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Abstract. This paper describes an approach that has been developed over a
number of years for the job of scheduling systems and providing evidence that
timing requirements are met. The approach has been targeted at the safety-critical
systems domain, and more specifically the development of control systems for jet
engines. The work provides a usable computational model that supports the reuse
of legacy systems. In addition, timing analysis has been developed that features
low pessimism, low computational complexity and that is robust to change. The
contributions of this paper are to show how standard timing analysis is often in-
sufficient for real systems, presenting extensions to the standard analysis to give an
integrated approach to verification, and providing a case study that demonstrates
the appropriateness and benefits of the overall technique.

1. Introduction

Safety-critical systems are different to other systems because a failure
to meet a requirement may lead to a catastrophic effect, e.g. an accident
leading to loss of life. For this reason, there is a greater emphasis on
verification and validation of software in safety-critical systems than
with other types of system. In terms of scheduling, this leads to systems
having hard deadlines which are those that have to be met under all
circumstances. An evaluation of industrial practice for avionic systems
confirms that the majority of safety-critical systems still employ a static
scheduler. The cyclic scheduler being the most often used form of static
scheduler.

Locke (Locke, 1992), amongst others, describe a number of problems
with the static scheduler. These include having a restricted computa-
tional model (i.e. supporting only periodic tasks with a limited range of
iteration rates) and poor maintainability (i.e. small changes within the
system may have wide-spread effect). Development programmes such
as Integrated Modular Avionics (IMA) call for much greater flexibility
within systems. In some cases it is felt that it would be virtually im-
possible to achieve the ultimate goals of IMA using static scheduling
(Grigg and Audsley, 1997). For instance, it is felt that the IMA standard
ARINC 653 (ARINC, 1996) that uses static scheduling for partition
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and communications scheduling may affect the ability to synthesise and
maintain schedules (Audsley and Wellings, 1996). By moving to fixed
priority scheduling the problems associated with static scheduling can
be alleviated, resulting in significant technical and commercial benefits.
This paper will address how this transition can be performed providing
the maximum technical benefit in a cost effective manner without a
significant risk to projects.

The contribution of this paper is to extend existing scheduling ap-
proaches to better address the specific scheduling needs of safety-critical
embedded systems and in particular engine control systems. These
systems have a number of characteristics and requirements that make
them different to other real-time systems and to typical academic case
studies. Examples of distinguishing features of a Safety Critical System
are: a failure, e.g. a timing overrun, can have catastrophic consequences,
system timing requirements (such as latency or event sequence) are
not given in a form directly relating to scheduling (e.g. deadlines and
offsets), and the temporal requirements include the co-ordination of
multiple components. Also the system may contain legacy components
which should be supported by the scheduling approach.

Section 2 provides evidence of why the standard assumptions are
inappropriate and what the assumptions for scheduling should include.
Section 3 extends the standard theory to reduce any limitations and
provide an approach capable of developing uniprocessor systems. Sec-
tion 4 shows how the approaches developed for uniprocessor systems
can be migrated to distributed systems. Section 5 discusses some of the
problems that were faced when moving the techniques into industrial
practice. Finally, section 6 provides a summary of the contributions of
this paper.

2. Limitations of Standard Approaches

There are many papers and books that describe the standard approach
to scheduling and timing analysis, including (Joseph and Pandya, 1986;
Katcher et al., 1993; Audsley et al., 1993; Burns and Wellings, 2001).
The following subsections provide an argument of why the typical
scheduling assumptions are invalid in practice and how the standard
theory needs to be extended for use in real systems.

2.1. PREEMPTIVE SCHEDULING

The majority of papers on fixed priority scheduling make the assump-
tion that the computational model is preemptive, i.e. tasks can in-
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terrupt one another so that the highest priority runnable task is al-
ways the one being executed. However there are two other alternative
approaches, non-preemptive scheduling where tasks are run to com-
pletion after they have begun executing and cooperative scheduling
where tasks are executed until at pre-defined points during their exe-
cution they voluntarily suspend themselves. Non-preemptive scheduling
is the one used in static scheduling. The following are advantages
of the non-preemptive computational model over the other forms of
scheduling.

1. Legacy software produced for a static scheduler can be reused with-
out the need for significant re-design and re-verification. To safely
use application software in a preemptive or cooperative environ-
ment, it is necessary to ensure that the effect of suspending the
task’s execution on the data and control flow cannot lead to ambigu-
ities in the system performance. For example, interrupting software
in the middle of writing back a set of new data could leave the
system in an unsafe state. The problem of moving legacy software,
designed based on an assumption of a non-preemptive environment,
to a preemptive environment is worse than moving to a cooperative
environment.

2. A preemptive or cooperative flow of control introduces a great deal
more paths into the software which makes verification, in particular
structural testing, more difficult.

The key disadvantage of the non-preemptive scheduler is that once
the lower priority tasks have begun executing, higher priority tasks
that become runnable are prevented from executing - this is referred
to as blocking. Blocking makes it more difficult to meet the deadlines
of tasks which often leads to tasks being broken up into smaller parts
to meet temporal constraints. Hence the software engineering process
is fundamentally affected by what is, in practice, a small aspect of the
system.

For the first-time use of the technology in the safety-critical systems
domain where approaches tend to be less ambitious, the advantages
of non-preemptive scheduling are considered greater than the disad-
vantages and therefore the non-preemptive approach is to be adopted.
However, the intention is to slowly migrate to a preemptive compu-
tational model and hence any techniques developed should ideally be
usable with little modification in a preemptive scheduling framework.
For similar reasons, the initial work is to be performed with entirely
periodic tasks since these are currently used in static scheduling and
the problem of verification is eased. However the approach should sup-
port a future transition to task sets with both periodic and aperiodic
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tasks. Based on this restricted computational model, the standard tim-
ing analysis will have new sources of pessimism. For example with a
non-preemptive scheduler, tasks cannot be interfered with after they
have commenced execution. Whereas with a preemptive scheduler, it
is assumed tasks can be interfered with until they complete their exe-
cution. Therefore, sources of pessimism in the timing analysis need to
be identified and eliminated, where possible.

2.2. PRECEDENCE RELATIONS

An important requirement for embedded control systems is the need
to support transactions. A transaction is considered to be a number of
tasks executing in a pre-defined order within an end-to-end deadline -
often referred to as latency. An example of a transaction is where a task
reads information from a number of sensors, another task processes the
information and the final task outputs the information to an actuator.
It is important to maintain the freshness of data, that is if the sensor
data becomes too old before it contributes to an output of the system
then its usefulness is diminished; indeed it may even become hazardous.
This is particularly important in replicated systems where outputs have
to be compared to determine the validity of data. If the outputs are not
based on input data from a small time window, then the comparison is
more difficult to do with confidence. Since the standard approaches for
fixed priority scheduling do not accommodate the use of transactions,
the approaches will need to be extended.

Some work has been performed to develop approaches to solve sim-
ilar problems to ours (Gerber et al., 1994; Yerraballi, 1996; Gutierrez
et al., 1995). These approaches suffer from similar common problems,
which are:

1. an assumption is made that the task attributes are completely flex-
ible. However in many cases a task may have multiple requirements
placed upon it, e.g. it could be part of more than one transaction.
Therefore changing the task’s attributes to meet one requirement
could cause another requirement previously met to be no longer
satisfied;

2. the approaches are not intuitive, leading to difficulty in explain-
ing the techniques and performing the techniques manually. The
ability to explain the techniques to non-specialists is essential for
certification and technology transfer. The ability to perform the
techniques manually is essential as part of the review process which
is an integral part of the development of any safety-critical system.
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2.3. POOR JITTER CONTROL

A key disadvantage of the standard approaches for fixed priority schedul-
ing when compared to static scheduling is that jitter can be worse. In
many cases a bound on output jitter is not specified in systems sched-
uled statically because it is assumed that jitter is negligible. However
this assumption no longer valid with fixed priority scheduling because
a task can be executed any time between its release and its deadline.
Within control systems, jitter causes a reduction in the signal-to-noise
ratio of the system which could lead to instability. Hence, a mechanism
for controlling the jitter suffered by particular tasks is needed.

2.4. SUPPORT FOR OFFSETS

The vast majority of papers make the assumption that all tasks have a
zero offset from a fixed time reference and have deadlines not greater
than their period. Liu and Layland (Liu and Layland, 1973) show
that under these condition the system has a single critical instance
for all tasks. Offsets may be used in systems for a number of reasons,
including guaranteeing the separation between two tasks, spreading
the resource load of tasks with tight deadlines so that the system’s
tasks are schedulable and for guaranteeing tasks maintain a partic-
ular precedence order. However for a system with offsets there may
no longer be a critical instance. When tasks have offsets, Leung and
Merril (Leung and Merril, 1980) provides exact analysis that involves
showing every instance of every task on a particular processor is schedu-
lable over the period [Maximum Offset of Any Task, 2xLeast Common
Multiple of the Tasks’ Periods + Maximum Offset of Any Task). A
problem with this approach is that the exact analysis can be intractable;
dependent on the periods of the tasks being analysed. Hence, a prac-
tical mechanism for using and verifying the use of offsets is needed
that has lower computational complexity than the exact test without
introducing unmanageable pessimism.

2.5. COMPLETING THE SPECIFICATION OF SCHEDULING
REQUIREMENTS

The specification of timing requirements are incomplete in a number
of respects related to the means by which requirements can be met.
For instance, the systems engineers may produce a requirement that a
control system is stable within certain bounds. This system requirement
leads to timing requirements for jitter and period which can be met in
a number of ways. For example, a stability requirement can be met by
tasks having a small period and a relaxed jitter constraint, or a larger
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period but a tighter jitter constraint. Related to this, there are other
requirements that are flexible. If an offset is used to ensure a task only
executes after another has completed, then the offset can be increased
from the minimum that ensures the execution order to provide benefits
to the system. The advantages of doing this could include increasing the
likelihood of the system meeting its timing requirements and increasing
the robustness to change.

2.6. KERNEL OVERHEADS

Kernel overheads in a system can consume significant amounts of pro-
cessing time. If the overheads becomes too large or if they occur at
the wrong time, then it can cause the system to be unschedulable.
Ignoring the overheads means that the analyses cannot guarantee to
correctly predict whether deadlines are met. There are papers by Stros-
nider (Katcher et al., 1993) and Burns (Burns et al., 1995b), amongst
others, that modify the standard timing analysis for certain forms of
overhead. However, to our knowledge no published work investigates
how to trade-off the different design decisions that need to be made
when moving from a static scheduler. An objective for this work is to
control the amount of overheads and when they occur, and account
for this overhead in the timing analysis using the existing theory as a
basis.

2.7. FAuLT TOLERANCE

One of the key differences between non-safety-critical systems and safety-
critical systems is the need for high reliability and availability which
is provided through fault tolerance. In terms of scheduling there are
two main aspects to fault tolerance, which are: detecting when a task
executes for longer than expected, i.e. there is a timing overrun; and
detecting when a sporadic task is released at a higher rate than ex-
pected. Detecting faults related to sporadic tasks is often handled by
a simple test within the task release part of the kernel software.

The mechanism often used in static scheduling to detect timing
overruns is to enforce a rule that no task is executing when there is
a clock tick, i.e. a periodic interrupt used to trigger various kernel
services. Then, the timing watchdog simply has to check whether there
is a task executing when the clock tick occurs. When moving from
static scheduling, the mechanism for detecting timing overruns may
have to be altered and the timing analysis extended to account for the
new overheads. With fixed priority scheduling, there are many mech-
anisms for detecting these forms of timing faults that have different
detection times, granularity of identification and overheads. However,
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to our knowledge no published work investigates how to trade-off the
different design decisions that need to be made. Therefore an objective
of this work is to investigate how to perform the necessary trade-off
within the constraints of our problem domain.

2.8. DISTRIBUTION

Few safety-critical systems are implemented as distributed systems.
However the scheduling and timing analysis of these distributed sys-
tems is often made considerably simpler by an assumption that there
are no temporal relationships between the processors. For future sys-
tems, much greater levels of integration are going to be introduced in
order to reduce the number of processors needed and to increase the
system’s effectiveness both functionally and non-functionally (Edwards,
1994). An example of this is if engine and flight control systems are
integrated, then the control algorithms used for both can be optimised
based on greater levels of shared information to improve performance
and efficiency. Having a single processor execute the software for both
these functions is difficult due to the processing needs, the physical
separation issues and the impact on fault tolerance.

The key challenge when meeting temporal requirements in a dis-
tributed system is handling distributed transactions in a maintainable
way without too much pessimism. The techniques developed for a
uniprocessor system need to be migrated to a distributed system in a
manner that is acceptable to industry and their certification authorities.

3. Extending the Standard Approaches

This section presents our work to extend the standard analysis to
resolve the limitations discussed in section 2. During this work, four
constraints were used to guide the work in order to reduce opposition
to the use of the overall technique.

1. Certification - whether sufficient evidence of the approach’s in-
tegrity can be generated to satisfy the certification authorities.

2. Understanding - a key criterion is whether the technique can be
understood in enough detail by non-specialists so that it is adopted.
It is accepted that this criterion is difficult to measure.

3. Reuse - wherever possible the changes to the scheduling software
should not affect the rest of the system allowing the majority of
the components of existing systems to be reused.
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4. Sufficiency - whether the technique is flexible and efficient enough
to allow the engineer to design, implement and maintain the system
with acceptable levels of effort. To meet the previous constraints,
it is necessary to develop techniques that are not optimal in the
general sense. This effectively reduces the likelihood that the ap-
proach may find a solution when one actually exists. Therefore
the developed techniques should be tailored to be as practical and
effective as possible for the intended domain.

3.1. MOVING TO NON-PREEMPTIVE SCHEDULING

Harter (Harter, 1984; Harter, 1987) presents the first work that at-
tempts to solve the computational complexity problems of the exact
analysis. Harter developed timing analysis that could be performed in
pseudo-polynominal time to show whether the task set is schedulable,
i.e. all tasks meet their deadline. The standard timing analysis for each
individual processor is solved using equation (1) taken from (Harter,
1987). The analysis is valid for task sets with a critical instant. Harter’s
analysis assumes there are a fixed number of tasks, all of which have
a fixed unique priority, zero offset, and the deadlines are not greater
than the period.

R, =C;+ B+ I (1)

where 4 is a task in the set of tasks for a given node
R; is the Worst-Case Response Time (WCRT) of task ¢
C; is the worst-case execution time of task 4
B; is the worst-case blocking time suffered by task 4
1; is the worst-case interference suffered by task 4

The blocking time, B;, is the longest time that a lower priority task
can prevent task ¢ when it is runnable. The blocking time is dependent
on the computational model that is being used. In an idealised pre-
emptive model, the blocking time should be zero. However cases exist,
particularly with shared resources, where some blocking may need to
be accounted for.

The interference a task suffers is the maximum utilisation from the
critical instant for its higher priority tasks before it executes for the first
time. The interference is calculated using equation (2) which represents
the sum of the utilisations over the duration of interest for all the higher
priority tasks than task ¢. The utilisation is the product of the number
of times the task can execute and its worst-case execution time. The
number of times a higher priority task can execute is found by rounding
up the result of the time during which interference may occur (i.e. the
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response time of the task being analysed) divided by the period of the
higher priority task.

R.
L= ) {?Z-‘ Cj (2)
jehp(@) 1 77

where hp(i) is the set of higher priority tasks than task 4

Equation (1) is solved by forming a recurrence equation as shown in
equation (3).

R™
R?—H =C;+ B; + Z ’V?Z-‘ Cj (3)
jehp@) 1 7

with R? = C;
which terminates when R = R?, or R > D,.
where D; is the deadline of task i,

T; is the period of task 4

The final value for the worst case response time is taken when the
analysis converges, i.e. R?'H = R}, or when the worst-case response
time exceeds the task’s deadline, i.e. R; > D;.

The analysis in this section was also derived and published indepen-
dently by Joseph and Pandya as the Time Dilation Algorithm (Joseph
and Pandya, 1986; Joseph, 1985), and by Audsley et al (Audsley et al.,

1991).

3.1.1. Improved Blocking Model

A drawback of using a non-preemptive scheduling model, instead of a
preemptive model, is that tasks tend to suffer greater blocking. The
blocking time caused by lower priority tasks for the non-preemptive
model is expressed in equation (4). In many system, the blocking time
can be prohibitive, especially when it is considered that the lower
priority tasks are often the most computationally intensive.

B; = maziep(iy(Cr) (4)
where [p(7) is the set of lower priority tasks than task 4

Section 2.1 has already stated that the computational model may
consist entirely of periodic tasks. Therefore, timing analysis is presented
that reduces pessimism based on a computational model that features
mainly periodic tasks. Under these circumstances, blocking is reduced
by noting that low priority periodic tasks that are always released at
the same time as task 7 cannot cause blocking. This is captured by
equation (5).
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Vn,m € N
kelpi) : (T #nT; ANT; # mTy) V R > T;
B; = mazyy(Ry — A) (5)

where A is one clock cycle

If aperiodic tasks feature in the set of tasks with a lower priority
than the task being analysed, then equation (4) must be used.

Theorem 1

A lower priority task, k, cannot block a task if the lower priority task is
always released at the same time as an instance of task i and it always
completes before the next instance of task 4.

Proof

If task k is always released at the same time as task i (i.e. the
condition in equation (6) holds), then task i always completes before
task k£ commences executing by virtue of its higher priority. If this
condition holds, then task & can’t block task ¢ if it always completes
before task i is re-released (i.e. the condition in equation (7) holds).

T; = nTy V mT), = T;, where n,m € N (6)
Ry <T; (7)

Il
Instead of the usual expression, B; = mazy(Ck), equation (5) uses
the term B; = maxzy(Cr — A).

Theorem 2
The blocking time is represented by one clock cycle less than the max-
imum worst-case execution time of any task that can cause blocking.

Proof

The blocking time is reduced since at least one clock cycle of task
k must already have occurred otherwise the higher priority task would
execute. Hence, the maximum of (C; — A) for all lower priority tasks
that can cause blocking (k) represents a safe estimate. (]

3.1.2. Improved Interference Model

Another area where pessimism could be introduced is in the interference
model. The purpose of this section is to investigate where the pessimism
arises and how it may be reduced. The interference term, given in
equation (2), is taken from the standard timing analysis and represents
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the maximum amount of time higher priority tasks can execute before
the task being analysed.

Equation (2) is pessimistic, because the numerator of the inter-
ference term assumes a preemptive model. With non-preemption, a
higher priority task cannot commence executing if a lower priority task
has begun executing. Instead, the higher priority task must wait for
the lower priority task to complete. Therefore, the interference can be
improved as shown in equation (8). In this equation, the numerator is
reduced by the worst-case execution time of task i, task 7 being the task
whose interference is being calculated. However, to prevent anomalies
due to edge effects, caused by a task being released at the same time as
another is dispatched, then one clock cycle (i.e. A) is added. In other
words, the extra clock cycle ensures task ¢ has actually commenced its

execution.
R, —C;+ A
j€hp(i) J

3.1.3. Optimality of DMPO with the Restricted Computational Model
Leung and Whitehead (Leung and Whitehead, 1982) show that the
DMPO (Deadline Monotonic Priority Ordering is where the highest pri-
ority tasks have the shortest deadline) approach is optimal for the pre-
emptive computational model based on the assumptions that all tasks
have zero offsets and deadlines less than or equal to their corresponding
period.

However, the change of computational model and associated analysis
means that DMPO is no longer optimal as shown by the following exam-
ple. Table I shows that the blocking caused by task C with DMPO leads
to an unschedulable task set. Table II shows that if the priorities of tasks
B and C are swapped, then the task set is schedulable. Hence, DMPO is
sub-optimal for a non-preemptive scheduling model. Audsley (Audsley,
1993) provides an optimal algorithm for assigning priorities, however
this is computationally complex. For this reason and because the cases
are rare in which DMPO does not find the schedulable solution, DMPO
has been used during the course of this work.

3.2. SUPPORT FOR PRECEDENCE RELATIONS

This section presents our extensions to the standard scheduling ap-
proach so that evidence is provided that the requirements of precedence
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Table I. Schedulability Results with
DMPO

Id T D C B P R Met?

A 4 4 2 3 1 5 N
B 16 15 1 0 2 3 Y
CcC 16 16 4 0 3 7 Y

Table II. Schedulability Results without
DMPO

Id T D C B P R Met?

A 4 4 2 2 1 4 Y
B 16 15 1 0 3 11 Y
C 16 16 4 0 2 6 Y

and end-to-end deadlines for a uniprocessor system are met. Qur ap-
proach consists of two independent parts, which are deriving the task
attributes (without knowledge of the tasks’ worst-case execution times)
so that the timing requirements may be met, and then using the tasks’
worst-case execution times to verify that the timing requirements are
met. This section provides the first part of the approach (i.e. the task
attribute assignment); the second part (i.e. the timing analysis) has
already been covered in section 3.1.

The proposal is that the necessary timing requirements can be han-
dled by setting deadlines to appropriate values. The system’s timing
requirements are then verified by simply proving that the tasks’ offsets
are enforced in the scheduler and using timing analysis to show the
tasks’ deadlines are met. An alternative approach would be to meet the
transaction’s requirements by just setting priorities. The disadvantages
of the alternative approach are that analysis other than the standard
timing analysis is needed to verify the system’s timing properties and it
is harder to manually validate that the requirements are met. It should
be noted that the ability to manually validate results is important
during the review phases of the overall certification process.

The approach to meeting the transaction requirements is based
on reducing the tasks’ deadlines in a systematic manner until the
requirements are met and that the tasks’ deadlines are reduced by
the minimum amount. Characteristics of the transaction’s requirement
include a task’s period could be longer than the period of the task
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that follows it in the transaction and the transaction’s deadline could
be greater than its period. Having unequal task periods means it may
not be necessary or possible to reduce all the deadlines so that perfect
precedence between the tasks of the transaction is maintained.

The task attributes are generated using Algorithm 1. The motivation
behind the algorithm is that it does not simply rely on the tasks’ dead-
lines being reduced so that perfect precedence is maintained. Instead,
while the transaction requirement is not met, the longest deadline is
reduced by A, and if this causes any of the preceding sequence of
tasks in the transaction to have the same deadline, then their deadlines
are also reduced by A. Since the algorithm does not simply enforcing
precedence, the resultant deadlines should be larger and hence the
likelihood of meeting the timing requirements is increased. The benefit
of the approach in Algorithm 1 is that if the deadlines are larger, then
there is a greater chance of a schedulable solution. The algorithm also
contains a manipulation of the TDAC (Task_Deadlines_Are_Changing)
flag. The use of this flag becomes apparent later.

Algorithm 1 - for Dealing with Transaction Deadlines

for each task i in the transaction
if the following task j has an equivalent deadline then
reduce the task i’s deadline by A
assign the value of false to the TDAC flag
while (transaction deadline not met AND (all tasks’ deadlines > 0))
assign the value of true to the TDAC flag
reduce the longest deadline of any task in the transaction by A
for each task in the transaction
if the task j has an equivalent deadline then
reduce the task’s deadline by A
assign the value of false to the TDAC flag

3.2.1. Justifying Correctness

The key to the integrity of the approach is ensuring the correctness of
the checks that the tasks’ deadlines and the transaction’s deadline are
met. The task’s deadlines are checked using the timing analysis already
discussed in section 3.1. There are two phases to the calculation of
the transaction’s response time, which are: establishing the particular
release of each task in the transaction, and the completion time for the
releases of interest. This is carried out by starting with the first task and
working through the tasks in the defined precedence order. Equation
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(9) can be used for calculating the task instance that is relevant to the
transaction.

" — "(nt—l - )T+ R — R+ Ty + A-‘
. =

T )

where t is the #!* task (assuming tasks are ordered according to
precedence) in the transaction,
n¢ is the instance of the ¢ task, where n; € N, and
n1 is1

The worst-case response time of the n;'" instance of task ¢, R}, from
the transaction’s critical instance (i.e. time zero) is given in equation
(10).

R?t = (nt — I)Tt + Ry (10)

Using an initial value of n; = 1, the response time of each task in
the transaction can be calculated by starting with the first task and
taking each task in turn. However for the verification to be useful, the
correctness of equation (9) needs to be justified.

Theorem 3

The value, R}, represents the worst-case response time of the
task of the transaction, where the tasks are ordered as defined by the
precedence constraint.

tth

Proof
Consider task ¢-1, which is the task in the transaction that precedes
the task whose instance is required. The worst-case response time of
the n'® instance of the task ¢-1, R}*7", can be represented by equation
(11).
R = (ng1 — )Ty + Ry (11)

The next instance of task ¢ must satisfy the condition in equation
(12), i.e. the response time of task ¢ must be after task ¢ — 1, but the
previous instance of task ¢ must be before task ¢t — 1.

(ne —2)Ty + Ry < RY'7' < (ny — V)T + Ry (12)

Therefore using equation (10),

(nt — 2)Tt + R < (nt,l — 1)Tt71 + R 1 (13)

(ni—1 — )Ty + Ry—1 — Ry + 2T,

- (14

Uz
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and the instance of task ¢ that maintains precedence, n;, must

complete after the n; " instance of task ¢-1,
(nt — ].)Tt + Ry > (nt,l — ].)Tt,1 + R 1 (]_5)
4—-UT 1+ Ry — R+ T;
nt>(nt1 )tl; t—1 t + 13 (16)
t

We can also state that

i € {Tasks in the Transaction}
Viosom>1 (17)

The conditions in equations (14), (16) and (17) are satisfied by the
value of m; in equation (18). The reason this value is used is because
it is the smallest value that satisfies the necessary conditions which
means that the results value of n; and R} are kept to a minimum.

- [(ntl — 1)Tt71 + Rtfl — Rt + Tt + A-‘
=

T (18)

O

3.2.2. Ezample of the Approach
For example, consider the transaction requirements of:

1. task precedence constraint is task A followed by task B followed by
task C followed by task D,

2. an iteration rate of 100 and
3. an end-to-end deadline of 145.

The periods of tasks A, B, C and D are 50, 100, 100 and 50 respec-
tively. In this case, task B cannot always follow task A because task B
has a slower update rate.

Without altering tasks’ deadlines, the requirement is not met be-
cause the transaction’s response time is 250. By an approach based
on enforcing precedence by setting deadlines (i.e. Dy = 50 — 3A,
Dp = 50 —2A, Dg = 50 — A and Dp = 50), the transaction re-
quirements could be met with a worst-case transaction response time
of 50. However using Algorithm 1 larger deadlines are assigned, the
task attributes are (i.e. Dy = 50, Dp = 100 — 2A, D¢ = 100 — A and
Dp = 50), as shown in Figure 1. From this Figure, it can be seen that
the task attributes result in the transaction deadline being met. The
benefit of the larger deadlines is that the tasks have a lower priority
and hence the likelihood of finding a schedulable task set is increased.
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T= 50 T =100
Task A Instance 1 | o
Task B Instanice 1 | A
Task C Instance 1 A
Task D Instance 1 | Instance 2

end-to-end response time = 100
Figure 1. Attributes produced with Algorithm 1

T=50 T=100 T =150
Task A Instance 1 ‘
Task B Instance 1 P
Task C Instance 1 ‘
Task D Instance 1 ‘ 5 ‘ Instance 2 ‘ 5 ‘ Instance 3 5 .

end-to-end response time = 145

Figure 2. Alternative attributes

3.2.3. Optimality of the Approach

With any approach it is important to ascertain whether it is optimal.
If it is not optimal, then any deficiencies should be highlighted so that
appropriate action can be taken where necessary. First impressions
suggest that the approach may be optimal because the deadlines of
the tasks are the maximum possible whilst still meeting the timing
requirements. However, trying to prove optimality is difficult because
of the effect of complex interactions with other tasks and transactions.
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Figure 2 presents an alternative solution to the one derived in the
previous section using Algorithm 1. It is impossible to judge which
of these is the better solution without knowledge of all the tasks’
execution times, priorities and deadlines. On the one hand, the task
attributes in Figure 1 cause less interference through task D. While
the task attributes in Figure 2, cause less interference through tasks B
and C. Hence, it can not be stated that the approach in Algorithm 1
is optimal.

In our experience using the task attribute assignment approach, no
specific examples have been found where the issue raised in this section
has caused problems. A case study on a real system is presented in
(Bate, 1998) along with a discussion of potential strategies that can be
followed if problems are encountered.

3.3. CONTROLLING JITTER

For similar reasons to those given in section 3.2, the jitter constraint
should be handled using offsets and deadlines rather than priorities. If
a task has a deadline equal to the jitter constraint, then the constraint
is met because the window of allowed execution is constrained between
the critical instance and the time allowed by the jitter constraint.
However, using this approach would be pessimistic since there is a
minimum processing time for each task that adds no variability, i.e.
the task’s execution time can only vary between its best-case response
time and its worst-case response time. Therefore, the deadline can be
calculated using equation (19).

D; = J; + BCRT; (19)
where BCRT; is the best case response time of task i.

The best case response times of tasks can be generated in two stages.
Initially, the value can be set to zero, but later it can be calculated using
either exact analysis techniques or the method proposed by Harbour
et al (Gutierrez et al., 1998).

The analysis given in equation (19) could cause problems when the
transaction deadline is less than or equal to its period, and there is
a jitter constraint placed on the last task in the transaction. This
would lead to all the preceding tasks having tight deadlines, which
could affect schedulability. The solution to the problem is the use of
offsets to constrain the variation in the task’s execution at the end of
the allowed execution time of the transaction.

The approach for choosing tasks’ deadlines and offsets can be rep-
resented by Algorithm 2. Deadlines are used to control the jitter. How-
ever, the actual algorithm is motivated by the desire to spread resource
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usage through the transaction’s available execution window and hence
improve the likelihood that the timing requirements are met. The dead-
line relative to the task’s release is constrained using Algorithm 2. The
algorithm only alters the task’s release time in the case of the last
task in the transaction where the transaction deadline is less than or
equal to the transaction’s period. In this case, all preceding tasks in the
transaction have their deadline capped at the last task’s release time.

The approach defined in Algorithm 2 cannot be described as opti-
mal. If a large number of tasks (specifically ones that are not part of
the particular transaction) are already phased to execute during the
time interval [O;, D;], then the approach may lead to an unschedulable
solution. In this circumstance an approach based entirely on equation
(19) and Algorithm 1, instead of Algorithm 2, may increase the likeli-
hood of a schedulable solution. However, in practice this is unlikely to
be the case and our use on real systems has not caused any problems.
To our knowledge, there is no optimal approach published for dealing
with jitter.

Algorithm 2 - Algorithm for Dealing With Jitter

for each task (denoted i) in the system
if task ¢ has a jitter constraint then
if task ¢ is not the last task in the particular transaction then
D; = J;+ BCRT;
assign the value of true to the TDAC flag
else
if the transaction deadline > transaction period then
D; = J; + BCRT;
assign the value of true to the TDAC flag
else
if D; > transaction deadline then
D; = transaction deadline
assign the value of true to the TDAC flag
0; = l)i__(ch'+_13(7}%1})
for all preceding tasks (denoted j) in the transaction
if transaction deadline is not met then
if D; > transaction deadline - (J; + BCRT;) then
D; = transaction deadline - (J; + BCRT;)
assign the value of true to the TDAC flag

An integrated task attribute assignment approach is given in Al-
gorithm 3. The motivation behind this algorithm is to combine the
approaches derived so far in a manner that accounts for tasks that
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have to satisfy multiple timing requirements. Firstly, the tasks’ offsets
and deadlines are constrained to allow for jitter. Then, tasks’ deadlines
are altered so the transactions’ deadlines are met in an iterative fashion
until the task’s deadlines no longer change. When the deadlines are no
longer changing (indicated by the TDAC flag being false at the end
of the while loop), then we can consider the interactions of multiple
timing requirements to have been accounted for.

Algorithm 3 - Owverall Algorithm for Priority Assign-
ment

initialise TDAC flag to true
apply algorithm 2
while the TDAC is true
assign the value of false to the TDAC flag
for each transaction in the set of transactions
apply algorithm 1
if (transaction deadline not met AND (all tasks’ deadlines > 0)) then
write error message to standard output
else
apply priorities to the tasks by the DMPO approach
perform timing analysis of the task set

This section has shown how the standard scheduling approach has
been extended to control jitter and how the task attribute assignment
approaches in this section and section 3.2 may be combined.

3.4. SUPPORT FOR OFFSETS

Experience in performing timing analysis of real industrial systems
leads to the observation that there is likely to be a pattern in the
types of offset used. The use of offsets is likely to be analogous to that
of the cyclic scheduler, i.e. the processing frame is split into manageable
chunks with tasks allocated to the different partitions using offsets. Ta-
ble III can be used to illustrate the type of requirements that result. In
Table I1I, tasks A, B, C and D have offsets such that their computation
is relatively evenly spaced over the period of 25000 units.

Based on this observation, this section presents a tractable but
non-exact ‘composite’ approach to the problem of analysing task sets
featuring offsets. The motivation behind this approach is that if a com-
posite task with zero offset can represent the tasks with non-zero offsets
and the same period, then the offsets are eliminated and the analysis
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presented in section 3.1 may be employed. Hence computational com-
plexity is reduced and existing (and accepted) analyses can be used.
The approach takes advantage of the fact that the offsets are relatively
evenly spread through time, partially due to the static origin of the
requirements, i.e. from statically scheduled systems. The benefit of the
composite task approach is that the computational complexity is kept
sufficiently low, while allowing resource usage to be spread through
time.

Table ITI. Example task set

Id T 0) D C

A 25000 0 6000 2000
B 25000 6250 12000 1500
C 25000 13000 18000 1500
D 25000 18000 25000 1500
E 50000 0 50000 2000
F 100000 0 100000 1000
G 200000 0 200000 1000
H 1000000 0 1000000 2500

The following are the steps followed to derive each composite task.

1. Define a set, ST, that consists of the tasks with the same period
and non-zero offsets, and a maximum of one arbitrarily chosen task
(if one exists) with the same period and zero offset.

For the task set in Table III, the set ST consists of four tasks B,
C and D (by virtue of having the same period and non-zero offset),
and task A (by virtue of having the same period and zero offset).

2. Define a set, ST1, that is equivalent to the set ST except for any
task with zero offset in set ST has its offset changed to equal its
period.

For the task set in Table I, the set ST1 consists of four tasks B,
C and D as well as one other denoted as X. Task X has a period
equal to the period of tasks B, C and D (i.e. 25000) and an offset
equal to its period.

3. A sequence, ST2, is defined which is an ordered (by increasing value
of offset) version of set ST1.
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For the task set in Table III, the sequence ST2 is defined as:

a) task B (offset is 6250) followed by
b) task C (offset is 13000) followed by
c) task D (offset is 18000) followed by
d) task X (offset is 25000).

ie. ST2 = {B, C, D, X}

. A sequence, ST3, is defined with the same order as sequence ST2,

but with value equal to the offset of the member in sequence ST2
divided by the index (range 1..N) into the set.

For the task set in Table III, the sequence STS is defined as:
ST3 = { Op

index of member B in sequence ST2’
Oc
index of member C in sequence ST2’
Op
index of member D in sequence ST2’

Ox }
index of member X in sequence ST2
_ (6250 13000 18000 25000
B { 1’2 7 3 7 4 }
ST3 = {6250,6500,6000, 6250} (20)

. A sequence, ST4, is defined which is an ordered version of the worst-

case execution times of the tasks in set ST. The ordering is in
accordance with decreasing value of worst-case execution time.

For the task set in Table III, the sequence ST4 is defined as
{C4,Cp,Cc,Cp} = {2000, 1500, 1500, 1500}.

. The composite task is given a period equal to the minimum value

of any member in the sequence ST3.

For the task set in Table I11, the period of the composite task is the
minimum of 6250, 6500, 6000 and 6250. Therefore, the period of
the composite task is 6000.

. In a simplified version of the composite analysis, the composite task

is given a worst-case execution time equal to the first member in the
sequence ST4, or in other words the member with the maximum
worst-case execution time.
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8.

For the task set in Table III, the composite task’s worst case exe-
cution time is 2000.

. Alternatively, the worst-case of the composite task for a particular
response time R; can be calculated using equation (21).
R;—0O
ZVq:qEST " Ty q-l ST4(#Q)
Ccomp = = (21)
’VTCOMP -|

where ST4 (#q) represents the ¢ member of ST4, and
#q is the index into the set ST in the range
[1,Number of Tasks in Set ST].

For the task set in Table III with a wvalue of R; of 27000, the
worst-case execution time is calculated as shown below. The value

is effectively reduced from 2000 to 1700, which is an improvement
of 15%.

c _ ZVq:qGST IVRiT;qu-I ST4(#Q)
COMP — " -|

R;
Tcomp

R;,—0O
qu:qe{tasks A, B, 0, D} " Ty q-l ST4(#q)
[270001
6000

-0 s74(1) + [ £i508| ST4(2)

5
o ]ST4 3) + [R OD] STA(4)

5
2700052 | 2000 -+ [ 21096556250 ] 1500

5
270%%0&30001 1500 +_[2702%663000] 1500

5
S Coomp = 1700 (22)

|
N
|
|

The composite task is given a deadline equal to the minimum rel-
ative deadline for any task in the set ST. The relative deadline is
classed as the task’s deadline minus the task’s offset.

For the task set in Table III, the composite task’s deadline is equal
to the minimum of:
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a) Dy — 04 = 6000
b) D — Op = 6250
¢) Do — O¢ = 5000
d) Dp — Op = 7000

. Deoyp = 5000

9. Replace the tasks that form the composite task in the task set to
be analysed (i.e. the members of set ST) with the composite task.

For the task set in Table III, tasks A, B, C and D are replaced with
the task COM P. The resulting task set consists of the tasks COMP,
E, F, G and H as shown in Table IV. There are two columns of
worst-case execution times in Table IV. Csrpp is the worst-case
execution time calculated using the simplified approach in step 7(a).
Whereas, Crarpr s the improved value of worst-case execution time
calculated using the approach in step 7(b).

Table IV. Example task set after the composite task
replaces the tasks with offsets

Id T 0 D Csivp  Cruvpr
COMP 6000 0 5000 2000 1700
E 50000 0 50000 2000 2000
F 100000 0 100000 1000 1000
G 200000 0 200000 1000 1000
H 1000000 O 1000000 2500 2500

The above steps ensure that task COMP will always induce equal
(or more) interference than the tasks it replaces (in the analysis) (Bate,
1998). To understand whether the composite form of analysis is effective
requires comparison with the exact approach. Analysis was performed
with task set characteristics generated pseudo-randomly within defined
ranges. The task set characteristics were:

1. The iteration rates in the range [25, 1000].
2. The worst-case execution time of the tasks are in the range (0, 2.5].

3. The offsets were assigned either randomly within the range (0, task
iteration rate).
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4. The deadlines were maximised so that:

a) Tasks without offsets have a deadline equal to their period.

b) Tasks with offsets have a deadline equal to the offset of the
next task in the sequence ST2. In the case of the task with the
largest offset at a particular iteration rate (i.e. the last member
of sequence ST2), the deadline is equal to the period of the
task.

5. A value for effectiveness is produced over a 1000 samples. Effec-
tiveness is the percentage of task sets calculated as schedulable,
compared to exact analysis.

Figure 3 shows the effectiveness of the composite approach (labeled
COMP) with Ccopp simply taken to be the maximum WCET of
any task in sequence ST4 compared to the actual composite approach
(labeled IMPR) where Coonp is calculated using equation (21). For
comparison purposes, results are provided for the analysis where offsets
are ignored (labeled SIMP). The two numbers (X,Y) at the end of each
label (e.g. COMP_X_Y) indicate the resource range (i.e. the resource
utilisation of the task sets is in the range [X%,Y%)) for the task sets.
Figure 3 shows that the improved form of composite approach performs
more effectively (up to 50% more effective) than either of the other two
approaches. The Figure shows the significant benefit of the improved
approach for calculating C'oonrp. The benefit is particularly apparent
for higher utilisation levels when the removal of any pessimism is par-
ticularly important. The lines labeled FREE will be explained in the
next section.

1 T ——

o 4

Effectiveness

04 | =

.-COMP_0 50 ——

*,

02 Y SIMP_0_50 - -

g FREE500100 8-

| | |
20 25 30 35 40 45 50
Number of Tasks

0

Figure 8. Comparison of the Approaches for Offset Analysis
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This section has shown how the standard timing analysis can be
extended to cater for offsets in a tractable manner with improved
pessimism over an approach that ignores offsets. One of the principal
benefits of the technique is the fact the existing analysis can be used
with a limited amount of pre- and post-processing. There are a number
of benefits of being able to reuse the analysis including, existing tools
and training can still be used and only a limited amount of extra
certification evidence is needed.

3.5. COMPLETING THE SPECIFICATION OF SCHEDULING
REQUIREMENTS

The use of offsets is an example of how the flexibility in the task at-
tributes can be taken advantage of. The rigorous treatment of offsets is
a new area that allows scope to optimise the chosen timing constraints.
Consider a transaction requirement specified for two tasks which has
a jitter constraint placed on the second task. As long as the necessary
precedence is maintained for the two tasks (i.e. the offset of the second
task is not reduced) and the second task meets its required deadline,
then the size of the second task’s offset may be increased.

Algorithm 4 - Algorithm for determining a task’s offsets

for each task in the set ST (lpop_index =0,1, ..)
calc. offset = loop-index Period of tasks in set ST
) no. of tasks in set ST
if (the current offset of the task < calculated offset)

offset = calculated offset

Algorithm 4 provides an approach for choosing the offset of tasks in a
flexible manner. The motivation behind this approach is that increasing
the tasks’ offsets so that their release and execution is more evenly
spread can help improve the schedulability of the task set. Figure 3
shows how this approach (labeled FREE) helps improve schedulability
compared to the composite analysis without it (labeled COMP). The
results show that in general using Algorithm 4 improves the chance of
a schedulable solution being found.

3.6. MODIFYING THE INFRASTRUCTURE TO RELEASE TASKS AND
ACCOUNTING FOR THE OVERHEADS

In general, there are two principal forms of task release, with ‘tick
driven’ the system has a periodic interrupt that triggers the task release
mechanism and other kernel services, and ‘time driven’ where the task
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release mechanism is executed when an event occurs (e.g. rather than
after the periodic interrupt, when a task completes execution tasks are
released based on the value of a real-time clock). In (Audsley et al.,
1996) it was shown that there were significant problems with both of
these approaches.

The tick driven approach can result in high amounts of release jitter
or kernel overheads dependent on the clock tick rate chosen. Audsley
(Audsley, 1993) shows that the release jitter for a given task can be
calculated using equation (23). The overhead can be calculated using
equation (24) that effectively models the overhead as a task with period
T, and worst-case execution time Cy (Katcher et al., 1993; Burns
et al., 1995b). It should be noted that the clock tick preempts the
execution of other tasks. If the clock tick rate is too low, then the tasks
may suffer too much release jitter to be schedulable. If the clock tick
rate is too high, then the kernel overheads are increased because too
many checks are performed.

Ji = Toy, — ged(Tew, T;) (23)

where gcd is the greatest common divisor

M = {j%nnw
Ter
Cur = MCfirst + (#] - M)Csub
t
Uoverhead(t) = T Cclk (24)
clk

whereUypernead(t) is the utilisation due to the overhead
of the clock tick at time ¢

In contrast, the time driven approach eliminates the release jitter
problem but the method of releasing tasks is a fundamental change
which affects reuse (particularly of the safety evidence) and the kernel
overheads may be higher due to the checks being performed frequently.

In (Audsley et al., 1996) a hybrid approach to task release is pro-
posed that is a compromise of the two techniques. The hybrid approach
releases the majority of tasks based on a clock tick, with a few tasks
(those whose rate is not a harmonic of the clock tick rate) released in a
time driven manner. The tasks released in a time driven manner incur
an overhead of Clyne for each time they are released. The clock tick
rate, T,x, should be chosen using equation (25) so that the minimum
value for the overhead is obtained.
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lem(T)

T (Mcfi”t + (#] - M)Csub) (25)
clk

Uoverhead =
where Cf;rs is the cost of releasing the first task,

Csup s the cost of releasing the subsequent tasks,

7 is a task in the set of tasks to be executed,

T, is the clock tick rate that is an integer multiple
of the clock tick rate

#7 is the number of tasks in the task set, and

lem(T}) is the least common multiple of the periods
of the set of tasks

It is shown in (Bate, 1998) that the hybrid release mechanism pro-
vides better worst-case response times than the time driven approach
when the period of the task in question is greater than the period of
the clock tick. Otherwise, the time driven approach provides the better
response times. The reason is the hybrid scheduling approach causes
less overheads than the time driven approach, however the hybrid ap-
proach phases most of its overheads (due to the task that models the
clock tick) at the critical instant which causes more impact on the tasks
with a shorter period than the clock tick. Since the majority of tasks
should tend to have a period greater than or equal to the clock tick
period, then this should not cause too great a problem. In addition,
the system’s responsiveness is improved because tasks not released at
a harmonic of the clock tick period do not suffer any release jitter.

3.7. FAuLT TOLERANCE

An additional responsibility for the infrastructure is to detect timing
overruns. With a static scheduler, timing overruns are detected in a tick
driven manner with a simple test performed. A similar approach can be
used with fixed priority scheduling but with a different test. The test
needs to determine whether sufficient execution has occurred between
clock ticks. The timing analysis is modified as shown in equations (26)
and (27). It should be noted that the timing watchdog can preempt
other tasks so the numerator in the ceiling function is not reduced by
C; — A.

R, =C;+B;+ I, + ITw (26)
R;
ITw = [T -‘ Crw (27)
T™W

where I7yy is the interference due to the timing watchdog software,
Crw is the worst-case execution time of the timing
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watchdog software, and
Trw is the period of the timing watchdog software.

An alternative approach is the countdown timer watchdog where
each time a task commences execution, a countdown internal timer is
started. The duration of the countdown timer is greater than the worst-
case execution time of any task in the task set. When the task execution
is complete, the countdown timer is restarted. If the countdown timer
reaches zero, then fault recovery is performed. It is assumed that if
a task executes for longer than its worst case execution time, then a
failure has occurred. Therefore, the response time to a fault is equal to
the duration of the countdown timer. This approach has clear advan-
tages that the response time is faster and the task causing the fault is
identified. However, the approach was not advocated in an industrial
field study because it would require a change to the hardware for what
is one of the most important components as far as safety is concerned,
and hence the cost and risk would be too great.

4. Distributed Scheduling

The real challenge with distributed scheduling is the efficient imple-
mentation and verification of transactions involving more than one
processor. This is because the scheduling of a particular task is no
longer influenced just by the other tasks executing on the processor
it is resident upon. Instead, the influence of other processors becomes
relevant, which makes the synthesis, change control, and maintenance
problems more complex (Burns et al., 1995a).

The aim of this section is to demonstrate some of the issues involved
in scheduling for distributed systems and how a smooth transition can
be made from an uniprocessor to a distributed architecture. A key
component of this work is trying to maximise the reuse of the techniques
developed for the uniprocessor systems. The reasons for this are:

1. There may be a great deal of time, money and effort invested in
the existing theory and tools. It would be beneficial to allow the
tools to be reused.

2. Treating each processor individually eases the synthesis and main-
tenance effort by facilitating a modular approach.

The early work on distributed scheduling using fixed priority schedul-
ing was an event-driven approach by Tindell and Clark (Clark and
Tindell, 1994). Their approach uses either periodic or aperiodic tasks
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for the first task in the transaction. Subsequent tasks/messages are
triggered as sporadic tasks when their preceding task /message has com-
pleted. These subsequent tasks/messages are modelled as periodic tasks
(period = minimum inter-arrival time of the sporadic) with release jit-
ter equal to the worst-case response time of the preceding task/message.
The advantage of the release jitter approach is that an extended form
of uniprocessor analysis may be used. However, there are four principal
disadvantages of the release jitter approach, which are:

1. Sporadic tasks are frowned upon in safety critical systems due to
the difficulty in analysing their behaviour - refer to section 2.1 for
discussion.

2. Small changes on one processor can easily lead to the whole system
needing to be re-verified, i.e. it is not robust to change.

3. The pessimism in the timing analysis can make the scheduling of
the system difficult (Gutierrez et al., 1998; Burns et al., 1995a; Sun
and Liu, 1996; Gutierrez et al., 1997).

4. However, the main issue is that the release jitter accumulates through
the course of the transaction which can become prohibitive due to
the impact on the control system’s stability.

Our work shows how time driven scheduling can be used in an effec-
tive manner, keeping pessimism to a minimum and easing the problems
of maintenance. The original work on this approach was performed by
Liu and Sun (Sun and Liu, 1996), and was referred to as the Phase
Modification Approach. By giving a task an offset such that its dispatch
(or release) is always greater than the worst case response time of the
event trigger (i.e. the worst case arrival time of the message) then
precedence is maintained, even across a distributed system (as long as
a global time-base is supported). The difference between our approach
and the original is that their approach uses exact analysis which may
lead to an intractable solution (refer to section 2.4 for details) whereas
our approach uses the composite analysis presented in section 3.4 and
it takes advantage of the flexibility in task attribute assignment to
increase robustness to change.

Our approach requires the uniprocessor task attribute assignment to
be integrated with the distributed scheduling approach. Figure 4 shows
that at a uniprocessor level, the task attributes are calculated using Al-
gorithm 3 with allowance made for some tasks already having attributes
(offsets and deadlines) brought about from distributed transactions. In
these cases, Algorithm 5 (in Algorithm 5 element refers to the tasks
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and messages in a particular transaction) is applied which enforces the
rules: an offset of a task can never be reduced and a deadline of a
task can never be increased. The motivation behind Algorithm 5 is
that increasing the tasks’ offsets so that their release and execution is
more evenly spread can help improve the schedulability of the task set.
Figure 4 also shows the four main features related to distributed task
attribute assignment, which are:

1. the analysis of messages on the databus is performed using the
timing analysis for tasks by assuming a message on a databus is
analogous to a task on a processor,

2. expansion of the approach to allow for multiple components, i.e.
more than one processor and a databus,

3. the feedback of timing analysis results back into the uniprocessor
attribute assignment, and

4. that the distributed timing analysis is carried out until convergence
is achieved.

Algorithm 5 - Algorithm for determining o task’s offsets

for each element in precedence order (loop_index =0,1, ..)
slot time = —°%P=inde*__yangaction Deadline

) no. of elements ) : )

if (WCRT of the preceding element in the transaction< slot time)
offset = slot time

else
offset = WCRT of the preceding element in the transaction

deadline = offset of the next element in the transaction

One of the benefits of altering the offsets is that maintainability is
enhanced by reducing the amount of re-verification when the system
changes. The reason is that within defined bounds a change on one
processor does not necessitate a system wide re-verification, i.e. it is not
holistic. Figure 5 illustrates how the timing characteristics of processor
1 may be modified until R4 > Op, without affecting the scheduling of
processor 2, since D4 = Op. Therefore, if the software on one processor
is modified, then only that processor needs to be re-analysed as long
as the overall system is schedulable. When the timing requirements are
no longer met, the timing analysis and task attribute assignment for
the whole system is repeated.
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Figure 4. Approach to Meeting Timing Requirements in Distributed Systems

Again to show the approaches effectiveness, simulations have been
performed with purely pseudo-random task set characteristics. The

characterist

ics are:

1. The iteration rates were in the range [25,1000].

2. The worst-case execution time of tasks are in the range (0,2.5].

3. The worst-case communication time of messages are in the range

(0,0.25).

4. The number of nodes is in the range of [2,6].

5. The number of tasks (N) is in the range [10,30].

6. A number of transactions in the range [1, N]. A transactions has a
number of tasks (= the number of nodes) each task executing on a
different processor. The transaction deadline is equal to its period.
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7. A value for effectiveness is produced over a 1000 samples. Effec-
tiveness is the percentage of task sets calculated as schedulable,
compared to exact analysis.

| |

| |

Processor Task A : :

1 | |

' WCRT=R, : :

I e e
Processor | |
2 | | Task B

| Offﬂ:OB|
| |

Figure 5. Phasing of Tasks on Different Processors

The simulation results for 10 and 30 tasks per processor are pre-
sented in the graphs contained in Figures 6 and 7 respectively. For each
analysis technique there are two lines, one of the lines is the results for
resources in the range [0%,50%) and the other the results for resources
in the range [50%,100%).

The composite analysis (labeled COMP) generally has less pes-
simism than the release jitter approach (labeled RJ). In particular,
when the resource level is higher (i.e. in the range [50%,100%]) the
composite analysis performs up to 10% better than the release jitter
approach. The improvement resulting from the composite approach
is significant on top of the other benefits. Therefore, the approach is
viewed as a viable solution for distributed scheduling and timing analy-
sis. The release jitter approach only performs better when the resource
level is small which is a consequence of the tasks’ response times being
smaller, which leads to the offset (or release jitter - the relevant one
is dependent on the technique being used to enforce precedence) being
small. When the offset or release jitter is small, the release jitter analysis
has less pessimism than the composite offset approach.

This section has shown how the uniprocessor scheduling and timing
analysis approaches in sections 3 can be extended for distributed sys-
tems in a manner that reduces pessimism and enhances robustness to
change.
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5. Industrial Take-Up

There were a number of challenges when moving the techniques dis-
cussed in this paper into industrial practice, including:

1. Cost - Justifying there was a cost benefit in adopting the technology

since this

is often more important than technical benefits.

2. Education - It is important that most of a company’s engineers and

managers

understand the technology well enough to be convinced

and judge any potential impact on the way they do their jobs. This

challenge

required suitable training to be developed.
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3. Process - Safety-critical systems are developed to a stringent pro-
cess. The impact of the new technology had to be understood. The
key difference was that the verification strategy relied more heavily
on analysis rather than test (Bate et al., 1996).

4. Requirements - One of the key benefits of fixed priority schedul-
ing over cyclic scheduling is the greater level of flexibility in the
computational model. However to take advantage of this flexibility
requires that the current timing requirements are changed. In a
highly complex system, such as an aircraft engine controller, this
is a significant undertaking. In addition, jitter constraints that had
previously not been specified had to be derived.

However the key challenge was that the work needed to satisfy
the certification authorities that the fixed priority approach provides
a scheduler with at least the same integrity as the cyclic executive.
Table V summarises a safety analysis that has been performed using a
technique presented by Burns and McDermid (Burns and McDermid,
1994). The principle behind the technique is that the four main proper-
ties (functionality, resource, timing, safety) are examined and recorded
for whether the property is met, the nature of the evidence and the
assumptions that are made.

Table V shows that both static analysis and dynamic testing has
been performed to show the correct operation of the system, and to
bound memory and processing resource usage. This assumes fault-free
conditions. Failure analysis has been performed that shows detectable
timing faults are recovered assuming the timing watchdogs do not also
fail. For the systems in question, hazards caused by dual random fail-
ures are normally accepted as being sufficiently remote, assuming there
is no possible common cause and individual failures have a sufficiently
low probability. The challenges presented by technology transfer were
handled sufficiently well that the work in this paper has been adopted
by Rolls-Royce for use on a project (Hutchesson and Hayes, 1998).
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Table V. Summary of the Kernel Safety Analysis.
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Property Nature of Prop- Nature of Evidence Assumptions
erty

Functionality = Dispatcher Cor- Tests using the ac- The kernel infras-
rectness  (tasks tual hardware and tructure operates
are scheduled at software showed that in fault-free con-
the correct rate the dispatcher met ditions.
and the correct the requirements.
order)

Operational Cor- The scheduler is pro- The scheduler is
rectness (system duced using stati- produced to an
invariants are not cally stored variables appropriate stan-
affected) — invariants should dard.

not be affected.

Timing In all cases the Timing analysis has The kernel infras-
performance of been performed that tructure operates
the system is shows the system is in fault-free con-
predictable and schedulable. ditions.
schedulable.

Resource Memory  usage The scheduler is The kernel infras-
is predictable produced using tructure operates
and within the statically stored in fault-free con-
allowable limits. variables — resource ditions.

usage proportional to
the (static) number
of tasks.

Failure In the event The tick driven tim- The timing

Behaviour of a  timing ing watchdog is the watchdog  does
overrun  within same as that used not also fail.
the system, the for the cyclic execu-
fault will be tive scheduler which
identified within has previously been
the appropriate tested. Appropriate
time. hazard analysis of

the timing watchdog
also exists.

6. Conclusions

The contribution of this paper has been to extend existing scheduling
approaches to better address the specific scheduling needs of safety-
critical embedded systems and in particular engine control systems.
During the course of this paper, techniques have been presented that
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are aimed at supporting smooth transitions from statically scheduled
systems to fixed priority scheduled systems and from uniprocessor to
distributed architectures. Further details of the work and the rationale
behind the work are contained in (Bate, 1998). The work has been
tailored in order to fulfill a number of objectives set out in section
3:

1. Reuse - periodic task release and non-preemptive scheduling has
been used so that the actual software and the process of producing
it changes by the minimum possible,

2. Certification and Understanding - the approach comes with analysis
that is acceptable to industry and the certification authorities as
demonstrated by Rolls-Royce’s use of the approach on a project
(Hutchesson and Hayes, 1998), and

3. Sufficiency - a method for task attribute assignment has been
developed that is tailored for the needs of the application. The
resulting analysis has acceptable levels of pessimism, computational
complexity and release jitter. For large scale systems development,
a greater benefit may be the fact the scheduling analysis is resilient
to change within defined bounds.
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