell 1.1,t = 56: cell 2.2 closed on itself and independent of its
mother cell 2.1).

input multiplexer (I2:0), which amounts to a total of
19. Therefore, the number of possible states is 219.
Thanks to our methodology, i.e. decomposing the
molecule into a processing unit and a control unit, we
do not need to carry out the whole state table with 219

rules.

• The 16 variables (GA3:0, GB3:0, PA3:0, PB3:0)
are data variables, required for transferring or
storing the flags and molcodes of the original
genome.

• Three variables (I2:0) are control variables, required
for coding the five states of the graph inFig. 9d and
for controlling the different priorities.

The information containing all the characteristics
of the self-replicating loop (height, width, changes of
direction, useful information) is entirely included in
the genome (flags and molcodes), which is easily pro-
grammable by the user (see the next section): it con-
stitutes the data part of the 19 variables.

The only information needed for controlling our
DSCA is used for priorities calculation. Any change
of specifications will then necessitate a transfor-
mation of the graph ofFig. 9d. As an example, if
we wish to build our multicellular organism row
by row (and not column by column as inFig. 8),
we would have to start with the modified graph of
Fig. 9e.
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Fig. 9. A possible implementation of the basic molecule as a novel data and signals cellular automaton (DSCA): (a) detailed architecture;
(b) macroscopic representation made up of a processing unit (PU) and a control unit (CU); (c) macroscopic representation of the DSCA;
(d) state graph of the finite state machine ENC; (e) modified graph of the finite state machine ENC.

3. Generalization and design methodology

3.1. Non-minimal loops

The self-replicating loops inFig. 10are the two ex-
amples of non-minimal loops. Note that the molcode

data can be directly used to display some useful infor-
mation, such as in the example ofSection 3.2, or can
be indirectly used as a configuration string able to con-
trol a programmable device such as a field-program-
mable gate array (FPGA) (for such an application, see
[14]).



188 D. Mange et al. / Physica D 191 (2004) 178–192

2 3

6

4 5

7 61 1 1

2345

7 1

(a)

1

4 5

5

3 4

2

3 6 2 5

2 1

453

1

2 7 1 6

712

36

7

2

4

6

7 1

(b)

Fig. 10. Two examples of non-minimal self-replicating loops: (a)
a 4× 2 = 8 molecules loop (�tn = 20, �te = 28, �tc = 32); (b)
a 4× 4 = 16 molecules loop (�tn = 40, �te = 60, �tc = 64).

If C is the number of columns of the cell andR
its number of rows, it is easy to derive the following
relations:

• The total number of the molecules M in a cell is

M = CR. (7)

• The total numberT of hexadecimal characters in a
cell is therefore

T = 4CR, (8)

while the lengthL of the artificial genome is half
the value ofT , i.e.

L = 2CR. (9)

The period of a cell, i.e. the time needed for a
complete circulation of the genome, is equal toL

time steps. A careful examination of the new self-
replicating loop allows to derive the following re-
lations defining the different numbers of time steps
�tn (first northward outer path),�te (first eastward
outer path), and�tc (inner path closing the loop):

�tn = L + 2R = 2(C + 1)R, (10)

�te = 3L = 12R if C = 2, (11)

�te = 2L − 2(C − 2) = 4CR− 2(C − 2)

if C > 2, (12)

�tc = T = 2L = 4CR. (13)

3.2. The LSL acronym design example

In [16], Tempesti has already shown how to embed
the acronym “LSL” (for Logic Systems Laboratory)
into a self-replicating loop implemented on a classical
cellular automaton. Thanks to a “cut-and-try” method-
ology and a powerful simulator, he was able to carry
out the painful derivation of over 10,000 rules for the
basic cell.

Unlike heuristic Tempesti’s method, we will show
that the same example can be designed in a straight-
forward and systematic way, thanks to the use of our
new data and signals cellular automaton (DSCA) as-
sociated to the Tom Thumb algorithm.

The “LSL” acronym is first represented in a rect-
angular array of 12 columns× 6 rows (Fig. 11a).
While the number of rows is indifferent, the number
of columns should be even in order to properly close
the loop (Fig. 11b). The cell is therefore made up of
12 × 6 = 72 molecules connected according to the
pattern inFig. 11b: bottom-up in the odd columns,
top-down in the even columns, with the lower row
reserved for closing the loop. It is then possible to
define all the flags in the rightmost memory position
of each molecule (gray characters inFig. 11b) with-
out forgetting the branch activation and north connec-
tion flag in the lower molecule of the first column,
the north branch and east connection flag in the upper
molecule of the first column, and the east branch and
west connection flag in the lower molecule of the last
column.

Among the 72 molecules, 25 are used to display
the three letters “L”, “S” and “L”, and are given the
character “2” as molcode (black data inFig. 11a and
b), while 47 are black (molcode “1”).

The detailed information of the final genome, i.e.
72×2 = 144 hexadecimal characters (Fig. 11c), is de-
rived by reading clockwise the fixed characters (black
and gray characters inFig. 11b) of the whole loop,
starting with the lower molecule of the first column.

Last, it was possible to embed the basic molecule
of Fig. 9a in each of the 2000 field-programmable
gate arrays of the BioWall[17] and to show the rather
spectacular self-replication of our original cell (equiv-
alent to a unicellular artificial organism), the “LSL”
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Fig. 11. Self-replication of the “LSL” acronym: (a) original specifications (LSL: Logic Systems Laboratory); (b) the 12×6 = 72 molecules
of the basic cell; (c) genome; (d) BioWall implementation displaying both the genotypic path and the phenotypic shape (photograph by
Petraglio).
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acronym, towards both vertical and horizontal direc-
tions (Fig. 11d).

The LSL acronym design example can be easily
generalized to produce the following algorithm:

1. Divide the given problem in a rectangular array of
C columns× R rows. While the number of rows
R is indifferent, the number of columnsC should
be even in order to properly close the loop.

2. Define all the flags in the rightmost memory po-
sition of each molecule according to the follow-
ing patterns: bottom-up in the odd columns and
top-down in the even columns, with the lower row
reserved for closing the loop.

3. Complete the path by adding the branch activation
and north connection flag (C) in the rightmost
memory position of the lower molecule of the first
column, the north branch and east connection flag
(D) in the rightmost memory position of the upper
molecule of the first column, and the east branch
and west connection flag (E) in the rightmost
memory position of the lower molecule of the last
column, in order to trigger the two daughter loops
northwards and eastwards, respectively.

4. According to the original specifications, complete
all the molcode data in the second rightmost mem-
ory position of each molecule. These molcode
data constitute the phenotypic information of the
artificial cell.

5. The detailed information of the final genome, i.e.
the genotypic information of the artificial cell, is
derived by reading clockwise along the original
path of the fixed characters of the whole loop, i.e.
the two rightmost characters of each molecule,
starting with the lower molecule of the first col-
umn. The genotypic information, or artificial
genome, is used as the configuration string of the
artificial cell and will eventually take place in the
two leftmost memory positions of each molecule.

3.3. Classical cellular automaton versus data and
signals cellular automaton

Coming back to Tempesti’s self-replicating loop
[16], we can now point out the major differences be-
tween his method and our new approach.

Tempesti used a classical cellular automaton (CA).
With its self-replicating mechanism, the “LSL”
acronym is entirely wired inside the CA, by means of
more than thousand rules, written thanks to a heuris-
tic “cut-and-try” methodology. Even a slight modi-
fication of the original specifications could be very
painful. It is impossible to demonstrate the property
of universal construction (seeSection 3.4).

With the Tom Thumb algorithm and its implemen-
tation as a data and signals cellular automaton (DSCA)
[15], all the description of the “LSL” acronym is
part of an external program, the artificial genome,
simply flowing through the processing units of the
DSCA. The design is straightforward, and the mod-
ifications are immediate. Changes inside the DSCA
are only necessary for modifying the priorities which
regulate the growth of the successive self-replicating
loops.

3.4. Universal construction

In his original contribution[18], von Neumann
defined construction (or constructibility) as the ca-
pability of constructing, i.e. assembling and building
from appropriately defined “raw materials” an au-
tomaton using another automaton, the constructor.
More precisely, the constructor, a two-dimensional
automaton, is able to build in the two-dimensional
array defined by von Neumann a specimen of another
automaton described by a one-dimensional string of
characters (the artificial genome) stored into the tape
of the constructor.

According to von Neumann[18], a constructor is
endowed with universal construction if it is able to
construct every other automaton, i.e. an automaton of
any dimensions. This concept is pointed out by Fre-
itas and Merkle[4], where construction universality
implies the ability to manufacture any of the finitely
sized machines which can be formed from specific
kinds of parts, given a finite number of different kinds
of parts but an indefinitely large supply of parts of
each kind.

If we assume (1) the existence of an array, as large
as desired, of molecules such as that described in
Fig. 9a and (2) the existence of a string of characters,
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as large as desired, the artificial genome, we claim
that we are able to construct a computing machine
of any dimensions into the array. Remember that the
molcode data M, limited to the range 1–7, may be di-
rectly used, as in the previous example, for display-
ing the given specifications or may configure any kind
of field-programmable gate array aimed at defining a
more complex digital architecture. There are only two
restrictions involved by our actual implementation:

• The number of rows and/or columns should be even,
in order to properly close the loop.

• For any artificial organism characterized by a mol-
code alphabet greater than 1–7, we would be led
to slightly modify the architecture of the actual
molecule (Fig. 9a) and either use a deeper stack
(with an even number of registers: 4, 6, 8,. . . ) or
use larger registers (with more than 4-bits). For a
flag alphabet greater than 8,. . . , F (particularly for
addressing the three-dimensional case), larger reg-
isters would also be required.

If the two conditions are met, we can embed onto
an array of molecules any array of Boolean (octal,
hexadecimal) values and observe the self-replication
of the original pattern.

On the other hand, we have already shown that a uni-
versal Turing machine may be embedded in a regular
array of identical cells[12], themselves decomposed
and implemented onto a regular array of molecules.
Our new loop with universal construction can there-
fore verify universal computation, thus meeting the
two basic properties of the historical self-replicating
cellular automaton designed by von Neumann[18],
i.e. universal construction and computation.

4. Conclusion

Several years before the publication of the histori-
cal paper by Watson and Crick[19] revealing the exis-
tence and the detailed architecture of the DNA double
helix, von Neumann was already able to point out that
a self-replicating machine necessitated the existence
of a one-dimensional description, the genome, and
a universal constructor able to both interpret (trans-

lation process) and copy (transcription process) the
genome in order to produce a valid daughter organ-
ism. Self-replication will allow not only to divide a
mother cell (artificial or living) into two daughter cells,
but also to grow and repair a complete organism.
Self-replication is now considered as a central mech-
anism indispensable for those circuits which will be
implemented through the nascent field of nanotech-
nologies[3,13].

A first field of application of our new self-replicating
loops with universal construction is quite natu-
rally the classical self-replicating automata, such as
three-dimensional reversible automata[5] or asyn-
chronous cellular automata[9].

A second, and possibly more important field of ap-
plication is Embryonics, where artificial multicellular
organisms are based on the growth of a cluster of cells,
themselves produced by cellular division[7,8].

A major by-product of this research is the introduc-
tion of a new kind of cellular automaton, the data and
signals cellular automaton (DSCA)[15], decomposed
in a processing and a control units, which allows for
a systematic and straightforward design methodology
which is lacking at the moment.

Other possible open avenues are about the evolution
of such loops and/or their capability of carrying out
massive parallel computation[2].
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