© British Computer Society 2001

Use of Modern Processors in
Safety-Critical Applications

IAIN BATE, PHILIPPA CONMY, TIM KELLY AND JOHN MCDERMID

Department of Computer Science, University of York, Heslington, York YO10 5DD, UK
Email: iain.bate @cs.york.ac.uk

This paper investigates the implications of using modern superscalar processors in the safety-critical

domain. Firstly, a description of current certification practice and devices is given as background.

This is followed by an exposition of the certification argument for a processor when used in a safety-

critical application. Throughout the presentation of the argument two types of modern processor

are considered, commercial off-the-shelf (COTS) processors and purpose-designed bespoke devices.

This allows the elaboration of positive and negative features of processors that can be used as part
of the selection (for COTS) or design (for bespoke) process.

Received 6 November 2000; revised 13 April 2001

1. INTRODUCTION

Safety-critical systems typically use well-established, well-
understood scalar processors, such as the Motorola 680x0
range, where instructions are sequentially executed in their
original order. However, this generation of processor
is generally no longer in production or is incapable of
meeting performance requirements, leaving companies that
build safety-critical systems with limited options for new
development.

One solution to this problem is to make a lifetime buy
of the remaining processors and keep them in storage.
However, the supply could be exhausted through use in
production runs and also through storage degradation. In
addition, there are difficulties in preserving the development
environment over, say, a thirty-year life span (such longevity
is not unusual in the aerospace domain). Although this
approach is currently used in practice, it is increasingly
being called into question.

A second solution is to design and manufacture a purpose-
built processor, so that in the future the changing commercial
market does not affect the company. This solution would
necessitate the development of bespoke support tools, e.g. a
compiler.

A third solution could be to use one of the available
commercial off-the-shelf (COTS) processors. This solution
would have the benefit of COTS tools being available.
However, the drawback is that the modern processors
available are generally significantly more complex than
those currently used in critical systems.

The latter two solutions are considered in this paper in
order to determine their relative benefits and drawbacks, and
their effect on the certification argument. Although the two
types of processor would have many similar features, such
as a pipeline and cache, a COTS processor is likely to be
built for optimum average case performance. In contrast,
the bespoke processor would be designed to ease the

certification process (e.g. to ensure predictability). Typical
types of evidence required for certification are worst-
case execution time (WCET) of instructions, hardware
reliability and information on systematic design flaws in the
processor.

The purpose of this paper is two-fold: first, to describe
the processor-related safety arguments typically required as
part of system certification. Second, to illustrate the impact
of processor choice (COTS vs. bespoke) on the evidence
required to support these arguments.

The structure of the remainder of the paper is as follows.
Section 2 provides background on the factors influencing the
choice of processor in safety-critical applications. Section 3
provides an overview of the regulatory context influencing
processor use. Section 4, the main body of the paper,
presents the outline structure of the required processor
certification arguments. Finally, conclusions are presented
in Section 5.

2. CHOICE OF PROCESSOR

The principal influence on COTS processor development has
been the general-purpose computing market (e.g. personal
computers, mobile telephones, etc.), driven by market forces
and economy of scale. The entire production run of a safety-
critical system may use a few thousand processors, whereas
a successful mobile phone will use millions. Since a great
deal of academic research is influenced by industry, then the
technical basis of bespoke processors is subject to similar
influences to COTS processors, however processor features
can be carefully selected.

The following section describes the two principal features
of processors, memory and execution of instructions, and
looks at how they have changed from scalar processors to
produce superscalar devices.

THE COMPUTER JOURNAL,

Vol. 44, No.6, 2001

532 1. BATE et al.

2.1. Execution of instructions

The execution of instructions on a scalar processor takes
place one at a time and in the same order as the instructions
appear in object code. The processor may have multiple
units (e.g. load/store units and floating-point units) that
combine to provide the necessary functionality, but these are
never used concurrently. The execution strategy is therefore
simple to understand and analyse. This is particularly useful
when performing timing analysis. No matter what type of
scheduling mechanism is used, all forms of timing analysis
depend on knowing the maximum time a piece of software
takes to execute. This is usually known as the WCET.
WCET analysis can be performed by splitting software into
blocks, where a block is a sequence of instructions that has
only one branch at the start or at the end. Every feasible
path through the blocks is then examined in order to find the
longest [1]. The length is determined simply by adding up
the WCET of each individual instruction.

In general, non-safety-critical systems are primarily
concerned with good average-case performance, even if this
is at the expense of poor but rarely encountered worst-case
performance. In contrast, the development of safety-critical
applications is concerned with being able to demonstrate
that requirements are met, which necessitates an ability to
bound the best and worst-case performance. Additionally
for applications that are part of embedded control systems
(of which there are many), jitter (the variation in when
an event occurs, e.g. the release time of tasks) is often a
concern because of its effect on the stability of the system’s
response to stimuli [2]. The emphasis on average-case
performance has led to dramatic increases in the speed
of processing compared to memory speed (over 20 years,
a factor of 100,000 for processing times compared to 10
for memory). Consequently, there are increasing numbers
of wait states inserted during instruction execution whilst
waiting for memory. A wait state is the term used to describe
the condition when processing is halted for a clock cycle
whilst waiting for an event to occur, e.g. for a memory access
to complete.

Figure 1 shows how pipelines, caches, registers and
main memory are integrated in a typical modern processor.
Figure 2 illustrates the pipeline structure for the PowerPC
603e [3], a typical example of a modern processor. The
figure shows that the execution of instructions is split up into
a number of stages and that some of these stages (principally
the execute stage) have multiple units to support concurrent
execution of instructions. This approach allows multiple
instructions to be handled simultaneously and means the
processor can do something productive rather than remain
idle if the currently executing instruction has been delayed
(e.g. by a cache miss). Processors of this type are often
referred to as superscalar.

The following list contains some features of the pipeline
mechanism. It should be noted that these features cannot
simply be ‘turned off’ and the programmer has little
influence over their operation. If WCET analysis of a
superscalar processor were to produce accurate results, it

Fetch Dispatch
Queue
branch
I i prediction
Main Instruction Registers Execute
Memory Cache g Unit
Data
Cache

FIGURE 1. Typical processing architecture.

would have to include an accurate model of the pipeline.

(1) Multiple Issue. The ability to fetch, dispatch and
complete a number of instructions per clock cycle.

(2) Parallel Execution. From Figure 2 it can be seen that
there are four types of processing units in the execute
stage: floating point, system register, load/store and
integer (possibly multiple).

(3) Out of Order Execution. This can prevent the pipeline
stalling when an instruction takes a long time to execute
and/or there has been a cache miss.

(4) Speculative execution. The pipeline mechanism does
not always wait for the result of a comparison before
processing the associated branch instructions (and
subsequent instructions after the branch folding or
falling through). Instead the pipeline mechanism
guesses which branch is the likeliest to be taken using
branch prediction.

2.2. Memory access

The principal storage area for data and instructions is
main memory. This is often significantly slower than the
processor. Although faster memory is available, this is
expensive and it is only practical to use it where small
quantities are sufficient. Thus, some processors utilize cache
memory, which is relatively small and fast, as temporary
storage. A proportion of the memory accesses will be
made from the cache, rather than accessing the slower
main memory for each instruction. A memory manager
is used which attempts to optimize the contents of the
cache memory for maximum throughput. However, using
a cache memory increases the complexity and accuracy of
the analysis, in so far as:

e there are greater variations in the execution times of the
software [4];

e it is harder to deduce the actual WCET of the software
as the analysis would have to include a model of
the cache mechanism—it could be assumed that all
memory accesses result in a cache miss but this gives
results much greater than the actual WCET, leading to
wasted resources [4];

THE COMPUTER JOURNAL,

Vol. 44, No.6, 2001

USE OF MODERN PROCESSORS IN SAFETY-CRITICAL APPLICATIONS 533

Key to Figure

Maximum four-instruction fetch
SRU System Register Unit ﬂ Fetch ‘ per clock cycle
LSU Load Store Unit BPU
U Integer Unit v
FPU Floating Point Unit) Maximum three-instruction
BPU Branch Prediction Unit Dispatch \ dispatch per clock cycle (includes
one branch instruction)
\ 4 Execute Stage
4
FPU1 v
\ FPU2 v v LSU1
‘ SRU ‘ FPU3 ‘ U2 ‘ ‘ U1 ‘ LSU2
A Y A 4 A 4 A 4
h 4

Complete (Write-Back)

Maximum two-instruction
completion per clock cycle

FIGURE 2. Pipeline structure of a typical modern processor—the PowerPC.

e the more complex the processor is, the harder it is to
validate the models used and the higher the likelihood
of systematic design errors (in the processor and the
accompanying models) [5].

Therefore, if the processor has cache memory it is often
switched off for safety-critical use. However, if it is used
then it is assumed that each memory access results in a cache
miss. The longest execution path is then intuitively the worst
case.

Due to the increasing disparity in speed between
processing and memory, modern processors have become
more reliant on cache memory and some processors have
two levels of cache. The first level of cache is a small but
very fast ‘primary’ cache on the actual processor (typically
with zero wait states). The other is a larger ‘secondary
cache’ which has more wait states than the primary cache,
but less than main memory. The methods for optimizing
the contents of, and access to, the cache have also changed
significantly. One complication of having cache is allowing
for the impact of an interrupt/pre-emption on the cache
contents and hence on the program flow.

2.3. Trade-offs in bespoke processor design

The opportunity in developing a bespoke processor for
safety-critical applications is that processor features can
be limited to those that may easily be analysed. This
enables a trade-off between processor performance and
processor predictability. For example, a bespoke safety-
critical processor design may only include a primary cache
where its contents are statically defined and the pipeline
only uses a subset of the potential features, such as parallel
execution and multiple issue.

3. REGULATORY CONTEXT

There are a number of safety standards and guidance
documents that govern the development of hardware for use
in safety-critical applications. Before discussing the ‘core’
certification arguments, we first provide a description of
some of the specific requirements as defined by a number
of the applicable safety standards.

3.1. UK defence standards

The UK Defence Standards 00-54 [6], 00-55 [7], and
00-56 [8] set out requirements and guidance for the
development of safety-critical systems. Defence Standard
00-54 defines requirements specifically for safety-related
electronic hardware (SREH) and is similar in nature to the
software standard, Defence Standard 00-55.

Defence Standard 00-54, Part 2 Clause 8.2.1 advises that
a hardware safety case should be constructed to present ‘a
readable justification that the hardware is safe in its specified
context’. The context of a processor includes both the
application software and its physical operating environment.
Discussion of operating environment limits and conditions
is outside the scope of this paper, but key issues include
temperature, pressure and humidity ranges. Part 1, Clause
7.3.1 (b) of Defence Standard 00-54 supports the concept of
establishing safety arguments (as an SREH safety case) for
hardware elements of a system that will be used within the
overall system safety case:

The development of SREH shall include the
following safety management activities and doc-
umentation ... [including] the production and
maintenance of a safety case as a constituent part
of System Safety Case.

THE COMPUTER JOURNAL,

Vol. 44, No.6, 2001

534 1. BATE et al.

Defence Standard 00-54 is a general electronic hardware
standard and, as such, does not define requirements at
the level of processor characteristics. Instead, it sets out
general requirements concerning the specification, develop-
ment, verification and validation, and safety assurance of
hardware. In addition to the traditional requirement for
evidence to demonstrate satisfaction of random failure rate
targets, 00-54 also requires the identification and analysis of
systematic errors in the hardware.

Defence Standard 00-55 requires both static code analysis
and software testing as part of the system safety case. Static
software analysis examines those properties of the code
that can be determined prior to execution. Results of code
analysis that are affected by the processor are:

e the WCET taken and the amount of memory required
by the software should be bounded and statically
determined;

e the software should be tolerant to and respond to
random failures of the hardware;

e the system should have built-in tolerance to avoid
overload, and still be capable of running in a degraded
state; and

e any direct access from software to the hardware needs
to be analysed.

3.2. Civil avionics guidance

The civil avionics arena uses guidance documents rather
than standards although, in practice, it would be difficult to
get approval for systems that did not follow the guidance.
The relevant guidance documents are DO-178B [9] for
software and DO-254 [10] for hardware. DO-254 has
only very recently been published, therefore our discussion
focuses upon DO-178B.

DO-178B requires the developers to produce an ac-
complishment summary identifying the evidence that the
software meets its requirements (this is analogous to the
Defence Standards idea of a safety case). It places much
greater emphasis on testing and human review than Defence
Standard 00-55. The summary includes evidence that the
software is compatible with the hardware—which implicitly
includes timing. It also requires the gathering of certification
evidence through hardware/software integration testing. The
testing should demonstrate that high-level requirements are
met for software running on the target hardware, including
timing requirements where these are significant.

DO-254 is similar in philosophy to DO-178B, although it
places more emphasis on formal analysis.

3.3. IEC61508

IEC61508 [11] is an international generic safety standard
that provides guidance on the development of electrical,
electronic and programmable electronic systems (E/E/PES).
Part 2 of the standard is particularly concerned with the
development of electronic hardware and is therefore most
relevant to the subject of this paper.

The requirements of Part 2 in IEC61508 are divided
predominantly into two categories. Firstly, process-oriented
requirements are presented concerning the avoidance of
systematic error introduction in the hardware development
process (e.g. concerning hardware specification techniques).
Secondly, product-oriented requirements are defined con-
cerning the tolerance to, and control of, both random and
systematic hardware faults.

In the following section, rather than presenting certifi-
cation arguments targeted to a specific safety standard, we
present the certification arguments that can be regarded as
’core’ to all standards, e.g. the identification, avoidance and
control of systematic errors in a processor design.

4. PROCESSOR ARGUMENTS WITHIN THE
SYSTEM SAFETY CASE

4.1. Introduction to goal structuring notation

Within this and the following sections, we use the goal
structuring notation (GSN) [12] to outline the safety
arguments that need to be made to support the use of a
processor within a safety-critical system. Any safety case
can be considered as consisting of requirements, argument,
evidence and definition of bounding context. GSN—
a graphical notation—explicitly represents these elements
and (perhaps more significantly) the relationships that exist
between these elements (i.e. how individual requirements
are supported by specific arguments, how argument claims
are supported by evidence and the assumed context that is
defined for the argument).

The principal symbols in the notation are shown in
Figure 3 (with example instances of each concept).

The principal purpose of a goal structure is to show
how goals (claims about the system) are successively
broken down into sub-goals until a point is reached where
claims can be supported by direct reference to available
evidence (solutions). As part of this decomposition, using
the GSN it is also possible to make clear the argument
strategies adopted (e.g. adopting a quantitative or qualitative
approach), the rationale for the approach (assumptions,
Jjustifications) and the context in which goals are stated (e.g.
the system scope or the assumed operational role). For
further details on GSN see [12].

4.2. Top-level argument that the system is safe

Figure 4 presents the top level of the ‘generic’ safety
argument required to establish the certification case for a
modern processor. It is important to note that system-
and hazard-specific arguments concerning the safety of the
software (application) running on the processor should be
presented alongside such an argument and are outside the
scope of this paper. Separate software safety arguments
often contain implicit assumptions about correct and error-
free operation at the processor level. These assumptions will
be discharged through the argument we present.

The argument presented in Figure 4 starts conventionally
(goal: ‘ProcAcceptSafe’) by arguing that the processor

THE COMPUTER JOURNAL,

Vol. 44, No.6, 2001

USE OF MODERN PROCESSORS IN SAFETY-CRITICAL APPLICATIONS

System can Fault T
tolerate single ault Tree Argument by
component for Hazard elimination of all
failures HI hazards
Goal Solution Strategy
ParentGoal
ChildGoal
Undeveloped Goal .
P Developed Goal Child Goal

(to be developed)

Sub-systems
are independent

AlJ

Assumption /
Justification

N

Uninstantiated Context

FIGURE 3. Principal elements of the goal structuring notation.

ProcAcceptSafe

ProcOpContext
P Processor demonstrably

acceptably safe for use in
intended operational context

Processor
Operational Context

ArgOverFailNonFail

Argument over failure
and non-failure cases

ProcOpnCorrAndBounded

(Limited) Processor Operation
correct and boundable
(Non-failure case)

AcceptSafeWithFailures
Processor operation
acceptably safe in the
presence of failures

ProcOpnCorrAndBounded

ArgOverRandSyst

Argument split over
random and
systematic failures

SystFailEffectsReduced

Effects of systematic failures
in the processor design
sufficiently controlled

RandRateAccLow

Random processor failures
occur only at an acceptably
low rate

SystFailEffectsReduced

RandRateAccLow

All Identified

System Hazards

FIGURE 4.

Top-level processor safety argument.

is demonstrably acceptably safe within the intended
operational context (context: ‘ProcOpContext’). It is
important that the operating context is explicitly identified
as it defines both the explicit (functional) and implicit
(non-functional) interface between the processor and its
environment, which could influence the safe operation of the
processor; e.g. the electromagnetic, thermal and mechanical
contexts. The argument strategy adopted is to split the
argument into two sub-arguments. The first of these
arguments puts forward the positive claim that in normal
operation the processor will ‘do what it’s told’ (i.e. will
operate correctly) and that its operation is predictable. This
argument is developed further in Section 4.3. The second
of these arguments acknowledges that both random and
systematic failures are inevitable and puts forwards the claim
that the processor operation can be argued to be acceptably
safe in the presence of these failures. The arguments of
safe operation in the presence of systematic and random

failures are developed in Sections 4.5 and 4.7 respectively.
The concept of acceptability introduced at the beginning
of the argument can only truly be defined in the target
context of the processor. Included in this definition of
acceptability may be a random failure rate requirement used
as the basis for defining the ‘RandRateAccLow’ claim found
at the bottom of Figure 4.

4.3. Correct processor operation

The argument supporting the assertion that the operation
of the processor is both correct and boundable is
presented in Figure 5. Within the definition of the
claim ‘ProcOpnCorrAndBounded’ is the notion of defining
limitations on the processor operation. The strategy in
developing and supporting the argument of determinable
processor operation may involve disabling or restricting the
use of processor features (e.g. caching) so that operation

THE COMPUTER JOURNAL,

Vol. 44, No.6, 2001

536

1. BATE et al.

ProcOpnLimitations

ProcOpnCorrAndBounded

(Limited) Processor Operation

Limitations on processor
operation (e.g. includes
disabled features)

correct and boundable
(Non-failure case)

ProcAcceptSate

ProcOpnMeetsintent

Observable processor
functional operation conforms
to source code intent

DisabledFeatsNoninterf

Disabled processor features
do not interfere with
processor operation

ResUsageDet

Limits on processor
resource usage determined
a priori

CompilationCorrect

Compilation process creates
object code conforming to
source code intent

ProcResources

ArgOverResources

Main Memory, Stack,

Argument over : :
Execution Time

processor resources

ObjCodeProcCorrect

Processing of object code
conforms to source code

NoErrors

ErrorintroductionLow
goal satisfied

MemUsageDet

Memory usage
determined a priori to
intent be within defined limits

ExecTimeDet

Upper and lower bound
execution time
determined a priori

StackUsageDet

Stack usage
determined a priori to
be within defined limits

ArgOverProcCorr

ArgOverProcHaz

Argument over
correctness of
processor execution

Argument over
identified processor
execution 'hazards'

ProcExecHaz

Identified Processor
Execution 'Hazards'

FIGURE 5. Correct processor operation argument.

is easier to predict and hence analysis effort is eased.
Such disabling of features will obviously be at the expense
of average-case processor performance and potentially the
worst case. However, this may be an acceptable trade-off.

The first leg of the argument in Figure 5 puts forward
the claim that the operation of the processor conforms to
the intent as defined in the source code of the application
software. For example, at the level of a single operation, if
the source code describes an add operation, the argument is
that the processor will perform this operation correctly. For
the purposes of the processor argument we have been careful
to define correctness with respect to the intent implicitly
defined in the source code. Systematic (logical) errors in the
source code that could lead to unsafe behaviour are outside
the scope of this argument. The claim ‘ProcOpnMeetsIntent’
is first supported by an argument of the correctness of
the compilation from source to object code, and secondly
concerning the correctness of the processing of object
code.

The compilation argument remains undeveloped (as indi-
cated by the diamond underneath the claim ‘Compilation-
Correct’) in Figure 5. Typical means of supporting such a
claim include appealing to object-code verification evidence.
This involves performing checks that the characteristics of
the source code level (e.g. control flow) are reasonably
represented at the object-code level. In this context, an
advantage of the bespoke processor approach is that a
bespoke compiler would be produced and hence produce
output which eases the task of object-code verification.

Two strategies are put forward for supporting the object-
code processing argument (under claim ‘ObjCodeProcCor-
rect’). The first of these is concerned with arguing the
correctness of instruction processing. (This goal is explicitly
connected with the claim to be found in Figure 8—discussed
in Section 4.5—that the processor contains an acceptably
low number of design flaws.) The second strategy is con-
cerned with processor execution ‘hazards’. We use this term
to refer to the undesirable impact of processor features on
the correct operation of the processor (e.g. pipeline hazards).
As is shown in Figure 5, this strategy requires some a priori
analysis (referred to by the context: ‘ProcExecHaz’) of the
hazards possible given the architecture and features of the
processor.

Processor hazards could be introduced by out-of-order
execution. For example, control-flow analysis is used to
ensure that software is executed in the correct order, whilst
data-flow analysis should ensure variables are not used prior
to being set a value. This analysis is normally performed
at the source-code level based on the assumption that the
software semantics are preserved when executing on the
hardware platform. However, a limited amount of flow
analysis is performed at the object-code level to show the
results are consistent with the software executing on the
actual processor. Verification would have to be performed
to demonstrate that the characteristics of the source code are
upheld by the processor. This is complicated by the fact that
the processor’s pipeline is rarely observable. It would be
further complicated if a COTS processor is selected, or a

THE COMPUTER JOURNAL,

Vol. 44, No.6, 2001

USE OF MODERN PROCESSORS IN SAFETY-CRITICAL APPLICATIONS 537

bespoke processor designed, involving dynamic scheduling
of instructions such as out-of-order execution.

When moving to a modern processor, further object-
level verification is likely to be needed to deal with the
advanced pipeline features of the processor. The extra
verification would have to justify that the instructions’
functional semantics (at the object-code level) were
correctly represented by the processor’s operation. This
all adds to the cost associated with verification. For a
COTS processor this is extremely difficult because there
is no specification that can be relied on as the basis for
verification. Therefore, the verification must be based on
black-box testing but there is a limit to the evidence that
can be derived by this approach. For a bespoke processor
this involves showing that the processor’s specification is
appropriate and that the implementation meets this for all
instructions, but a limited set of data.

Hardware validation needs to be included and has to show
that the results are consistent within the processor itself
and at its outputs. Part of this work is to demonstrate
the accuracy of calculation units, such as the floating point
unit. Hardware validation could be used to demonstrate
the processor correctness, e.g. conformity to floating-point
standards IEEE 754 [13] and IEEE 854 [14].

In order to take full advantage of fast execution
times and expanded memory it is desirable to share
processing resources between more than one application.
Sharing memory requires a partitioning mechanism that
can guarantee that a number of applications (possibly with
multiple criticality levels) can share the same memory
resource without risk of data corruption [15]. This
involves the detection of attempted memory violations by
an application. The Memory Management Unit (MMU) in
many processors provides functionality to create interrupts
when an illegal memory access occurs. To use this feature
it would need to be demonstrated that the MMU would
reliably provide interrupts when detecting an attempted
violation and that the system software could deal with these
interrupts. Since the integrity of the software relies heavily
on this feature, a bespoke processor could be designed to
support the necessary safety argument. In some cases where
the MMU of a COTS processor has been used to support
partitioning, it has been necessary to provide bespoke
hardware to externally monitor for correct behaviour [15].

The second leg of the argument in Figure 5 (shown in
claim ‘DisabledFeatsNonlInterf”) goes hand in hand with
the notion of limiting use of advanced processor features
(e.g. disabling multi-processor cache coherency). The claim
that must be supported here is that disabled features truly
are disabled and that they can no longer interfere with the
operation of the processor. The details are left undeveloped
as this could involve tying down processor pins, e.g. cache
enable, or policing the use of features in the programming
language, e.g. object creation, at source level.

The third leg of the argument in Figure 5 (shown
under claim ‘ResUsageDet’) focuses upon the a priori
determination of processor resource usage. This argument
is decomposed over the various resources of concern

(identified through context reference ProcResources). Key
resources include memory usage, stack usage and execution
time. It must be possible to support the claims
‘MemUsageDet’ and ‘StackUsageDet’ that memory and
stack usage are determinable a priori. Equally, it is
essential to be able to argue that upper and lower bound
execution time can be determined a priori (as claimed in
‘ExecTimeDet’).

4.4. Worst-case execution time analysis

Considering the claim ‘ArgOverResources’, and more
specifically its sub-claim ‘ExecTimeDet’, raises one of
the most significant practical problems, i.e. the subject of
WCET analysis. (The most significant problem is verifying
the correctness of COTS hardware but there is probably
no practical ‘complete’ solution, only ways of raising
confidence.)

The timing analysis of the system, and WCET analysis,
becomes a much more complex task for a pipelined
processor. This is a crucial activity, as most safety-critical
systems are dependent on real-time deadlines being met.
Ignoring features of the processor when calculating WCET
leads to pessimistic results. As an illustration, on a 500 MHz
(i.e. 2 ns clock cycle) PowerPC processor that uses 50 ns
memory, there are at least 25 wait states per memory access.
Ignoring the four-stage pipeline would mean the analysis
would produce a result up to four times greater than the
actual execution time. This is due to the analysis having
to assume that each instruction propagates through every
stage before the next instruction can begin. Therefore if
both cache and pipeline features are ignored, then pessimism
could easily reach two orders of magnitude.

An alternative to WCET analysis is to extensively test
the system to obtain a measured value for timing. For
lower integrity systems this may be an acceptable solution.
However, for the highest integrity level it is necessary to
perform analysis in order to guarantee timeliness. Simply
testing the system cannot guarantee the absence of timing
overruns [4].

Developing WCET analysis for modern processors is
complicated as it relies on accurate models for the types
of features discussed in Section 2. However, producing
a completely accurate model may not be possible due to
the lack of verifiable design information. Verification is
difficult because most of the processor’s mechanisms are not
externally observable. In our experience, COTS processor
manuals do contain errors that would easily lead to incorrect
analysis. Accurate models also have limited portability. In
fact, producing a software model for WCET analysis that
completely emulates a processor would simply take too great
a time to obtain results for any reasonable size of code [4].
However, a simple model may be hard to validate because it
is sufficiently different to the actual processor.

To further complicate the issue, not accurately modelling
all the processor’s features may introduce anomalies [16]
and unmanageable pessimism into the results. An example
of an anomaly is illustrated in Figure 6 where a cache

THE COMPUTER JOURNAL,

Vol. 44, No.6, 2001

538 1. BATE et al.

A
: : : o
| . B =2
. 0 0 - :
:) : o
. cache 3|
—miss—p A @2

FIGURE 6. Example of a timing anomaly.

hit results in a longer overall execution time than a cache
miss, i.e. the opposite of what is expected. Figure 6 shows
two instructions that are dispatched simultaneously, where
instruction (A), is due to execute first, has a shorter execution
time than the other instruction (B); both instructions use
different execute units (e.g. FPU and IU) that can be used
concurrently. To simplify the example, the execution time
of each instruction is not affected by a cache miss, only
by the time at which it is executed. If A suffers a cache
miss, then the pipeline mechanism identifies the stall and re-
schedules the instructions, which results in B being executed
before it, i.e. A and B are executed in an order other than
originally intended. In this case, both instructions complete
earlier than if instruction A had not suffered a cache miss and
they had been executed in their original order. Therefore the
WCET analysis model needs to take into account potential
anomalies. Otherwise, all possible paths would have to be
analysed rather than those that could be expected to be the
worst case. Again for realistic software sizes, this would
be intractable. Hence a balance must be struck between the
pessimism of the results, the computational complexity of
obtaining results and the difficulty in validating the model.

There is already a great deal of analysis available
including [4, 16], and Engblom provides a useful survey
of these analyses in [5]. These approaches can be tailored
for our use by taking advantage of the fact that software
is written in a particularly disciplined way for the safety-
critical domain. For example, the software is written to make
control flow analysis easier to perform, and/or conforms to a
restricted subset (e.g. SPARK Ada [17]). Such assumptions
allow some simplification in the way that the analysis is
performed.

Some of the fundamental issues for WCET analysis of a
superscalar processor are summarized here.

e Re-targetable analysis. Producing analysis in a generic
fashion means that it can be instantiated for a particular
platform with a minimal amount of rework. To achieve
this aim a WCET analysis language has been defined
at York which allows the WCET analysis software
to parse platform-specific information and hence to
customize the analysis. For example, the number of
cache lines can be defined, as can the number of sets
the cache is organized into, and so on. The framework
is presented in Figure 7. In this figure it can be seen that
for most parts of the analysis, a platform description is
obtained from a file written using the defined WCET
language. This information is used to instantiate a
generic form of analysis. Amongst other features the
WCET language allows a generic parser to understand
the stream of instructions being read and identify the
individual ones. The parts of the analysis not produced
in this form even though they still use the platform
description are the automatic data-cache analysis and
program-path analysis; these are the subject of future
work.

e Validity of the analysis. Producing a valid WCET is
reliant on correct information from the manufacturer.
It can be assumed that a COTS processor has not been
produced or documented to the standard required for
the certification of the system. Assuming that the
processor cannot be re-engineered, a validation strategy
is needed. Some work has been performed on this
subject [18].

e Anomalies within the analysis. The analysis has to
allow for the effect of cache misses and branch predic-
tions without leading to anomalies which understate the
worst case.

e Data cache analysis. Data and instruction-cache
analysis mechanisms are similar. The key difference
being that instructions always have a static location
in memory whereas data does not. Examples of data
accesses that do not have a static location include
pointers and stack variables. One solution is to exclude
difficult to predict accesses from the cache [19], this is
possible on most processors. Data cache analysis is the
subject of future work.

A suitable strategy for WCET analysis is to produce a
simplified model of a modern COTS processor that can
easily be tailored to a specific processor. This accepts
some pessimism whilst guaranteeing that the results are
safe, e.g. the predicted WCET is greater than the actual
WCET. The difference between a COTS and bespoke
processor is that the bespoke processor can be designed to
aid predictability, hence tighter estimates can be achieved,
i.e. lower pessimism, and the model would be easier
to validate. As already discussed a pipeline without
dynamic scheduling of instructions simplifies the gathering
of evidence. Additional features that help are instructions
having constant processing times (e.g. not like the ARM
7 processor [20] where floating-point multiply instructions
have a processing time dependent on the size of the result)

THE COMPUTER JOURNAL,

Vol. 44, No.6, 2001

USE OF MODERN PROCESSORS IN SAFETY-CRITICAL APPLICATIONS 539

Manual Path Manual Data
Information Cache Information
e e fronnn e
|
: Data Cache
| Analysis
|
i
i Program Path Set of
I Analysis Paths 3 Instruction Cache
: Analysis
i WCET
! Set of
1 Block
| S Branch Prediction
g X Integrate Analyses
: Analysis
(in dsise?sv:z'rsbled 4:. Break the Software Worst-Case
format) f into Blocks Path

Platform-Specific
Information
(in WCET
Language Format)

Build Reservation

Concatenate

v
!
i
|
H Tables
|
|
1

FIGURE 7. Re-targetable framework for WCET analysis.

PIPELINE ANALYSIS

|
|
|
|
Blocks |
|
|
|
|

ProcAcceptSafe

SystFailEffectsReduced

Effects of systematic failures
in the processor design
sufficiently controlled

/\

ErrorintroductionLow
Introduction of systematic
errors into processor
design minimized

RemainingErrorsldentified

Systematic errors in
deployed processors known
and understood

RemainingErrorsMitigated

Systematic errors in
processor design sufficiently
mitigated

RemainingErrorsMitigated

ManufacturerExperience DevStandards

Processor development
complies with applicable
safety standards

e <

Manufacturer has significant
experience of developing
business-critical processors

AppSafStds
Applicable safety

Applicable Operational

standards ExtensiveOpUsage

Processor errors identified
through extensive applicable
operational experience

<

AppOpExp

Experience

FIGURE 8. Processor systematic failure argument.

and a few exceptions to the normal processing times (e.g.
again not like the ARM 7 where instructions with the register
that holds the stack pointer as a parameter take longer than
normal).

4.5. Processor design errors

Systematic errors, sometimes referred to as ‘design errors’
are those errors introduced into an artefact through mistakes
in the requirements, specification or implementation of a
product. As the complexity of an artefact increases, the
likelihood of introducing systematic errors also increases.
We should therefore expect that systematic errors may

be present in modern processors, and reason about them
accordingly. This applies to both COTS and bespoke
processors. Although it could assume the incidence of
design errors in a bespoke processor to be less than for a
COTS processor, e.g. if it has a simpler design, errors may
still exist as the bespoke manufacturer is unlikely to have
the wealth of design experience of a COTS manufacturer.
This is discussed below. Figure 8 presents the argument of
processor safety with respect to systematic errors.

It should be noted that the top claim presented in
Figure 8 (‘SystFailEffectsReduced’) is not that there are
no systematic errors present (perhaps as some processor

THE COMPUTER JOURNAL,

Vol. 44, No.6, 2001

540 1. BATE et al.

manufacturers would wish us to believe). Rather, the
argument is that any errors that are present are sufficiently
managed such that they have an insignificant effect on safe
operation.

For the older generation of processors it was reasonable
to assume that the majority of design flaws had been found
and documented, e.g. for widely used devices such as
Motorola’s 68020. Even if these errors had not been fixed,
design engineers could tailor their system to avoid them.
However, a modern processor has a significantly larger and
more complex design. The Pentium III in 1999 had 28
million transistors versus 68 thousand transistors on the
68020 in 1979—mnote that the number of transistors is not
a direct measure of design complexity because a significant
number of transistors are taken by regular structures such as
memory. This increase makes it less likely that all the design
errors have been found and documented, although certain
problems have been well publicized (e.g. the problems with
the Pentium’s arithmetic unit [21]—it should be noted that
the processor was widely deployed before the problems were
discovered). It could be hoped that all, or at least most,
design errors were known with processors of the complexity
of the 68020 due to their widespread use. However with
significantly more complex processors, it is much less likely
that all design errors are known.

To further complicate the matter, Defence Standard 00-
54 notes that processors may have several different variants
in a year, each of which may contain subtly different
design features and flaws. It can be confidently assumed
that a COTS product would not comply with the Defence
Standard’s requirements. However, the argument for using
a COTS processor can be given weight by using a supplier
with a reputation for well-designed products. In this
case the chosen processor would have to adhere to the
supplier’s usual standards of quality. In any case the
certification argument has to assume the existence of known
and unknown errors.

It should be noted that a hardware manufacturer, such
as Intel, has a great deal invested in the correctness of
their hardware, including the value of their reputation not
to mention the cost of mistakes, particularly when they lead
to product recalls. In this context, the correctness of the
processor can be classified as critical (in business terms) due
to the potential implications of failure for the company’s
profitability. Since the Pentium floating-point arithmetic
error was uncovered, the importance of hardware correctness
has received a higher profile. Significant effort has been
applied to formally proving parts of the design [22].

To gain confidence in a processor it is desirable to have
some reassurances that the introduction of systematic errors
within processor development was reduced as low as rea-
sonably practicable (as claimed in ‘ErrorIntroductionL.ow’).
There are two key arguments that can be made in support
of such a claim. The first of these appeals to the domain
experience of the organization developing the processor.
Unpublished studies have shown that previous experience
is one of the most significant factors in systematic error
introduction. As stated earlier, the reputation of the

manufacturer can give weight to the certification argument.
The second argument appeals to a ‘good’ process (e.g. as
defined by safety-critical standards). For example, claims of
low residual errors can be made by appeal to an extensive,
systematic and thorough design review process.

The arguments of manufacturer experience and adherence
to development standards represent areas where there may
be divergence between bespoke and commercial processors.
The experience argument is probably strongest for a COTS
processor from a major semiconductor designer. However,
although rigorous standards may have been applied during
COTS processor development it is unlikely that safety-
critical standards (such as UK Defence Standard 00-54)
will have been used. Therefore, the development standards
argument may be weaker.

The development standards argument has the potential to
be much stronger with a bespoke safety-critical processor
development. However, unless the bespoke processor
is being developed by an experienced semiconductor
manufacturer, this will be at the expense of a weaker
manufacturer argument.

The second leg of the argument presented in Figure 8
puts forward the claim (‘RemainingErrorsldentified’) that
those errors remaining in the finished processor design
(e.g. those discovered in operational usage) are known
and understood. This argument rests upon two sub-goals.
Firstly, it can be argued (as in goal ‘DevStandards’) that
remaining systematic errors are uncovered and understood
as a result of a systematic development process (e.g. one
which involved detailed hazards and operability studies
[23] over the processor design). A second, and perhaps
more compelling argument, is that errors are uncovered and
understood through extensive usage.

As with the error-introduction argument, this is again an
area of divergence between bespoke and COTS processors.
COTS processors have the significant advantage of large
amounts of operational experience from field usage; the
only caveat here being that the operational experience
must be argued to be applicable and appropriate for the
application context of any new system development, as
highlighted by the context reference ‘AppOpExp’. For
example, it is obviously inappropriate to directly read across
data regarding faults uncovered at room temperature to a
situation where the processor may be placed in an extreme
thermal environment.

The disadvantage of COTS processors can be the
unavailability of evidence (from the processor vendor) to
support the development-standards claim. The availability
of such information is an obvious advantage in a bespoke
development. However, bespoke developments lack the
wealth of field data accompanying a COTS solution.

The final leg of the argument presented in Figure 8 claims
(in goal ‘RemainingErrorsMitigated’) that the presence
of residual design errors in the processor is sufficiently
mitigated. This argument is developed in the following
section.

THE COMPUTER JOURNAL,

Vol. 44, No.6, 2001

USE OF MODERN PROCESSORS IN SAFETY-CRITICAL APPLICATIONS 541

SystFailEffectsReduced

RemainingErrorsMitigated

Systematic errors in
processor design sufficiently

mitigated
KnownErrors :
. o AppnRestricted AppnArchTolerated
nown systematic Application restricted to Application architecture
errors in processor avoid _known_ errors dgfﬁ’ned to tolerate
design processor errors
AppnFuncTolerated FuncCorrPert

Application functionality
defined to tolerate processor
errors

~[ProcOpnMeetsintent goal
satisfied

FIGURE 9. Systematic error mitigation argument.

4.6. Mitigation of processor design errors

Figure 9 presents the argument that design errors remaining
in the processor are sufficiently mitigated. This argument
mainly applies to the use of COTS processors. The first
leg of this argument (shown by goal ‘AppnRestricted’)
claims that the application is restricted to avoid activation
of known design flaws (e.g. avoiding the trigger provided
by a specific sequence of machine instructions). This is
essentially a ‘work-around’ argument, depending heavily
on the principle that errors are known about in advance of
application development.

However, this application restriction needs to be verified
by object-code inspection. As verification of object code
against source code is often currently undertaken by visual
inspection, this becomes a more complex process, requiring
specific knowledge of the processor hardware. In order to
ease inspection it might be desirable to use a programming
language sub-set, designed to prevent the use of a particular
feature if it is deemed to be unsafe, and/or difficult to
analyse. Other alternatives would be to adapt the compiler
to avoid the feature or modify the object code after
compilation.

Both the second and third legs of the argument in Figure 9
are concerned with foleration of faults. Firstly, goal
‘AppnFuncTolerated’ is concerned with handling known
faults in software at the application level, e.g. through
exception handling. Secondly, goal ‘AppnArchTolerated’ is
concerned with handling known faults through the system
architecture, e.g. employing redundant and diverse channels.
Standards such as DO-178B [9] consider the use of multiple
dissimilar processors with dissimilar software. It notes that
some of the required hardware evidence may be replaced
with evidence that equivalent output and performance is
achieved by both systems. The requirement for evidence
of hardware failures can also be reduced. For example, if

the processors are dissimilar in design it can be argued that
the likelihood of simultaneous failure is lowered, reducing
the amount of failure rate evidence needed. For example
the Boeing 777 Primary Flight Control System [24] uses
different types of processors in each of three computing
channels, with cross-lane monitoring between each channel.
Using a bespoke processor in a dissimilar architecture
would be one way of gaining operational experience whilst
reducing risk.

The advantage of this diverse processor approach to fault
mitigation is that it provides a general mechanism which,
although perhaps targeted at specific known errors, can
provide identification and mitigation of a wide range of
control, data and timing errors.

However, it should be noted that it is impossible to support
claims ‘AppnFuncTolerated’ and ‘ApplnArchTolerated’ in
a technology independent manner—i.e. they both require
detailed knowledge of the specific implementation and
operation of the processor.

4.7. Processor reliability

In addition to arguments concerning systematic errors in the
processor design, it is also necessary to put forward and
support claims of an acceptably low occurrence of random
failures, i.e. failures attributable to environmental factors
(such as electromagnetic interference) and material defects.
This argument is presented in Figure 10.

The role of the expected operational environment of the
processor (as referred to by context ‘ExpOpEnv’) needs to
be highlighted specifically in connection with the argument.
The arguments of processor reliability need to be presented
in the context of the anticipated operating conditions.

Demonstration that the processor has an acceptably
low failure rate for the processor can be achieved via

THE COMPUTER JOURNAL,

Vol. 44, No.6, 2001

542 1. BATE et al.

ExpOpEnv

Expected Operating

Environment
low rate

RandRateAccLow

Random processor failures
occur only at an acceptably

AnalysisDemAccLowRate

Analysis demonstrates
acceptably low processor
failure rate

DefdOpEnv

Defined operating
environment

ProcAcceptSate

OpExpDemAccLowRate

Applicable operational
experience demonstrates
acceptably low failure rate

AppOpExp

Applicable Operational
Experience

TestDemAccLowRate

Testing demonstrates
acceptably low processor
failure rate

FIGURE 10. Processor reliability argument.

a number of different routes (as indicated in Figure 10
depicted by the choice of ‘n of m’ sub-goals to support
the parent ‘RandRateAccLow’ claim). The first route
is based upon analysis of the processor (e.g. fault tree
analysis performed at the level of the processor hardware).
Such an analysis would need to make assumptions about
the operating environment (as depicted by the connected
Context ‘DefdOpEnv’). It is obviously desirable that the
operating environment as defined for the purposes of the
analysis is as close as possible to the actual operating
environment (as referred to by the context reference
‘ExpOpEnv’). Analysis is a viable option where there is
free access to detailed information regarding the processor
design and manufacture. It is therefore more likely to be
viable for a bespoke processor than for a commercially
acquired processor.

The second route is based upon reliability testing of the
processor, which is especially an issue for COTS processors
where manufacturers rarely produce military specification
[25] components these days, and leads to other forms of
assurance being sought (e.g. including so-called ‘shake-and-
bake’ tests where the resilience of the processor to heat and
vibration is tested). Such testing will largely be ‘black box’
in nature, and is therefore a viable option for both bespoke
and commercially-acquired processors. The relevance of the
testing environment with respect to the actual operational
environment remains a key factor in the confidence that can
be invested in this form of argument.

The third route to supporting the reliability claims is based
upon the operational experience gained from field data.
Commercially available processors may have a possible
advantage over bespoke processors in the availability of such
data. However, as previously discussed in Section 4.5, the
admissibility of this data within the certification case rests
upon whether the data can be argued to be relevant and
applicable to the intended target context of the processor.

5. CONCLUSIONS

Complete certification arguments for processors have to
allow for systematic and random failures. In particular we
have to acknowledge the presence of residual design faults
in the processor and provide appropriate mitigation. Within
the structure of the argument it is possible to see that there
are advantages and disadvantages on both sides of the choice
of COTS versus bespoke processors. The selection of COTS
processors with particular features can significantly simplify
the task of gathering evidence. Alternatively a bespoke
processor can be designed in conjunction with building the
safety argument so that the overall cost is reduced.
Principal advantages of COTS processor are that the
widespread use stems from the extensive operational
experience and thoroughly exercised support tools such as
compiler. However, the admissibility of this operational
experience when not directly related to safety-critical
applications is a point of debate. Disadvantages of COTS
processors lie in the black-box nature of the design and de-
velopment process, and the fact the processors are not neces-
sarily designed for predictability and their design goals may
not be appropriate (e.g. good average-case performance).
Principal advantages of the bespoke processors lie in
the ability to define a processor only using features that
can easily be analysed allowing the designer to trade-off
processor worst-case performance versus predictability, and
that the process can be treated as ‘white-box’. The principal
disadvantages are that its use is not widespread resulting in a
lack of operational experience, lack of freely available tools
and that other users may not necessarily accept the design.

ACKNOWLEDGEMENT

lain Bate and Philippa Conmy are part of the BAE
SYSTEMS funded DCSC group at the University of York.

THE COMPUTER JOURNAL,

Vol. 44, No.6, 2001

USE OF MODERN PROCESSORS IN SAFETY-CRITICAL APPLICATIONS

543

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

(10]

(11]

(12]

Chapman, R. (1995) Static Timing Analysis and Program
Proof. DPhil Thesis, Department of Computer Science,
University of York, YCST-95-05.

Bate, 1. (1999) Scheduling and Timing Analysis for Safety-
Critical Systems. DPhil Thesis, Department of Computer
Science, University of York, YCST-99-04.

Motorola (1997) MPC603e & EC603e—RISC Microproces-
sor User’s Manual. MPC603EUM/AD.

Mueller, F. (1994) Static Cache Simulations and its
Applications. PhD Thesis, Department of Computer Science,
Florida State.

Engblom, J. (1997) Worst Case Execution Time Analysis
for Optimized Code. MSc Thesis, Department of Computer
Science, Uppsala University, DoCS 97/94.

United Kingdom Ministry of Defence (1999) Requirements
for Safety Related Electronic Hardware in Defence Equip-
ment. Defence Standard 00-54.

United Kingdom Ministry of Defence (1997) Requirements
for Safety Related Software in Defence Equipment. Defence
Standard 00-55.

United Kingdom Ministry of Defence (1996) Safety Manage-
ment Requirements for Defence Systems. Defence Standard
00-56.

RTCA/EUROCAE (1992) Software Considerations in Air-
borne Systems and Equipment Certification. DO-178B/ED-
12B.

RTCA/EUROCAE (2000) Design Assurance Guideline for
Airborne Electronic Hardware. DO-254.

International Electrotechnical Commission (2000) Func-
tional Safety of Electrical/Electronic/Programmable Elec-
tronic Safety-Related Systems. IEC 61508.

Kelly, T. P. (1999) Arguing Safety—A Systematic Approach
to Safety Case Management. DPhil Thesis, Department of
Computer Science, University of York, YCST 99-05.

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

IEEE (1985) IEEE Standard for Binary Floating-Point
Arithmetic. IEEE 754.

IEEE (1987) IEEE Standard for Radix-Independent Floating-
Point Arithmetic. IEEE 854.

Pumfrey, D. J. and McDermid, J. A. (2000) Assessing the
safety of integrity level partitioning in software. In Proc. 8th
Safety-Critical Systems Symp., Southampton, UK, pp. 134—
152.

Lundqvist, T. and Stenstrom, P. (1999) Timing anomalies in
dynamically scheduled microprocessors. In Proc. 20th IEEE
Real-Time Systems Symp. (RTSS’99), pp. 12-21.

Currie, 1. E. (1995) TDF Specification, Version 4,
DRA/CIS(SE2)/CR/94/36/4.0. Defence Evaluation Research
Agency, UK.

Utamaphehai, N., Blanton, R. D. and Shen, J. P. (2000) A
buffer-oriented methodology for microarchitecture validation.
J. Elect. Testing (Jetta), 16, 49-65.

Lundqvist, T. and Stenstrom, P. (1999) A method to improve
the estimated worst-case performance of data caching. In
Proc. 6th Int. Conf. on Real-Time Computing Systems and
Applications (RTCSA’99), Hong Kong, pp. 255-262.

ARM (1995) ARM 7 TDMI Data Sheet. ARM/DDI/0029E.
Intel (1994) Statistical Analysis of Floating Point Flaw. Intel
White Paper.

O’Leary, J., Zhao, X., Gerth, R. and Seger, C.-J. H.
(1999) Formally verifying IEEE compliance of floating point
hardware. Intel Technol. J., 1-14.

United Kingdom Ministry Of Defence (2000) HAZOP Studies
on Systems Containing Programmable Electronics. Defence
Standard 00-58, Issue 2.

Yeh, Y. C. (1996) Triple-triple redundant 777 primary
flight computer. In Proc. 1996 IEEE Aerospace Applications
Conference, Aspen, CO, pp. 293-307.

US Department of Defense (1986) Reliability Prediction of
Electronic Equipment. MIL-HDBK 217E.

THE COMPUTER JOURNAL,

Vol. 44, No.6, 2001

