
Bio-Inspired Computing Architectures:
The Embryonics Approach

(Invited Paper)

Gianluca Tempesti, Daniel Mange, André Stauffer
School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL)

CH-1015 Lausanne, Switzerland
Email: gianluca.tempesti@epfl.ch

Abstract— The promise of next-generation computer technolo-
gies, such as nano-electronics, implies a number of serious
alterations to the design flow of digital circuits. One of the
most serious issues is related to circuit layout, as conventional
lithographic techniques do not scale to the molecular level. A
second important issue concerns fault tolerance: molecular-scale
devices will be subject to fault densities that are orders of
magnitude greater than silicon-based circuits.

In our work, we are investigating a different approach to
the design of complex computing systems, inspired by the
developmental process of multi-cellular organisms in nature. This
approach has led us to define a hierarchical system based on
several levels of complexity, ranging from the molecule (modeled
by an element of a programmable logic device when the system
is applied to silicon) to the organism, defined as an application-
specific multi-processor system.

By setting aside some of the conventional circuit design
priorities, namely size and (to a certain extent) performance,
we are able to design fully scalable systems endowed with some
properties not commonly found in digital circuits. Most notably,
by exploiting a hierarchical self-repair approach, our systems are
able to tolerate higher fault densities, whereas a self-replication
mechanism allows our arrays of processing elements to self-
organize, greatly reducing the layout complexity of the system.

I. INTRODUCTION

A human being consists of approximately 60 trillion
(60x10��) cells. At each instant, in each of these 60 trillion
cells, the genome, a ribbon of 2 billion characters, is decoded
to produce the proteins needed for the survival of the organism.
This genome contains the ensemble of the genetic inheritance
of the individual and, at the same time, the instructions for
both the construction and the operation of the organism.
The parallel execution of 60 trillion genomes in as many
cells occurs ceaselessly from the conception to the death of
the individual. Faults are rare and, in the majority of cases,
successfully detected and repaired. This process is remarkable
for its complexity and its precision. Moreover, it relies on
completely discrete information: the structure of DNA (the
chemical substrate of the genome) is a sequence of four bases,
usually designated with the letters A (adenine), C (cytosine),
G (guanine), and T (thymine).

Our Embryonics project (for embryonic electronics) is in-
spired by the basic processes of molecular biology and by
the embryonic development of living beings [5] [6] [7]. By

adopting certain features of cellular organization, and by
transposing them to the two-dimensional world of integrated
circuits on silicon, we will show that properties unique to the
living world, such as self-replication and self-repair, can also
be applied to artificial objects (integrated circuits).

We wish however to emphasize that the goal of bio-
inspiration in the context of Embryonics is not the mod-
elization or the explication of actual biological phenomena:
our final objective is the development of very large scale
integrated (VLSI) digital circuits capable of self-repair and
self-replication. Self-repair allows partial reconstruction in
case of a minor fault, while self-replication allows complete
reconstruction of the original device in case of a major fault.

These two properties are particularly desirable for com-
plex artificial systems requiring improved reliability in short,
medium, or long term applications.

� Short term applications [12], such as those which require
very high levels of reliability (e.g., avionics, medical elec-
tronics), those designed for hostile environments (e.g.,
space) where the increased radiation levels reduce the
reliability of components, or those which exploit the latest
technological advances, and notably the drastic device
shrinking, low power supply levels, and increasing oper-
ating speeds that accompany the technological evolution
to deeper submicron levels and significantly reduce the
noise margins and increase the soft-error rates [23].

� Medium term applications, where our aim is to develop
very complex integrated circuits capable of on-line self-
repair, dispensing with the systematic detection of faults
at fabrication, impossible for systems consisting of mil-
lions of logic gates [22].

� Long term applications, executed on systems built with
imperfect components: this is von Neumann’s historical
idea [19], the basis of all present projects aimed at the
realization of complex integrated circuits at the molecular
scale (nanoelectronics) [20] [3] [2] [15].

Self-replication, or ”cloning”, can be justified independently
of self-repair:

� to replicate, within a field-programmable gate array
(FPGA), functionally equivalent systems [13];

� to mass-produce the future integrated circuits, imple-

Proceedings of the Seventh International Workshop on Computer Architecture for Machine Perception (CAMP’05)

0-7695-2255-6/05 $20.00 © 2005 IEEE

Fig. 1. The 4 hierarchical levels of complexity in Embryonics.

mented using nanoelectronics [10];
� to finally accomplish John von Neumann’s unachieved

dream, that is, the realization of a self-replicating automa-
ton endowed with the properties of universal computation
and construction [19].

These emerging needs require the development of a new
design paradigm that supports efficient online self-repair so-
lutions and that can efficiently realize the self-replication of
complex electronic structures. Our project is an investigation
into the possibilities offered by drawing inspiration from
complex biological organisms in order to address these issues.

II. EMBRYONICS: FROM BIOLOGY TO HARDWARE

The majority of living beings, with the exception of uni-
cellular organisms such as viruses and bacteria, share three
fundamental features:

1) Multicellular organization divides the organism into a
finite number of cells, each realizing a unique function
(neuron, muscle, intestine, etc.). The same organism can
contain multiple cells of the same kind.

2) Cellular division is the process whereby each cell (be-
ginning with the first cell or zygote) generates one or two
daughter cells. During this division, all of the genetic
material of the mother cell, the genome, is copied into
the daughter cell(s).

3) Cellular differentiation defines the role of each cell of
the organism, that is, its particular function (neuron,
muscle, intestine, etc.). This specialization of the cell is
obtained through the expression of part of the genome,
consisting of one or more genes, and depends essentially
on the physical position of the cell in the organism.

A consequence of these three features is that each cell is
”universal”, since it contains the whole of the organism’s
genetic material, the genome. Should a minor (wound) or
major (loss of an organ) trauma occur, living organisms are
thus potentially capable of self-repair (cicatrization) or self-
replication (cloning or budding) [21].

The two properties of self-repair and self-replication based
on a multicellular tissue are unique to the living world. The
main goal of the Embryonics project is the implementation of
the above three features of living organisms in an integrated
circuit in silicon, in order to obtain the properties of self-repair
and self-replication.

To implement these features in silicon, our approach is
based on four hierarchical levels of organization (Fig. 1):

� The basic primitive of our system is the molecule, the
element of a novel programmable circuit.

� A finite set of molecules makes up a cell, essentially a
small application-specific processor with the associated
memory.

� A finite set of cells makes up an organism, an application-
specific multiprocessor system.

� The organism can itself replicate, giving rise to a pop-
ulation of identical organisms, the highest level of our
hierarchy.

At the core of the system is the cell: an artificial organism
is realized by a matrix of identical cells distributed over the
nodes of a regular two-dimensional grid. Each cell contains a
small processor and a memory in which the genome program
(the operating program for the entire system, identical for all
the cells) is stored. In this multicellular organization only the
state of a cell (i.e. the contents of its registers) can differentiate
it from its neighbors.

Proceedings of the Seventh International Workshop on Computer Architecture for Machine Perception (CAMP’05)

0-7695-2255-6/05 $20.00 © 2005 IEEE

1,2 2,2 3,2

3,12,11,1

1,2 2,2 3,2

3,12,11,1

1,2 2,2 3,2

3,12,11,1

1,2 2,2 3,2

3,12,11,1

1,2 2,2 3,2

3,12,11,1

1,2 2,2 3,2

3,12,11,1

Fig. 2. Self-replication of a 6-cell organism in a limited homogeneous array of 9x4 cells.

In the organism each cell realizes a unique function, defined
by a sub-program called the gene, which is a part of the
genome. Each cell knows its position (i.e. � and � coor-
dinates) in the organism and uses them to define which gene
of the genome it has to execute. Figure 2 shows an organism
composed of ��� � � cells: the genes are identified by the
coordinates ���� � � ��� �� to ���� � � ��� �� .

In this context, an artificial organism is capable of replicat-
ing itself if there is enough free space in the silicon circuit
(at least six cells in the example of figure 2) to contain
the new daughter organism and if the calculation of the
coordinates produces a cycle (� � � � � � � � ���� and
� � � � � � ����, implying � � ��� � �����	
��
and � � ��� � �����	
��). Since each cell stores the
same information (i.e. the genome program), the cycling of
the coordinates causes the repetition of the same pattern of
genes: therefore, in a sufficiently large array of cells, the
self-replication process can be repeated for any number of
specimens in the � and/or the � axes.

This self-replication of the organism, achieved through the
cycling of the cell’s coordinates, is then an immediate con-
sequence of the self-replication of the artificial cells. In fact,
a cell has to self-replicate to obtain a collection of identical
cells, which will compose the first artificial organism. The
crucial hardware mechanism necessary to obtain populations
of organisms is therefore the same as the one necessary to
obtain a single multi-cellular organism.

III. ARTIFICIAL SELF-REPLICATION

In each cell of every living being, the genome is translated
sequentially by a chemical processor, the ribosome, to create
the proteins needed for the organism’s survival. The ribosome
itself consists of molecules, whose description is an important
part of the genome.

As mentioned, in the Embryonics project each cell is a
small processor, sequentially executing the instructions of
a first part of the artificial genome, the operative genome
OG. The need to realize organisms of varying degrees of
complexity has led us to design an artificial cell characterized

by a flexible architecture, that is, itself configurable. It will
therefore be implemented using a new kind of fine-grained,
field-programmable gate array (FPGA). Each element of this
FPGA (consisting essentially of a multiplexer associated with
a programmable connection network) is then equivalent to
a molecule, and an appropriate number of these artificial
molecules allows us to realize application-specific processors.

We will call multimolecular organization the use of many
molecules to realize one cell. The configuration of the FPGA
(that is, the information required to assign the logic function
of each molecule) constitutes the second part of our artificial
genome: the ribosomic genome RG. Fig. 3 shows an abstract
example of an extremely simple cell (CELL) consisting of six
molecules, each defined by a molecular code or MOLCODE
(CFG0 to CFG5), equivalent to the configuration information
of a single element of the FPGA. The set of these six
MOLCODEs constitutes the ribosomic genome RG of the cell.

The information contained in the ribosomic genome RG
thus defines the logic function of each molecule by assigning
a molecular code MOLCODE to it. To obtain a functional cell,
we require two additional pieces of information:

� the physical position of each molecule in the cellular
space;

� the presence of one or more spare columns, composed
of spare molecules, required for the self-repair described
below.

The definition of these pieces of information is the molec-
ular configuration. Their injection into the FPGA will allow:

1) the definition of the function realized by each of the
molecules;

2) the insertion of one or more spare columns;
3) the definition of the connections between the molecules.

A consequence of the multimolecular organization and of
the molecular configuration of the FPGA is the ability, for any
given cell, to propagate its ribosomic genome RG in order
to automatically configure two daughter cells, architecturally
identical to the mother cell, to the east and to the north, thus
implementing cellular self-replication.

Proceedings of the Seventh International Workshop on Computer Architecture for Machine Perception (CAMP’05)

0-7695-2255-6/05 $20.00 © 2005 IEEE

CFG 2 CFG 5

CFG 4CFG 1

CFG 0 CFG 3

BITSTREAM ENTRY POINT

����

�������

Fig. 3. Multimolecular organization of a simple cell consisting of 6
molecules. RG: ribosomic genome: CFG0 to CFG5. The arrow indicates the
entry point for the configuration and the dark line is the path used to propagate
this configuration to all the molecules.

Cellular self-replication is a prerequisite for the cellular
division described above, during which the operative genome
is copied from the mother cell into the daughter cells. We can
summarize the two key roles of cellular self-replication:

� The construction of two daughter cells in order to grow
a new organism or to repair an already existing one
(genome translation).

� The distribution of an identical set of chromosomes in
order to create a copy of the genome from the mother
cell aimed at programming the daughter cells (genome
transcription).

Our developmental mechanism shall operate by allowing
the set of molecular configurations (the MOLCODE of our
artificial molecules) that implement a cell to replicate itself, re-
alizing a process not unlike the cellular division that underlies
the growth of biological organisms. We called this mechanism
the Tom Thumb algorithm [8] [8].

A practical way to verify the realization of such novel
mechanisms in the world of computer science is to approach
the problem through the creation of an artificial Universe,
defined by a container, a content, and a set of rules. We
shall again use an abstract example by applying the algorithm
to a very simple cell of ��� molecules, with the further
simplification that the MOLCODE of the cell will consists
of only 3 bits. Note however that the algorithm is perfectly
scalable for arbitrary cell and MOLCODE sizes.

The container is a two-dimensional flat space, divided in
rows and columns (Fig. 4). Each intersection of a row and
a column defines a rectangle or molecule, which divides in
three memory positions: left, central, and right. Time flows
in discrete clock times, the time steps, identified by integers
(t=-1,0,1,2,...). In practice, this universe corresponds to the
configuration layer of our FPGA, where the MOLCODE is
shifted into the molecules at each clock cycle via a shift
register.

The content of this Universe is constituted by a finite num-
ber of symbols, each represented by a hexadecimal character
ranging from 0 to E, that is, from 0000 to 1110 in binary

21 t = 0

Fig. 4. The container with the genome of a minimal cell.

M

: empty data

: molcode data

: branch activation and north connection flag

: north branch and east connection flag

: east branch and west connection flag

: north connection flag

: east connection flag

: south connection flag

: west connection flag

- : don't care data

: flag dataF

(1 ... E)

(1 ... 7)

(8 ... E)

(0)

(9)

(A)

(B)

(C)

(8)

(E)

(D)

Fig. 5. Graphical and hexadecimal representations of the content symbols.

(Fig. 5). These symbols are either empty data (0), MOLCODE
data (for molecule code data, M=1 to 7) or flag data, each
indicating one of the four cardinal directions: north, east,
south, west (F=8 to E). MOLCODE data will be used for
configuring our final artificial organism (i.e., they correspond
to the configuration data of our FPGA), while flag data are
needed for constructing the skeleton of the cell. The original
genome for the minimal cell is organized as a string of six
hexadecimal characters, i.e. half the number of characters in
the cell, moving counterclockwise by one character at each
time step (t=0,1,2,...).

The set of rules defines the behavior of the content of the
Universe. It is defined by a set of 9 rules, used to construct
the cells and to implement cellular division (growth). Even if
they are too complex to be detailed in this article, we shall
mention that the rules are local, that is, they rely only on
the information stored on neighboring molecules. This feature,
required to reduce the need for global synchronicity, addresses
an important issue in very large scale digital circuits. The net
results of the application of the rules on the container is the
ability, in the first place, to construct cells of arbitrary size by
chaining their MOLCODES into the shape of a loop (Fig. 6)
and in the second place to realize the self-replication of these
patterns into the empty space. This process corresponds to the
self-replication of our cells and thus implements the function-
ality required to realize cellular division and, eventually, the
self-replication of an organism.

Proceedings of the Seventh International Workshop on Computer Architecture for Machine Perception (CAMP’05)

0-7695-2255-6/05 $20.00 © 2005 IEEE

1 1

1

2

1

2

2 1

1 1

2

21

1

21

1

2

1 2

0 1 2

3

76

54

9 10 11

1

2

1 2

12

2 1

1

2

13 14

15

19/2518/24

1716

21

1

2

2

1 2

1 2

1 2

1

1 21

2

1 21

2

1 2

1

2 1 2

1

2

1 2

21

1 2

21

22/28

1 2

2

1

23/2921/27

1 2

2

1

30

8

20/26

Fig. 6. Construction of the simple cell in the artificial universe.

IV. SELF-REPAIR

There exist a number of well-known approaches to im-
plementing self-repair in two-dimensional arrays of identical
elements [1] [4] [11] (we shall not address the issue of self-test
in this article). Most rely on two mechanisms: since physically
repairing a hardware fault is impossible, we must provide a set
of spare elements (redundancy) and a way to let them replace
faulty elements in the array, that is, to reroute the connections
between the elements (reconfiguration). The self-repair system
we developed is no exception, even if it had to satisfy a set
of relatively non-standard constraints imposed by the unique
features of our systems.

The key observations that relates to self-repair in our
systems is that test and reconfiguration are exclusively local,
on-line mechanisms and that they operate on all levels. The
first property implies that there is no centralized control, which
would not scale well oven arbitrary sizes, and that the repair
occurs as the system is working. The second property, crucial
for very complex systems, addresses the limitations that are in-
herent to any self-repair approach: a single level of redundancy
is not sufficient to guarantee adequate fault-tolerance and
by combining mechanisms that operate at different levels of
complexity (organism, cell, molecule) we can obtain systems
that are more reliable than would otherwise be possible.

Proceedings of the Seventh International Workshop on Computer Architecture for Machine Perception (CAMP’05)

0-7695-2255-6/05 $20.00 © 2005 IEEE

1,3 2,3 3,3 SPR

SPR3,22,21,2

1,1 2,1 3,1 SPR

1,3 XXX 2,3 3,3

3,22,2XXX1,2

1,1 XXX 2,1 3,1

FAULTY CELL

SPARE CELLACTIVE CELL

ORGANISM

Fig. 7. The presence of spare cells in the array and of the complete genome
in each cell allows self-repair through a recomputation of the coordinates.

This multi-level approach is perfectly in keeping with bio-
logical inspiration: nature guarantees the survival of organisms
by operating on systems which range from the population level
(where the genetic information of a species is stored in each
individual) through the organism level (where cicatrization
allows the substitution of dead cells by others, thanks to the
presence of a complete copy of the genome in every cell) to
the molecular level (where complex biochemical mechanisms
guarantee the correctness of the operation of each single cell).

Given our setup, the redundancy of the population level
is, in a way, ”free”: if sufficient space exists in the system,
self-replication will automatically create multiple copies of the
entire organism, each containing the genome of the ”species”.
We have not yet implemented mechanisms to introduce mu-
tations from one individual to the next (a difficult problem
when dealing with electronics), which means that we obtain
populations of clones, but the redundancy is still present and
can be exploited for fault-tolerance purposes.

For the other levels, cellular and molecular, we have on
the other hand introduced some specific mechanisms to add
self-repair in our systems.

A. Self-Repair at the Cellular Level

While not ”free” as for the organisms, self-repair at the
cellular level is greatly simplified by the structure of our
systems. In fact, since each cell, as we mentioned, contains
a copy of the genome (the executable program) of the entire
system, it is in theory capable of replacing any other cell (a bit
like stem or undifferentiated cells [14] in biological organisms.

Since the gene to be execute in a cell depends on its
coordinates within the organism, in order to reconfigure the
array it is sufficient to change the coordinates of the cells
(Fig. 7). For this kind of mechanism to work, it is of course
necessary to specify a set of spare cells, that is, cells that
are not active during the normal operation of the array, but
are ready to take the place of faulty cells. Our bio-inspired
approach provides a very simple solution to this problem, since
it is possible to define a special gene that will instruct the cells
to be at the organism’s disposal in case of faults.

To reduce the complexity of the mechanisms involved,
we opted for a simplified approach where a dead cell will
propagate its fault to its entire column within the organism.
This approach, while of course wasteful in resources, greatly
simplifies the reconfiguration of the system (Fig. 7):

1) a set of spare columns (as many as desired) are intro-
duced to the right of the array by modifying the growth
pattern of the organism;

2) whenever a fault is detected in a cell, the column of
cells to which it belongs is deactivated and becomes
transparent to the array, leaving a ”scar” in the array;

3) the disappearance of the faulty column automatically
launches the recomputation of the coordinates through-
out the array;

4) the recomputation causes a right-shift of the coordinates
of the faulty column and of all the columns to its right,
until the first spare column is reached.

Once this process is finished, the array is ready to resume
operation.

It should however be mentioned that, in order to achieve on-
line self-repair and to allow the system to resume operation
from the state it had when the faulty cell was detected, another
mechanism is necessary to recover the state of the faulty cell.
We have in fact implemented and tested one such mechanism,
based on redundant computation (the same data was computed
in parallel by two cells) and we have shown that this kind of
fault-tolerance is indeed achievable without too much trouble
thanks, once again, to the bio-inspired approach.

B. Self-Repair at the Molecular Level

The molecular layer presents problems that are somewhat
different from the cellular layer, since this layer represents the
actual hardware of our system and is thus most closely tied
to technological issues which render biological inspiration dif-
ficult: self-repair in an FPGA is very architecture-dependent,
and the architecture of programmable logic circuits changes
quickly. We have ourselves changed the basic structure of our
molecular layer at least twice [16] [18], requiring a redefinition
of the mechanisms involved in self-repair. In this section, we
will then limit ourselves to outlining our approach, without
entering into the details of the implementation.

In general, the FPGAs we developed in our project have
the characteristic of being perfectly homogenous, obviously
simplifying the self-repair process. This process relies, as for
the cellular layer, on reconfiguration and exploits the presence
of columns of spare molecules.

Proceedings of the Seventh International Workshop on Computer Architecture for Machine Perception (CAMP’05)

0-7695-2255-6/05 $20.00 © 2005 IEEE

1 1 0 0X X
DEAD CFG 4 CFG 7

X X
SPARE

1 1
CFG 2

CFG 0

1 1

CFG 2

1 1

CFG 3

0 0
SPARE

X X
CFG 6

1 1

CFG 1

0 0
DEAD

X X
CFG 7

0 0
CFG 4

1 1

CFG 5

0 0
CFG 8

1 1
SPARE

X X

CFG 0

1 1

CFG 2

1 1

CFG 3

0 0
SPARE

X X
CFG 6

1 1

CFG 1

0 0
CFG 4

1 0
SPARE

X X
CFG 7

0 0

CFG 5

0 0
CFG 8

1 1
SPARE

X X

������

��	��
	�

����

��	��
	�

����

��	��
	�

��		�������

����������

Fig. 8. The information stored in a faulty element and in its neighbors is shifted to a spare column.

To find an efficient mechanism to implement redundancy at
the molecular level, we turned our attention back to the self-
replication mechanism. Since the role of this mechanism is to
assign a specific function to each of the molecules in the cell,
it is possible to modify it to define which of the molecules
will act as spare elements. We obtain then a very powerful
system, as this approach allows us to program the robustness
of the system. In fact, since the growth sequence is part of the
configuration of the FPGA, we can modify the frequency of
spare columns, and thus the fault tolerance of the system. Just
by changing the control states and without altering the actual
configuration data (an advantage, since generating a bitstream
can be a time-consuming process), we can introduce varying
degrees of redundancy, from zero (no spare columns) to 100%
(one spare for every active column).

To take advantage of the spare elements and to realize
online self-repair, we also require a mechanism to transfer
the information stored in a faulty element (its configuration
plus the value stored in its flip-flops) to one of the spare
elements. Our mechanism for repairing faults (Fig. 8) relies on
the reconfiguration of the network through the replacement of
the faulty element by its right-hand neighbor: the configuration
of the faulty element (the dead molecule) is shifted into the
neighbor. The configuration of the neighbor is itself shifted to
the right, and so on until a spare element is reached. Once
the shift is completed, the faulty element ”dies” with respect
to the network: the connections are rerouted to avoid it, an
operation which can be effected very simply by diverting
the north-south connections to the right and by rendering the

element transparent to the east-west connections. The array,
thus reconfigured and rerouted, can then resume executing the
application from the same state it held when the fault was
detected. When a fault is detected, the FPGA therefore goes
off-line for the time required by the reconfiguration, somewhat
like an organism becoming incapacitated during an illness, and
then resumes operation.

Like all such mechanisms, our molecular self-repair is
subject to failure, either because of saturation (if all spare
elements are exhausted) or because a non-repairable fault is
detected. Should such a failure occur, we need to activate the
self-repair mechanism at the cellular level (described above).
To this end, we designed a KILL signal that is propagated
through an entire column of cells, deactivating it. At the
cellular level, this event will trigger a recomputation of the
coordinates of all cells, that is, will activate the cellular-
level reconfiguration mechanism (Fig. 9). In other words, the
robustness of the system is not based on a single self-repair
mechanism, which might fail under extreme conditions, but
rather on two separate mechanisms which cooperate to prevent
a fault from causing a catastrophic failure of the entire system.

V. CONCLUSIONS

In this article, we presented an overview of our Embryonics
project, in which we try to draw inspiration from the structure
and operation of multicellular organisms in nature to develop
a new approach for the design of very complex digital systems
in silicon and beyond. It is an ongoing project and we are still
researching novel solutions along all the research axes that are
touched by the project.

Proceedings of the Seventh International Workshop on Computer Architecture for Machine Perception (CAMP’05)

0-7695-2255-6/05 $20.00 © 2005 IEEE

��� ��� ���

���������

��� ��� ���

Fig. 9. The death of a column of blocks at the molecular level is equivalent
to the death of a column of cells at the cellular level.

The Tom Thumb algorithm, for example, represents a new
development in the field of self-replication. We are currently
working to move the algorithm from its theoretical implemen-
tations as a self-replicating inert structure towards an actual
realization as the configuration mechanism for the FPGA we
recently developed in a EU-sponsored project [18].

Where self-repair is concerned, we are working on more
versatile reconfiguration mechanisms that exploit the growth
characteristics of our systems at the processor level. We are
trying to show how we can achieve a higher fault tolerance
in our systems by drawing inspiration from the hierarchical
systems present in nature. Through well-applied redundancy
and by setting up cooperation between the different layers of
our system, we are exploring the possibility of automatically
integrating fault tolerance in arrays of processors.

Finally, we would like to mention that all the systems
we have developed have been implemented and tested in
actual hardware, often exploiting the BioWall [17], a wall-
sized platform of reconfigurable logic we have developed and
built to prototype cellular systems. In another direction, we are
working on the development of a design environment to auto-
matically attach bio-inspired features to arrays of application-
specific processors.

REFERENCES

[1] F. Hanchek, S. Dutt. Methodologies for Tolerating Cell and Interconnect
Faults in FPGAs. IEEE Transactions on Computers, Vol.47, No.1, January
1998.

[2] J. R. Heath, P. J. Kuekes, G. S. Snider, R. S. Williams. ”A Defect-Tolerant
Computer Architecture: Opportunities for Nanotechnology”. Science,
Vol.280, No.5370, 12 June 1998, pp. 1716-1721.

[3] P. Kuekes. ”Molecular Manufacturing: Beyond Moore’s Law”. In-
vited Talk. Proc. Field-Programmable Custom Computing Machines
(FCCM’99), Napa, CA, April 1999.

[4] J. Lach, W.H. Mangione-Smith, M. Potkonjak. Efficiently Supporting
Fault-Tolerance in FPGAs. Proc. FPGA’98, Monterey, CA, February
1998, pp. 105-115.

[5] D. Mange, M. Tomassini, eds. Bio-inspired Computing Machines: To-
wards Novel Computational Architectures. Presses Polytechniques et
Universitaires Romandes, Lausanne, Switzerland, 1998.

[6] D. Mange, M. Sipper, P. Marchal. ”Embryonic electronics”. BioSystems,
Vol. 51, No. 3, 1999, pp. 145-152.

[7] D. Mange, M. Sipper, A. Stauffer, and G. Tempesti. ”Towards Robust
Integrated Circuits: The Embryonics Approach”. Proceedings of the
IEEE, Vol.88, No.4, 2000, pp.516-541.

[8] D. Mange, A. Stauffer, E. Petraglio, and G. Tempesti. ”Embryonic
Machines That Divide and Differentiate”. In A.J. Ijspeert, M. Murata,
and N. Wakamiya, Eds., Biologically Inspired Approaches to Advanced
Information Theory, LNCS 3141, Springer-Verlag, Berlin, 2004, pp. 201-
216.

[9] D. Mange, A. Stauffer, E. Petraglio, and G. Tempesti ”Self-Replicating
Loop with Universal Construction”. Physica D, Vol.191, No.1-2, 15 April
2004, pp. 178-192.

[10] R. C. Merkle. ”Making Smaller, Faster, Cheaper Computers”. Proceed-
ings of the IEEE, Vol.86, No.11, November 1998, pp. 2384-2386.

[11] R. Negrini, M. G. Sami, R. Stefanelli. Fault Tolerance Through Re-
conguration in VLSI and WSI Arrays. The MIT Press, Cambridge, MA,
1989.

[12] M. Nicolaidis. ”Future Trends in Online Testing: a New VLSI Design
Paradigm?”. IEEE Design and Test of Computers, Vol.15, No.4, 1998, p.
15.

[13] S. R. Park, W. Burleson. ”Configuration Cloning: Exploiting Regularity
in Dynamic DSP Architectures”. Proc. ACM/SIGDA International Sym-
posium on Field Programmable Gate Arrays (FPGA’99), Monterey, CA,
February 1999, pp. 81-89.

[14] H. Pearson. The Regeneration Gap. Nature, Vol.414, 2001, p.388.
[15] R. F. Service. ”Organic Molecule Rewires Chip Design”. Science,

Vol.285, No.5426, 16 July 1999, pp. 313-315.
[16] G. Tempesti, D. Mange, A. Stauffer. ”A Robust Multiplexer-Based

FPGA Inspired by Biological Systems”. Journal of Systems Architecture:
Special Issue on Dependable Parallel Computer Systems, Vol. 43, No.
10, 1997.

[17] G. Tempesti, C. Teuscher. ”Biology Goes Digital”. Xcell Journal, No.47,
Fall 2003, pp. 40-45.

[18] A.M. Tyrrell, E. Sanchez, D. Floreano, G. Tempesti, D. Mange, J.-M.
Moreno, J. Rosenberg, A. Villa. ”POEtic Tissue: An Integrated Archi-
tecture for Bio-Inspired Hardware”. Proc. 5th Int. Conf. on Evolvable
Systems: From Biology to Hardware (ICES ’03), LNCS 2606, Springer-
Verlag, Berlin, 2003, pp.129-140.

[19] J. von Neumann. The Theory of Self-Reproducing Automata. A. W.
Burks, ed. University of Illinois Press, Urbana, IL, 1966.

[20] G. D. Watkins. ”Novel Electronic Circuitry”, Predictive Paper Reprint.
Proceedings of the IEEE, Vol.86, No.11, November 1998, p. 2383.

[21] L. Wolpert. The Triumph of the Embryo. Oxford University Press, New
York, 1991.

[22] Y. Zorian. ”Testing the Monster Chip”. IEEE Spectrum, Vol. 36, No. 7,
July 1999, pp. 54-60.

[23] ”A D&T Roundtable: Online Test”. IEEE Design and Test of Computers,
Vol. 16, No. 1, January-March 1999, pp. 80-86.

Proceedings of the Seventh International Workshop on Computer Architecture for Machine Perception (CAMP’05)

0-7695-2255-6/05 $20.00 © 2005 IEEE

