Efficient Integration of Bimodal Branch Prediction and Pipeline Analysis

lain Bate and Ralf Reutemann

Department of Computer Science, University of York
York, United Kingdom
e-mail: {iain.bate, ralf.reutemann}@cs.york.ac.uk

Abstract (ILP). Note that in the context of this paper no particular

low-level WCET analysis method for instruction pipelines

Advanced mprogrchnectural_ features sugh as cachegs assumed but instead an interface is defined for integrat-
and branch prediction mechanisms supporting speculat-ing it with branch prediction analysis

ive execution are becoming commonplace within modern

microprocessors. For developers of real-time systemss Branch prediction techniques

these mechanisms present predictability problems. Previ- . .
P P b Modern microprocessors combine the approach of out-

ous work has demonstrated accurate analysis for instruc-

tion caches, data caches, and branch prediction I,nech(,j“.]_of—orderexecution wittbranch predictiorandspeculative

isms is possible. However, the integration of these indi-.execlJtlorln orderto try to alleviate the problem of disrupt-

vidual analysis methods is difficult to do without large in- ng the' instruction f"?W into the pipe!ing due to branches.
creases in computational complexity or the introduction A simple dynamic branch prediction technique is a

of pessimism regarding the Worst-Case Execution TimebimOdal branch predicto[9] that stores branch history in

(WCET) estimate. In this paper, we discuss how a pre—a 2"-entry branch history table (BHT), which is indexed

viously published analysis method for branch predictors
can be integrated with instruction pipeline analysis.

by then lower bits of the branch instruction address.

1. Introduction

Correct scheduling behaviour of tasks is fundamental
in the design of a real-time system in order to fulfil its tim-
ing constraints and hence behavioural requirements. Ex-
isting scheduling schemes require an estimation of the

Worst-Case Execution TIm@VCET) of each task as a [ Bits | State | Prediction | Key |
prerequisite for performing schedulability analysis af th 00 | strongly not-taken| N SN
K Mod | . h 01 | weakly not-taken N WN
task set. Modern superscalar microprocessors, however, 10| weaky taken = T
exhibit micro-architectural features, such as instructio 11 | strongly taken T ST

pipelines, caches and speculative execution, that trade a
higher average-case processing performance for a lower
predictability of execution time behaviour, and thus com-  Figure 1 shows the states and transitions in a two-bit
plicate the analysis of a program’s WCET. The challengeprediction schemeN indicates a branch isot-takenand
in predicting the WCET is to find an estimate that is both 7 that the branch itaken The scheme provides some
safeandtight, i.e. the estimate is not lower than the actual degree of hysteresis and thus is less affected by occasional
WCET and it is reasonably accurate. In earlier work [2], a changes in branch direction. The state of the counter is
method is presented for obtaining the upper bounds on thgpdated after the branch outcome has been resolved.
number of branch mispredictions for loop constructs andTaple 1, summarised from [2], details the maximum num-
conditional statements assuming bimodal or global-hystor per of branch mispredictions that can be expected for vari-
branch predictors. ous branch patterns being repeatetimes, depending on
This paper discusses effects to be taken into accounthe initial state of the predictor. The second column in
when a static analysis method for branch predictors isthis table defines for each branch pattern the classification
integrated with pipeline analysis. Ignoring such effects of the associated branch instruction itaéen-biasedT),
may either lead to unnecessarily pessimistic or even unnot-taken-biase@), andalternating(A). The worst-case
safe WCET estimates. Also, dealing with the effects in annumber of mispredictions, i.e. each instance of a branch
inappropriate manner can lead to scalability problems. is mispredicted, is where the branch alternates between
The contribution of this paper is to derive an approachits takenand not-takendirections. In the table, the two
for integrating branch prediction analysis into an WCET cases corresponding to this worst-case predictor scenario
calculation method based dmteger Linear Programming  are highlighted in bold. The last two rows represent the

Figure 1. Two-bit prediction scheme



Pattern Class Initial Predictor State tion of this approach is demonstrated through an example.
SN| WN[ WT] ST We analyse the WCET of a program at the level of
T T 2 1 0 0 basic blockswithin the correspondingontrol-flow graph
N N 0 0 1 2 Without loss of generality, we measure the WCET of a ba-
(TN)™ A m | 2m| m m sic block inclock cyclegather than as a continuous time
(NT)™ A m m_ | 2m| m measure. Abranch blockis a basic block that contains a
W T n=3 N m_| m | L+m 3+m  pranch instruction. We denote the set of all branch blocks
(Jj\fnflﬁ)m’ n> g 'Nr - m - m_| L+m 2+m iy a control-flow graph G(V,E) as the sub$étC V. The
ET”‘1N§M7 2;3 - 21: 11:‘1 : nml transition(b; — b;) € E represents theakenpath and
d the transition(b; — b;+1) € E the not-takenpath of the

Table 1. Number of branch mispredictions branch instruction in a basic blodk € V..
For the program flow analysis, an approach is used

based onimplicit Path Enumeration Techniqu@PET),
branch behaviour of a |oop typ|ca||y generated by a Com_WhiCh models the control-flow of a program as a sequence

pi|er forn = 3 andn > 3 iterations, respective|y_ of constraints on the execution count Variah&eﬂ.e. the
number of time$; is being executed) for each basic block
3. Related work in the control-flow graph [7]. The WCET of a program, in

E.I.the following denoted b{'(G), can then be calculated by

Several static analysis techniques for obtaining WCET _ ™~ | . ; .
émdlng the maximum value of the following equation:

estimates of real-time programs have emerged over th
Ias.t two depades. The first vyork on exgcution time ana- T(G) = Z zi -t 1)
lysis for microprocessors using dynamic branch predic- Vieb.cV
tion techniques to model the branch target buffer (BTB) : . .

; ) . -/ wheret; is the maximum number of clock cycles required
of a Intel Pentium microprocessor is presented by Colin

. ) ’ to execute;.

and Puaut [3]. Disadvantages of their approach include T _ . _
it is based on source-code rather than object-code leveft major limitation of Equation (1) is that it does not take
which ignores additional branches introduced by the com-into accountthe pipeline overlap between instructions loc
piler, and it does not integrate the results with other partsated across the boundary of basic blocks. Therefore, using

of WCET analysis. this formula results in a significant overestimation of the
In our previous work [2], a scheme for classifying WCET for microprocessors using instructiop pipelines.
branch instructions as either beiegsy-to-predictr hard- Li et. al. [6] address this problem by defining the exe-

to-predict taking into account the semantic context of the cution timez; of a basic block as the interval between the
branches in the source code is introduced. Based on thi§ommit of the last instruction of the block preceding it and
Scheme, a static WCET ana|ysis approach for dynamidhe commit of its last instruction. Unfortunately, theyteta

branch prediction schemes using either local or global histhat branch prediction modeling has not yet been included
tory is provided. into their WCET analysis tool. Engblom et al. [4] propose

Mitra et al. [8] present a framework for modelling the t0 use a trace-driven microprocessor simulator instead of

effects of global-history branch prediction schemes onpipeline modelling to determine the execution time effect
WCET analysis. Their approach uses ILP to bound theOf pipeline overlap between successive instructions and
number of branch mispredictions by solving a set of linearPasic blocks.

constraints derived from the control-flow graph. As with  In the following, we modify the latter approach by de-
all ILP-based calculation methods, the scalability has tofining the execution time of a basic block depending on its
be carefully managed, especially when dealing with morePreceding blocks and possible branch misprediction events
complex branch predictor configurations. While their fo- that might occur due to the transition between the blocks.
cus is on modeling global-history predictors, they claim For this purpose, we will use the execution count of edges
that their approach can also be adopted to local-historynstead of basic blocks for the final calculation of the
predictors. However, this has not yet been demonstratedVCET and show how bounds on the maximum number
A key issue is the fact that their approach only deals with Of branch mispredictions can be integrated into the overall
one-bit predictors and not bimodal predictors. WCET analysis.

. . . Each edgéb;, — b;) € E in the control-flow graph is
4. Integration of branch prediction analysis assigned with an variabtg;, which represents the number

In this section, we present an approach for combining aof times this edge is being followed. Furthermore, for each
static WCET analysis method for branch predictors (e.9. agasic blockb; that contains a branch instruction we can
described in [2] or [3]) with instruction pipeline analysiis  distinguish between the execution counts for mispredicted

order to estimate the WCET USing an ILP-based CalCUla'(denoted by’np) and Correcﬂy predicted (denoted bp)
tion method. The results of branch prediction analysis arepytgoing transitions:

used to define additional ILP constraints on the execution mp . ep
counts of transitions between basic blocks. The applica- dij = d;;" + dij, @)



with Vi, j e (b; — b;) € EAb; €V, Analysis of conditional statements. The behaviour of a
branch instruction associated with a conditional statemen
Overlap between basic blocks. In general, the amount cannot be determined statically if it depends solely on in-

of overlap,é;;, across two adjacent basic blodksandb, put data available only during run-time. In this case, we
is calculated as follows: have to assume that all instances of the branch instruction

are mispredicted, which according to Table 1 corresponds

0ij = tij — (ti +15), 3 toan alternating behaviour of the branch. Thus, we can
with Vi, j e (b; — b;) € E, define the following linear constraints:
wheret;; is th_e number pf clock cycles required to ex- P PJ AP g
ecuteb; andb; in successiont; andt; are the number of ij 2 iitl ij
clock cycles required for executigandb;, respectively,

We assume here that the WCET of that-takenpath ex-

ceeds that of the other path. Otherwigg” andd;"/
We introduce a special vertexin order to define a prede- haye to be interchanged with each other. ’

in isolation.

cessor for the first executed basic block andiget= #, However, according to the condition stated in our previ-
and¢, = 0. This will simplify the formal expression of = ous paper [2], we need to consider the path with the highest
the WCET calculation formula later in this section. WCET in the calculation (instead of the alternating paths

A misprediction of the branch instruction in basic block case), when the execution time difference between the two
b; reduces the amount of pipeline overlap between basigaths of the conditional statement is at least twice the mis-
blockb; and the block; on its correct branch target. This prediction penalty. Then, the corresponding pattern of the
may even resultina pOSitive value my, which would oc- branch is eitheW”' ie. a|Wayg10t-'[aken orT", i.e. al-
cur when there is no pipeline overlap but instead a pipelineyaystaken and according to Table 1, the maximum num-
stall. Also, it may have an impact on the overlap amongper of branch mispredictions is two:
instructions within basic block; and therefore change

the execution time ob;. Although Equation (3) impli- di? =0 AN dF, =2
citly takes into account a misprediction of the branch in- '
struction in basic block; we distinguish between the mis- We will now introduce the general condition based on

predicted and correctly predicted case in order to providethe theoretical model defined in [2]:
a more accurate WCET estimate. Otherwise, potentially

significant pessimism could be introduced. Thus, we cal-Definition 1 (Conditional Statement) N
culate the pipeline overlap?”, in the case of a branch Letn > 1 be the number of times the conditional state-
Nj o

misprediction according to the following equation: ment is repeated within the loop body ahdle the branch
mp  mp mp misprediction penalty. Then, the upper boungd on the

00 =ty — (ti+t;"), (4)  number of branch mispredictions is defined by:

Wlthv7 b; b;)e ENDb; €V, .

wheret;” is the maximum number of clock cycles re- mp(n, A, 0) = n, otherwise ,

quired to executé; andb; in succession, and'"” is the

maximum number of clock cycles required for executing with A = |T (pthen) — T (Peise)|-

b; taking into account the effects of a misprediction of the

branch instruction contained in. T (ptnen) and T (peise) represent the WCET for thiehen

andel se-path, respectively. Note that the condition in

Analysis of loop statements. The patterri?™~ N rep- the definition above tends @3 for n — co.

resents the behaviour of a branch instruction associated ;rrgjefc:)ndltlr:)n I:glf ﬂef'n;t'?nrﬁbﬁverinietds tot bljier\:i?:-
with a loop condition, assuming that the loop iterates ualed for each co onat statement prior 1o estabiishing

times. According to Table 1, an initial state stfongly the set of ILP constraints for the WCET calculation.

not-taken(SN) is assumed as this equates to the worst-case

initial state for a bimodal predictor. WCET calculation. We can restate the ILP cost func-
Table 1 defines the maximum number of branch mis-tion provided in Equation (1) such that the effects of

predictions, denoted byp;, that can be expected for the Pipelining and branch prediction are taken into account:

branch inb; associated with the test of the loop condition.

We can state the following linear constraintaip;: T(G) = Z (dF - (t5 + 6i5) + di;” - (£]"F 4+ 6,37))
mp  mp Y (i,§)€E
mp; = d” + di,i+1 (5) (7)
In general, thaot-takenpath of the branch instruction in  This is a general calculation formula for estimating a
b; is always mispredicted upon each loop exit, thus: WCET figure in the presence of an instruction pipeline and

branch prediction, independent of how the individual ana-

iy =m (6) lyses are actually performed. The scalability of the ILP

4,0



problem to account for more complex control-flow graphs  In the context of WCET analysis, the problem of in-
is always of concern. For our approach, the increase in théerference among branch instructions can be tackled from
number of ILP constraints is proportional to the number of two different sides:

branch blocks in the control-flow graph. This relationship

is achieved by pre-determining the worst-case number of e Address the effect of branch interference in the static
branch mispredictions. In other approaches, e.g. Mitraet ~ WCET analysis approach. This is the most desirable
al. [8], each branch and each possible execution pattern  option in terms of completeness of the analysis model
have to be modelled as a separate ILP constraint which  but it also complicates the analysis.

leads to a much higher number of constraints. Although

we acknowledge the principal reason for their approach e Avoid branch interference by changing the instruc-
is that they model a complex global-history predictor, the tion address of the affected branches, for example, by

additional complexity associated with their analysis is no introducingnop instructions. Zhao et al. [10] discuss
necessary when modeling a bimodal predictor. the repositioning of complete basic blocks in order to
In a recent work, Li et al. [5] describe a different ap- reduce the WCET. Although relocation of branches
proach for including the effects of mispredictions into the may not be feasible for all cases where branches inter-
WCET calculation by extending Equation (1): fere with each other, it may be beneficial (also from a
performance point of view) to apply it if the interfer-
T(G) = Z (2 - t; + mp; - mpp) (8) ence may lead to worst-case predictor behaviour.
Vieb, €V

We propose to use the latter approach as it does not further
wheremyp; is the number of branch mispredictions for ba- complicate the complexity of the branch predictor analysis
sic blockb; andmpp is the constant branch misprediction model itself, the first approach would be difficult to ana-
penalty for a single misprediction. lyse without significant pessimism and it can also help to

reduce the WCET in cases of destructive interference. In
The branch misprediction penaltypp in Equation (8)  order to keep the number of branch instructions that have
represents the number of stall cycles required by the in1o relocated as small as possible we extend our branch

struction pipeline to recover from a mispredicted path. It classification model to identify branches being subject to
should be noted, however, that thetual misprediction  destructive interference:

penalty, i.e. the execution time difference between a mis-

predicted and correctly predicted branch, notonly inctude e Hard-to-predict branchesre not relocated because

the stall cycles but also the additional cycles required by these branches are already assumed to exhibit worst-

the missing overlap in the case of a misprediction. Also, case behaviour.

since the pipeline overlap usually varies for different eom

binations of basic blocks, the actual misprediction pgnalt e Easy-to-predict branchesin contrast, are further

is not constant and it may be too pessimistic to simply use classified into those being biased toward the taken

its maximum value in Equation (8). direction and those being biased toward the not-taken
More importantly, only considering the number of stall direction. Then, all branches that both share the same

cycles in Equation (8) underestimates the execution time entry in the BHT and are biased to different directions

overhead caused by mispredicted branches. The advant- are relocated.

age of our approach is that it does in fact take into account

the actual misprediction penalty for each basic block indi- The number of branch instruction to be relocated can be

vidually. Instead, it is included implicitly in EquationY1 further reduced, if necessary, by not considering interfer

without adding any unnecessary pessimism. ence among branches that are on mutually exclusive exe-
cution paths. The detailed algorithm for selecting and re-
5. Branch Interference locating branch instructions that are subject to interfeee

In practice, the number of entries in the BHT of a S omitted here for space reasons.
bimodal predictor is of limited size, so different branch .
instructions may have to share the same predictor entry®. Case Study and Evaluation
This effect is calledranch interferencer aliasing Figure 2 depicts the control-flow graph G(V,E) for a
As far as static WCET analysis is concerned, we needconditional statement that is embedded within a loop. We
to address the effects of interference among branches bérave omitted the source code because of space limitations.
cause this may invalidate any assumption regarding thélhe set of branch blocks is defined By = {b2, b3, b5 }.
behaviour of the involved branches when analysed sepBasic blockss andbs contain conditional branches linked
arately. Branch interference complicates static analysiswith the conditional statement and the loop condition, re-
because we have to widen the scope of the analysis sucépectively, ands contains an unconditional branch. The
that the execution behaviour of multiple branch instruc- following set of linear constraints imposed by the program
tions can be taken into account. structure for the execution count of each basic block can



be observed from the control-flow graph: bs (i.e. all paths from the start vertex to basic bldglpass
throughb,) and there is also a back ed@le — b2) €

r1 = di2 E between these two blocks. Therefore, basic blbgck

o = dia+dsy = dog + das represents the header of the loop, which we assume iterates

23 = dos = das n = 20 times. Furthermore, we assume that the function
itself is executed only once, thus:

Ty = daa =dss

x5 = ds5+ dgs = dsz + dsg =1 A 20=20-21 A 1x5=2x9

re = ds6

The branch instruction ibs, which is associated with the
loop condition, has the pattefff*~' N and we assume in
the following thatn > 3. According to Equations (5) and
(6), we can define two additional linear constraints:

AP =2 A AP =1

We assume that the behaviour of the conditional state-
ment is not known at compile-time and, therefore, we are
not able to define exact values for the execution count vari-
ableszs andzy representing the two paths of the condi-
tional statement. However, we can make reasonable worst-
case assumptions about the behaviour of the branch by tak-
ing into account the condition stated in Definition 1.

If this condition is met we need to consider the path
with the highest WCET in the calculation (instead of the
alternating paths case), which in our example isttreat
path represented by basic bloek In order to verify the
condition we have to determine how much the mispredic-
tion penalty decreases the pipeline overlap between the
blocks involved in the two paths. For this purpose, we also
estimate the WCETifferencebetween the mispredicted
and non-mispredicted case for each of the two possible ex-

Table 2 provides the execution courf§ andd;;"” de- ecution paths, which for our example is five clock cycles
rived using the analysis results in Table 1, the executiorfor each path:
time ¢; of the basic block;, and the amount of overlap

Figure 2. Annotated control-flow graph

5;; betweenb; andb; for each transitior{t; — b;) € E T (pten) = T'(pen) = (t5" + 655") — (t3 + 523)
in the control-flow graph. Although the execution time = (25+ 1) (29 - 8) =
values in this table were obtained from the SimpleScalar 7mp(, T (pysd (77 4 5P — (tg + 524)
architectural simulator [1], any other source of basic kloc G+1)—(8-T) =5

execution time estimates could be used as well. For this
example, we have configured the simulator to use an in-

) . - . This execution time difference represents taual
order instruction pipeline without caches.

penalty on the pipeline overlap caused by a branch mis-
prediction in basic blocks. It should be noted that for our
example the actual penalties for ttieen and elsepaths

L b=y |t [0y [ i [ 657 [ 077 [ dif” | dij |

m—b |10] 0] 1 - - 0| 1 are the same but this is not necessarily the case in general.
by —by |14 9] 1 - - 0] 1 The actual penalty is slightly higher than the three cycle
bp—b3 | 29| -8| 18 | 25 1 2| 20 misprediction penalty purely associated with the branch
bp—by| 8| -7 0 5 1 0] O misprediction. This is due to the fact the branch prediction
bs —bs | 11| -9 | 19 7 -1 1] 20 also causes the pipeline to stall. The analysis shows that
by —bs | 10| 5] 0 - 0 0 the condition stated in Definition 1 is fulfilled and there-
bs — by | 10| -5 | 17 8 -1 2| 19 fore the upper bound on the number of mispredictions can
bs —bs | —| —=| O 17 1 1 1 be taken as two.

In this case, the corresponding pattern of the branch in-
struction inb, is N, i.e. alwaysot-takenand according

Providing a loop bound is essential in order to make theto Table 1, the maximum number of mispredictions for this
ILP problem decidable. The loop in the control-flow graph branch is two. Furthermore, we assume that the target ad-
can be identified by the fact that basic bldgkdominates  dress of the unconditional branch instruction in basickloc

Table 2. Execution times and counts



bs is mispredicted on its first execution. We can define thecannot always have the same outcome and be mispredicted

following additional ILP constraints for this case: at the same time.
ra=0 A dyf =1 A dypf =2 7. Conclusions

The integration of individual WCET analysis methods
Considering branch interference. Based on the classi- is not straightforward due to the interaction between the
fication defined in Table 1 the branch instructiorbinis analyses. This often leads to large increases in computa-
taken-biased while the branch ia is not-taken-biased. tional complexity, the introduction of unnecessary pessim
Whilst the case study presented here is probably too smaf™. Or éven to unsafe WCET estimates.
to exhibit extensive branch interference in practice, ketu Ve have shown how a previously published approach
assume that the branches in basic blobksand b5 are for WCET analysis of dynamic branch predictors can
mapped to the same BHT entry and thus their predictor beP€ integrated with instruction pipeline analysis and the
haviour interferes with each other. In this case, the actual/CET be estimated using an ILP-based calculation
branch behaviour seen by the predictor alternates betweefi€thod. This is achieved by first calculating the number of
the taken(due tobs) and thenot-taken(due tobs) direc- branch mispredictions and then representing these as con-
tions, which, in the worst-case, causes both branches to petraints. Taking this approach results in significantlyéew
always mispredicted. As there is a significant impact onconstraints than for other approaches estimating mispre-
performance due to this interference we would certainlydiction numbers as part of the ILP problem. Hence the

want to remove it rather than model it. approach presented is more scalable.

_ _ _ References
WCET calculation. Using Equation (7) We_ can now [1] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An In-
calculate th(_a tota_l WCET of our egample function fromthe frastructure for Computer System ModelintEEE Com-
values provided in Table 2 by using an ILP problem solv- puter, 35(2):59-67, 2002.
ing program (e.gl p_sol ve). This gives us an estimated [2] I. Bate and R. Reutemann. Worst-Case Execution Time
WCET of 606 clock cycles assuming a branch mispredic- Analysis for Dynamic Branch Predictors. Rroceedings
tion penalty of three clock cycles and = 20 loop iter- of the 16th Euromicro Conference on Real Time Systems

ations. The pessimism of this WCET estimate compared Ka%esi_215—dz|22|,33ici{y, \'}\‘/’3"3” 5204- Eecution Time A
with the measured execution time of 576 cycles is 5.2%. [3] A. Colin and I Puaut. Worst Case Execution Time Ana-

Th . for thi . ion is th f lysis for a Processor with Branch PredictioReal-Time
e main reason for this overestimation is the use o Systems Journal 8(2/3):249—274, 2000.

maximum values fot;, 517 ’j‘;'np, and,s;;” for any trans- [4] J. Engblom and A. Ermedahl. Pipeline Timing Analysis
ition (b; — b;) € E. Taking into account that these values Using a Trace-Driven Simulator. Proceedings of the 6th
may actually vary, depending omebasic block preced- International Conference on Real-Time Computing Sys-

ing b;, would reduce the overestimation but increase the tems and Applications (RTCSAong Kong, China, 1999.
complexity of the WCET analysis significantly because it [5] X. Li, T. Mitra, and A. Roychoudhury. Accurate Timing
would require pipeline effects to be modelled along block Analysis by Modeling Caches, Speculation and their Inter-
sequences of arbitrary length. The amount of pessimism ~ 2ction. InProceedings of the 40th Conference on Design
in this case is independent of the number of loop iterations Automation pages 466-471, Anaheim, California, USA,

. . 2003.
due to a constant overestimation of the loop body. [6] X. Li, A. Roychoudhury, and T. Mitra. Modeling Out-
If we assumed that the branch instruction in basic block of-Order Processors for Software Timing Analysis. In
by alternates between itskenand not-takendirections Proceedings of the 25rd Real-Time Systems Symposium

and is always mispredicted (see Table 1) the estimated (RTSS)pages 92-103, Lisbon, Portugal, 2004.

WCET would have been 526 clock cycles. In comparison [7] Y.-T.S.Liand S. Malik. Performance Analysis of Embed-
with 576 clock cycles (see above), this figure does clearly ~ ded Software Using Implicit Path Enumeration. Work- -
not represent the actual WCET. Hence, simply assuming ~ ShoP on Languages, Compilers, and Tools for Real-Time
the worst-case number of branch mispredictions and an al- Systemspages 88-98, 1995,

. . . . . [8] T. Mitra, A. Roychoudhury, and X. Li. Timing Analysis
ternating behaviour of the branch instruction provides an of Embedded Software for Speculative Processorrin

unsafe WCET estimate in this case. ceedings of the 15th International Symposium on System
A conservative and simplistic approach would be to SynthesisKyoto, Japan, 2002.

take into account both the maximum number of branch [9] J. E. Smith. A Study of Branch Prediction Strategies. In

mispredictions and the longest execution path of the con-  Proceedings of the 8th International Symposium on Com-

ditional statement. The ILP problem solving program puter Architecture pages 135-148, Minneapolis, Min-

nesota, USA, 1981.

automatically assumes this scenario if no constraints are[lo] W. Zhao, D. Whalley, C. Healy, and F. Mueller. WCET

H mp mp

provided Ond23 andds,;” (and h'en.ce on; andzy) and, , Code Positioning. IfProceedings of the 25rd Real-Time
as a result, increases the pessimism of the WCET estim- Systems Symposium (RTS®ges 81-91, Lisbon, Por-
ate to 20.8%. In fact, this scenario is not even possible for tugal, 2004

a bimodal branch predictor because a branch instruction



