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Ralph Hoffmann

School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL)

EPFL-IC-ISIM-LSL, INN Ecublens, Station 14, CH-1015 Lausanne, Switzerland
Email: Gianluca.Tempesti@epfl.ch

Abstract

The structure and operation of multi-cellular organisms
relies, among other things, on the specialization of the cells’
physical structure to a finite set of specific operations. If we
wish to make the analogy between a biological cell and a
digital processor, we should note that nature’s approach to
parallel processing is subtly different from conventional von
Neumann architectures or even from conventional parallel
processing approaches, where specialization is obtained by
adapting software to a fixed hardware structure.

In this article we will present the outline of a novel pro-
cessor architecture based on the Move or TTA (Transport-
Triggered Architecture) approach. The features of such
architectures allow them to implement systems that more
closely resemble, within the limitations imposed by the
capabilities of conventional silicon, the general modus
operandi of multi-cellular organisms.

1. Introduction

One of the main motivations for the development of
hardware-based bio-inspired systems is the astounding level
of complexity achieved by biological organisms, a com-
plexity far beyond that of even the latest silicon-based cir-
cuit. The promise of next-generation technologies [4][6][8]
lies in their ability to work at the same molecular level, with
comparable component densities, as biological systems.

Among the many questions open for these technologies
is how to exploit this immense wealth of hardware. The
study of how biology, and notably multi-cellular organisms,
have successfully solved this issue is a possible avenue for
finding approaches that could potentially be applied to these
circuits.

Of particular interest in this context is the biological pro-
cess of ontogenesis, whereby molecules self-assemble into

cells and cells self-assemble into complete organisms, ac-
cording to a (very compact) set of instructions contained in
the genome. A possible analogy between biological sys-
tems and electronics is to compare a cell to a digital proces-
sor, implying a correspondence between an organism and
a massively parallel multi-processor system. This analogy
holds in several respects, but it should be noted that nature’s
approach to parallel processing is subtly different from con-
ventional von Neumann architectures or even from conven-
tional parallel processing approaches, where specialization
is obtained by adapting software to a fixed hardware struc-
ture.

Current technology is just barely able to provide an ac-
ceptable solution to this requirement: by using reconfig-
urable logic circuits (FPGAs), we have shown [10] that it
is possible overcome the rigidity of silicon and adapt (at a
price) the functional structure of our systems to a given ap-
plication. However, the realization of application-specific
processor architectures that can efficiently exploit the adap-
tive features of this approach remains an open problem.

Finding an efficient solution to this issue is a fundamen-
tal step in the development of a complete environment for
the design of our bio-inspired system. This environment,
at the core of our new project, will allow us to integrate in
our approach the other axes of bio-inspiration (learning and
evolution) in a context which bears a relatively close resem-
blance to the biological context in which they occur.

This article describes the first results of a new project
that, building on the bases provided by the Embryonics [10]
and POEtic [25] projects, will define a processor architec-
ture specifically conceived for the realization of this kind
of bio-inspired systems. In this paper, we will try to iden-
tify some of the requirements of an ontogenetic processor
architecture and present the outline of a novel architecture
that represents an effort towards the designs of systems that
more closely resemble, within the limitations imposed by
the capabilities of conventional silicon, the general modus
operandi of multi-cellular organisms.
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2. Background

Many different approaches can be used to draw inspira-
tion from nature in the design of electronic systems. Even
within the much more restricted area of ontogenetic hard-
ware (that is, hardware inspired by the development of
multi-cellular organisms), several valid approaches have
been studied (for a partial review of such systems, see [21]).

Within the Embryonics project [10], aimed at transpos-
ing into silicon some of the mechanisms and properties of
involved in the development of complex organisms, we have
been studying the application of biological ontogenesis to
the design of digital hardware for several years. Among
what we feel are our main contributions to the field is a self-
contained representation of a mapping between the world of
multi-cellular organisms in biology and the world of digital
hardware systems (Fig. 1), based on 4 levels of complexity,
ranging from the population of organisms to the molecule.
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Figure 1. The four hierarchical levels of com-
plexity of the Embryonics project

Within this mapping, we define an artificial organism as
a parallel array of cells, where each cell is a simple proces-
sor that contains the description of the operation of every
other cell in the organism in the form of a program (the
genome). The redundancy inherent in this approach is com-
pensated by the added capabilities of the system, such as
growth [11] and self-repair [22].

The operation of multi-cellular organisms relies, among
other things, on the specialization of the cells to a finite
set of specific operations, implying that the cells’ physi-
cal structure is adapted to its function (e.g., a skin cell is
physically different from a liver cell). Structural differences
notwithstanding, the same program (genome) controls the
operation of all cells. To maintain the analogy with digital
processors, we must achieve a similar degree of adaptation.

A first answer to this issue was to redefine our cells
as reconfigurable processing elements, realized by pro-
grammable logic circuits and structurally adapted to the ap-
plication to be implemented. For a given application, all
cells are structurally identical and contain the same program
(and can thus be seen as stem cells [13]), but different parts
of the program and of the structure are activated depending
on the cell’s position, implementing specialization.

In 2001, we launched, with the universities of York,
Barcelona (UPC), Lausanne, and Glasgow, a project called
”Reconfigurable POEtic Tissue” [25] funded by the Euro-
pean Community. This project aims at defining a novel pro-
grammable circuit specifically designed for the implemen-
tation of systems inspired by all three axes of bio-inspiration
in digital hardware [17] (Phylogenesis or evolution, Onto-
genesis or growth, Epigenesis or learning) and thus at pro-
viding an efficient molecular level for our systems.

Among the contributions of the POEtic project, two are
particularly relevant for the subject of this article. The first
is a definition of the general structure of a processor for bio-
inspired systems (Fig. 2). Such a processor can be seen as
a three-layer structure, where each layer is dedicated to the
implementation of one of the axes of bio-inspiration. The
bottom layer, or genotype layer, stores the genetic infor-
mation of the cell (the genome). In this layer, the genetic
operations associated with evolutionary approaches can be
easily implemented, with the aid of an on-chip microcon-
troller. The middle layer, or mapping layer, implements
developmental algorithms to realize processes analogous to
ontogenetic growth. The top layer, or phenotype layer, is
used for the actual execution of the application. In the case
of a POE system, the applications to be executed are based
essentially on neural networks, but in theory the architecture
is versatile enough to be used for applications that are not
directly bio-inspired (in fact, the structure can be adapted to
implement any combination of the POE axes).

The second contribution is more directly technological:
by implementing in the circuit a dynamic routing network
[23], it becomes unnecessary to explicitly define the con-
nections between cells. Communication channels are set up
dynamically at runtime using an address-based mechanism:
a channel can be created (or destroyed) during the operation
of the circuit by setting an address register to some value
(stored in memory or computed by the cell) and launching
the routing process. This (relatively) simple mechanism has
major consequences for the implementation of ontogenetic
processes, since it allows cells to be created and connected
to the rest of the network (or destroyed and removed from
the network) at any time during the circuit’s operation and
anywhere within the circuit’s surface. The impact of these
features for growth and self-repair should be obvious and,
in defining our ontogenetic architectures, we shall assume
the availability of a dynamic routing mechanism.
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Figure 2. POEtic systems rely on a three-layer structure, which is then mapped onto the reconfig-
urable logic of the POEtic tissue.

3. Ontogenetic Processor Architectures

Exploiting the results of the projects mentioned above,
we have begun to address some of the issues related to
the implementation of the cellular level of our systems by
defining some of the practical requirements of ontogenetic
applications.

We found that, in fact, it is not simple to identify appli-
cations that can exploit the features of an ontogenetic ap-
proach on conventional silicon. A developmental process
is likely to become a necessity for the next generation of
molecular-scale circuits (and indeed many of the issues we
address concern this kind of circuits), but today’s technol-
ogy remains at a level of complexity that can be handled by
more conventional design approaches. However, there ex-
ist some families of applications where ontogenesis can be
useful today (see [21] for a more complete review).

A first set of applications can exploit structural adapta-
tion to respond to environmental stimuli that cannot be fore-
seen at design time. Typically, these applications, which
self-organize around external stimuli, correspond to other
kinds of bio-inspired approaches, such as neural networks
[26] or robotics [1], but the approach can be extended to ap-
plications where the circuit’s function is determined by the
user at runtime (e.g., custom graphic or sound filters [18]).

A noteworthy special case in this context are systems
that exploit developmental processes for their capability to
represent structural information in a compact form. This
compactness is a major advantage when applying evolution-
ary approaches to hardware design. In this case, the fitness
of the individuals can be seen as the external input around
which the system is structured and the final individual can-
not, by definition, be determined at design time.

A second, more general set of applications (not suffi-
ciently exploited in the context of bio-inspired systems)
could use development for the creation of massively parallel

arrays of reconfigurable processors. The (relative) decline
of massively multi-processor systems is usually explained
by the difficulty of exploiting the parallelism inherent in
many algorithms. In turn, it could be argued that at least
part of this complexity lies in the implementation of these
algorithms, usually written in a high-level language with a
general-purpose instruction set.

A well-known technique to simplify the realization of
algorithms on a massively parallel system is the use of
application-specific processors: if the processing elements
in the system are designed to execute a single application
(or set of applications), the instruction set of the processor
can be targeted to the required operations, leading to pro-
grams that are much simpler than those written for general-
purpose processors. This approach can simplify the task of
programming parallel systems by moving some of the soft-
ware’s complexity to the hardware.

The kind of ontogenetic systems we have been working
on are ideally suited for this kind of approach: not only
the processing elements are fully configurable (and can thus
be made application-specific), but our developmental mech-
anisms allow the inter-processor communication network
to adapt itself at runtime, letting the system self-organize
around the data flow.

As an important special case of this kind of systems, we
shall mention fault-tolerant processor arrays. The possibil-
ity of operating in the presence of hardware faults is not
only a key feature of molecular-level computing [7], but
also increasingly important for silicon-based circuits (error
rates increase with the shrink in transistor size). In the Em-
bryonics project we have been concentrating on a specific
approach to fault tolerance: on-line self-test and self-repair.
In this approach, the system must be able not only to de-
tect that a fault has occurred in the hardware substrate, but
also to self-repair (through reconfiguration) and to resume
operation without losing its current state of operation.
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This kind of fault tolerance is normally considered pro-
hibitively expensive for commercial purposes because of its
inherent overhead. However, ontogenetic systems are ide-
ally suited for this kind of approach, as many of the mecha-
nisms involved in the reconfiguration of the system follow-
ing the detection of a fault are very similar to those required
for the growth of a system. This property is an immediate
consequence of the biological inspiration of our systems: in
nature, self-repair (e.g., cicatrization) relies on the creation
of new cells to replace those damaged by an illness or a
wound, and the cellular division involved in this process is
very similar to that used during the growth of the organism.

4. A MOVE Architecture for Bio-Inspired Sys-
tems

The requirements of our bio-inspired approach imply
then an architecture that is substantially different from con-
ventional general-purpose processor architectures: it must
be possible to adapt the structure of the processors to the
application to exploit the programmability of application-
specific systems and it must be possible to adapt the topol-
ogy of the system to the application to take advantage of the
features of the ontogenetic approach.

To achieve this kind of adaptation within an array of
processors, we exploited a relatively little-known approach,
known as the Move or TTA (Transport-Triggered Architec-
ture) paradigm [2][3][20], originally developed for the de-
sign of application-specific dataflow processors (i.e., pro-
cessors where the instructions define the flow of data, rather
than the operation to be executed).

4.1. The TTA Paradigm

In many respects, the overall structure of a TTA-based
system is fairly conventional (which is an advantage as far
as system design is concerned): data and instructions can be
fetched to the processor from main memory using standard
mechanisms (caches, memory management units, etc.) and
are decoded within the processor much more simply than
in conventional processors. The basic differences lay in the
architecture of the processor itself, and hence in the instruc-
tion set.

Rather than being structured, as is usual, around a more
or less serial pipeline, a Move processor (Fig. 3) relies on a
set of functional units (FUs) connected together by a trans-
port layer. All computation is carried out by the functional
units (examples of such units can be adders, multipliers,
register files, etc.) and the role of the instructions is simply
to move data to and from the FUs in the order required to
implement the desired operations. Since all the functional
units are uniformly accessed through input and output reg-
isters, only one instruction is needed: move.

TTA move instructions trigger operations which, in the
simplest case, correspond to normal RISC instructions. So,
for example, to add two numbers the processor would use
a functional unit that implements the add operation, move
one operand into the first input register of the unit, move
the other operand into the second input, and move the result
from the output register to the unit that needs it.

The Move approach, in and of itself, does not imply high
performance: a simple addition, in our example, requires
three move instructions. Its strength lies in its modular-
ity: the architecture handles the functional units as ”black
boxes”, without any inherent knowledge of their function-
ality. This property implies that the internal architecture of
the processor can be described as a memory map which as-
sociates the different possible operations with the address
of the corresponding functional units.

This seemingly anodyne aspect of the architecture hides
in reality its most powerful feature, allowing the structure of
the processors to be adapted to the application by specializ-
ing the instruction set (i.e., the functional units) to the ap-
plication without changing the overall structure of the pro-
cessor (decode unit, busses, etc.) and the syntax of the as-
sembly language (based on the single instruction move) .

In essence, not only this kind of processor can be struc-
turally adapted to the task it has to execute, but this adapta-
tion can be implemented with relatively little effort. Perhaps
even more importantly, it becomes possible to integrate the
structure of the processor into an automatic design flow: as
the elements of the processor surrounding the functional
units remain unchanged, these units can, in principle, be
selected for a specific application (for example, from a ded-
icated library) and a custom processor can be automatically
constructed to meet the application’s demands. An impor-
tant part of the work presented in this article was aimed at
designing an implementation of the TTA architecture capa-
ble of supporting this kind of automated assembly.

Moreover, the communication units CU, used to set up
connections between processors in an array, can be handled
exactly in the same way as a functional unit (Fig. 3): the
address of the target cell can be moved to a dedicated in-
put register in a communication unit (CU), and the data to
a second input register. The unit can then autonomously set
up the communication channel and transmit (or receive) the
data. This key feature of the TTA approach implies that the
connection network can be arbitrarily complex, as it is han-
dled by the CUs without directly affecting the structure of
the processor itself, and opens the way to the use of complex
routing algorithms (e.g., dynamic routing networks [23])
that allow us to adapt the structure of the array to the ap-
plication. As we will see, the prototype described in this
article does not exploit this feature, but work is ongoing to
implement more complex connection schemes such as those
needed, for example, by artificial neural networks.
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Figure 3. A MOVE processor consists of a set of functional and communication units tied together
by one or more data busses.

4.2. Biological Inspiration in a MOVE Processor

In the past years, we have consistently upheld the view
that the computing structure that most closely resembles
a biological cell is an application-specific processor. Sev-
eral considerations contributed to this argument, including
the possible analogy between the genome and a computer
program (where even the more complex programming ab-
stractions such as conditional jumps seem to have a parallel
in the biological world) and the versatility inherent in pro-
grammable structures (which finds a parallel in the cellular
differentiation mechanism).

These, and many other, loose similarities encourage us
in our approach. Nevertheless, it is fairly obvious that a
conventional von Neumann processor architecture does not
fully meet the requirements of a bio-inspired approach. In
selecting and adapting the TTA paradigm for the implemen-
tation of our systems, we believe that we have introduced
some very important features that will become extremely
useful for the implementation of systems inspired by all
three axes of bio-inspiration.

Along the phylogenetic (evolutionary) axis, the features
of Move process open several extremely interesting avenues
of exploration. First, and more general, the possibility of
defining functional and communication units tailored to the
application can greatly reduce code size. For example, we
have recently realized a multi-processor implementation of
the JPEG algorithm, for which we defined a functional unit
that directly executes a discrete cosine transform, greatly
reducing the number of instructions required for JPEG en-
coding. This reduction is by itself an advantage for evo-
lutionary processes that want to evolve code for this kind
of processors. Moreover, the partitioning of this code into
threads of execution (loosely equivalent to genes) to be han-
dled by the processors within the array naturally defines a
meaningful block size for evolutionary approaches and is a
natural target for morphogenetic approaches [14][16] that
couple evolution and growth.

In addition, the features of TTA architectures introduce
novel, unexplored areas where evolutionary algorithms can
become extremely useful tools. For example, we are inves-
tigating the use of such algorithms early in the processors’
design flow, notably to explore the space of possible func-
tional units for a given application. In fact, it is not simple,
even for an experienced engineer, to identify sets of instruc-
tions that could be efficiently implemented by a dedicated
functional unit. Early experiments using genetic algorithms
to search for useful units are providing encouraging results.

On the ontogenetic (developmental) axis, the advantages
of the Move architecture are more subtle, but nevertheless
extremely interesting. For example, the small size of the
code is an invaluable asset in the implementation of growth
for complex systems, as it lowers the cost associated with
the presence of the code for the entire system (the artifi-
cial genome) in each processor. Also, the possibility to cus-
tomize the communication units simplifies the implementa-
tion of complex communication systems able to adapt the
system to the environment, such as, for example, gradient-
based systems that exploit on-line evolution [14][16]. In
general, growth, seen in the context of the ontogenetic ap-
plications we have identified, requires the ability to imple-
ment cellular differentiation rapidly and efficiently, and the
features of Move processors are ideally suited to this task.

From the fault-tolerance point of view, while the analogy
with nature needs to be left partially aside, the structure of
a Move processor is well-suited to implement self-repairing
systems from several points of view. First of all, as we men-
tioned, the compactness of the code is an advantage when
the artificial genome needs to be duplicated inside each cell
(a great advantage for reconfiguration ,as we have shown in
the past) and leaves open the possibility to sore two copies
of this information in each cell (providing the same kind of
redundancy present in natural DNA). Then, the reduction in
the size of the register file compared to a conventional archi-
tecture (a consequence of the ability to move data directly
from the output of a functional unit to the input of another)

Proceedings of the 2005 NASA/DoD Conference of Evolution Hardware (EH’05) 
0-7695-2399-4/05 $ 20.00 IEEE



simplifies the recovery of the processor’s state when on-line
self-repair is required. Finally, the structure of the processor
itself lends itself well to the implementation of self-testing
strategies, a necessary preamble for self-repair.

The advantages of the TTA approach for the epigenetic
(learning) axis are much more immediate and stem from the
observation that communication are handled just like func-
tional units and can be adapted to the application in the same
way. What this implies, in turn, is that it is easy to change
the connectivity within the array of processors, the most
important feature in a hardware neural network. Without
changing the programming of the processor, the connection
units can be adapted to implement different connection pat-
terns, ranging from simple local communication to mech-
anisms that exploit the features of the underlying hardware
to implement, for example, run-time reconfigurable connec-
tions [15]. The same program can then exploit a wide vari-
ety of transfer functions and communication patterns. Cou-
pled with a library of functional and communication units,
this approach can then allow the extremely rapid prototyp-
ing of novel networks and learning algorithms.

From a structural point of view, independently from the
axes, some interesting analogies can also be made. For ex-
ample, an often criticized aspect of the processor/cell anal-
ogy is the crucial difference between a (complex) instruc-
tion in a computer program and a (simple) codon in the
genome. A conventional instruction, in fact, uses 32 or 64
bits to code not only the place where the data have to be
retrieved and stored, but also the operation to perform. The
role of a codon is more simply (very loosely speaking) to
activate a protein that in turn starts a chain of reactions in-
volving the structural elements of the cell.

In this sense, the TTA approach (being a data-flow archi-
tecture) edges closer to biology be defining an instruction
as a set of relatively few bits that activate different parts of
the processor depending on the operation to be executed.
The approach has the added benefit of considerably reduc-
ing the complexity of the decoding logic (see, for example,
the fetch unit of our prototype in Fig. 4) and opens the way
to interesting possibilities. For example, since the trans-
port layer of the processor can be extended to handle sev-
eral instructions in parallel, it becomes possible to realize
processors with multiple decode units, allowing the artifi-
cial genome to be accessed in parallel in different places, as
is the case for the natural genome.

In the next section we will analyze some of the technical
details of our processors through a description of the pro-
totype system we developed to test the feasibility of many
of the basic concepts we have described. While no spe-
cific bio-inspired mechanism is present in the prototype at
this stage, the implementation has been developed so as to
easily integrate such mechanisms (e.g., growth and learning
processes) in the next phase of our project.

5. A Prototype System

For the implementation of ontogenetic systems, one of
the key features of a TTA processor is therefore the pos-
sibility to easily parametrize its structure. The fetch and
decode subsystems, the transport layer (i.e., the busses that
implement the datapath) and the functional units can each
be modified almost independently to fit the application.

To test the flexibility of this approach, we realized a pro-
totype to experiment with a possible implementation for
each of these subsystems. Our implementation choices rep-
resent a fixed compromise between performance and size,
but we designed the system so that the specific parameters
used can be very easily adapted to shift the balance.

5.1. Fetch and Decode

The processor fetch and decode cycle is relatively stan-
dard: the code to be executed is stored locally in a small
memory and at every clock cycle the instruction pointed by
the program counter (PC) is loaded and decoded. According
to the TTA approach, there exists only a single instruction
(move) with two formats:

Address → Address :

0 | DDDDDDDD
︸ ︷︷ ︸

8-bit dest.

| SSSSSSSS
︸ ︷︷ ︸

8-bit source

0 (1)

Immediate → Address :

1 | DDDDDDDD
︸ ︷︷ ︸

8-bit dest.

| IIIIIIIII
︸ ︷︷ ︸

9-bit imm. value

(2)

As a test of the parametrization capabilities of the ap-
proach, we adopted a VLIW (Very Long Instruction Word)
encoding for our instructions, allowing our processor to ex-
ecute two move instructions in parallel. Every 36-bit in-
struction word can then contain up to two of the above
instructions. This parameter represents a compromise be-
tween program size and instruction level parallelism (ILP).

After a short decoding phase where eventual immedi-
ate values are extracted from the instruction, the Fetch Unit
(Fig. 4) sends the source and destination addresses of the
registers to the functional units through the transport layer.
By permanently scanning the busses, the functional units
can then know if they are involved the operation either as a
source or a destination for the data transfer.

As each address in the instruction uniquely identifies an
I/O register of a functional unit, the format of the instruc-
tions imposes some upper limits on the size of the processor
(in this case, an instruction can address up to 256 source or
destination registers). However, the size of the instructions,
and hence the size of the processor, can be altered easily
since the decode logic is extremely simple.
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Figure 4. Layout of the Fetch Unit

5.2. The Transport Layer

In our implementation, we opted for a shared-bus topol-
ogy for the transport layer: for each of the two instructions
encoded in a word, three separate busses (one each for the
8-bit source and destination addresses and one for the 32-bit
datum being moved) connect all the functional units of the
processor.

This choice is more a matter of convenience that any-
thing else: as the majority of common instructions require
two operands, it is usually simple to find two move instruc-
tions that can be executed in parallel. An analysis of trade-
off between complexity and performance is one of the next
steps of the project and one where some of the hints pro-
vided by biological systems could become useful.

5.3. The Functional Units

In the Move paradigm, the functional units define the in-
struction set of the processor by implementing the opera-
tions required by the application and by acting as sources
or destinations of data displacements. This approach also
implies that the instruction set can be easily modified by
adding or removing functional units.

To implement this functionality, we have developed a
common bus interface, used by every functional unit to con-
nect to the transport layer. This interface lets heterogeneous
components be accessed uniformly and allows the proces-
sor to be assembled using a library of pre-defined functional
units (written in VHDL). We have then developed a small
set of basic FUs, separated in three main classes:

1. Computational Units
This class contains the classical arithmetic and logic
operations found in a conventional processor. To this
class also belong most of the application-dependent
functional units that can be used to customize the pro-
cessor. In our prototype, we included the basic opera-
tions: add, sub, multiply, shift, and some logical oper-
ations.

2. Operational Units
This class contains the units required to control the
processor, such as a register file containing a param-
eterizable number of general-purpose registers (eight
32-bit registers in our prototype), a condition unit, used
for branching, offering several comparison schemes
(the result of the comparison can then be moved to the
fetch unit to serve as a condition for a jump), and a data
memory, which corresponds to the data cache and to
the data memory management unit and offers various
addressing modes such as stack or auto-incremented
addressing (a 512x32-bit memory in the prototype).

3. I/O Units
This class is used to implement the network that con-
nects the processors to each other. In our prototype, the
I/O units are 32-bit registers used to implement a sim-
ple shared-bus topology that connects all processors in
the system. However, as in the TTA approach outside
communication is handled as a standard data displace-
ment (a very useful feature of this kind of processors),
these units can become arbitrarily complex.
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5.4. Development Tools

To test the software-side implementation issues of the
TTA paradigm, we wrote an assembler and a minimal sim-
ulation environment. These tools are qualitatively interest-
ing, as we included many of the key elements required to
efficiently exploit the features of Move architectures.

With an instruction set reduced to its simplest expression
with only two variants of a single instruction, an assembler
for a Move processor does not have to handle complex in-
structions encodings. However, it should be able to handle
the increased load caused by the deliberate shift of com-
plexity from the hardware to the software layer. In fact, the
need to use only the move instruction makes programming
a TTA processor considerably more difficult than a conven-
tional one, since the level of abstraction usually provided by
standard assembly languages is missing.

To overcome this problem, we have designed an assem-
bler that offers an extendable set of macro-instructions used
to define a ”meta-language” can be considered as an ex-
tension of the basic Move language that permits to express
programming concepts more intuitively. In practice, we in-
troduce a new level of abstraction whereby sets of move
instructions are grouped to form the instructions of the
new meta-language (e.g., the add macro-instruction corre-
sponds to a set of three move instructions).

Using this approach, we defined a meta-language that
contains all of the conventional RISC instructions (includ-
ing abstractions such as conditional jumps, load and store
instructions, or function calls). The assembler can use these
macro-instructions in place of the primitive move instruc-
tions and thus allows out TTA processor to be programmed
not unlike a conventional RISC processor.

The assembler itself has been coded using the JavaCC
parser generator [19] with the JJTree extension for syntactic
tree marching using the Visitor design pattern described by
Gamma et al. in [5] and Palsberg in [12].

5.5. The Memory Map

As we mentioned, the Move paradigm implies that ev-
ery FU corresponds to an address range in a memory map.
To design application-dependent implementations, the ad-
dress map of the functional units is defined in a file which is
accessed at assembly time. This file makes the relation be-
tween the physical address space and a set of symbolic ad-
dress names used in assembly code. As a consequence, the
physical units (i.e., the VHDL code) are separate from their
software representation, implying that the assembled code
is compatible across implementations that share a common
subset of FUs.

Defining the instruction set in a file also simplifies the
specialization of TTA processors: if an algorithm would

benefit from the use of a specific hardware function (e.g., a
FFT), a custom FU can be designed and added to the mem-
ory map, where the assembler could directly exploit it.

5.6. Implementation

To verify the implementation of our prototype, we in-
stantiated into a Xilinx Virtex II-3000 FPGA a matrix of
twelve processors running at approximately 50 MHz (Fig.
5). Each processor (code-named Ulysse) is independent
from the others and runs its own program, uploaded dynam-
ically from the host PC. As we mentioned, the interconnec-
tion network is very basic (a shared-bus architecture where
all processors and the host PC, who initiates all transfers,
are connected by a single bus) but sufficient for the purpose.
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Figure 5. Overview of the prototype system.

To test the functionality of the processors, we built a
demonstration application that uses the twelve processors
to compute at the same time the factorial of a number in-
put by the user and a graphical plasma effect. The latter
is computed by combining various trigonometric functions
taking the time and position of each considered picture ele-
ment as parameters. The result is then displayed on the host
screen in a Java GUI where the user can input values for the
factorial program and visualize the real-time plasma effect.

As we mentioned, the goal of this prototype was to vali-
date some of the key features of the processor, in view of
their exploitation to implement bio-inspired systems. In
particular, we tested the possibility to adapt the structure of
the processors to the target application. The results are en-
couraging, as we were able to define a methodology to auto-
matically add arbitrarily complex functional units to obtain
a drastic reduction in code size, an interesting property that
will provide a valuable field of application for evolutionary
mechanisms. Moreover, among the tools that were not de-
scribed in this article, we successfully implemented a mon-
itoring system (currently used for debugging purposes) that
could become the basis for the realization of the ontogenetic
mechanisms involved in the growth of complex systems and
in the reconfiguration needed to achieve fault tolerance.
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6. Conclusions and Future Work

The implementation of bio-inspired systems in silicon in
our approach amounts to the creation of massively paral-
lel arrays of application-specific processors with properties,
such as growth and self-repair, typical of biological entities.

Two practical considerations stand in the way of such
an implementation. The first is technological: current re-
configurable circuit densities do not allow the realization
of massively parallel systems. However, improvements
in silicon technology and, eventually, the development of
molecular-level circuits should not only allow such systems
to be built, but even require some of their features.

The second consideration concerns the implementation
of ontogenetic systems: there exists today no universal ar-
chitecture for application-specific processors that can be
used to implement effectively our approach. The proces-
sor architecture presented in this article, coupled with some
of the bio-inspired concepts we have developed in earlier
projects (a genome in every cell, growth algorithms that de-
fine system topology, dynamic routing networks, etc.), re-
sponds to many of the necessary criteria for the realization
of ontogenetic systems and represents a step forward in the
direction of systems that more closely resemble the organi-
zation and operation of multi-cellular systems in nature.

Future work within the project calls for two main axes
of research. On one axis, we will pursue the development
of the processor by investigating in detail the different im-
plementation parameters for the processor and by setting
up a complete design environment to simplify its use. In
this context, we have recently completed an implementa-
tion of the JPEG algorithm on an array of processors, vali-
dating our approach on a real-world application. On another
axis, we will integrate to the architecture the most interest-
ing features of bio-inspired systems, introducing high-level
processes such as growth, learning, and fault-tolerance.

Finally, by allowing the creation of application-specific
functional units handled as ”black boxes”, a Move architec-
ture can potentially be the object of an automated design
flow, in which the functional units could be selected from
pre-defined libraries and the architecture used to provide a
framework in which the units are inserted. This approach,
in addition to simplifying the design of bio-inspired proces-
sors also provides interesting opportunities for an efficient
application of evolutionary mechanisms.

The features of Move processors, in fact, suggest several
opportunities for the use of evolutionary techniques in the
design of complex systems. While the evolution of an entire
system consisting of the hardware (the array of processors)
and of the software to implement the desired application re-
mains beyond the capabilities of evolutionary algorithms,
the TTA approach allows the problem to be easily parti-
tioned into tractable pieces, opening several possibilities:

• While the evolution of circuits using FPGAs has
spawned considerable literature (see [24] or [9]), no
reasonable answer has been found for the scalability of
such evolution. By partitioning the computational part
of the processors into small, often combinational func-
tional units, the Move processor represents an ideal
platform for the application of evolution to digital cir-
cuits. In fact, while evolving an entire processor is not
feasible, the evolution of single functional units could
well be achievable given current computational power.

• An interesting design issue that has not, to the best of
our knowledge, been explored in this precise context
through evolutionary approaches is mapping applica-
tions to connection networks, that is, finding an effi-
cient network to connect processors for a given ap-
plication. A problem known to be NP-complete, it
could become a useful target for evolution, particu-
larly if the search space can be reduced. Since they
handle communication units in the same way as func-
tional ones, our processors can exploit libraries of pre-
defined components that can simplify the definition of
new communication networks and at the same time re-
duce the search space by limiting possible networks to
hardware-friendly implementations.

• As we already mentioned, the TTA approach consid-
erably reduces code size and thus increases the chance
that a given problem could be evolvable. While this
consideration is immediately applicable to assembly-
level code, there exists an interesting opportunity to
apply evolutionary algorithm at a higher level in the
compiler hierarchy. More in detail, Move processors
require that the code be transformed from its initial for-
mat (a high-level language) into an intermediate data-
flow notation. This notation is in many respects closer
to assembly code than to the initial high-level language
and already benefits from the code shrink associated
with the TTA approach while retaining some of the
structural features of high-level languages.

• A very promising aspect of the TTA design flow where
evolution could play an interesting flow is the selec-
tion of the appropriate functional units for a given ap-
plication. This mapping, a key hardware/software co-
design issue, is generally quite complex and because
of that has been exploited only in very limited scope
where evolution is concerned [18]. The ”plug-and-
play” use of functional units in Move processors con-
siderably simplifies this differentiation process, since it
reduces the problem to finding a mapping between the
code and the units provided in the libraries. Evolution-
ary approaches can then be integrated directly within
the design flow of our systems, possibly exploiting
once again the intermediate data-flow representation.
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We have begun investigating some of this areas. The pre-
liminary results are very encouraging and will be the subject
of future publications.
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