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Abstract—Interactions between multiple tunable protocol pa-
rameters and multiple performance metrics are generally complex
and unknown; finding optimal solutions is generally difficult.
However, protocol tuning can yield significant gains in energy
efficiency and resource requirements, which is of particular im-
portance for sensornet systems in which resource availability is
severely restricted. We address this multi-objective optimization
problem for two dissimilar routing protocols and by two distinct
approaches. First, we apply factorial design and statistical model
fitting methods to reject insignificant factors and locate regions of
the problem space containing near-optimal solutions by principled
search. Second, we apply the Strength Pareto Evolutionary Algo-
rithm 2 and Two-Archive evolutionary algorithms to explore the
problem space, with each iteration potentially yielding solutions of
higher quality and diversity than the preceding iteration. Whereas
a principled search methodology yields a generally applicable
survey of the problem space and enables performance prediction,
the evolutionary approach yields viable solutions of higher quality
and at lower experimental cost. This is the first study in which
sensornet protocol optimization has been explicitly formulated as
a multi-objective problem and solved with state-of-the-art multi-
objective evolutionary algorithms.

Index Terms—Evolutionary Algorithms (EAs), experiment
design, multi-objective optimization, protocols, sensornets.

I. INTRODUCTION

S ENSORNETS compose many autonomous motes into
ad-hoc networks for distributed sensing and processing

applications. Motes are small, cheap computers equipped with
independent power supplies, wireless communication capabil-
ity, and sensors with which to passively monitor their environ-
ment. Sensor-actuator networks also interface some motes with
actuators to actively influence the environment, completing
the control feedback loop. Interaction with the physical envi-
ronment implies that sensornets have real-time requirements
in addition to functional requirements. Typical applications
include environmental monitoring or surveillance.
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An important feature of sensornets is that motes have highly
restricted resource availability, owing to the requirements for
small physical size and low unit cost. Limited availability of
energy resources are particularly significant. When a mote runs
out of energy it cannot participate in the sensornet. Eventually, a
state is reached in which there are insufficient active motes for
the distributed application to function correctly; at this stage,
the entire sensornet is effectively dead [2]. Sensornet designs
must therefore be sufficiently optimized to ensure correct oper-
ation for at least the specified operational lifetime.

Wireless communication is generally the most energy-
hungry aspect of sensornet operation [3], and as such rep-
resents an obvious target for optimization. Energy efficiency
improvements might be achieved by improvements in software
or hardware, but the latter is often impractical; sensornet de-
signers typically select standard COTS hardware which cannot
be changed or improved post hoc in the field [4]. In this paper,
we consider only software-driven improvements at the level of
network middleware, assuming a fixed hardware platform and
typical distributed sensing application. Our results are therefore
portable across hardware platforms and high-level software
applications in typical sensornet scenarios.

The application of search-based protocol tuning methods
offers the sensornet designer an excellent tool with which to
optimize network performance for a given usage context. It is
surprising, therefore, that this approach has received such little
attention in the literature to date. Possible explanations include
the large number of controllable factors, measurable responses,
and test cases required for meaningful coverage. We address
these problems in this paper.

We demonstrate that careful tuning of networking protocols
can yield substantial improvements in energy efficiency with-
out compromising performance, elaborating a mechanism with
which to address this multi-objective optimization problem. We
compare two fundamentally different approaches; a broad-but-
shallow design of experiments (DOE) approach based on facto-
rial design (FD), and a narrow-but-deep evolutionary algorithm
(EA) approach employing the Strength Pareto Evolutionary
Algorithm 2 (SPEA2) and Two-Archive (TA) algorithms. We
address the relationship between analytical cost and solution
quality, demonstrating that a more sophisticated experimental
technique can yield high quality solutions at greatly reduced
overhead. To the best of our knowledge, our work is the first
to apply EA techniques to the sensornet protocol optimization
problem.

To demonstrate the versatility and generality of our proposed
method we consider its application to the optimization of two
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different network routing protocols; the TTL-bounded gossip
(TBG) protocol [5], and the implicit geographic forwarding
(IGF) protocol [6]. We provide a detailed comparison of single-
and multi-objective optimization strategies. We compare a
DOE approach based on FD [7] to two different EAs; SPEA2
[8] and TA [9]. These EAs were selected as they perform well
in optimization problems with many objectives. Our method
can be implemented using other EAs and can be applied to
other protocol optimization problems.

In this paper, we describe protocol tuning techniques and
do not seek to define or impose any specific system design
process or philosophy; it is for the system designer to select an
appropriate development process. In general, these techniques
might be implemented to obtain near-optimal parametric values
before sensornet deployment. The techniques could also be
applied at a later stage, when a sensornet has already been
deployed, so as to improve performance in the field. For ex-
ample, a sensornet might be deployed hastily, with suboptimal
configuration, in response to an emergency situation. While the
sensornet collects valuable data in the field, the designer can
tune and optimize the configuration in the laboratory, pushing
out the optimized network configuration at a later time.

This work addresses interesting challenges. The sensornet
protocol tuning problem is not simple or idealized; it is a
real-world problem with multiple inputs, multiple outputs, and
multiple objectives. Complex interrelationships between factors
were unknown a priori and could not be targeted during exper-
iment design. Fitness function evaluation incurred an unusually
high cost penalty; each evaluation implied execution of a sub-
stantial simulation instance. Furthermore, our analysis accounts
for noise present in the experimental data.

This article addresses the following research objectives:

Obj 1: Obtain near-optimal solutions to the sensornet protocol
tuning problem using evolutionary and principled search
approaches.

Obj 2: Compare solution quality attainable by evolutionary and
principled search approaches.

Obj 3: Consider the relationship between solution quality and
experimental overhead for the optimization problem.

The remainder of the paper is organized as follows. Section II
sets the content of this paper in the context of related work.
Section III defines the protocol optimization problem and the
experiment design with which it is to be addressed. Section IV
describes the FD principled search approach. Sections V and VI
describe the SPEA2 and TA evolutionary search approaches,
respectively. Section VII presents experimental results from
which conclusions are drawn in Section VIII.

II. RELATED WORK

A. Case for Protocol Tuning

Sensornets are similar to Mobile Ad-hoc Networks
(MANETs) in that they are composed of small, low-resource
computer nodes connected through a wireless network.
Akyildiz et al. [10] consider MANETs to be the closest peers
to sensor networks, but note that MANETs place far greater
importance on mobility, and MANETs may be composed of

far fewer nodes. More significantly, sensornets are data-centric
rather than application-centric [11] and are usually composed
of nonmobile nodes with environmental sensors [3].

Many sensornet communication protocols are described in
the literature, many of which accept a range of general and/or
protocol-specific parameters to fine-tune performance in par-
ticular cases [12]. It appears that rather more research effort
has been devoted to creating new protocols than optimizing
the performance of existing protocols. Although these new
protocols are valuable contributions to the field, a sensornet
designer must balance the demands of multiple performance
objectives, and as such it is rarely appropriate to create a new
protocol to address a single factor in isolation [13].

Even small improvements in network efficiency can yield
large gains in network lifetime. Sending a single bit of infor-
mation 100 m may consume more energy than executing 3000
CPU instructions [14]. Surprisingly, network radio hardware
operating in the idle listening mode offers little power advan-
tage over actively sending or receiving, and receiving data often
consumes more energy than transmitting [15]. These costs are
incurred by the sender, the receiver, and any intermediate nodes
along multihop paths, which may grow as network node count
increases.

To maximize the overall effectiveness and efficiency of
complex systems, it is insufficient to consider each influential
aspect in isolation. Owing to the nonlinear relationship between
distance and received signal power in wireless communications
[3], the total energy consumed in delivering a given packet is
sometimes lower if the route contains many short hops rather
than few long hops, despite the higher number of participating
nodes and transmissions [16].

The POCSAG protocol [17] defines the minimal set of peri-
ods during which devices must listen for broadcasts of relevant
messages on a shared channel, the inverse of which being the
much larger set of periods during which a device can switch off
to conserve energy reserves. This implicitly defines a nonzero
lower bound on message latency, typically orders of magnitude
greater than actual message transmission times. Designers are
forced to define these tradeoffs and design compromises if a
minimum QoS is to be guaranteed [18].

Sensornet designers must identify the most significant factors
to avoid being swamped by unnecessary detail. Unfortunately,
even identifying the relative importance of factors and their
interactions is rarely trivial [19]. Discovering the best values
to assign to these factors and understanding their impact on
network behavior tradeoffs is harder still [20]. Tunable param-
eters are often defined without clear default values and may be
defined over an infinite range.

B. Approaches to Protocol Tuning

When exploring the behavior of a system, it is possible
to apply either analytical techniques to a formal model of
the system, or simulative analysis in which experiments are
performed with a simulation model of the system, or some
combination of the two. Ploennigs et al. [21] support the latter
hybrid approach in which a formal model of the system is
defined for analytical techniques and from which simulation
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models are automatically generated for simulative analysis.
However, this assumes that a reasonable formal model of the
system can be constructed. There is some debate as to whether
this is [22] or is not [23] feasible for typical sensornets.

Mohan et al. [24] observe that little work exists on evaluating
and maximizing end-to-end performance of large, dense sen-
sornets. A number of candidate protocol stacks were measured
for a fixed configuration of sensornet and application. Rather
than considering several tunings of a single protocol, this
experimental work considered a number of protocols, but only
one configuration of each. A significant diversity of network
performance was observed, though it was not always possible
to determine why a given protocol behaved as it did.

With many controlled factors and measured responses, it is
generally difficult to understand the resulting complex interrela-
tionships. Totaro and Perkins [25] apply a systematic statistical
DOE approach to evaluate and model the complex tradeoffs in
designing MANETs. This work considers the impact of con-
trolling network composition with a fixed network application
and environment. In contrast, we assume a fixed network design
and a distributed application built on a tunable networking
infrastructure. We assume no prior knowledge of physical
topology, which strongly influences energy consumption [26].

Alba et al. [27] describe a process to optimize MANET
broadcast strategies. Five tunable parameters were defined
which characterize the search space, and three metrics of net-
work performance were defined which characterize the solution
space. Two problem formulations were considered; the first
optimized against three objectives, and the second optimized
against two objectives with a user-supplied constraint on ac-
ceptable solutions. A cellular multi-objective genetic algorithm
called cMOGA was employed to generate a Pareto front of
good candidate solutions from which a human designer selects.
Although the technique is generally effective, the Pareto front
is very reduced in the presence of constraints, and there is little
guidance for designers on manually selecting the single best
solution. This limits the extent to which the technique is useful
for the problem addressed in this paper.

C. Multi-Objective Optimization

A significant issue with multi-objective problems is the diffi-
culty in determining a well-defined ordering of solution quality
for a given set of candidate solutions [28]. In single-objective
problems, the ordering of solution quality is given simply by the
ordering of the associated fitness values. However, with multi-
objective problems, there are multiple fitness values to consider.
A solution with every fitness value lower than another is clearly
superior and is said to dominate the other solution. However, so-
lutions may be lower in one fitness value but higher in another;
this kind of solution is termed nondominated and is harder to
classify. In place of a single optimum value, multi-objective
problems generally have a Pareto-optimal front along which
all solutions are mutually nondominated, and all other valid
solutions are dominated by the Pareto-optimal front members.

Combinatorial explosion of possible solutions within a
multivariable problem renders exhaustive search impossible.
Stochastic search algorithms explore the solution space nonex-

haustively in reasonable time. Multi-objective evolutionary al-
gorithms (MOEAs) are stochastic generational multi-objective
search algorithms. Using the survival of the fittest concept,
they seek Pareto-optimal fronts by evolving progressively better
solutions based on the relative fitness of previous solutions.
Numerous algorithms of this type have been proposed. Details
of the state of the art can be found in a book by Coello et al.
[28] or a recent survey paper by Guliashki et al. [29].

D. Applying Evolutionary Computation in Sensornet Design

Jourdan and de Weck [30] were the first to apply MOEAs to a
sensornet optimization problem, in which the optimal physical
location of a set of motes was determined. Two objectives were
defined, maximal coverage and maximal lifetime, with no fixed
constraints. Although these early results were encouraging, they
were derived from unrealistically small networks of just ten
nodes.

Quintão et al. [31] addressed the optimization of dynamically
controlled sensornet topologies with the competing objectives
of minimal energy cost and maximal network coverage. Two
approaches were compared; a linear programming formulation
which yielded exact solutions with high computation overhead
and an evolutionary approach which yielded good solutions
in acceptable time. Greedy EA approaches were effective in
finding local minima but were often ineffective in looking
beyond these local minima to better solutions elsewhere in the
parameter landscape. We address this problem in our work with
a two-phase approach in which an initial principled search of
the problem space is used to direct the EA to regions likely to
contain global rather than local minima.

Sensornet node populations can be divided into disjoint
subsets, called sensor covers, each providing full coverage of
all sensor targets. Duty cycling at the level of complete sensor
covers reduces energy consumption and increases network life-
time. The disjoint set covers problem finds the maximal number
of sensor covers but is NP-complete; most heuristic approaches
produce low quality solutions or require exponential time.
Lai et al. [32] propose the Genetic Algorithm for Maximum
Disjoint Set Covers (GAMDSC) genetic algorithm to find near-
optimal solutions in polynomial time.

The disjoint set covers problem is also addressed by
Hu et al. [33], who propose the schedule transition hybrid
genetic algorithm. This is a hybrid approach combining a ge-
netic algorithm with schedule transition operations, employing
a forward encoding scheme to optimize both the sensor cover
and duty scheduling aspects simultaneously.

Molina et al. [34] address the sensornet layout optimization
problem, balancing the two competing objectives of minimal
energy cost and maximal network lifetime with a constraint
of complete network coverage. Two MOEAs are employed
for this problem; Nondominated Sorting Genetic Algorithm II
(NSGA-II) [35] and Indicator-Based Evolutionary Algorithm
(IBEA) [36]. Each MOEA found sets of nondominated feasible
solutions that were found to be efficient, but no statistically
significant difference was observed between the algorithms.

Chaudhuri and Dasgupta [37] compared two MOEAs,
NSGA-II [35] and SPEA2 [8], in maximizing the competing
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demands of coverage and lifetime in sensornet design. NSGA-II
tended to find better, feasible, acceptable, balanced solutions,
whereas SPEA2 tended to find extreme solutions. It may there-
fore be useful to split optimization resources between multiple
MOEAs; some reliably produce reasonable solutions but riskier
alternatives may find even better solutions.

Seo et al. [38] propose the location-aware two-dimensional
genetic algorithm to control the number and size of node
clusters, and the distance between nodes, in sensornet deploy-
ments. This algorithm uses 2-D chromosomes, unlike the 1-D
chromosomes used by most GAs, to encode more naturally the
2-D geographic distribution of nodes.

Other studies demonstrate the application of MOEAs to
optimization problems in sensornet design unrelated to those
considered in this paper. Yang et al. [39] applied the NSGA-II
algorithm sought to find the optimal configuration of adap-
tive antennas. Brandolese and Rucco [40] seek to optimize
application-level dynamic linking and management of cooper-
ating functions in order to maximize network lifetime.

III. EXPERIMENT DESIGN

In this section, we define the experimental configuration used
in Sections IV–VI to tune a sensornet protocol and explore the
parameter landscape. We define the structure and content of the
simulated network, the controlled factors, the solution quality
metrics, and the simulation environment.

A. Search-Driven Protocol Optimization

Two experimental approaches are employed in this paper. A
principled search approach, using FD, is used to sample the en-
tire problem space in a systematic and even manner [7]. This is
a broad-but-shallow deterministic search method. An evolution-
ary approach is then employed, using the SPEA2 [8] and TA [9]
algorithms to sample the problem space in a guided and uneven
manner. This is a narrow-but-deep stochastic search method.

To minimize experimental cost and maximize solution qual-
ity for the EA, we could obtain a survey of the problem
space, executing a low-resolution version of the FD approach to
locate regions of the problem space in which some high quality
solutions reside. We would then apply this insight to focus the
EAs, seeding the working sets with values in these regions but
allowing the EAs to explore the entire problem space. However,
the results presented in Section VII demonstrate that this is not
necessary for the MOEAs considered in this paper.

Now, consider other protocol tuning methods. Perhaps, the
simplest approach, from a computation viewpoint, is for the
sensornet designer to obtain a protocol tuning by a manual
approach. Applying intuition and personal experience allows a
candidate solution to be obtained with fixed cost. Although this
method is O(1) in all problem aspects, there is no guarantee
that the result is near-optimal, and there is no guarantee that the
result will conform to any specific requirement or constraint.

A similarly flawed approach is to ignore the issue and simply
accept a default set of parameters. First, this assumes the
existence of default values; this assumption is incorrect for the
TBG and IGF protocols considered in this paper, for which no
such default values are defined. Second, if default values were

available, there is again no guarantee that these would be near-
optimal for any specific problem, nor that that the result will
conform to any specific requirement or constraint.

A simple extension is trial-and-improvement, in which the
sensornet designer iteratively changes the value of one or more
controlled factors and then measures the impact experimentally.
This nonprincipled search method has O(n) cost in the number
of iterations, but there is no guarantee that any individual
iteration will yield a solution of equal or better quality to that
which precedes it. There is also no defined mechanism with
which to decide which controlled factor to change, and to which
value, at any given iteration.

A random search approach simply defines n candidate proto-
col configurations by randomly selecting values for controlled
factors within defined bounds, assessing the performance of
each by experiment, and then selecting that which offers the
highest quality. This approach is trivially O(n) in the number
of randomly defined configurations. Randomly sampling the
search space at n points is useful in seeding the SPEA2 and TA
evolutionary search methods discussed in Sections V and VI,
respectively.

Random search may compare favorably to evolutionary tech-
niques when the problem to be optimized has many objectives
[41]. However, when applied in isolation, random search offers
no guarantee of even coverage of the problem space and offers
no guarantees of solution quality. Attempting to force even
coverage of the search space results in a method similar to FD,
as discussed in Section IV.

B. Experimental Technique

To assess the quality of a given candidate protocol tuning,
we measure its performance in a representative sensornet con-
figuration. It would be impractical to employ real networks of
meaningful size in quality assessment; the overheads of time,
logistics, and financial cost are too high. It is also impossible
to guarantee a consistent and unchanging physical environment
for the total runtime of the tens of thousands of experiments
implied by the search process. This would severely undermine
the validity and repeatability of the measurements taken from
the sensornet and which are critical to our analysis.

Our evaluation of the fitness function for candidate protocol
configurations was obtained from a simulation model of the
sensornet system. This is in contrast to formal mathematical
modeling approaches. The construction and analysis of formal
models would allow the evaluation and verification of required
network properties. Given a suitable formal model, analytical
methods such as mixed integer programming could be applied
to optimize for one or more factors of interest.

However, formal modeling of sensornets is currently an
open research problem with numerous inherent difficulties [23].
Although we strongly support current efforts to produce usable
formal models of sensornet systems [42], [43], the current state
of the art has not yet reached the point where this is feasible
for systems of the scale considered in this paper. There also
remains the risk that the formal model omits some significant
detail about the modeled problem, which would undermine any
results obtained by this approach [44].
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We, therefore, conduct all experiments by simulation using
the yet another sensornet simulator (YASS) sensornet simulator
[45], which is optimized and validated for experiments of this
type and their corresponding duty patterns. This allows suffi-
cient simulation experiments, to obtain an acceptable sampling
of the search space, to run to completion in acceptable time.
Other similar sensornet simulators could be employed with
comparable results.

When assessing the time-dependent behavior of a given
simulated system, we must consider the difference between
simulated time, τ , and wall time, t. All measurements, behav-
iors, and decisions, within the simulated systems considered in
this paper are defined in terms of τ .

C. Network Configuration

The techniques outlined in this paper are independent of the
specific protocols and network designs explored in the follow-
ing experiments. However, these experiments explore only a
finite portion of the unbounded design space of all networks
and all protocols. It is likely that the trends we identify in
network performance responses as a function of protocol tuning
parameters are likely to apply in similar networking contexts.
Nevertheless, we limit the scope of our claims to the portion
of design space defined in this section, within which we have
confidence in our findings as they are demonstrated to have
statistical significance.

A set of three typical sensornets was defined and reused for
all experiments. Each sensornet consisted of 500 static motes
of identical capability modeled on the Crossbow MICA2 mote.
Motes were distributed randomly within a square of side length
21 km yielding a geographic distribution of uniform planar
density without network voids. The resulting average degree of
connectivity, the number of peer nodes with which a given node
can feasibly communicate, is approximately 20 which is typical
of sensornets [6].

All internodal communication was defined to occur through
anisotropic radio broadcast in an obstacle-free vacuum. Signal
propagation and attenuation was modeled using the Friis free
space model [46] with exponent of 2.0.

The simulated motes run a distributed sensing application in
which every node periodically produces a small data packet. In
our experiments, we specify exactly one destination per packet.
The destination of each packet is randomly selected from all
motes in the network to prevent bias from any implicit structure
in the mote distribution.

Each node in the network can act as a packet source, a
packet destination, or a packet relay. Section III-D describes
the protocols that regulate and control these behaviors.

D. Protocols and Their Controlled Factors

In this paper, we consider two protocols designed for
MANETs, both of which implement a low-state lazy binding
approach. The TBG protocol [5] is described in Section III-D3,
and the IGF protocol [6] is described in Section III-D4. These
protocols were chosen for their simplicity. More complex pro-
tocols often incorporate simple protocols during early discovery
phases or to maintain information. However, if implemented

carelessly, these simple protocols can be highly wasteful, and
hence offer an excellent opportunity for energy efficiency
improvement. For example, unbounded flooded messages can
easily cover the entire network [47] which is wasteful if the
source and destination are physically close.

Note that in selecting these protocols, we make no claims as
to their merit for any given sensornet application. More specif-
ically, we do not claim that when optimally configured, they
necessarily offer superior performance to alternative protocols.
However, we see no reason that the methods described in this
paper could not be applied to these other protocols.

1) Defining the Search Space: It is rare for network protocol
definitions to include default values for configurable parame-
ters, as values appropriate for any given network may not be
appropriate in others [12]. This is particularly true of sensornets
for which performance is highly sensitive to the operating
environment. If protocol definitions do not provide default
values, there is no default configuration to act as a baseline
for comparison. We must therefore compare relative solution
quality across the defined search space.

Where a parameter is defined over a large or infinite range,
it may be necessary to restrict the search effort to a range
of values of acceptable size. The issue of defining parameter
search ranges is part of the problem definition, rather than part
of the problem solution, and hence does not fall within the
scope of this paper. We used search ranges published elsewhere
[20] as these were found to produce a search space in which
some configurations performed better than others; otherwise,
optimization would be unnecessary.

2) Protocol-Independent Controlled Factors: Some tunable
parameters are specific to a given protocol, but others are com-
mon to several protocols. In this section, we define controlled
factors X1 − X5 which are common to both TBG and IGF,
and may interact with other shared parameters and protocol-
specific parameters. We define our experiments to explore as
much of the parameter space as is possible. For each parameter
X1 − X5, we limit our search to a subset of the defined range
within which a measurable difference in response is known to
exist [20].

X1: Seen packet buffer size. The number of packets received
or transmitted by a node of which knowledge is retained.
Nodes do not retransmit a previously transmitted packet
if the latter is held in this cache. New packets displace
a randomly selected cached packet if the buffer is full.
Measured in packets. Defined for integral values in the
range [0,∞). Search range is [1, 10].

X2: Waiting packet buffer size. The number of packets which
can be simultaneously enqueued for transmission or re-
transmission. Packets are consumed from the queue head
and added to the queue tail. If the queue is full when a new
packet is added, a randomly selected enqueued packet is
dropped. Measured in packets. Defined for integral values
in the range [1,∞). Search range is [1, 10].

X3: Initial backoff. Before beginning transmission of a packet,
the sending node will sense the wireless medium. If the
medium is clear, transmission begins immediately, other-
wise an exponential backoff strategy is applied in which
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the nth term is the nth power of this base value. Measured
in seconds. Defined in the range (0,∞). Search range is
[0.1, 1].

X4: Packet lifetime. The maximum permitted time for a packet
to remain in transit. If the lifetime is exceeded before
reaching the destination, the packet is dropped. Measured
in seconds. Defined in the range (0,∞). Search range is
[0.1,10].

X5: TTL. The total number of node-node hops permitted for
packets traversing the network. If this TTL is exceeded
prior to reaching the destination, the packet is dropped.
Measured in hops. Defined for integral values in the range
[1,∞). Search range is [1, 10].

Other networking protocols may be influenced by a different
set of factors, which may or may not intersect the above
set. However, any protocol for which there are quantitatively
defined controlled factors can be explored using this process.

3) TTL-Bounded Gossip Protocol: An adapted form [20] of
the TBG protocol [5] is the first protocol under consideration.
This protocol is ignorant of energy, network topology, and
the host application, ensuring no bias in the results produced.
Flooding and gossiping protocols of this form are commonly
used within more complex protocols [5] to establish delivery
routes or maintain awareness of network status, widening the
scope of our results to all such protocols.

The protocol makes no demands of a node wishing to
broadcast a packet, either for packets newly created by the
application or when forwarding packets. When a packet is
broadcast, each recipient makes an independent probabilistic
decision whether to rebroadcast the packet to its neighbors, if
it is not to be dropped or consumed. The packet thus radiates
outward from the source node, hopefully arriving at least once
at each intended destination.

In addition to the protocol-independent controlled factors
defined above in Section III-D2, an additional controlled factor
must be specified.
X6: Gossip rebroadcast probability. The probability that

upon receiving a packet, which is not to be consumed or
dropped at the recipient, a given node will enqueue the
packet for later retransmission to its neighbors. Unitless.
Defined in the range [0, 1]. Search range is [0, 1].

4) Implicit Geographic Forwarding Protocol: An adapted
form of the IGF [6], in which the backtracking support is
disabled for simplicity as the test networks are void-free, is the
second protocol under consideration. This protocol is ignorant
of energy, network topology, and the host application, ensuring
no bias in the results produced. Sensornets are strongly bound
to their deployment environment, and are inherently geography-
aware [48]. Geographical context can therefore be exploited
in decision making, avoiding the overheads associated with
maintaining logical network routing tables.

Unlike flooding-derived protocols, IGF implements a three-
phase handshaking sequence to moderate data packet broadcast.
Consider a packet p with source A and destination D, currently
at node S. Node S broadcasts a short request-to-send (RTS)
received by neighboring nodes Ni ∈ Nneighbors. Each RTS
recipient Ni considers its geographic position relative to S

and D, and if the angle ∠DSNi < θ (where θ is a controlled
factor, X7) Ni broadcasts a short clear-to-send (CTS). ∠DSNi

is trivially 0◦ if Ni = D. If S receives one or more CTS
replies, it selects the node Ni offering the smallest ∠DSNi and
selects this as the next recipient. Packet p is then broadcast with
this choice added to its header. All neighbors Ni ∈ Nneighbors

except the selected Ni can safely ignore p. When the selected
Ni receives p, it sends a short acknowledgement (ACK) to
S, completing this stage of the process. The process repeats,
with the previous Ni becoming the new S, until the packet
arrives at D or a node Ni with no suitable forwarding candidate
neighbors.

The current simulated time is given by τ from each sim-
ulated node’s internal real-time clock. Function SEQ(π) ex-
tracts the IGF sequence number from packet π. Function
ANGLE(σ) extracts the CTS angle stored in CTS packet
σ. Function SENDER(π) obtains the identity of the last
sender of packet π; this is not necessarily the original source.
Function DEST (π) extracts the destination specified in packet
π. Function RELAY (π) extracts the selected next-hop relay
node from packet π if defined for π.

In addition to the protocol-independent controlled factors
defined above in Section III-D2, two additional controlled
factors must be specified.
X7: CTS threshold angle. When node Ni receives a CTS

message from S, it will not send an RTS unless ∠DSNi <
X7. This factor is intended to prevent many low-quality
or poorly located forwarding candidates sending RTS mes-
sages and prevents packets being forwarded in the oppo-
site direction to the destination if X7 < 90. Measured in
degrees. Defined in the range [0, 180]. Search range is
[5, 85].

X8: State timeout base. Complete IGF cycles imply several
wait/timeout periods. To minimize the search space, we
define all as multiples of a single parameter X8, such
that CTS_WAIT = X8, DATA_WAIT = 2X8, and
ACK_WAIT = X8. Measured in seconds. Defined in the
range (0,∞). Search range is [0, 1].

E. Measurable Attributes of Solution Quality

To assess the relative or absolute quality of a given candidate
protocol tuning, we must first make measurable its behavior
in a representative application context. Each metric should
correspond to some desirable notion of solution quality. For
sensornet protocols, the appropriate categories of solution qual-
ity are performance, reliability, and efficiency [20]. A set of
solution quality metrics labeled M1 to M5 is defined below.
For all metrics, lower values indicate a higher quality solution.
A value of zero represents a perfect solution in a given metric,
although this may not be attainable; the optimal value may be
somewhat higher, but the value is not known in all cases.

1) Performance: We measure performance in terms of
packet latency, the average time taken for a packet to traverse
unit distance within the network. Where the physical network
topology is such that for all nodes the distance between that
node and all of its immediate communication partners is equal,
these metrics are equivalent. For all other network topologies,
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including those considered in this paper, these metrics are
nonequivalent but with correlation of strength defined by the
standard deviation of all values in the set node-neighbor physi-
cal distances.

M1: Latency per unit physical distance. The average amount
of time taken for a packet to progress 1 m from the source
node toward its destination within the network along some
arbitrary delivery path. Measured in seconds per meter.
Defined in the range (0,∞).

M2: Latency per unit network distance. The average amount
of time taken for a packet to progress a single node-node
hop from the source node toward its destination within the
network along some arbitrary delivery path. Measured in
seconds per hop. Defined in the range (0,∞).

2) Reliability: We measure reliability in terms of packet
delivery failure proportion, the proportion of packets created
within the network which are not successfully delivered. In this
paper, we assume that all packets have a single source and a
single destination. For network application in which packets
have multiple destinations, the network designer must define
the notion of successful delivery strictly to calculate this metric.
For example, in some applications, a multicast packet might
be considered successfully delivered if at least one possible
destination node receives the packet, or all possible destinations
receive the packet, or some proportion between these extremes,
or some more complex definition such as reaching a set of
geographic regions.

M3: Packet delivery failure proportion. The percentage of
packets created by the simulated application which the
network attempted to deliver but were lost before reaching
the intended destination(s). Unitless. Defined in the range
[0, 1].

3) Efficiency: We measure efficiency in terms of energy
per unit distance, the amount of energy required for a packet
to traverse unit distance within the network. It is generally
impossible to determine how much energy was consumed in
the successful or unsuccessful delivery attempt for any indi-
vidual packet, as this attempt influences and is influenced by
all other contemporary packet delivery attempts. A value of
zero would indicate that the network consumes zero Joules in
delivering a packet; this is obviously not attainable in a real
network, but values closer to zero are more desirable. As with
the performance metrics described in Section III-E1, we must
differentiate between the nonequivalent notions of physical and
logical network distance.

M4: Energy per unit physical distance per packet. The
average energy consumed by the network to successfully
progress a single packet by 1 m from the source node
toward its destination within the network along some
arbitrary delivery path. Measured in Joules per packet per
meter. Defined in the range (0,∞).

M5: Energy per unit network distance per packet. The
average energy consumed by the network to successfully
progress a single packet by 1 m from the source node
toward its destination within the network along some
arbitrary delivery path. Measured in Joules per packet per
hop. Defined in the range (0,∞).

F. Comparing Quality of Candidate Solutions

The metrics M1 to M5 defined above are all mutually inde-
pendent, although any given pair may or may not exhibit some
degree of correlation. It follows that M1 to M5 may be targeted
as individual objectives by sensornet designers.

However, real sensornet designs are likely to require an ac-
ceptable compromise between multiple competing objectives.
It is therefore necessary to define a mechanism by which the
relative quality of two or more candidate solutions can be
compared to determine which offers the best compromise.

Identifying the Pareto-optimal front from a set of points in
a multi-objective search space is an important goal of many
multi-objective search techniques. Both SPEA2 and TA aim
to approximate the Pareto-optimal front, which in turn sum-
marizes the set of good compromise solutions in which further
improvement in a given measured attribute necessarily implies
weakening of one or more other measured attributes. Whereas
the Pareto-optimal front is invaluable in understanding the
interrelationships inherent in the problem, it defines many pos-
sible compromise solutions and as such cannot be implemented
directly within the sensornet; the designer must select exactly
one protocol tuning for deployment.

Having obtained an approximation of the Pareto-optimal
front by application of a MOEA such as SPEA2 or TA, or an
arbitrary set of sampling points such as that provided by FD
experiments, we can then select a single candidate solution for
deployment. We achieve this by defining a measure of solution
quality which allows the sensornet designer to specify the rel-
ative importance of each measurable attribute, and which takes
into account the observed range of each measurable attribute.
This solution quality measure defines an ordering of candidate
solutions by quality, from which the sensornet designer can
simply select that with the best quality measure.

Assume we have n controlled factors X1 − Xn and m met-
rics M1 − Mm. A candidate solution Sα = {Xα1, . . . , Xαn}
maps to a set of metrics Tα = {Mα1, . . . ,Mαm}. The mapping
of S �→ T is not known a priori but instead is evaluated
experimentally as described in Section III-B for specific values
of S. A perfect solution Sperfect would yield a set of metrics
Tperfect such that ∀M ∈ Tperfect • M = 0. Although Sperfect

does not necessarily exist, we define the quality measure E in
(1) of any given candidate solution Sα based on the Euclidean
distance from the point in solution phase space defined by Tα

to the point Tperfect.
Some network performance attributes may be of greater

importance than others to a sensornet designer. We therefore
define weighting wi for metric Mi such that a larger weighting
value indicates a greater importance attached to the network
performance attributes quantified by a given metric

E = 2

√√√√ m∑
i=1

wi(siMi)2. (1)

Each metric M1 − Mm may be defined over a different
range, so it is inappropriate to compare the absolute measured
values directly. We define a scaling factor si for metric Mi

such that all possible values of siMi are found in the range
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[0, 1], noting that the the ideal value of any given metric is also
the lowest possible value, 0. It is only meaningful to compare
two E values if all scaling values si are equal for each E. If
for a given metric Mi is defined over a finite range, then, the
value of si is well-defined and does not vary between network
configurations under consideration. However, if a given metric
Mi is defined over an infinite range, then, there does not exist a
single well-defined value of si. We define si for a given set
of experimental results by setting si = MAX(Mi)−1 where
MAX(Mi) is the largest metric Mi value observed.

It is important to remember that minimizing the E metric is
not the objective of a single-objective optimization process; it
is merely a tool with which to select a single best compromise
solution from the set of high-quality candidates identified by
the multi-objective optimization process.

In this paper, we define a generic experimental method for
sensornet protocol optimization and provide a case study of its
application in Section VII. In this case study, we consider a
distributed sensing application in which each metric is of equal
significance to the overall solution quality. As this optimization
problem does not assign greater significance to any specific
quality attribute, in the experimental work that follows, we set
all wi = 1 to give equal weighting to all metrics.

We set all si using the second definition above as some
metrics defined in Section III-E are defined over an infinite
range. As we consider 5 metrics M1 − M5, it follows that
all values of E are defined in the range [0,

√
5] where 0

is the solution quality deriving from the theoretically perfect
solution, and

√
5 is the solution quality deriving from the worst

quality solution considered in the set of all experiments. For the
experimental results we present in Section VII, we scale all E
values by a constant factor of (

√
5)−1 = 5−(1/2), mapping the

range [0,
√

5] to [0, 1] for ease of comparison while remaining
exactly equivalent to the original.

Sensornet designers may need to find solutions conformant
to specific constraints in one or more metrics. For example, if
the sensornet application requires at least 50% of packets to
be delivered successfully, then, candidate solutions for which
M3 ≥ 0.5 are unacceptable. This can be achieved by extending
the solution quality function defined in (1) to assign infinite
E-values to candidate solutions which do not satisfy some
arbitrary set of requirements.

Assume a Boolean function reject(Tα) applies the set of
relevant tests to the output metrics Tα corresponding to can-
didate solution Sα, returning false if acceptable and true if
not acceptable. We extend (1) using Iverson notation [49] to
obtain (2) which assigns E = ∞ for unacceptable solutions
and leaves E unchanged for acceptable (though perhaps sub-
optimal) solutions. Candidate solutions Sα for which E(Tα) =
∞ can be considered during the search process but are then
discarded explicitly prior to implementing model fitting as per
Section IV-B under the FD approach, or discarded implicitly as
part of the normal evolutionary process of the SPEA2 and TA
approaches as appropriate

E = 2

√√√√ m∑
i=1

wi(siMi)2 + [reject(Tα)]∞. (2)

G. Adapting for Other Protocols

The principled and evolutionary search methods described in
this paper can be applied to other protocol tuning problems, as
the principal steps are protocol-agnostic.

1) Derive a set of controlled factors. These are extracted
directly from the protocol definitions.

2) Define the search space. At this stage, it is acceptable
to base initial guesses on prior experience, provided
that these are used only as starting points for trial-and-
improvement experiments to define useful ranges for
controlled factors.

3) Define a set of measurable attributes. These pertain to
solution quality in the context of the specific optimization
problem, and their ranges or magnitudes are considered
implicitly by following the experimental procedure.

4) Define any applicable constraints. Any such constraints
are likely to be application specific, and hence are not
given further coverage in this paper.

5) Implement search-based optimization. Apply the FD
methods described in Section IV, or the evolutionary
methods described in Sections V and VI, or some com-
bination thereof, to obtain a near-optimal solution.

H. Variance Analysis

We can reduce the cost of the most expensive component,
fitness function evaluation, by reducing the time within which
network simulations run. However, if this period is too small,
we risk unacceptable levels of experimental error leading to
meaningless results. We mitigate this risk in Phase 1 by analyz-
ing the variance of network metrics with respect to simulated
time, calculating the minimum required for an acceptable and
defined level of experimental error.

Determining an appropriate network stabilization period,
prior to measurement, is nontrivial but nevertheless possible.
We used a well-known experimental approach in which we
measured variance of metrics over time, and evaluated the
stabilization period separately for each metric. We adopted a
conservative strategy in which the longest observed stabiliza-
tion period was selected, and a significant safety margin was
added beyond any observed measurements.

We measured the minimum time required for each metric
under each protocol by experiment. Metrics are sampled period-
ically but are influenced by total simulated period from the start
to the sampling point. Assuming that the network eventually
reaches a steady state, measured metrics converge on the actual
value with sample accuracy increasing with simulated time,
until sampled values fall within experimental error margin at
which point no further meaningful improvement is possible. At
this point the metrics can be sampled as representative of the
stable value [50].

Identical examples of network design and protocol were used
in variance analysis and protocol optimization work, so the
measured stabilization periods are appropriate. We measured
stabilization periods for protocol configurations taken from the
center of search ranges, and in which the assigned value for a
given parameter was set as the range minimum or maximum of
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TABLE I
PHASE 1: τα VALUES FOR METRICS M1 − M5

the search range. We defined the stabilization time as being the
greatest observed time among the set of these configurations,
including the extreme configurations.

Assume the value of some convergent metric Mα at simu-
lated time τ is given by Mα(τ). Mα(τ) approaches its limiting
value Mα(∞) as τ → ∞. At some simulated time τα, the value
Mα(τα) becomes sufficiently close to Mα(∞) such that for all
τ > τα, the value Mα(τ) is within ±η% of Mα(∞). We define
metric Mα as converged at this simulated time τα. Any further
variation, including that deriving from noise and unblocked
nuisance factors, is within ±η% experimental error margin. We
set η = 5 such that measured metrics used in later analysis have
±5% measurement error.

Consider M = {M1,M2,M3,M4,M5}, the set of metrics
defined in Section III-E. Table I presents τα measured exper-
imentally for metrics Mα ∈ M with each value rounded as
	τα
. For the TBG protocol, ∀Mα ∈ M • τα < 60 s. For the
IGF protocol, ∀Mα ∈ M • τCi < 120 s. We therefore select
simulation length τsim = 120 s, allowing a large safety margin
for any anomalous solution instability.

IV. DOE APPROACH: FACTORIAL DESIGN

In this section, we define a DOE method based on FD with
which to explore the parameter landscape at broad scope but
shallow depth.

A. Two-Phase Experiment Design

FD [7] is used to systematically explore the entire parameter
landscape. This approach gives broad but shallow coverage of
all possible combinations of all acceptable ranges of controlled
factors. Statistical models are fitted to experimental results to
yield a generalized model of the relationship between con-
trolled factors and each measured response. This model is use-
ful for predicting likely network performance for any arbitrary
set of input values [50]. The model can be used in the opposite
direction by defining sections of the multiresponse hypersur-
face corresponding to the desired network performance, and
working backward to input values by solving the simultaneous
equations of the fitted model to yield a set of inequalities
defining usable ranges of input-controlled factors.

We address the combinatorial explosion by applying a two-
phase method. Phase 1 allows the experimenter to identify
which of the controllable factors are actually important, and
which can be safely ignored. Phase 2 explores the significant
controllable factors in much greater detail. The experimenter
can therefore avoid wasting resources and analytical effort on
matters which will not significantly influence the outcome, and
more detailed statistical models can be derived for the same
experimental cost. Before Phase 1 begins, we assume that the
variance analysis described in Section III-H has completed

to determine the experimental parameters necessary to obtain
meaningful and repeatable results.

B. Model Fitting

The FD of the experiment suite described in Section IV-A
samples the parameter space at qp points as described in
Section IV-C. These pairs of sample points and simulation-
derived metrics represent exact solutions to specific known
points in the generalized model of the relationship between
controlled factors and output metrics. However, these are not
directly usable if we wish to know the relationship between
input and output, or vice-versa, for other points in the input-
output phase space.

To consider points in the parameter space that have not been
measured directly, we need to interpolate by fitting a statistical
model to the known sampled points to derive a set of equations
describing a hypersurface in the phase space [51]. We then
work with the fitted surface rather than specific individual
experimental results. An appropriate statistical model must be
selected, which yields a surface with shape similar to that
which would be observed if an infinite number of sample
points were used. Previous work [20] has shown that linear
first-order interaction models are a suitable approximation for
the protocols considered in this paper; we confirmed this by
examining the correlation coefficient between the measured and
predicted values for the experiments in Section IV-D.

Sampling the parameter space at more points yields a fitted
model which is a better approximation of the real relationship
by providing more data for the model fitting algorithm. For a fi-
nite set of sample points, there exists the risk that an interesting
feature of the solution landscape falls between sample points,
and hence is not present in the fitted model.

For each output metric under consideration, a linear interac-
tion model of the form given in (3) was fitted to the result set
in MATLAB. β0 is a constant, Xi is the ith controlled factor
value, βi is the coefficient for controlled factor Xi, βij is the
coefficient for the interaction between controlled factors Xi and
Xj , and ε is the normally distributed noise term. The response
Y is influenced linearly by each factor and each pairing of
potentially interacting factors

Y = β0 +
n∑

i=1

βiXi +
n∑

i=1

n∑
j=i+1

βijXiXj + ε. (3)

For each metric M1 − M5, a separate linear interaction
model is produced in which six axes represent controlled factors
X1 − X6 and a further axis in which the height of the hyper-
surface varies with the values of the output metric Mi. Axes
corresponding to controlled factors X1 − X6 are common to
all metrics M1 − M5 so a more complex surface can represent
the interrelationships between all factors and all metrics.

Finding sets of values for controlled factors corresponding
to solutions with appropriate characteristics is equivalent to
identifying regions of the axes representing controlled factors
X1 − X6 with appropriate fitted surface height in the axes
corresponding to output metrics M1 − M5.
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Similarly, finding optimal or worst case sets of controlled
factors is equivalent to finding minima and maxima in the
fitted surface. This is implemented by solving sets of simul-
taneous inequalities when identifying regions with suitable
characteristics, or by solving sets of simultaneous equations
when addressing optimal or worst case characteristics.

C. Cost Analysis

Given p controlled factors, each sampled at q points in
the permitted region, we have qp protocol configurations to
assess. We assess each protocol configuration with r networks
to prevent results being unduly influenced by a given network
design, yielding rqp experimental configurations to consider
by simulation. We repeat each experimental configuration s
times to prevent results being unduly influenced by any single
unusual simulation instance, yielding the requirement to run
rsqp simulations in total.

Assuming each simulation completes in approximately equal
wall time, t, we find that total experiment time grows ex-
ponentially in p, polynomially in q, and linearly in r and s.
As total experiment time is exponential in p, it is obvious
that any reduction in p is valuable and is more significant
than similar reductions in q, r, or s. Phase 1 addresses this
problem by identifying controllable factors which can safely
be disregarded. It is therefore possible in Phase 2 to increase q
after reducing p and still have the full experiment set complete
in acceptable wall time.

All simulations are mutually independent and can therefore
be executed in parallel, reducing the total runtime to that of
a single simulation if sufficient processing hosts are available.
Assume a multiprocessing environment in which x ∈ N inde-
pendent simulations can execute in parallel. For FD experi-
ments, there are no dependencies between simulations so any
number can execute in parallel, all at cost t. The total wall time
cost C is given by (4). Note that C ∝ 1/x, reaching a minimum
of C = t where x = rsqp

C =
rsqp

x
t. (4)

Increasing the number of experimental configurations in-
creases the quality of fitted statistical models, and hence solu-
tion quality, but also increases experiment cost. A balance must
be found which obtains solutions of acceptable quality within
reasonable time. We measured wall time for all experiment
simulations and took the mean as t = 78.51 s.

In Phases 1 and 2, we set r = 3 and s = 3 to evaluate each
candidate solution several times in a set of dissimilar networks
to minimize the influence of outliers and to ensure that the
derived solutions are not biased heavily in favor of a single
network design. The number of parameters p in Phase 1 is
taken directly from the set of controlled factors defined for each
protocol in Section III-D. In Phase 2, the value of p is defined
by the number of controlled factors found to be statistically
significant in Phase 1.

As we will fit linear models to the results for factor signif-
icance screening in Section IV-D1, we must consider at least
two values for each controlled factor, such that qmin = 2. If

q = 2, we take the first such value at the low extreme of the
defined interval, and the second at the high extreme. If q > 2,
we again define sample values at the low and high extremes
and distribute the remaining sample values evenly throughout
the sampled range between these extremes. This ensures that
sampling covers the full spectrum of possible behavior.

D. Intermediate Results

In this section, we present the results of applying the two-
phase experimental method described in Section IV-A to the
TBG and IGF protocols. The intermediate results obtained by
this mechanism are used to calculate the final results for the FD
approach presented in Section VII.

1) Phase 1—Factor Significance Screening: In Phase 1, we
identify which of the protocol controlled factors are the best
predictors of the network performance metrics. This requires a
small number of points in the parameter space to be sampled
in the axis corresponding to each controlled factor, and a
set of simulation experiments to be run to measure network
performance under each combination. The ANOVA method is
applied to assess which controlled factors are significant to the
experimental outcomes [51]. Any factors which are deemed
statistically insignificant are dropped.

In the interests of brevity, we do not include the full p-value
data sets in this paper, as we need consider only the summarized
results presented below. However, the full p-value data sets are
available for download [52].

Controlled factors {X1 − X6} were considered at this stage
for protocol A. The test suite size was calculated using the
formula given in Section IV-C with p = 6, q = 3, r = 3, and
s = 3. This gives a test suite size of 3 × 3 × 36 = 6561, hence
6561 points in the factor–response phase space are available for
model fitting.

Factors {X4,X5,X6} are significant in isolation with 95%
confidence (p < 0.05) for at least two of the metrics M1 −
M5, and at least one of {X4,X5,X6} is evident in almost
all interaction pairs deemed significant with 95% confidence.
Factors {X1,X2,X3} are not significant in isolation for any
metric, or as a member of an interaction pair which does not
include any of {X4,X5,X6}. Notably, the protocol-specific
factor X6 is statistically significant indicating that attempts to
tune this protocol are appropriate.

Controlled factors {X1 − X5,X7 − X8} were considered at
this stage for protocol B. The test suite size was calculated
using the formula given in Section IV-C with p = 7, q = 3,
r = 3, and s = 3. This gives a test suite size of 3 × 3 × 37 =
19 683, hence 19 683 points in the factor–response phase space
are available for model fitting.

Factors {X4,X7,X8} are significant in isolation with 99%
confidence (p < 0.01) for all metrics M1 − M5. The controlled
factor X2 is significant with 99% confidence (p < 0.01) for
metric M1 and significant with 90% confidence (p < 0.1)
for metric M3. At least one of {X2,X4,X7,X8} is evident
in all interaction pairs deemed significant with at least 95%
confidence (p < 0.05).

Other methods exist for factor significance screening
and problem dimensionality reduction, including principal



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TATE et al.: SEARCH STRATEGIES FOR SENSORNET PROTOCOL OPTIMIZATION 11

component analysis, projection pursuit, topologically contin-
uous maps, and vector quantization [53]. We do not consider
these alternative methods in this paper, but they could similarly
be applied to identify controllable factors which can safely be
discarded to reduce the problem size.

2) Phase 2—High Resolution Modeling: In Phase 2, we
sample the parameter space along the corresponding axis in
a greater number of points for each statistically significant
controlled factor. Again, a set of simulation experiments was
performed to measure network performance under each con-
figuration. We extract a near-optimal protocol tuning from the
results of the corresponding experiments. The ANOVA method
was reapplied to confirm that significant factors were selected.
Phase 1 identified which controllable factors are not signifi-
cant to the outcome, for which the values selected are unim-
portant provided that they fall within the ranges explored in
Section III-D; we select the midpoints of these ranges.

Factors {X4,X5,X6} were considered at this stage for the
TBG protocol. The test suite size was calculated using the
formula given in Section IV-C with p = 3, q = 10, r = 3, and
s = 3. This gives a test suite size of 3 × 3 × 103 = 9000, hence
9000 points in the factor–response phase space are available
for model fitting. Factors {X2,X4,X7,X8} were considered at
this stage for the IGF protocol. The test suite size was calculated
using the formula given in Section IV-C with p = 4, q = 7,
r = 3, and s = 3. This gives a test suite size of 3 × 3 × 74 =
21 609, hence 21 609 points in the factor–response phase space
are available for model fitting.

Experimenters interested in understanding the generalized
relationship between significant factors and measurable re-
sponses can fit statistical models to the sampled points. This
yields a set of coefficients for the selected statistical model
which summarize the relationship between factors and re-
sponses for the selected protocol and network configuration as
a set of simultaneous equations. However, we are interested in
extracting a single near-optimal protocol tuning. As we have a
reasonably dense grid sampling of the parameter space, we do
not require the interpolation effect offered by model fitting, and
can evaluate our experimental data directly.

We calculate the solution quality metric E, defined in
Section I, for each of the rsqp sampling points. To mitigate
the influence of outliers and experimental noise, we calculate
the mean value of E from the rs experiments corresponding
to each of the qp unique candidate solutions. We select the
candidate solution associated with the lowest mean E value,
and hence highest solution quality. Section VII presents the
resulting solutions for the TBG and IGF protocols.

V. EVOLUTIONARY APPROACH: SPEA2

In this section, we define the experiments with which the pa-
rameter landscape is explored, at narrow scope but substantial
depth, using evolutionary approaches and the SPEA2.

A. SPEA2 Experimental Configuration

SPEA2 [8] is a revised version of the strength Pareto evolu-
tionary algorithm designed by Zitzler et al. [54]. The population
size s defines the size of the working population and is also

used as the capacity of the archive. In this instance, although
we are examining 5 metrics, the uniform nature of the exper-
imental networks produces significant correlation between the
per-meter and per-hop variants of the energy and latency metric
values for a given network. Consequently, we choose s = 50
based on the 3-metric value of the population scheme used by
Khare et al. [55]. SPEA2 also takes a value k, which determines
the k-th nearest neighbor in density estimation calculations. As
in the original SPEA2 experiments [8], we take k =

√
2s, or

the square root of the sample size.
Simulated binary crossover (SBX) [56], polynomial muta-

tion [56], and random selection operators were used for this
experiment. SBX takes as parameters a crossover rate, c, and
an ηc value controlling the probability of near-parent solutions
being generated; higher values produce closer matches to par-
ents. Appropriate values must be selected for these parameters;
there is some debate as to the relative importance of crossover
and mutation [57]. The crossover rate was set to 0.7, so that
crossover occurred often to generate a diverse range of child
solutions. ηc was set to 15, to encourage relatively “close”
solutions to be generated. Polynomial mutation also takes a
mutation rate m and an ηm value controlling the mutation
distance. The mutation rate was set to 1/6 such that, on average,
one input variable would be mutated in each solution. ηm was
set to 20 to promote small mutation steps and thus encourage
convergence.

Experiments were conducted in which all values were rep-
resented internally as 64-bit precision floats. Where a given
parameter is defined only for integral values, the float value
was rounded down to the nearest integer at the point of use.
Each candidate solution fitness evaluation considered the three
networks defined in Section III-C, with each combination of
candidate solution and network repeated three times to reject
the influence of outliers.

Preliminary tests showed rapid convergence within the early
generations, with few improvements thereafter. Based on these
results, all tests were run for 50 generations to allow conver-
gence to occur. Data on the best known candidate solutions
were logged at every generation to provide insight into the
running convergence of the system.

B. Cost Analysis

The SPEA2 algorithm runtime is negligible compared to
that of fitness function evaluation by simulation, so we need
to consider only those overheads relating to fitness function
evaluation. Consider an evolutionary run with a population
size of a for which b generations are required to attain the
required solution quality. It is also necessary to evaluate the
initial zeroeth population prior to evolution commencing.

Within each generation, it is necessary to evaluate the fitness
function once for each candidate solution, requiring a(b + 1)
evaluation instances for all population members across all
generations. As with the FD experiments, we test r networks
and repeat each experimental configuration s times, requiring
a(b + 1)rs simulations in total. Total cost grows linearly in
each of a, b, r, and s. This predictable and readily controllable
cost growth is a desirable attribute.
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It is possible, though unlikely, that a candidate solution
already in the archive be selected as a parent but no crossover
or mutation occurs. In this rare situation it would be possible
to reuse an earlier fitness evaluation and hence reduce experi-
mental cost. However, we do not cache fitness evaluation data
between generations. By forcing evaluation of each candidate
solution in each iteration, we significantly decrease the possibil-
ity that a low-quality candidate, assigned an undeservedly high-
quality evaluation owing to experimental noise, can survive
from generation to generation.

VI. EVOLUTIONARY APPROACH: TWO-ARCHIVE

In this section we define the experiments with which the pa-
rameter landscape is explored, at narrow scope but substantial
depth, using evolutionary approaches and the TA evolutionary
algorithm.

A. Two-Archive Experimental Configuration

The TA algorithm is a multi-objective EA developed by
Praditwong and Yao [9]. The population size s is used as the
size of the working population, and also as the total capacity
of the convergence and diversity archives combined. We again
use s = 50 to match the SPEA2 experiment. TA also takes a
parameter r which defines the ratio of parent selection from the
convergence and diversity archives. A higher ratio leads to more
solutions being chosen from the convergence archive, and thus
faster solution convergence is observed at the cost of potentially
reduced diversity in the range of solutions. We set r = 0.9 so as
to favor parents from the convergence archive, thus ensuring
strong convergence in the algorithm.

As with SPEA2, SBX [56], polynomial mutation [56], and
random selection operators were used for this experiment.
Identical values for crossover/mutation rates and η values were
used: a crossover rate of 0.7, a crossover ηc value of 15, a
mutation rate of 1/6, and a mutation ηm of 20, to ensure com-
parable results. Each candidate fitness evaluation implied three
simulation iterations for each of the three networks defined in
Section III-C to reject the influence of outliers. All tests were
run for 50 generations.

B. Cost Analysis

The TA algorithm cost is similar to that of the SPEA2
algorithm cost, as discussed in Section V-B. As with SPEA2,
the cost of executing the EA itself is negligible in comparison
to the cost of fitness function evaluation, so we need only
consider those costs relating to the latter. As with the SPEA2
experiments, we require ars(b + 1) simulation instances in
total. Total cost grows linearly in each of a, b, r, and s.

VII. RESULTS

We present the results for FD, SPEA2, and TA experiments
described in Sections IV–VI, respectively. We label the FD
instance as A, the SPEA2 instance as B, and the TA instance
as C.

TABLE II
BEST KNOWN TBG TUNINGS

TABLE III
NETWORK PERFORMANCE FOR BEST KNOWN TBG TUNINGS

A. Optimized Protocol Tunings for TBG

Tables II and III give summarized optimized tuning re-
sults for the TBG protocol. The sets of tuned protocol values
corresponding to A, B, and C are labeled IA, IB , and IC ,
respectively. All figures for nonintegral factors are given to four
decimal places.

For each experimental approach, the set of values assigned
to controlled factors X1 − X6 corresponding to the highest
quality solution discovered is given in Table II. For approach
A, some controlled factors were not evaluated directly in
Phase 2 of the experiment. For these controlled factors, itali-
cized in Table II, we take the midpoint of search ranges defined
in Section III-D.

We define the highest quality solution Iα for approach α
as being that which offers the smallest Euclidean distance Eα

between Oα and the theoretical perfect values of metrics, as
defined in Section III-E and F. Table II shows the Euclidean
distances EA, EB , and EC from which IA, IB , and IC were
identified as the highest quality solutions derived by approaches
A, B, and C, respectively. Note that the theoretical perfect
metric values are not necessarily attainable under any real
protocol tuning.

To ensure fair comparison of the quality of solutions obtained
by the two experimental approaches, it is necessary to eliminate
any factors which could unfairly influence the outcome. We
achieved this goal by conducting further simulation exper-
iments as per Section III where the simulation scenario is
identical in all respects, except for the protocol parameter set
which is either IA, IB , or IC , as appropriate.

Three hundred simulations were executed for each of IA, IB ,
and IC as defined in Table II; 100 repeats for each of the three
networks considered in the experiments of Sections IV–VI.
Where a controlled factor X1 − X6 is defined only for integral
values, but the value identified by experiment and analysis is
nonintegral, we configure our experiments with values rounded
to the nearest integer. For each combination of experimental
approach and metric M1 − M5, a set of 300 output values
is produced. The arithmetic mean E of each set is taken as
the final value and presented in Table III. The sets of output
metrics corresponding to A and B are labeled OA, OB , and
OC , respectively.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TATE et al.: SEARCH STRATEGIES FOR SENSORNET PROTOCOL OPTIMIZATION 13

Fig. 1. Comparing TBG solution quality: factorial design, SPEA2, and TA.

All figures for M1 − M5 are given to five significant figures
and are scaled by a factor of 106 for clarity. The best results are
highlighted in bold type.

It is notable that the protocol tunings found by the three ap-
proaches, as shown in Table II, are different but broadly similar.
The corresponding metrics given in Table III confirm that the
network behavior induced by each of the three approaches was
different but broadly similar.

The similarity of these protocol tunings, and the network
behavior they induce, suggests that they are all located within
a region of the parameter landscape which contains good solu-
tions. The differences suggest that within this region, there may
be multiple protocol tunings of nearly equal overall quality, but
some difference in the balance of competing design goals. It is
possible, though not guaranteed, that an optimal solution may
also exist within this region.

Observe that the TA approach yielded the best result for
metrics M1 − M4, the FD approach yielded the best result
for metric M5, and the SPEA2 approach did not yield the
best result for any metric. It is therefore unsurprising that TA
yielded the solution with best overall quality as measured in E,
followed by FD and SPEA2 in order of declining quality. We
conclude that the TA approach is superior for tuning the TBG
protocol, but that any of those approaches considered in this
paper would yield a reasonable solution.

Fig. 1 plots normalized solution quality E versus evolution-
ary generation to illustrate the convergence of SPEA2- and TA-
derived solution quality toward the final solution quality which
could be achieved with an infinite number of generations. For
comparison, the solution quality obtained by the FD approach
is also shown as a constant.

The quality of solutions obtained by the SPEA2 approach
was not observed to supplant that attainable by FD results, but
gradually improved until generation 18 after which no further
improvement was observed. Although theoretically possible,
the attainment of parity or advantage by further improvement
under SPEA2 is unlikely to occur within acceptable time. Under
the TA approach, however, the solution quality is near-constant
for the first nine generations before improving dramatically, at
which point it becomes significantly better than that attained by
FD, with no further improvement observed after generation 11.

TABLE IV
BEST KNOWN IGF TUNINGS

TABLE V
NETWORK PERFORMANCE FOR BEST KNOWN IGF TUNINGS

We now consider the tradeoff between experimental cost and
solution quality between the experimental approaches. Recall
from Section IV-C that FD experiments require rsqp simulation
instances for each of Phase 1 and Phase 2. For these ex-
periments, this implies that 6561 + 9000 = 15 561 simulation
instances are required. We compare the experimental costs of
the evolutionary approaches to this baseline figure.

We first consider SPEA2, which requires a(b + 1)rs sim-
ulation instances to be executed. Section V-A describes the
experimental configuration for these simulation experiments.
The best SPEA2-derived solution was obtained at generation
18, at which point 8550 instances had completed. This cost is
54.9% of the FD baseline. We conclude that significant cost
advantage was observed for SPEA2 in tuning the TBG protocol
if the process is terminated at this point.

Now, consider TA, also requiring a(b + 1)rs simulation in-
stances to be executed. Section VI-A describes the experimental
configuration for these simulation experiments. TA produced
a better solution than FD at generation 10 and produced its
best solution at generation 11, corresponding to 4950 and 5400
simulation instances, respectively. As these costs are 31.8% and
34.7% of the FD baseline, and better solutions were obtained,
significant cost advantage is observed for TA in tuning TBG if
the process is terminated at this point.

B. Optimized Protocol Tunings for IGF

Tables IV and V give summarized optimized tuning re-
sults for the IGF protocol. The sets of tuned protocol values
corresponding to A, B, and C are labeled IA, IB , and IC ,
respectively. All figures for nonintegral factors are given to four
decimal places.

For each experimental approach, the set of values assigned
to controlled factors X1 − X5 and X7 − X8 corresponding to
the highest quality solution discovered is given in Table IV.
For approach A, some controlled factors were not evaluated
directly in Phase 2 of the experiment. For these controlled
factors, italicized in Table IV, we take the midpoint of search
ranges defined in Section III-D.

Each IGF protocol tuning given in Table IV was evalu-
ated using the process described for the TBG protocol tuning
solutions as described in Section VII-A. Table II shows the
Euclidean distances EA, EB , and EC from which IA, IB , and
IC were identified as the highest quality solutions derived by
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Fig. 2. Comparing IGF solution quality: factorial design, SPEA2, and TA.

approaches A, B, and C, respectively. Note that the theoretical
perfect metric values are not necessarily attainable under any
real protocol tuning.

All figures for M1 − M5 are given to five significant figures
and scaled by a factor of 106 for clarity. The best results are
highlighted in bold type.

The protocol tunings shown in Table IV have substantial
differences in some controlled factors; notably, these are
the factors identified as significant by the FD approach in
Section IV-D1. The corresponding observed metrics given in
Table V confirm that the network behavior induced by each of
the three approaches was significantly different, despite each
approach being applied to the same protocol tuning problem.

Observe that the TA approach yielded the best result for met-
rics M1 − M2, the SPEA2 approach yielded the best result for
metrics M3 − M5, and the FD approach did not yield the best
result for any metric. It is therefore unsurprising that SPEA2
yielded the solution with best overall quality as measured in E,
followed by TA and FD in order of declining quality.

Interestingly, however, the SPEA2 values for M1 − M2 were
an order of magnitude worse than those obtained under TA
or FD, indicating that the SPEA2 values for M3 − M5 were
much better than those of TA in order to counterbalance this
disadvantage. We conclude that the SPEA2 approach is superior
for tuning the IGF protocol, but that any of those approaches
considered in this paper would yield a reasonable solution.

Fig. 2 plots normalized solution quality E versus evolution-
ary generation to illustrate the convergence of SPEA2- and TA-
derived solution quality toward the final solution quality which
could be achieved with an infinite number of generations. For
comparison, the solution quality obtained by the FD approach
is also shown as a constant.

The quality of solutions obtained by the SPEA2 approach
improved quickly at first, but this improvement slowed quickly
after the first few generations and converged on a very similar
solution quality to that observed under FD; after generation 14,
no further improvement was observed.

With TA, the solution quality gradually improved until gen-
eration 7, after which no further improvement was observed.
Interestingly, all TA generations showed a higher solution qual-
ity than FD or SPEA2. Although it might be considered some-
what fortuitous that the first evolved generation was of such

high quality, this nevertheless illustrates that the evolutionary
strategy of TA is effective for this problem type.

Now, consider the tradeoff between experimental cost and
solution quality between the experimental approaches. Recall
from Section IV-C that FD experiments require rsqp simulation
instances for each of Phase 1 and Phase 2. For these experi-
ments, this implies that 19 683 + 21 609 = 41 292 simulation
instances are required. We compare the experimental costs of
the evolutionary approaches to this baseline figure.

We first consider SPEA2, which requires a(b + 1)rs simu-
lation instances to be executed as per Section V-B. The best
SPEA2-derived solution was obtained at generation 14, at
which point 6750 instances had completed. This cost is 16.3%
of the FD baseline. We conclude that significant cost advantage
was observed for SPEA2 in tuning the IGF protocol if the
tuning process is terminated at this point.

Next, we consider TA, also requiring a(b + 1)rs simulation
instances to be executed as per Section VI-B. TA produced
a better solution than FD at generation 1 and produced its
best solution at generation 7, corresponding to 900 and 3600
simulation instances, respectively. As these costs are 2.2% and
8.7% of the FD baseline, and better solutions were obtained,
it follows that significant cost advantage is observed for TA in
tuning IGF if the process is terminated at this point.

C. Comparative Cost Analysis

We now consider the relative costs of the tuning approaches.
The costs of FD are described in Section IV-C, the costs of
SPEA2 are described in Section V-B, and the costs of TA are
described in Section VI-B. Note that in all cases, the overhead
of auxiliary calculations is orders of magnitude less than that
of fitness function evaluation, so we discount the former in our
analysis.

Assume each simulation instance completes in t seconds.
The FD approach has wall time cost Cα, given by (5). The
SPEA2 and TA approaches have wall time cost Cβ , given
by (6)

Cα = rsqpt (5)

Cβ = ars(b + 1)t. (6)

Given a single uniprocessor host, the SPEA2 and TA ap-
proaches will terminate before the FD approach if Cβ < Cα,
a condition which is fulfilled where a(b + 1) < qp.

Now, assume a multiprocessing environment in which x
independent simulations can execute in parallel. For FD ex-
periments, there are no dependencies between simulations so
any number can execute in parallel, all at cost t. The total wall
time cost Cγ is given by (7). Note that Cγ ∝ (1/x), reaching a
minimum of Cγ = t where x ≥ rsqp

Cγ =
rsqp

x
t. (7)

For SPEA2 and TA experiments, it is possible to run all ars
simulations of a given generation in parallel at cost arst, but
all simulations of a given generation must complete before the
next generation can begin. The total wall time cost Cδ is given
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TABLE VI
α, β, AND γ FOR COMBINATIONS OF MOEA AND SENSORNET PROTOCOL

by (8). Note that Cδ ∝ (1/x), reaching a minimum of Cδ =
(b + 1)t where x ≥ ars. If x is large, then, FD experiments
will complete before SPEA2 and TA experiments.

Cδ =
ars

x
(b + 1)t. (8)

We observe that the FD approach incurs a fixed wall time cost
of Cα on a uniprocessor host, or Cγ on a multiprocessor host,
regardless of solution quality. In contrast, the SPEA2 and TA
evolutionary algorithms incur variable wall time costs of Cβ on
a uniprocessor host, or Cδ on a multiprocessor host, which are
proportional to the number of generations, b. As the solution
quality E is monotonically nondecreasing in b, a tradeoff exists
between cost and quality, such that experimenters can restrict
cost by specifying b.

D. Quality of Evolving Solutions

Sections VII-A and B show the potential savings in exper-
imental cost which are possible by selecting an EA approach
over a DOE approach to the protocol tuning problem. How-
ever, to achieve these potential savings, the experimenter must
somehow determine the evolutionary generation at which the
process is unlikely to yield further gains and hence should be
terminated.

Figs. 1 and 2 plot normalized solution quality, E, ver-
sus evolutionary generation to illustrate the convergence of
SPEA2- and TA-derived solution quality toward the final so-
lution quality which could be achieved with an infinite number
of generations. For comparison, the solution quality obtained
by the FD approach is also shown.

The E plots for the EAs observe a step function as quality E
increases discretely between generations when a better solution
is found and added to the archive. Smoothing the discrete
step function curve into a continuous curve by considering
individual data as control points of a Bézier curve, we observe
that a hyperbolic curve is a reasonable approximation.

We apply statistical model fitting techniques using MATLAB
Curve Fitting Toolbox [58] to quantify the relationship between
evolutionary generation and solution quality as given by (9).
α, β, and γ are constants for each combination of EA and
sensornet routing protocol considered in this paper, and g ≤ b
is the generation for which an solution quality estimate Eg

is required. Results are given in Table VI to four significant
figures. R2 values indicate the quality of fit [51]; all fittings
given in Table VI are of sufficient quality for the intended
purpose

Eg =
α

g + β
+ γ. (9)

Sensornet designers can estimate the evolutionary genera-
tions g required to find a protocol tuning solution of sufficient
quality Ereq such that Eg ≤ Ereq by solving the inequality
given by (10) in g, though of course this does not actually yield
the protocol tuning solution itself. If no positive real solutions
for g exist, then, the EA is not expected to find any solution of
suitable quality in finite time

g ≥
⌈

α

Ereq − γ
− β

⌉
. (10)

This technique allows sensornet designers to estimate in
advance the computational overhead implied in finding protocol
tuning solutions of a given quality. A related technique can be
applied to estimate the rate at which solution quality improves
with respect to MOEA generation. Equation (11) gives the
derivative of the fitted curve given by (9) in terms of gener-
ation g

dE

dg
= − α

(g + β)2
. (11)

As the MOEA progresses from generation to generation,
the rate of change of solution quality can be estimated. The
magnitude of this rate of change is relatively large at the start
of the MOEA execution, but (dE/dg) → 0 as g → ∞ because
E is monotonically nonincreasing. At some point, the rate of
solution quality improvement will be sufficiently small that any
further improvement is not significant, and hence the protocol
tuning effort can be terminated.

A computational cost is incurred when assessing each gener-
ation of the MOEA. A technical discussion of the cost incurred
for the SPEA2 and TA algorithms is given in Sections V-B and
VI-B, respectively. Provided that the computational overhead
of fitting a curve of form (9) is small compared to the overhead
arst of assessing a MOEA generation, it is feasible to imple-
ment this technique online during MOEA execution.

Under this approach the MOEA assesses the solution quality
derivative given by (11) at the end of each generation; if
the derivative magnitude is sufficiently large, another MOEA
generation executes, otherwise the process terminates at a point
where no further significant solution quality improvement is
likely within reasonable time.

An interesting hybrid approach would be to extend the
MOEAs such that each candidate solution retained at each
generation is taken as the center of a small region of the
parameter space which is sampled by FD methods as described
in Section IV. The interpolation implicit in this approach would
allow the MOEA to consider alternative candidate solutions
that are close to, but potentially better than, those created
explicitly by the mutation and crossover processes. This hybrid
approach would of course increase experimental overhead with
increased numbers of fitness function evaluations, and auxiliary
calculations implied by the MOEA itself and the model fitting.

E. Comparing Evolutionary and Nonevolutionary Approaches

We see that both SPEA2 and TA yield high quality near-
optimal solutions within a small number of evolutionary
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generations, with diminishing returns on further investments
of experimental effort in the monotonically nondecreasing
solution quality. Consider the experimental cost of the FD
approach given in Section IV-C, and that of the SPEA2 and
TA approaches given in Section V-B and VI-B, respectively. As
the cost associated with the EAs is linear in generation count,
limiting the number of generations also limits the cost.

Significantly, the SPEA2 and TA costs are independent of the
number of controlled factors, unlike the FD cost. It follows that
the merit of MOEAs becomes more apparent as the number
of controlled factors grows and the cost of FD experiments
becomes prohibitively large. It is the responsibility of the exper-
imenter to decide whether it is appropriate to invest in the high
monolithic cost of the FD approach, or the potentially lower
but growing costs of the MOEA approaches. Provided that
convergence on an acceptable solution occurs within a certain
number of generations, the overhead of MOEA approaches is
lesser; in Section VII-C, we calculate the critical point at which
the MOEA approaches cease to offer cost benefits.

The FD approach samples the factor–response space evenly,
whereas MOEAs focus computation resources on promising
candidate solutions. The MOEAs tend to gravitate toward a
single solution, whereas the FD approach provides an overview
of the complete problem space which may encompass multiple
good solutions, but if the experimenter requires only a single
good solution, this increased diversity is less important than the
experimental cost.

We conclude that both evolutionary and nonevolutionary
approaches offer benefit to the sensornet designer, but serve
different purposes. The designer might usefully apply the FD
approach to summarize the factor–response relationship to
narrow the search space to regions in which good solutions
are known to reside, then, apply evolutionary approaches to
navigate any nonlinear regions within this narrowed search
space to obtain better near-optimal solutions.

VIII. CONCLUSION

In this section, we draw upon the content of Sections III–VII
to present summarized conclusions against the research objec-
tives defined in Section I.
Obj 1: Obtain near-optimal solutions to the sensornet protocol

tuning problem using evolutionary and principled search
approaches.

The FD, SPEA2, and TA approaches described in
Sections IV–VI all achieve results close to the theoretical
optimum for the protocol optimization problem described in
Section III.

The IGF protocol considered in this paper represents the state
of the art; it is lightweight, geography-aware, stateless, and
contemporary. In contrast, the TBG protocol is simplistic and
potentially highly inefficient. Despite these qualitative differ-
ences, poor configurations of the state-of-the-art protocol were
substantially outperformed by good configurations of the less
sophisticated protocol in our experiments.

Our results demonstrate that even if the network designer se-
lects a state-of-the-art protocol such as IGF, selecting an appro-
priate configuration remains an open question. This important

issue is regrettably ignored in many papers which describe new
protocols, despite the potential impact on network applications
employing these protocols.
Obj 2: Compare solution quality attainable by evolutionary and

principled search approaches.
Results presented in Section VII show that MOEAs can

significantly outperform a simple FD experimental approach
when tuning sensornet protocols against multiple objectives,
producing higher quality solutions with lower experimental
overhead. This is the first study in which sensornet protocol
optimization has been explicitly formulated as a multi-objective
problem and state-of-the-art multi-objective EAs applied in its
solution. The TA algorithm outperformed the SPEA2 algo-
rithm, at each generation and in the final evolved solution, for
each protocol considered in this paper.
Obj 3: Consider the relationship between solution quality and

experimental overhead for the optimization problem.
Results presented in Section VII illustrate that the experi-

mental cost of FD experiment suites is fixed and independent of
solution quality, whereas EA approaches allow experimenters
to manage the tradeoff between experimental cost and solution
quality. Co-evolution of protocol designs and protocol tunings
offers further scope for improved performance in future work.
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