
Efficient Integration of Bimodal Branch Prediction and Pipeline Analysis

Iain Bate and Ralf Reutemann

Department of Computer Science, University of York
York, United Kingdom

e-mail: {iain.bate, ralf.reutemann}@cs.york.ac.uk

Abstract

Advanced microarchitectural features such as caches
and branch prediction mechanisms supporting speculat-
ive execution are becoming commonplace within modern
microprocessors. For developers of real-time systems,
these mechanisms present predictability problems. Previ-
ous work has demonstrated accurate analysis for instruc-
tion caches, data caches, and branch prediction mechan-
isms is possible. However, the integration of these indi-
vidual analysis methods is difficult to do without large in-
creases in computational complexity or the introduction
of pessimism regarding the Worst-Case Execution Time
(WCET) estimate. In this paper, we discuss how a pre-
viously published analysis method for branch predictors
can be integrated with instruction pipeline analysis.

1. Introduction
Correct scheduling behaviour of tasks is fundamental

in the design of a real-time system in order to fulfil its tim-
ing constraints and hence behavioural requirements. Ex-
isting scheduling schemes require an estimation of the
Worst-Case Execution Time(WCET) of each task as a
prerequisite for performing schedulability analysis of the
task set. Modern superscalar microprocessors, however,
exhibit micro-architectural features, such as instruction
pipelines, caches and speculative execution, that trade a
higher average-case processing performance for a lower
predictability of execution time behaviour, and thus com-
plicate the analysis of a program’s WCET. The challenge
in predicting the WCET is to find an estimate that is both
safeandtight, i.e. the estimate is not lower than the actual
WCET and it is reasonably accurate. In earlier work [2], a
method is presented for obtaining the upper bounds on the
number of branch mispredictions for loop constructs and
conditional statements assuming bimodal or global-history
branch predictors.

This paper discusses effects to be taken into account
when a static analysis method for branch predictors is
integrated with pipeline analysis. Ignoring such effects
may either lead to unnecessarily pessimistic or even un-
safe WCET estimates. Also, dealing with the effects in an
inappropriate manner can lead to scalability problems.

The contribution of this paper is to derive an approach
for integrating branch prediction analysis into an WCET
calculation method based onInteger Linear Programming

(ILP). Note that in the context of this paper no particular
low-level WCET analysis method for instruction pipelines
is assumed but instead an interface is defined for integrat-
ing it with branch prediction analysis.

2. Branch prediction techniques
Modern microprocessors combine the approach of out-

of-order execution withbranch predictionandspeculative
executionin order to try to alleviate the problem of disrupt-
ing the instruction flow into the pipeline due to branches.

A simple dynamic branch prediction technique is a
bimodal branch predictor[9] that stores branch history in
a 2n-entry branch history table (BHT), which is indexed
by then lower bits of the branch instruction address.

11 10

01 00

N

T

N

T

N

T

T

N

Bits State Prediction Key

00 strongly not-taken N SN
01 weakly not-taken N WN
10 weakly taken T WT
11 strongly taken T ST

Figure 1. Two-bit prediction scheme

Figure 1 shows the states and transitions in a two-bit
prediction scheme.N indicates a branch isnot-takenand
T that the branch istaken. The scheme provides some
degree of hysteresis and thus is less affected by occasional
changes in branch direction. The state of the counter is
updated after the branch outcome has been resolved.
Table 1, summarised from [2], details the maximum num-
ber of branch mispredictions that can be expected for vari-
ous branch patterns being repeatedm times, depending on
the initial state of the predictor. The second column in
this table defines for each branch pattern the classification
of the associated branch instruction intotaken-biased(T),
not-taken-biased(N), andalternating(A). The worst-case
number of mispredictions, i.e. each instance of a branch
is mispredicted, is where the branch alternates between
its takenand not-takendirections. In the table, the two
cases corresponding to this worst-case predictor scenario
are highlighted in bold. The last two rows represent the

Initial Predictor StatePattern Class
SN WN WT ST

T m T 2 1 0 0
Nm N 0 0 1 2

(TN)m A m 2m m m

(NT)m A m m 2m m

(Nn−1T)m, n = 3 N m m 1 + m 3 + m

(Nn−1T)m, n > 3 N m m 1 + m 2 + m

(T n−1N)m, n = 3 T 3 + m 1 + m m m

(T n−1N)m, n > 3 T 2 + m 1 + m m m

Table 1. Number of branch mispredictions

branch behaviour of a loop typically generated by a com-
piler for n = 3 andn > 3 iterations, respectively.

3. Related work
Several static analysis techniques for obtaining WCET

estimates of real-time programs have emerged over the
last two decades. The first work on execution time ana-
lysis for microprocessors using dynamic branch predic-
tion techniques to model the branch target buffer (BTB)
of a Intel Pentium microprocessor is presented by Colin
and Puaut [3]. Disadvantages of their approach include
it is based on source-code rather than object-code level
which ignores additional branches introduced by the com-
piler, and it does not integrate the results with other parts
of WCET analysis.

In our previous work [2], a scheme for classifying
branch instructions as either beingeasy-to-predictor hard-
to-predict, taking into account the semantic context of the
branches in the source code is introduced. Based on this
scheme, a static WCET analysis approach for dynamic
branch prediction schemes using either local or global his-
tory is provided.

Mitra et al. [8] present a framework for modelling the
effects of global-history branch prediction schemes on
WCET analysis. Their approach uses ILP to bound the
number of branch mispredictions by solving a set of linear
constraints derived from the control-flow graph. As with
all ILP-based calculation methods, the scalability has to
be carefully managed, especially when dealing with more
complex branch predictor configurations. While their fo-
cus is on modeling global-history predictors, they claim
that their approach can also be adopted to local-history
predictors. However, this has not yet been demonstrated.
A key issue is the fact that their approach only deals with
one-bit predictors and not bimodal predictors.

4. Integration of branch prediction analysis
In this section, we present an approach for combining a

static WCET analysis method for branch predictors (e.g. as
described in [2] or [3]) with instruction pipeline analysisin
order to estimate the WCET using an ILP-based calcula-
tion method. The results of branch prediction analysis are
used to define additional ILP constraints on the execution
counts of transitions between basic blocks. The applica-

tion of this approach is demonstrated through an example.
We analyse the WCET of a program at the level of

basic blockswithin the correspondingcontrol-flow graph.
Without loss of generality, we measure the WCET of a ba-
sic block inclock cyclesrather than as a continuous time
measure. Abranch blockis a basic block that contains a
branch instruction. We denote the set of all branch blocks
in a control-flow graph G(V,E) as the subsetVc ⊆ V . The
transition(bi → bj) ∈ E represents thetakenpath and
the transition(bi → bi+1) ∈ E thenot-takenpath of the
branch instruction in a basic blockbi ∈ Vc.

For the program flow analysis, an approach is used
based onImplicit Path Enumeration Technique(IPET),
which models the control-flow of a program as a sequence
of constraints on the execution count variablesxi (i.e. the
number of timesbi is being executed) for each basic block
in the control-flow graph [7]. The WCET of a program, in
the following denoted byT (G), can then be calculated by
finding the maximum value of the following equation:

T (G) =
∑

∀i•bi∈V

xi · ti (1)

whereti is the maximum number of clock cycles required
to executebi.

A major limitation of Equation (1) is that it does not take
into account the pipeline overlap between instructions loc-
ated across the boundary of basic blocks. Therefore, using
this formula results in a significant overestimation of the
WCET for microprocessors using instruction pipelines.

Li et. al. [6] address this problem by defining the exe-
cution timexi of a basic block as the interval between the
commit of the last instruction of the block preceding it and
the commit of its last instruction. Unfortunately, they state
that branch prediction modeling has not yet been included
into their WCET analysis tool. Engblom et al. [4] propose
to use a trace-driven microprocessor simulator instead of
pipeline modelling to determine the execution time effect
of pipeline overlap between successive instructions and
basic blocks.

In the following, we modify the latter approach by de-
fining the execution time of a basic block depending on its
preceding blocks and possible branch misprediction events
that might occur due to the transition between the blocks.
For this purpose, we will use the execution count of edges
instead of basic blocks for the final calculation of the
WCET and show how bounds on the maximum number
of branch mispredictions can be integrated into the overall
WCET analysis.

Each edge(bi → bj) ∈ E in the control-flow graph is
assigned with an variabledij , which represents the number
of times this edge is being followed. Furthermore, for each
basic blockbi that contains a branch instruction we can
distinguish between the execution counts for mispredicted
(denoted bymp) and correctly predicted (denoted bycp)
outgoing transitions:

dij = d
mp
ij + d

cp
ij , (2)

with ∀i, j • (bi → bj) ∈ E ∧ bi ∈ Vc,

Overlap between basic blocks. In general, the amount
of overlap,δij , across two adjacent basic blocksbi andbj

is calculated as follows:

δij = tij − (ti + tj), (3)

with ∀i, j • (bi → bj) ∈ E,

wheretij is the number of clock cycles required to ex-
ecutebi andbj in succession;ti andtj are the number of
clock cycles required for executingbi andbj , respectively,
in isolation.

We introduce a special vertexπ in order to define a prede-
cessor for the first executed basic block and settπ1 = t1
andtπ = 0. This will simplify the formal expression of
the WCET calculation formula later in this section.

A misprediction of the branch instruction in basic block
bi reduces the amount of pipeline overlap between basic
blockbi and the blockbj on its correct branch target. This
may even result in a positive value forδij , which would oc-
cur when there is no pipeline overlap but instead a pipeline
stall. Also, it may have an impact on the overlap among
instructions within basic blockbj and therefore change
the execution time ofbj. Although Equation (3) impli-
citly takes into account a misprediction of the branch in-
struction in basic blockbi we distinguish between the mis-
predicted and correctly predicted case in order to provide
a more accurate WCET estimate. Otherwise, potentially
significant pessimism could be introduced. Thus, we cal-
culate the pipeline overlap,δmp

ij , in the case of a branch
misprediction according to the following equation:

δ
mp
ij = t

mp
ij − (ti + t

mp
j), (4)

with ∀i, j • (bi → bj) ∈ E ∧ bi ∈ Vc,

wheret
mp
ij is the maximum number of clock cycles re-

quired to executebi andbj in succession, andtmp
j is the

maximum number of clock cycles required for executing
bj taking into account the effects of a misprediction of the
branch instruction contained inbi.

Analysis of loop statements. The patternT n−1N rep-
resents the behaviour of a branch instruction associated
with a loop condition, assuming that the loop iteratesn

times. According to Table 1, an initial state ofstrongly
not-taken(SN) is assumed as this equates to the worst-case
initial state for a bimodal predictor.

Table 1 defines the maximum number of branch mis-
predictions, denoted bympi, that can be expected for the
branch inbi associated with the test of the loop condition.
We can state the following linear constraint onmpi:

mpi = d
mp
ij + d

mp
i,i+1 (5)

In general, thenot-takenpath of the branch instruction in
bi is always mispredicted upon each loop exit, thus:

d
mp
i,i+1 = m (6)

Analysis of conditional statements. The behaviour of a
branch instruction associated with a conditional statement
cannot be determined statically if it depends solely on in-
put data available only during run-time. In this case, we
have to assume that all instances of the branch instruction
are mispredicted, which according to Table 1 corresponds
to an alternating behaviour of the branch. Thus, we can
define the following linear constraints:

d
mp
ij =

⌊n

2

⌋

∧ d
mp
i,i+1 = n − d

mp
ij

We assume here that the WCET of thenot-taken-path ex-
ceeds that of the other path. Otherwise,d

mp
ij andd

mp
i,i+1

have to be interchanged with each other.
However, according to the condition stated in our previ-

ous paper [2], we need to consider the path with the highest
WCET in the calculation (instead of the alternating paths
case), when the execution time difference between the two
paths of the conditional statement is at least twice the mis-
prediction penalty. Then, the corresponding pattern of the
branch is eitherNn, i.e. alwaysnot-taken, or T n, i.e. al-
waystaken, and according to Table 1, the maximum num-
ber of branch mispredictions is two:

d
mp
ij = 0 ∧ d

mp
i,i+1 = 2

We will now introduce the general condition based on
the theoretical model defined in [2]:

Definition 1 (Conditional Statement)
Let n > 1 be the number of times the conditional state-
ment is repeated within the loop body andδ be the branch
misprediction penalty. Then, the upper boundmp on the
number of branch mispredictions is defined by:

mp(n, λ, δ) =

{

2, if λ ≥ 2δ(1 − 2
n
)

n, otherwise
,

with λ = |T (pthen) − T (pelse)|.

T (pthen) andT (pelse) represent the WCET for thethen
andelse-path, respectively. Note that the condition in
the definition above tends to2δ for n → ∞.

The condition in the definition above needs to be eval-
uated for each conditional statement prior to establishing
the set of ILP constraints for the WCET calculation.

WCET calculation. We can restate the ILP cost func-
tion provided in Equation (1) such that the effects of
pipelining and branch prediction are taken into account:

T (G) =
∑

∀ (i,j)∈E

(

d
cp
ij · (tj + δij) + d

mp
ij · (tmp

j + δ
mp
ij)

)

(7)
This is a general calculation formula for estimating a
WCET figure in the presence of an instruction pipeline and
branch prediction, independent of how the individual ana-
lyses are actually performed. The scalability of the ILP

problem to account for more complex control-flow graphs
is always of concern. For our approach, the increase in the
number of ILP constraints is proportional to the number of
branch blocks in the control-flow graph. This relationship
is achieved by pre-determining the worst-case number of
branch mispredictions. In other approaches, e.g. Mitra et
al. [8], each branch and each possible execution pattern
have to be modelled as a separate ILP constraint which
leads to a much higher number of constraints. Although
we acknowledge the principal reason for their approach
is that they model a complex global-history predictor, the
additional complexity associated with their analysis is not
necessary when modeling a bimodal predictor.

In a recent work, Li et al. [5] describe a different ap-
proach for including the effects of mispredictions into the
WCET calculation by extending Equation (1):

T (G) =
∑

∀i•bi∈V

(xi · ti + mpi · mpp) (8)

wherempi is the number of branch mispredictions for ba-
sic blockbi andmpp is the constant branch misprediction
penalty for a single misprediction.

The branch misprediction penaltympp in Equation (8)
represents the number of stall cycles required by the in-
struction pipeline to recover from a mispredicted path. It
should be noted, however, that theactual misprediction
penalty, i.e. the execution time difference between a mis-
predicted and correctly predicted branch, not only includes
the stall cycles but also the additional cycles required by
the missing overlap in the case of a misprediction. Also,
since the pipeline overlap usually varies for different com-
binations of basic blocks, the actual misprediction penalty
is not constant and it may be too pessimistic to simply use
its maximum value in Equation (8).

More importantly, only considering the number of stall
cycles in Equation (8) underestimates the execution time
overhead caused by mispredicted branches. The advant-
age of our approach is that it does in fact take into account
the actual misprediction penalty for each basic block indi-
vidually. Instead, it is included implicitly in Equation (1)
without adding any unnecessary pessimism.

5. Branch Interference
In practice, the number of entries in the BHT of a

bimodal predictor is of limited size, so different branch
instructions may have to share the same predictor entry.
This effect is calledbranch interferenceor aliasing.

As far as static WCET analysis is concerned, we need
to address the effects of interference among branches be-
cause this may invalidate any assumption regarding the
behaviour of the involved branches when analysed sep-
arately. Branch interference complicates static analysis
because we have to widen the scope of the analysis such
that the execution behaviour of multiple branch instruc-
tions can be taken into account.

In the context of WCET analysis, the problem of in-
terference among branch instructions can be tackled from
two different sides:

• Address the effect of branch interference in the static
WCET analysis approach. This is the most desirable
option in terms of completeness of the analysis model
but it also complicates the analysis.

• Avoid branch interference by changing the instruc-
tion address of the affected branches, for example, by
introducingnop instructions. Zhao et al. [10] discuss
the repositioning of complete basic blocks in order to
reduce the WCET. Although relocation of branches
may not be feasible for all cases where branches inter-
fere with each other, it may be beneficial (also from a
performance point of view) to apply it if the interfer-
ence may lead to worst-case predictor behaviour.

We propose to use the latter approach as it does not further
complicate the complexity of the branch predictor analysis
model itself, the first approach would be difficult to ana-
lyse without significant pessimism and it can also help to
reduce the WCET in cases of destructive interference. In
order to keep the number of branch instructions that have
to relocated as small as possible we extend our branch
classification model to identify branches being subject to
destructive interference:

• Hard-to-predict branchesare not relocated because
these branches are already assumed to exhibit worst-
case behaviour.

• Easy-to-predict branches, in contrast, are further
classified into those being biased toward the taken
direction and those being biased toward the not-taken
direction. Then, all branches that both share the same
entry in the BHT and are biased to different directions
are relocated.

The number of branch instruction to be relocated can be
further reduced, if necessary, by not considering interfer-
ence among branches that are on mutually exclusive exe-
cution paths. The detailed algorithm for selecting and re-
locating branch instructions that are subject to interference
is omitted here for space reasons.

6. Case Study and Evaluation
Figure 2 depicts the control-flow graph G(V,E) for a

conditional statement that is embedded within a loop. We
have omitted the source code because of space limitations.
The set of branch blocks is defined byVc = {b2, b3, b5}.
Basic blocksb2 andb5 contain conditional branches linked
with the conditional statement and the loop condition, re-
spectively, andb3 contains an unconditional branch. The
following set of linear constraints imposed by the program
structure for the execution count of each basic block can

be observed from the control-flow graph:

x1 = d12

x2 = d12 + d52 = d24 + d23

x3 = d23 = d35

x4 = d24 = d45

x5 = d35 + d45 = d52 + d56

x6 = d56

π

b1

b2

b3 b4

b5

b6

dπ1

d12

d24
d23

d35
d45

d52

d56

Figure 2. Annotated control-flow graph

Table 2 provides the execution countsd
cp
ij andd

mp
ij de-

rived using the analysis results in Table 1, the execution
time tj of the basic blockbj, and the amount of overlap
δij betweenbi andbj for each transition(bi → bj) ∈ E

in the control-flow graph. Although the execution time
values in this table were obtained from the SimpleScalar
architectural simulator [1], any other source of basic block
execution time estimates could be used as well. For this
example, we have configured the simulator to use an in-
order instruction pipeline without caches.

bi → bj tj δij d
cp
ij t

mp
j δ

mp
ij d

mp
ij dij

π → b1 10 0 1 – – 0 1
b1 → b2 14 -9 1 – – 0 1
b2 → b3 29 -8 18 25 1 2 20
b2 → b4 8 -7 0 5 1 0 0
b3 → b5 11 -9 19 7 -1 1 20
b4 → b5 10 -5 0 – – 0 0
b5 → b2 10 -5 17 8 -1 2 19
b5 → b6 – – 0 17 1 1 1

Table 2. Execution times and counts

Providing a loop bound is essential in order to make the
ILP problem decidable. The loop in the control-flow graph
can be identified by the fact that basic blockb2 dominates

b5 (i.e. all paths from the start vertex to basic blockb5 pass
throughb2) and there is also a back edge(b5 → b2) ∈
E between these two blocks. Therefore, basic blockb2

represents the header of the loop, which we assume iterates
n = 20 times. Furthermore, we assume that the function
itself is executed only once, thus:

x1 = 1 ∧ x2 = 20 · x1 ∧ x5 = x2

The branch instruction inb5, which is associated with the
loop condition, has the patternT n−1N and we assume in
the following thatn > 3. According to Equations (5) and
(6), we can define two additional linear constraints:

d
mp
52 = 2 ∧ d

mp
56 = 1

We assume that the behaviour of the conditional state-
ment is not known at compile-time and, therefore, we are
not able to define exact values for the execution count vari-
ablesx3 andx4 representing the two paths of the condi-
tional statement. However, we can make reasonable worst-
case assumptions about the behaviour of the branch by tak-
ing into account the condition stated in Definition 1.

If this condition is met we need to consider the path
with the highest WCET in the calculation (instead of the
alternating paths case), which in our example is thethen-
path represented by basic blockb3. In order to verify the
condition we have to determine how much the mispredic-
tion penalty decreases the pipeline overlap between the
blocks involved in the two paths. For this purpose, we also
estimate the WCETdifferencebetween the mispredicted
and non-mispredicted case for each of the two possible ex-
ecution paths, which for our example is five clock cycles
for each path:

T mp(pthen) − T (pthen) = (tmp
3 + δ

mp
23) − (t3 + δ23)

= (25 + 1) − (29 − 8) = 5

T mp(pelse) − T (pelse) = (tmp
4 + δ

mp
24) − (t4 + δ24)

= (5 + 1) − (8 − 7) = 5

This execution time difference represents theactual
penalty on the pipeline overlap caused by a branch mis-
prediction in basic blockb2. It should be noted that for our
example the actual penalties for thethen and else-paths
are the same but this is not necessarily the case in general.
The actual penalty is slightly higher than the three cycle
misprediction penalty purely associated with the branch
misprediction. This is due to the fact the branch prediction
also causes the pipeline to stall. The analysis shows that
the condition stated in Definition 1 is fulfilled and there-
fore the upper bound on the number of mispredictions can
be taken as two.

In this case, the corresponding pattern of the branch in-
struction inb2 is Nn, i.e. alwaysnot-taken, and according
to Table 1, the maximum number of mispredictions for this
branch is two. Furthermore, we assume that the target ad-
dress of the unconditional branch instruction in basic block

b3 is mispredicted on its first execution. We can define the
following additional ILP constraints for this case:

x4 = 0 ∧ d
mp
35 = 1 ∧ d

mp
23 = 2

Considering branch interference. Based on the classi-
fication defined in Table 1 the branch instruction inb5 is
taken-biased while the branch inb2 is not-taken-biased.
Whilst the case study presented here is probably too small
to exhibit extensive branch interference in practice, let us
assume that the branches in basic blocksb2 and b5 are
mapped to the same BHT entry and thus their predictor be-
haviour interferes with each other. In this case, the actual
branch behaviour seen by the predictor alternates between
the taken(due tob5) and thenot-taken(due tob2) direc-
tions, which, in the worst-case, causes both branches to be
always mispredicted. As there is a significant impact on
performance due to this interference we would certainly
want to remove it rather than model it.

WCET calculation. Using Equation (7) we can now
calculate the total WCET of our example function from the
values provided in Table 2 by using an ILP problem solv-
ing program (e.g.lp_solve). This gives us an estimated
WCET of 606 clock cycles assuming a branch mispredic-
tion penalty of three clock cycles andn = 20 loop iter-
ations. The pessimism of this WCET estimate compared
with the measured execution time of 576 cycles is 5.2%.

The main reason for this overestimation is the use of
maximum values fortj , δij , t

mp
j , and,δmp

ij for any trans-
ition (bi → bj) ∈ E. Taking into account that these values
may actually vary, depending onsomebasic block preced-
ing bi, would reduce the overestimation but increase the
complexity of the WCET analysis significantly because it
would require pipeline effects to be modelled along block
sequences of arbitrary length. The amount of pessimism
in this case is independent of the number of loop iterations
due to a constant overestimation of the loop body.

If we assumed that the branch instruction in basic block
b2 alternates between itstakenand not-takendirections
and is always mispredicted (see Table 1) the estimated
WCET would have been 526 clock cycles. In comparison
with 576 clock cycles (see above), this figure does clearly
not represent the actual WCET. Hence, simply assuming
the worst-case number of branch mispredictions and an al-
ternating behaviour of the branch instruction provides an
unsafe WCET estimate in this case.

A conservative and simplistic approach would be to
take into account both the maximum number of branch
mispredictions and the longest execution path of the con-
ditional statement. The ILP problem solving program
automatically assumes this scenario if no constraints are
provided ondmp

23 andd
mp
24 (and hence onx3 andx4) and,

as a result, increases the pessimism of the WCET estim-
ate to 20.8%. In fact, this scenario is not even possible for
a bimodal branch predictor because a branch instruction

cannot always have the same outcome and be mispredicted
at the same time.

7. Conclusions
The integration of individual WCET analysis methods

is not straightforward due to the interaction between the
analyses. This often leads to large increases in computa-
tional complexity, the introduction of unnecessary pessim-
ism, or even to unsafe WCET estimates.

We have shown how a previously published approach
for WCET analysis of dynamic branch predictors can
be integrated with instruction pipeline analysis and the
WCET be estimated using an ILP-based calculation
method. This is achieved by first calculating the number of
branch mispredictions and then representing these as con-
straints. Taking this approach results in significantly fewer
constraints than for other approaches estimating mispre-
diction numbers as part of the ILP problem. Hence the
approach presented is more scalable.

References
[1] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An In-

frastructure for Computer System Modeling.IEEE Com-
puter, 35(2):59–67, 2002.

[2] I. Bate and R. Reutemann. Worst-Case Execution Time
Analysis for Dynamic Branch Predictors. InProceedings
of the 16th Euromicro Conference on Real Time Systems,
pages 215–222, Sicily, Italy, 2004.

[3] A. Colin and I. Puaut. Worst Case Execution Time Ana-
lysis for a Processor with Branch Prediction.Real-Time
Systems Journal, 18(2/3):249–274, 2000.

[4] J. Engblom and A. Ermedahl. Pipeline Timing Analysis
Using a Trace-Driven Simulator. InProceedings of the 6th
International Conference on Real-Time Computing Sys-
tems and Applications (RTCSA), Hong Kong, China, 1999.

[5] X. Li, T. Mitra, and A. Roychoudhury. Accurate Timing
Analysis by Modeling Caches, Speculation and their Inter-
action. InProceedings of the 40th Conference on Design
Automation, pages 466–471, Anaheim, California, USA,
2003.

[6] X. Li, A. Roychoudhury, and T. Mitra. Modeling Out-
of-Order Processors for Software Timing Analysis. In
Proceedings of the 25rd Real-Time Systems Symposium
(RTSS), pages 92–103, Lisbon, Portugal, 2004.

[7] Y.-T. S. Li and S. Malik. Performance Analysis of Embed-
ded Software Using Implicit Path Enumeration. InWork-
shop on Languages, Compilers, and Tools for Real-Time
Systems, pages 88–98, 1995.

[8] T. Mitra, A. Roychoudhury, and X. Li. Timing Analysis
of Embedded Software for Speculative Processors. InPro-
ceedings of the 15th International Symposium on System
Synthesis, Kyoto, Japan, 2002.

[9] J. E. Smith. A Study of Branch Prediction Strategies. In
Proceedings of the 8th International Symposium on Com-
puter Architecture, pages 135–148, Minneapolis, Min-
nesota, USA, 1981.

[10] W. Zhao, D. Whalley, C. Healy, and F. Mueller. WCET
Code Positioning. InProceedings of the 25rd Real-Time
Systems Symposium (RTSS), pages 81–91, Lisbon, Por-
tugal, 2004.

