
A hardware-software design framework for
distributed cellular computing

Pierre-André Mudry1, Julien Ruffin, Michel Ganguin, and Gianluca Tempesti2

1 École Polytechnique Fédérale de Lausanne (EPFL),
Biologically Inspired Robotics Group (BIRG)
Station 14, CH - 1015 Lausanne, Switzerland

2 University of York, Department of Electronics,
Heslington, York YO10 5DD, England

Abstract. In this article, we describe a novel hardware-software de-
sign framework for prototyping cellular architectures in hardware. Based
on an extensible platform of about 200 FPGAs, configured as a net-
worked structure of processors, the hardware part of this computing
framework is backed by an extensible library of software components
that provides primitives for efficient inter-processor communication and
distributed computation. This dual software–hardware approach allows
a very quick exploration of different ways to solve computational prob-
lems using bio-inspired techniques. To demonstrate the validity of the
method, we present an example of how a traditional parallel system such
as a cellular automaton can be modelled and run with this perspective.
In addition, we also show that the flexibility of our approach allows not
only cellular automata but any computation to be easily implemented
on a cellular substrate.

1 Introduction and motivations

The application of bio-inspired mechanisms such as evolution, growth or self-
repair in hardware requires resources (fault-detection logic, self-replication mech-
anisms, . . .) that are normally not available in off-the-shelf circuits (typically,
FPGAs). For these reasons, over the past several years a number of dedicated
hardware devices have been developed, e.g. [6][12][14][15].

These devices have been successfully used to explore various bio-inspired
paradigms, but in general they represent experimental platforms that are very
difficult to program and require an in-depth understanding of the underlying
hardware. As a consequence, these platforms are accessible only to a limited
class of programmers who are well-versed in hardware description languages
(such as VHDL) and who are willing to invest considerable time in learning how
to design hardware for a specific, often ill-documented device.

Notwithstanding these issues, hardware remains an interesting option in this
research domain as it can greatly accelerate some operations and because it
allows a direct interaction with the environment. It is however undeniable that
the difficulty of efficiently programming hardware platforms has prevented their

use for complex real-world applications. In turn, the fact that in experiments
have been mostly limited to simple demonstrators has hindered the widespread
acceptance of the bio-inspired techniques they were meant to illustrate.

While, by their very nature, bio-inspired systems rely on non-conventional
mechanisms, in the majority of cases they bear some degree of similarity to
networks of computational nodes, a structure that is frequently used when deal-
ing with parallel computing systems. In these systems, a software abstraction is
often used to hide the complexity and details of the underlying hardware and
simplify programming. It is therefore licit to wonder if such an approach can be
applied to bio-inspired hardware systems as well, to allow researchers to rapidly
prototype new ideas and, more importantly, to cope with the complexity of tens
or hundreds of parallel computational elements.

In this article, we describe a set of tools that attempt to tackle this problem by
providing a complete hardware and software design environment for distributed
cellular architectures. More precisely, we will present a hardware platform that
is able to support the necessary networking and computing elements that can
then form what we call a scalable Network-Of-Chips. Built atop that hardware
system lies a software framework that provides a model of the system to simplify
its programming. Thus, it becomes possible to quickly evaluate new algorithms,
techniques and ideas in the field of bio-inspired computing but also to harvest
more easily the computing resources of hundreds of FPGAs, a number that can
be smoothly scaled to higher figures thanks to a design based on the GALS
(Globally asynchronous, locally synchronous) synchronization paradigm [4][5].

The structure of this article is as follows: in the next section, we present a
brief overview of previous work in the domain. This will lead us to the presen-
tation of the basic computational element of our system, a processor that can
easily implement the kind of mechanisms required for bio-inspired applications
but that remains sufficiently general-purpose to be compatible with conventional
compilers. In chapter 4.2 we will detail the hardware implementation of our net-
work layer before explaining, in chapter 4.3, how it is supported by the software
framework. Before concluding, we will present how the whole framework can be
used to develop a distributed cellular automaton and extended to less regular
computations.

1.1 Background

The complexity of living organisms is based on multi-cellular organization where
cells having a limited function achieve very complex behaviors by self-assembling
into specific structures and operating in parallel. By analogy, we try in our
approach to mimic this organization by replicating similar, relatively simple
computing elements that can self-organize and execute in parallel the different
parts of a given application.

To bridge the gap between programmable logic and the kind of software
tools required to implement real-world applications, we opted for processor-scale
computational elements that provide an environment for running a thread of a
distributed application. These elements also meet quite closely the requirements

2

of our bio-inspired computing approach: substantially different from conventional
computing units, these processors [13] possess some key features, described in
some detail in section 3.2, that make them well-suited to implement the cells of
our multi-cellular organisms.

On the hardware side, the platform we used for our experiment is Confetti
(for CONFigurable ElecTronic TIssue) [9]. This platform consists of a scalable
three-dimensional array of FPGAs that provides a considerable amount of com-
putational resources and greatly enhances the communication capabilities of the
hardware setup, compared to traditional solutions. As a consequence Confetti
(described in section 2) represents an ideal platform for the kind of systems
we are targeting. For instance, they allow the implementation of arbitrary con-
nection networks for inter-processor communication, an invaluable capability,
both to approximate the kind of highly-complex communication that allows bi-
ological cells to exchange information within an organism and to instantiate
self-organization algorithms, i.e., techniques that allow the system to organize
its topology according to application requirements.

On the software side, we have been developing a design flow that leads from
application code, written in C, to a complete parallel system implemented on
a hardware substrate. This design flow includes a hardware-software partitioner
[10] that helps the user determine how to optimize the processor for the appli-
cation as well as a GCC back-end to generate the code to be executed.

In the context of the design of bio-inspired hardware systems, two aspects of
these tools are particularly useful. First, they are designed in such a way that it
becomes relatively simple to introduce mechanisms such as learning, evolution,
and development to any application. Indeed, we have shown how evolution can
play an important role in the design flow [10]. The second useful feature of the
tools is that they are not, for the most part, tied to a hardware implementation:
while we use the above-mentioned hardware setup in our experiments, most of
the tools are quite general and can be applied to almost any network of compu-
tational nodes, whether they be conventional processors or dedicated elements.
This flexibility comes from a decoupling between the hardware and the soft-
ware layers, which allows the programmer to prototype bio-inspired approaches
without necessarily knowing hardware description languages and specific imple-
mentation details.

2 The Confetti hardware platform for cellular computing

The Confetti platform, presented in [9], is composed of a set of stacks of
printed-circuit boards (PCBs) that can be linked together side by side to form
computational arrays of arbitrary size. As shown in Fig. 1, each stack is itself
composed of four kinds of boards :

– The topmost layer of the stack consists of a 48x24 LED display with 18
touch-sensitive areas;

– All power supplies required by the system are handled by a second board
that also handles functions such as startup and monitoring;

3

Routing

Cell
boards

Power

Display

(a) (b)

Fig. 1. A complete stack schematic (a) and photography (b).

– The Routing board implements the communication layer of the system. Ar-
ticulated around eighteen dedicated FPGAs, the board implements a routing
network based on a mesh topology which provides inter-FPGA communica-
tion as well as communication to other routing boards;

– The Cell boards (up to eighteen per stack) represent the computational part
of the system and are composed of an FPGA and memory. Each Cell can
be directly plugged into a corresponding routing FPGA in the subjacent
Routing board.

A complete Confetti system consists of an arbitrary number of these stacks
seamlessly joined together using border connections available in the Routing
board. Connecting several stacks together potentially allows the creation of ar-
bitrarily large surfaces of programmable logic that is used, in this present work,
as a network of CPUs where both components can be reconfigured.

This hardware structure proposes an increased amount of versatility com-
pared to other platforms (for example, the BioWall [12] or the POEtic tissue
[14]), notably because its modular organization allows interchanging all the ele-
ments of the system. If this might be interesting in the perspective of debugging
and replacing faulty parts, the clear advantage of this approach resides in the
fact that the computing elements, which are plugged into the system and not
soldered on it, could also be easily replaced. This latter option is of particu-
lar interest in the larger perspective of a prototyping board for unconventional
computing: nothing prevents the replacement of the current cells with more ”ex-
otic” or non-standard units that could potentially be of interest for research in
bio-inspired mechanisms.

3 Computing architecture

The Confetti platform provides a powerful hardware substrate for the imple-
mentation of cellular systems and this section describes how it can be used to

4

implement the processing elements of our approach. Starting with the physi-
cal level, we will then examine the computational level formed by a specialized
processor and, finally, the software support as seen by the programmer.

3.1 Physical layer - The Cell board

These small PCBs host a Xilinx Spartan 3 XC3S200 FPGA coupled with
8 Mbits of SRAM memory, resources that allow the implementation of relatively
complex logic designs and, most notably, host a rather powerful processor. Of
course, the presence of the FPGA implies that the structure of the cells is com-
pletely reconfigurable, allowing the definition of application-specific processing
elements.

3.2 Computational layer - The Ulysse processor

To exploit the reconfigurability offered by the Cell board, we used the FPGA
to implement a processor that was sufficiently generic to have its code gener-
ated by a compiler whilst maintaining the necessary amount of reconfigurability
and flexibility to fulfill the different roles it could have in the context of bio-
inspiration. Notably, our approach implies that it must be possible to adapt the
structure of the processor to the application (as described in [13]). To achieve this
goal, we have exploited a little-known approach known as the Move paradigm
to implement our processor, called Ulysse.

Memory
unit

Register
file unit

Arithmetic
unit

Network
unit

Destination
Source

Data

Transport layer (3 busses)

Fetch
unit

Address= 1 Address = 2 Address = 3 Address = 4Address= 0

SRAM interface Network interface

Fig. 2. Internal structure of the Ulysse processor

Belonging to the class of transport-triggered architectures (TTA, see [3]) this
processor, rather than being structured, as is usual, around a more or less serial
pipeline, relies on a set of functional units (FUs) connected together by one or
more transport busses (see Fig. 2). All computation is carried out by the func-
tional units (examples of such units can be adders, multipliers, register files, etc.)
and the role of the instructions is simply to move data to and from the FUs in the
order required to implement the desired operations. Since all the functional units
are uniformly accessed through input and output registers, instruction decoding
is reduced to its simplest expression, as only one instruction is needed: move.
This approach, in and for itself, does not imply high performance, but several
arguments in favor of TTAs have been proposed [3][7], the most important, in

5

the context of this article, being that new instructions, can be added easily in
the form of new FUs.

This architectural flexibility is all the more valuable because the processor is
implemented in programmable logic and therefore exists as a VHDL description,
easily parametrizable (e.g., to handle different data widths) and modifiable (e.g.,
to include a variety of more or less complex functional units). In the implemen-
tation used here, for example, the Ulysse processor uses 32-bit wide data and can
be configured (by changing a simple value and re-synthesizing it) with optional
modules such as a multiplier, a divider, a hardware timer,

On the performance side, the Ulysse processor attains 60 MIPS when only
internal memory is used for data and instructions. When the external SRAM
memory is used (which is normally the case due to the limited internal mem-
ory available in the FPGA), the performance drops to about 13 MIPS because
the memory chips used imply three-cycle memory load operations and two-cycle
store operations. The implementation of caching techniques or the use of a dif-
ferent kind of memory on the Cell board would have a major impact on perfor-
mance, which in any case remains sufficient for most applications (particularly
since the execution of the application will be divided among an array of many
processors operating in parallel).

3.3 Software layer - The software model

To take into account the requirements of real-world applications, it was necessary
to be able to connect our custom processors to a conventional design flow. In
particular, because one of our objectives resides in simplifying the tool-chain
traditionally used when designing distributed cellular applications, a back-end
for the GCC compiler has been created for the Ulysse processor. This setup
provides a solid foundation supporting all the constructs of the C language and
allows to run, within the reasonable limits imposed by the memory size and the
hardware platform, almost any program.

Even if the size of this article does not allow a detailed description of the
structure of the GCC back-end, some aspects of its development are worth
mentioning to illustrate the difficulties introduced by the use of non-conventional
processors. In fact, because GCC was made at first for standard RISC/CISC
processors in which operations are not simple displacements, it was necessary
to tell the compiler that moves into the trigger registers had to be seen as
the operations themselves. Moreover, the fact that some registers are read-only,
such as the registers holding results of operations, also created problems because
every register is normally expected to be fully accessible by the compiler when
performing some of the optimization passes. Furthermore, due to the number
of constraints on each register in the processor, GCC has sometimes trouble
finding solutions for register allocation.

Of course, due to the complexity of porting such a compiler, a few problems
still exist today. First, some optimizations are not always possible, a situation
that limits the efficiency of the code. Secondly, neither software floating-point
operations nor the C standard library have been entirely ported yet. Still, except

6

for these limitations, the compiler is fully working and the results obtained so far
are very encouraging: they open the way to the realization of high-complexity
applications on our bio-inspired substrate.

4 The communication infrastructure

One of the main challenges in today’s hardware architectures resides in imple-
menting versatile communication capabilities that are able to provide a sufficient
bandwidth whilst remaining cost- and size-efficient, as evidenced in research on
Network-On-Chip [2] and other systems [8]. This aspect of parallel systems is
unfortunately often ignored in bio-inspired hardware approaches and is another
of the factors that prevent the implementation of complex applications. In our
case, the addition of a network layer enables data to be moved not only within
the various FUs of the processor but also outside of it to realize a complex
Network-Of-Chips of virtually unlimited size.

To accomplish this, the functions of computation and communication were
logically and physically split. Thus, we were able to conserve the whole com-
putational resources of the Cell board whilst staying very flexible for the com-
munication network in our system, implemented within the Routing board that
shall be now described.

4.1 Physical layer - The Routing board

The physical layer of the network infrastructure is built using a six-by-three
regular grid of FPGAs on the top of which the same number of Cell boards
can be plugged. The use of reconfigurable circuits at the routing level enables
the exploration of various algorithms and techniques for data transport in the
system.

As the Routing boards constitute the communication backplane of the Con-
fetti platform, connections between the different boards are also implemented
here. External connectors on the four sides of the board provide the same con-
nectivity as the links between the FPGAs: two adjacent Routing boards then
effectively represent a single uniform surface of FPGAs. This setup allows the
creation of systems consisting of several stacks that behave as a single, larger
stack (at the time of writing, six of these stacks have been built).

4.2 Transport layer - The Mercury interface

Since scalability is a premium in our architecture, no global clock is available to
the system. This implies that synchronization between the different FPGAs is
not straightforward, notably to transmit information.

Since transmission delays can be relatively long in our system, the usage of
a request-acknowledge pair as traditionally used in asynchronous transmission
would be too slow (early tests showed that the maximum bandwidth using that
technique was limited to about 50 Mbits per second). Thus, we chose to use a

7

Mercury receiver Mercury sender

clk B

dataDQ

rdy

data serial data

rcv_rdy

clk

C
lo

ck
 d

om
ai

n
A

C
lo

ck
 d

om
ai

n
B

S D0...D31

Shift reg
deserialize

Dual-clock
FIFO

clk A

DQ

Serializer
shift reg

Fig. 3. Simplified schematic of the Mercury basic units.

method that transmits the clock along with the data. The steps of a transmission
are as follows: the receiver generates an acknowledge signal when ready to get
data and the sender can then transmit the data synchronously with the clock
signal it generates, starting with a start bit that indicates the beginning of the
data. This solution allows completely unrelated clocks to be used in each clock
domain and uses only three lines per link (using the FPGA differential I/O
drivers) to implement full-duplex transmission in each direction.

This basic interface is encapsulated into a bigger unit that, on one hand,
serializes and de-serializes the data to form 32-bit words and, on the other hand,
allows to operate at different speeds thanks to dual-clock FIFOs also used to
interface to the Ulysse CPU. Thanks to this transmission module, called Mer-
cury, a bandwidth of approximately 200 Mbits per second in full-duplex was
obtained.

Flash

rdy
dta
clk

High-speed
differential lines

Cell FPGA

Routing FPGA

Ulysse
processor

Hermes
switch

Mercury interfaces

Fig. 4. Detail of one Routing FPGA and link with its Cell module.

Physically, every FPGA on the routing substrate is linked to its four cardinal
neighbors and to the Cell board above it (Fig. 4) using Mercury interfaces. This
mesh topology was selected for its modularity and scalability (it avoids long and

8

global communication lines) and because it is the kind of layout typically used in
cellular computing applications. Of course, many different types of networking
paradigms exist and could be implemented in our system (for example [11], [16]
or [1]).

To route the data between the different Mercury interfaces, we used the
switch-box element of the Hermes framework [8] in a slightly modified version
to handle serial data transmissions. Its role is to redirect packets, using the ad-
dresses embedded in the data headers, that could come from any direction to any
other direction, enabling point-to-point communication between any arbitrary
pair of Cell boards in the whole Confetti system.

4.3 Software layer - The messaging layer

Following the layered approach traditionally used in communication protocols,
we implemented on top of the Mercury physical layer a software transport layer
that manages messages. The role of this component is to handle packet transmis-
sion and reception, providing more complex communication schemes than simple
point-to-point communication. It consists of two essential parts: the first acts as
a driver for Mercury proper and provides simple send/receive functionality.
Using it, the second part implements useful operations such as broadcasting or
guaranteed-delivery packets. It also allows waiting for, then receiving, a packet
fulfilling a set of given criteria.

In practice, this layer extends Mercury data packets into its own format to
include sender, message type and sequence number information. It is worth not-
ing here that the CPU can be reprogrammed by sending a packet with a reserved
message type that is intercepted in hardware. Its payload replaces then the pre-
vious program code, enabling a very convenient and fast way to dynamically
update processor code. This feature provides not only an easy way to upload
code to a CPU from a host machine (where the code is compiled) but also allows
interesting behaviors: for instance, the API provides a function to replicate a
CPU to another position in the network and another to replicate a given CPU
across the entire grid, two examples that illustrate how the hardware-software
synergy is used in the developed framework.

5 An application example: CAFCA

In this section, we will validate our hardware–software design approach by show-
ing how a traditional cellular automaton can be modelled within our framework.
The task is not trivial because of the lack of global synchronization clocks in
the Confetti system. Typically, this absence would imply a considerable effort
on the programmer’s part to design and implement alternative synchronization
mechanisms, again requiring a strong knowledge of VHDL and of the detailed
operation of the hardware.

To prevent this limitation, we developed CAFCA (Cellular Automata Frame-
work for Cellular Architectures), a software library that runs on the Ulysse pro-
cessor and that essentially permits, thanks to the messaging layer, to virtualize

9

the fact that we are running a globally asynchronous system. This tool repre-
sents a good example of the kind of software interfaces that can allow virtually
any researcher to exploit the power of bio-inspired hardware implementations. In
fact, when using this library it becomes then possible to develop parallel appli-
cations based on the cellular automata model by writing only a few C functions
without any particular knowledge of the hardware. Because the development of
the library had to be done only once, it greatly enhances the usability of the
system.

To achieve a synchronized behavior, a step in the cellular automaton model
implemented by CAFCA consists of four phases: synchronization, inter-neighbor
state exchange, next-state computation and display. CAFCA builds upon the
messaging layer and leverages the grid topology of the underlying hardware to
provide cell synchronization and state exchange between neighbors that belong
to different clock domains. Technically speaking, this is implemented with one
of the cell playing the role of a supervisor to insure, using broadcast messages,
that every cell is at the same step.

An application that uses the framework library needs to provide only the
functions for the computation and display phases, as well as emplacements to
store local/neighbor states and their size, as shown on Fig. 5. By fully handling
synchronization and messaging issues, CAFCA enables fast development strictly
centered on the two defining characteristics of a cellular automaton – the state
variables and the state update function. As an example, the implementation
of Conway’s Game of Life in our framework takes less than 100 lines of C code
(corresponding to the user code in Fig. 5). Other examples we developed, being a
simplified version of heat distribution in an homogeneous metal or the simulation
of shallow water equations, can be coded in less than one thousand lines.

Main Loop

Initialization

state update

round start

next state

display

messaging

internal
initialization

state display

state computation

init

wait

send

CAFCAMessaging layer User code for CA

Fig. 5. Structure of an application using CAFCA. Arrows represent function calls.

10

6 Conclusions and future work

In order for bio-inspired concepts to be accepted as valuable tools for the design
and use of digital computing systems, these concepts will have to be tested and
verified on complex real-world applications. The experimental setups associated
with research in this field, however, are often of limited use in this context
because they remain either too specific or too difficult to use beyond the proof-
of-concept stage.

When examined in comparison with conventional approaches used to design
complex systems, bio-inspired design is not so much limited by the hardware
(which, on the contrary, is often quite innovative and powerful) but rather by
the lack of the kind of software tools that are at the core of any industrial-
strength digital design flow.

As an example of the type of tools that could be invaluable for research in
bio-inspired hardware, we showed in this article how the framework we have
developed can be used to provide an easy and rapid way to implement a tradi-
tional task for cellular hardware systems in the form of cellular automata. By
developing several hardware and software components, we were able to drasti-
cally reduce the non-recurrent engineering time generally implied by the usage
of intimately linked hardware and software by delegating all the complexity to
a framework which presents to the programmer a simplified, yet powerful, view
of the system. Thus, with a tool like CAFCA, every programmer that knows C
could exploit hundreds of FPGAs with just a few lines of standard code. The
development of other software libraries could, for example, take advantage of the
reconfigurability capabilities of the system to implement growth or replication
but also to realize computationally intensive functions such as video decoding
by implementing ad-hoc FUs.

This work was done in the context of the development of a complete auto-
mated software suite for bio-inspired systems generation. The task is complicated
by the dynamic operations that characterizes biological systems: the structural
adaptation implicit in processes such as development, learning, and evolution
requires reconfigurability to be exploited to an unprecedented degree. The ap-
proach we propose takes advantage of reconfigurability on several levels: at the
design level, where the VHDL description of the processors and of the network
can be manipulated through a set of automated software tools, at the system
level, where processing nodes can be spawned and killed to satisfy the needs
of the application or to respond to faults, and at the processor level, where the
processor can self-reconfigure both its executable code and its very structure (by
reconfiguring the FPGA that implements its functional units).

Our final objective is then to develop a set of design tools that will allow
researchers to exploit this reconfigurability easily and without a specific knowl-
edge of the underlying hardware in order to harness the power of bio-inspired
approaches in the context of real-world applications.

11

References

1. M. Amde, T. Felicijan, A. Efthymiou, D. Edwards, and L. Lavagno. Asynchronous
On-Chip Networks. IEE Proceedings Computers and Digital Techniques, 152(02),
March 2005.

2. T. Bjerregaard and S. Mahadevan. A survey of research and practices of Network-
on-chip. ACM Comput. Surv., 38(1):1, 2006.

3. H. Corporaal. Microprocessor Architectures: From VLIW to TTA. John Wiley &
Sons, Inc., New York, NY, USA, 1997.

4. W. J. Dally and B. Towles. Route packets, not wires: on-chip inteconnectoin
networks. In DAC ’01: Proc. 38th Conf. on Design automation, pages 684–689,
New York, NY, USA, 2001. ACM Press.

5. G. de Micheli and L. Benini. Networks on chip: A new paradigm for systems on chip
design. In DATE ’02: Proceedings of the conference on Design, automation and
test in Europe, page 418, Washington, DC, USA, 2002. IEEE Computer Society.

6. A. Greensted and A. Tyrrell. RISA: A hardware platform for evolutionary design.
In Proc. IEEE Workshop on Evolvable and Adaptive Hardware (WEAH07), pages
1–7, Honolulu, Hawaii, April 2007.

7. J. Hoogerbrugge and H. Corporaal. Transport-triggering vs. operation-triggering.
In Proc. 5th Intl. Conf. on Compiler Construction, pages 435–449, 1994.

8. F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost. HERMES: an infras-
tructure for low area overhead packet-switching networks on chip. Integrated VLSI
Journal, 38(1):69–93, 2004.

9. P.-A. Mudry, F. Vannel, G. Tempesti, and D. Mange. Confetti : A reconfigurable
hardware platform for prototyping cellular architectures. In Proc. 2007 IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS07), page 186,
Los Alamitos, CA, USA, 2007. IEEE Computer Society.

10. P.-A. Mudry, G. Zufferey, and G. Tempesti. A Dynamically Constrained Genetic
Algorithm For Hardware-software Partitioning. In Proc. of the 8th annual conf. on
Genetic and evolutionary computation GECCO’06, pages 769–776, Seattle, 2006.

11. A. Ngouanga, G. Sassatelli, L. Torres, T. Gil, A. Soares, and A. Susin. A contextual
resources use: a proof of concept through the APACHES’ platform. In Proceedings
of the 2006 IEEE Workshop on Design and Diagnostics of Electronic Circuits and
Systems (DDECS), pages 44–49, April 2006.

12. G. Tempesti, D. Mange, A. Stauffer, and C. Teuscher. The BioWall: an electronic
tissue for prototyping bio-inspired systems. In Proc. 3rd Nasa/DoD Workshop on
Evolvable Hardware. IEEE Computer Society.

13. G. Tempesti, P.-A. Mudry, and R. Hoffmann. A Move Processor for Bio-Inspired
Systems. In Proc. NASA/DoD Conf. on Evolvable Hardware (EH2005), IEEE
Computer Society Press, pages 262–271, 2005.

14. Y. Thoma, G. Tempesti, E. Sanchez, and J.-M. Moreno Arostegui. POEtic: An
electronic tissue for bio-inspired cellular applications. BioSystems, 74(1-3):191–200,
Aug.-Oct. 2004.

15. A. Upegui, Y. Thoma, E. Sanchez, A. Perez-Uribe, J. M. Moreno, and J. Madrenas.
The perplexus bio-inspired reconfigurable circuit. In Proc. 2nd NASA/ESA Conf.
on Adaptive Hardware and Systems (AHS07), pages 600–605, Washington, DC,
USA, 2007. IEEE Computer Society.

16. D. Wiklund and D. Liu. SoCBUS: Switched network on chip for hard real time
embedded systems. In IPDPS’03: Proc. 17th Intl. Symposium on Parallel and
Distributed Processing, page 78.1. IEEE Computer Society, 2003.

12

