Accurate Determination of Loop lterations for
Worst-Case Execution Time Analysis

Mark Bartlett, lain Bate, Member, IEEE, and Dimitar Kazakov

Abstract—Determination of accurate estimates for the Worst-Case Execution Time of a program is essential for guaranteeing the
correct temporal behaviour of any Real-Time System. Of particular importance is tightly bounding the number of iterations of loops in
the program or excessive undue pessimism can result. This paper presents a novel approach to determining the number of iterations
of a loop for such analysis. Program traces are collected and analysed allowing the number of loop executions to be parametrically
determined safely and precisely under certain conditions. The approach is mathematically proven to be safe and its practicality is

demonstrated on a series of benchmarks.

Index Terms—C.3.d Real-time and embedded systems, C.4 Performance of Systems, D.2.5 Testing and Debugging, 1.2.3 Deduction

and Theorem Proving and Knowledge Processing

1 INTRODUCTION

ALARGE number of embedded systems have con-
straints not just on their functional behaviour, but
on their temporal behaviour. Most commonly, such con-
straints are deadlines on the time by which action must
have been taken or output should be available. In hard
real-time systems, the penalty for not meeting these
deadlines can be catastrophic, for example in areas such
as automotive braking systems, aircraft control systems
or nuclear applications.

Ultimately underlying the ability to guarantee that
deadlines will be met, is knowledge of the maximum
time a task will take to execute in the worst case, the
Worst-Case Execution Time (WCET) [1].

Due to theoretical limitations, this quantity cannot
be computed accurately in the general case. Rather, in
situations in which deadlines must be guaranteed to be
met, static analysis is used to produce an estimate of the
WCET. A value obtained in this way can be proven to
not underestimate the true WCET of the analysed task
and hence can be safely used in scheduling the system.
However, the estimate will not in general be precise,
hence some pessimism is introduced into the estimate,
which can lead the designers to make unnecessary (and
costly) overprovision of hardware resources.

One particularly acute cause of pessimism in programs
can be the overestimation of the number of iterations
of a loop that will be taken [2]. Determining such a
quantity exactly is in general an undecidable problem,
and even slight overestimates will result in adding an
amount of pessimism proportional to the execution time
of the whole loop body. Furthermore, tighter estimates
will lead to better reasoning about the behaviour of
caches. The problem is compounded in nested loops,
particularly those where the number of executions of

e M. Bartlett, I. Bate and D. Kazakov are with the Department of Computer
Science, University of York, York, YO10 5DD.
E-mail: {mark.bartlett,iain.bate,dimitar.kazakov}@cs.york.ac.uk

an inner loop body is dependent on the iteration of the
outer loops currently being performed. In such cases,
ignoring these interactions can lead to a massive degree
of pessimism. Precision in this aspect will be reflected in
tighter WCET estimates. The current state of the art is to
manually encode those special cases where dependencies
exists [3].

Despite being one of the first problems identified in
WCET analysis [4], the determination of loop iterations
remains an active area of research [3], [5], [6]. This paper
presents and builds on an approach to this problem
based on model inference [7]. Rather than deduction of
the number of loop executions from the task’s code, we
propose the induction of this information from examples
of the task’s execution. The number of executions thus
predicted is a parametric formula in the program'’s vari-
ables. It is proven that the number of loop iterations
can be inferred safely and precisely for a certain class
of nested loops, those whose bounds are Presburger ex-
pressions [8]. Presburger expressions are a limited subset
of general arithmetic expressions which are often used
in real-time systems due to their decidability. However,
they are sufficiently rich to allow quite complex be-
haviour to be implemented. For example, Chapman [2]
reports on a real aircraft engine controller with around
one million lines of code which has loops corresponding
to this subset. As the obtained estimates for the number
of iterations are safe for this set, they can be used by
existing static analysis techniques to yield safe overall
WCETs. Indeed, as these formulae are parametric in
program variables, they can be used in parametric WCET
analysis [9], [10].

The current paper extends this method to deal with
the case of loops with bounds not conforming to the
Presburger subset. Such an extension allows for the
method to be utilised in a wider set of programs. This
modified version of the technique is demonstrated to be
applicable in this more general case, though safety can

no longer be guaranteed. A treatment is also given for
situations in which zero entry loops may exist. The tech-
nique is thoroughly evaluated on a range of benchmarks
and synthetically generated examples. It is shown to be
useful in generating correct and exact formulae for the
number of loop iterations. The time needed is shown to
be practical for use in real-world applications.

The remainder of this paper is organised as follows.
Section 2 presents examples motivating the work. This
is then followed by the presentation of related work in
Section 3. The idea of model inference for WCET analysis
is then presented in Section 4. Section 5 presents a math-
ematical proof that the technique presented in this paper
will correctly identify loop iterations for a certain class
of loops. The development of a tool utilising the results
of this proof is then described in Section 6. The tool is
then evaluated against both synthetic and benchmark
examples in Section 7 before final conclusions are shown
in Section 8.

2 MOTIVATING EXAMPLES

The research presented in this paper can be motivated
through two examples taken from the Malardalen WCET
benchmark suite.!

Results using further examples from this suite of
programs are reported in Section 7. However these two
examples illustrate the problem and our solution well,
so will be referred to throughout in greater detail.

For the first of these examples, the number of itera-
tions on each entry of inner loops is dependent on the
current iteration of the outer loops. For the second, the
number of loop executions is a logarithmic function of
an input parameter. Both of these issues are potentially
problematic in WCET analysis. The following subsec-
tions explain these examples in further detail.

2.1

The LU decomposition benchmark? uses matrix arith-
metic to find the solution to a system of n equations in
n unknowns. This algorithm is a good example of code
in which failing to account for non-rectangular effects
in loops can lead to a massive overestimation in the
number of times the body of each loop will be executed,
and hence, in the overall estimate, WCET will be greatly
pessimistic.

For example, the fifth loop is nested inside the fourth
loop, both of which are dependent on the loop counter
of the outermost loop for the number of executions
that should be performed. Neglecting non-rectangular
effects, one would estimate that the upper bound on
the total number of executions of the body of the fifth
loop that can be performed is equal to the product of
the maximum number of iterations that each of these
three loops can perform. This is equal to n3. In reality,

LU Decomposition

1. http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
2. http:/ /www.mrtc.mdh.se/projects/wcet/wcet_bench/ludcmp/

the total number of executions of this loop is merely
#n(n+1)(n+2), virtually a sixth of the estimated value
for sufficiently large n.

Full results reporting the formulae inferred for each
loop (and the amount of pessimism avoided) are re-
ported in Section 7.1. The time required for this inference
is also presented in Section 7.3.

2.2 Fast Fourier Transform

The fast Fourier transform benchmark® implements an
efficient method for converting sampled data into the
frequencies from which it was formed. Algorithms based
on this are therefore frequently used in signal processing
parts of embedded systems.

The specific form of fast Fourier transform used is the
Cooley-Tukey algorithm. This completes the conversion
process through recursively splitting the problem into
two equal parts. For this reason, many of the loops in the
benchmark execute a number of times which is either the
logarithm to the base 2 of the number of data points, or a
function of this value. This presents a challenge as most
techniques are geared towards returning polynomial
formulae for the number of loop executions.

An extension to our basic system is needed to handle
such cases as they fall outside the Presburger subset. This
will be explored in Section 6.3. The results of apply-
ing this technique to this benchmark are subsequently
shown in Section 7.2, while the times required to do so
are given in Section 7.3.

3 RELATED WORK
3.1

As previously noted, the WCET cannot be found ex-
actly in general. Rather there are currently two major
approaches to estimating WCET: measurement-based
techniques and static analysis.

Measurement-based techniques [1] require the task
to be run on many different inputs and from many
different initial hardware states. The estimated WCET is
then taken to be the worst observed in practice, perhaps
with an extra margin of safety added on. Techniques
exist to increase the probability that the actual WCET
is observed, for example by using coverage criteria [11]
or using genetic algorithms to guide test case genera-
tion [12]. However short of (frequently infeasible) ex-
haustive testing, it is impossible to guarantee that the
WCET will be encountered during testing. As a result,
the estimate thus obtained will likely be close to the
real WCET (tight) but could be an underestimate, and
therefore deadlines could be missed.

In contrast, static analysis [1] is based on computing
the WCET from models of the program semantics and
hardware platform. Typically, this is done using a three
stage process, see Fig. 1(a). At the first stage, the basic

Worst-Case Execution Time Analysis

3. http:/ /www.mrtc.mdh.se/projects/wcet/wcet_bench/fftl/

Program Under
Examination

WCET Estimate

Flow Analysis

Low-Level

|
|
|
l Calculation |
|
|

Analysis

—_———————

(a) Static Analysis

Fig. 1. The 3 stages of static analysis and hybrid analysis

blocks of the program (non-branching sequences of in-
structions) are identified and the flow of control between
these is determined. This information is then used by
the low-level analysis to determine the execution time of
each basic block on the target hardware. Finally, the flow
analysis and low-level analysis are combined to yield a
system of equations which is solved to obtain the WCET
estimate.

Due to the theoretical impossibility of calculating exe-
cution time exactly in general, generalisations are made
at each stage of the static analysis that guarantee the
calculated value will be at least the real WCET (safe), but
may be an overestimate (pessimistic). Having a safe esti-
mate makes the quantity usable in safety-critical systems,
but the pessimism can result in under-utilised systems
and money wasted on unnecessarily fast hardware.

A third method, hybrid analysis [13], (see Fig. 1(b))
combines the two other approaches. In essence, the low-
level analysis stage is replaced with measurement-based
analysis of each basic block. This removes the issue of
creating good models of the hardware but, depending on
the method used in the calculation phase, may either re-
move the guarantee of safety or lead to extra pessimism
in the resulting estimate.

3.2 Loop lteration Determination

In current approaches to WCET estimation, loop iter-
ation determination is performed by static analysis at
the program flow stage. It is then subsequently used in
constructing the equations to be solved at the calculation
phase.

Computationally, the simplest way to determine loop
iterations is to be supplied with the information by the
programmer through annotations to the program [14].
This approach was that which was used originally. How-
ever, such a method relies on the programmer knowing
and supplying accurate information and updating the
annotations correctly when the code changes. This can be
verified using theorem proving [2], [15], but other issues
remain. Needing to use unannotated library functions
creates a problem, as does the introduction of code

Program Under
Examination

WCET Estimate

— — — — — — — — — e ey

A

Flow Analysis

l Calculation

Measurement-
Based Analysis

—_——_———_——

(b) Hybrid Analysis

optimisations (most obviously loop-unrolling) by the
compiler. For these reasons, automated analysis should
be preferred [16].

One approach towards automation is utilised by the
aiT tool.* This tool is equipped with various manually
derived patterns corresponding to particular styles of
loop generated by particular compilers. These patterns
are then matched against the code under examination
to give tight estimates of the number of iterations. In
essence, the task has been transformed from manually
supplying annotations for each loop, to manually sup-
plying annotations for each common type of loop. While
this overcomes the problems noted above, the task is not
fully automated in so far as a programmer must still
manually derive and supply the patterns needed — not
an inconsiderable task. As these are different patterns for
each compiler, as well as for different compiler options,
the generality of the technique is limited. Furthermore,
more complex loops cannot be handled [3].

More recently, several papers in the field have pre-
sented approaches based on data flow analysis [3], [5],
[6], [17]. The details of these techniques differ, but follow
the same general principle. The variables on which loop
exits depend are identified, as is the way in which
the values of these variables can change during each
loop iteration. Given knowledge of the initial states of
these variables and what values may trigger exits, safe
estimates can then be made of the maximum number of
iterations possible.

4 FRAMEWORK AND PROBLEM DOMAIN
4.1 Model Inference Approach to WCET Analysis

The technique to be presented in this paper for determin-
ing loop iterations can be seen as a specific application
of a more general technique for estimating WCET. This
technique is based on inferring models from example
program traces, which are then used to augment the
existing static analysis approach. This is illustrated in
Fig. 2 (cf. Fig. 1). In order to see why such an approach

4. http:/ /www.absint.com/ait/

Program Traces

Program Under
Examination

WCET Estimate

A 4 A

Model Inference

Flow Analysis

'

Low-Level
Analysis

I
|
I
Calculation |
|
I

Fig. 2. Model inference based WCET analysis

is needed, it is first necessary to highlight two issues that
exist with current static approaches.

Two major problems are present with the existing
static analysis approach. Firstly, the pessimism that re-
sults from these analyses can be too excessive to make
the estimates useful for any real-world application ex-
cept where safety must be guaranteed with absolute
certainty. A decade ago, Chapman [2] found that even
for quite simple programs and simple hardware, 30%
pessimism was not uncommon and in one case 64%
pessimism was observed. More recently, an industrial
case study [18] found pessimism of 4-33% when the
aiT tool was used to analyse industrial code. This was
approximately doubled if hand-coded annotations were
not given.

The second problem with static analysis is the diffi-
culty of building models for use by the analysis. At the
hardware level, complex components such as pipelines,
branch predictors and multi-level caches have been in-
troduced into the processor market, some of which are
used in the majority of processors available for embed-
ded systems. These are included to reduce the average-
case execution time, though often they are also likely
to reduce the worst-case execution time too. However,
without an accurate model of how they work, very
pessimistic assumptions about their behaviour must be
made in WCET analysis. Wilhelm et al. [19] state that
“the architecture determines whether a static timing
analysis is practically feasible at all and whether the most
precise obtainable results are precise enough ...This
dependence on the architectural development is of grow-
ing concern to the developers of timing-analysis tools
and their customers, the developers in industry”. For
modern processors, the functioning of these components
is frequently commercially confidential. Even where this
is not the case, the complexity of the these features
may make creating appropriate models difficult, such
as is the case with out-of-order processors [20]. Where
these features are used, static analysis is difficult without
considerable effort or manufacturer support.

Similarly, appropriate software models may be dif-
ficult to construct. For example, the pattern matching
approach to loop bound determination used by the aiT

tool requires considerable human reasoning to configure
for each compiler used. Ultimately, the user may be re-
quired to supply additional information about program
flow in the form of annotations to their code in order
to ensure tighter estimates than can otherwise be found
solely through the automated analysis of the code.

The emerging approach of model inference to assist
in static analysis seeks to overcome the second of these
two problems and may be useful in reducing the first.
The core of the approach is that the construction of
models for the static analysis is automated rather than
manually performed. The data from which these models
are constructed is obtained through observation of the
hardware and software in operation. In this approach,
there is no need for the programmer of the analysing tool
to constantly create new models when new hardware
starts being used in systems or to support optimisations
made by each individual compiler.

The approach seems very similar to current hybrid
approaches, but actually differs in some important as-
pects. While both techniques rely on adding dynamically
obtained data to a static approach, this data is utilised
in different ways. In the case of hybrid analysis, the
data obtained is simply the runtime of basic blocks (or
known sequences of these). This information is then fed
into the analysis in a minimally processed way, either
in its raw form or only allowing for interblock effects
etc. to be determined. In contrast, the model inference
approach relies on extracting (potentially non-temporal)
information from the execution and then processing it.
The results fed into the static analysis are not the data
obtained, but rather a model inferred from this data,
which may not correspond to what has been observed
in any individual run.

In general, this approach will suffer from one of the
main drawbacks of hybrid analysis, namely the safety
of the static analysis approach will be compromised by
admitting data obtained from non-exhaustive testing.
However, under certain limitations, the models obtained
by this approach can be proven to be safe. Even when
this outcome cannot be guaranteed, the models may still
be useful in soft-real time systems in order to provide
potentially unsafe but tighter estimates of WCET. Such

estimates will reflect the limits of typical behaviour
observed rather than unusual but possible pathological
worst cases.

In addition to the current work presented here on
loop bound identification, two other works have been
published on the use of model inference for other as-
pects of WCET analysis. Bate and Kazakov [21] show
how the technique could be used to identify which of
a set of branch-predictors a processor uses, based on
observations of branch predictions and mis-predictions.
The model of the identified branch predictor could then
be fed into a static analysis, significantly reducing the
amount of pessimism from a situation in which no
knowledge of the predictor was available.

Lisper and Santos [22] use model inference to create
a timing model for the length of execution of each basic
block. Rather than use raw data for this timing model, as
would be done by hybrid analysis, they infer a WCET for
each block, which may be greater than any observed in
practice. In a situation in which the timing behaviour of
the hardware is quite simple, it is proven that the model
inferred will be safe, or even exact, as is the case with
the results presented in this paper. However, in contrast
to the approach presented here, they present a holistic
technique for analysing the execution time of the entire
program. Here, our emphasis is on supplementing the
existing static approach rather than replacing it.

4.2 Model Inference For Loop lteration Determina-
tion

The task of loop iteration determination requires the
number of times each loop is executed to be either deter-
mined precisely or safely bounded. Where the number of
iterations may vary, the estimated number of iterations
should be parametric in the program’s variables rather
than a simple numeric upper bound. This permits the
deduction of tighter WCET estimates at the calculation
stage and additionally permits parametric WCET to be
undertaken [9], [10]. Furthermore, this allows for the
number of loop executions in a procedure to be found
as a function of the procedure’s inputs, allowing tight
estimates from multiple calling contexts.

To apply the technique of model inference to this
domain therefore, the task becomes one of inferring
a formula for each loop, relating the number of loop
executions to the program’s variables. Methods for de-
termining which variables should be considered are well
established in the field of WCET analysis [23] and hence
will not be further discussed in this paper. Similarly,
methods for tracking the execution pathway of the
program also exist [24]. This latter matter however is
returned to in Section 6.1 in order to outline which
methods are suitable for obtaining the loop execution
counts for this technique.

As the means to gather suitable data already exist
in the field of WCET estimation, the novelty of this
approach is in inducing the formulae from these data.

The details of this are presented in Section 6 alongside
a tool constructed for this purpose.

While well-structured loops in general are considered
in this paper, particular attention is given initially to the
discussion of Presberger loops. These are loops in which
the guard conditions are restricted to a particular class
of arithmetic expressions over a set of variables [8]. It
is shown, in Section 5, that for this class of loops that
the models inferred can be guaranteed to be safe and
indeed exact. Extensions to this class are considered in
subsequent sections, revealing that, while not guaran-
teed to be safe, formulae for other loop patterns can be
inferred correctly under this methodology.

4.3 Presburger Expressions and Loops

Definition 1: The set of Presburger expressions of a set
of variables X, PE(X), can be defined as follows

n
pe(X) = a0 + Z QT }
i=1

where X = {x,22,...2,}and Vj € [0,n],a; € Q and the
notation pe;(X) is used to denote an arbitrary member
of PE(X) throughout the remainder of the paper.

In other words, a Presburger expression over a set of
variables is a linear function in those variables in which
each numeric constant is a rational number.

This class of expression lacks arbitrary interaction of
variables (preventing multiplication of two variables for
example) and, as a result, formulae using members of
the class are decidable. For this reason, Presburger ex-
pressions are often used in control expressions in safety
critical programs, in which reasoning over the algorithm
must be performed [14], [25]. This paper is initially
concerned with such a use of Presburger expressions for
controlling the number of loop iterations.

Fig. 3 illustrates the general case of nested Presburger
loops. For each loop, the number of iterations is deter-
mined by two Presburger expressions, both of which are
defined over the set of exogenously supplied variables,
V, and any loop counters from outer loop levels. Note
that none of the variables in V' can have their values
changed within the context of the loops, nor may a loop
counter’s value be changed except by the loop’s control
expression. We also begin by restricting our treatment to
the case where the lower bound is less than or equal to
the upper bound.

Previous approaches to determining the number of
loop iterations for the Presburger class of nested loops
have been proposed which utilise static analysis methods
rather than the measurement-based approach adopted
here [26], [27], [28]. It can be shown that the upper and
lower bounds of each loop in a nest can be used to
form a polyhedron. The task of calculating the num-
ber of iterations of the nested loop is then equivalent
to counting the number of integer points within this
shape [26]. However in the general case, even determin-
ing whether there are any integer points in the shape

PE(X) = {pem

for I} = pe1,(V) to perp(V)
for I = pega(V U {ll}) to p€2b(V U {ll})

for l,, = pen(VU{l;|i € ZT,i <n}) to
peny(V U{l;|i € ZT,i < n})
Innermost Loop Body
next

next
next

Fig. 3. Generalised nesting of Presburger loops

is NP-complete [26]. The research in this area therefore
concentrates on finding algorithms which are efficient for
realistic types of loop nest with reasonably low nesting
depth.

However, the issue of obtaining the appropriate loop
control variables and determining the upper and lower
bounds for each loop is far from trivial. Patterns for
common loop types could be matched against but, as
previously stated, these must be created for each setting
of each compiler that will be used. Automated attempts
extract loop iterators based on flow analysis are on-
going [3], [5], [6]. The approach presented here is an
alternative technique that bypasses this issue altogether.
Rather than perform any deep analysis of the semantics
of the code, we instead rely solely on the established
methods used by static analysis programs to identify
the location of loops in the code and extract variables
possibly influencing the number of iterations. Admission
of excess variables which actually do not affect the
number of loop iterations do not adversely affect this
technique (except for in the number of traces needed).
Nor is it necessary to determine upper and lower bound
conditions for each loop.

5 PROOF OF SUFFICIENT OBSERVATIONS

This section presents a mathematical proof that the num-
ber of iterations of a set of nested Presburger loops can be
uniquely determined from a finite and quantified num-
ber of example observations of its behaviour. Specifically,
it is shown that the number of iterations is a polynomial
function in the set of exogenously defined variables.
From this, it follows that the number of observations
needed to uniquely determine this polynomial can be
determined as a function of the depth of loop nesting
and the number of exogenous variables.

The proof proceeds in three stages. Firstly, it will
be shown that the number of executions of a nested
loop body can be written as a polynomial of known
maximum degree (Section 5.1). The number of terms in
this polynomial will then be demonstrated (Section 5.2).
Finally, the observations necessary to uniquely deter-
mine the single correct function from the class of all
functions of this form will then be shown (Section 5.3).

By the combination of these stages, it follows that the
resulting observations from the final stage are sufficient
to correctly learn the number of loop body executions.

5.1 Number of Executions of a Nested Loop

Before deriving the functional form for the number of
executions of a nested loop, it is necessary to derive a
lemma that the later proof is conditional on.

Lemma 1: ¥pe(V) € PE(V), 2P0V 1" can be written
as a polynomial of maximum degree n + 1 over the set
of variables V.

Proof: By Faulhaber’s Formula [29]

D n+1
D=2 et
=0 k=1

for some numeric coefficients, ¢;. Substituting p = pe(V)
and expanding yields,

pe(V)
Z " = c1pe(V) + cope(V)2 + ...+ cpype(V)" !
1=0

As each ¢, is a polynomial of degree 0 and pe(V) is a
polynomial of maximum degree 1 in V/, this sum can be
rewritten as the sum of n + 1 polynomials in V, with
the greatest possible degree being n + 1. Trivially, this
can be shown to simplify to a single polynomial in V' of
maximum degree n + 1. O

Theorem 1: The total number of executions of the body
of the innermost loop of a nested set of Presburger loops,
as shown in Fig. 3, in which a loop iterator’s upper value
is never exceeded by its lower value, can be expressed
as a polynomial of maximum degree n over the set V,
where n is the number of nested loops and V is the set
of exogenous variables.

Proof: The proof is by induction in the number of

nested loops.

For n = 1, by program semantics, the number of loop
body executions is

pe1s(V)

> o1 -

li=pe1qa (V)

pe(V) —pera (V) + 1

which, from the definition of a Presburger expression, is
a polynomial in V' of degree 1.
For n > 1, the number of innermost loop executions
is
peny (VU{l;|i€ZT i<n})
> 1

ln=106na(VU{li|iEZ+,i<n})

pen(V) pean(VU{l1})

2 2

li=pe1a (V) la=peaq (VU{l1})

Assuming inductively that the theorem holds for the
n — 1 inner loops, this is equal to

pe1p(V)

Yo faa(Vu{nd

li=pe1q (V)

where the notation fx(X) is used throughout to indicate
a polynomial of degree N over X.

This can be expanded to yield (for some constant)

pe1p(V)

>

li=pe1a (V)

fne1(V) + frooa(V) x 11 + ...

+AV) x 772+ ol

Expanding out the summation operator, this yields
a sum of n terms, each of which is the product of
a maximum degree k polynomial in V' and the term
fo;bp(e‘ﬁ W) I7717* From Lemma 1 it follows that this
latter term can be rewritten as a polynomial of maximum
degree n — k in V, therefore the above equation is
equivalent to the sum of n terms each of which is a
polynomial in V' of maximum degree n. This can simply
be shown to be equal to a single polynomial in V' of
maximum degree n.

Hence, the theorem is true for n nested loops if it is
true for n — 1 nested loops. As it is true for n = 1, it is
therefore true Vn € Z+. O

5.2 Terms in the Expansion

In the previous section, it was shown that the number
of loop iterations could be rewritten as a polynomial
of maximum degree n, where n was the depth of loop
nesting. It is now necessary to establish the number of
terms in such a function, for which it will later be shown
that coefficients can be straight-forwardly derived.

Theorem 2: The number of terms in the canonical form
of a polynomial of degree n in V' is

(')

Proof: The result is a consequence of the number of
ways of choosing n items from |V|+ 1 with replacement
when order is not important.

Any polynomial of degree n can be written as the
product of n polynomials of degree 1. Hence each of the
terms in the degree n polynomial is formed by taking
one variable term or the constant from each degree 1
polynomial and multiplying them together. As there are
|[V|+1 terms in each degree 1 polynomial and n of these
polynomials, this corresponds to choosing from |V| + 1
items n times. Because the same term can be chosen
from multiple degree 1 polynomials and multiplication
is commutative, this is equivalent to choosing |V| + 1
from n with replacement and with order unimportant.
From combinatorics, this result is known to be equal to

n+(|V]+1)—1 . . e |V
(m/'pr‘ir),)l) which simplifies to (Tr‘l‘ ‘). 0

5.3 Sufficient Observations for Discrimination

There are an infinite number of polynomials of degree
n over the set of variables V, each differing only in the
coefficients of the terms and the value of the constant
term. Therefore, in order to uniquely distinguish any one
of these polynomials from all others of the same form,
it is sufficient to establish these numeric values. It has

been shown that the number of loop body executions is
a function of this form, subject to certain constraints on
conditionals controlling the loops. In order to determine
exactly which function, the numeric values must be
found.

By observing examples of the execution of loops it
is possible to determine the values of all relevant ex-
ogenous parameters and also the number of innermost
loop executions which occurred. The ways in which this
observation may be done are discussed in Section 6.1.
Substituting the information thus obtained from a single
observation in to the polynomial functional form derived
previously yields a linear equation in the (as yet) un-
known coefficients of the polynomial equation. From the
previous theorems, it follows that there are ("Tv“l/l) of
these coefficients.

Using Gaussian elimination, it is possible to solve a
system of linear equations in p unknowns when the
system contains p such equations, none of which are
collinear. It therefore follows that the number of exam-
ples needed to uniquely distinguish a function of the

form derived above from all others of the same form is
(b .

Taken in conjunction with theorems 1 and 2, it follows
then that from the observation of ("Tv“l/l) examples of the
loop nest being executed, an exact function describing
the number of iterations for any input can be deter-
mined. This subject only to the restrictions that the loop
nest is of the correct form, zero-entry loops are not
possible and that the equations to be solved by the
Gaussian elimination algorithm corresponding to two

example executions are not collinear.

6 INFERRING LOOP ITERATIONS FROM PRO-
GRAM TRACES

A tool has been implemented to infer loop iterations
from program trace data using the method described in
the previous section.

This tool is based on Inductive Logic Programming
(ILP) [30], a type of machine learning in which the
data to be learned from, the theory that is learned and
the space of possible hypotheses to consider are all
expressed in first-order logic. As a mature field, we
believe machine learning may contain many methods
that are useful in taking the area of WCET analysis
forward. Many aspects of WCET tasks are incredibly
well-suited to the strengths of machine learning in gen-
eral and ILP in particular; the data to learn from are
typically noiseless, deterministic, discrete and available
in whatever quantity is required. Many of the open
questions in machine learning research relate to the cases
in which data do not possess these properties. For data
of the type encountered in WCET analysis, standard off-
the-shelf tools and techniques already exist.

Specifically in the current paper, the tool is imple-
mented in the learning environment of Aleph [31] using
Progol syntax. The present version of the tool is an

Input: A set of pairs of variable values and the associ-
ated observed iteration count

Output: A polynomial formula relating iterations to
variable values

for i = 1 to Max_Depth
Try to use Gaussian elimination to find a polynomial
of degree i that is consistent with the input data
next
for j =1 to Max_Depth
Test data against the degree j polynomial calculated
earlier
if Degree j polynomial fits data exactly then
return Degree j polynomial
end if
next
return No polynomial found

Fig. 4. The loop iteration formula inferring algorithm

evolution of that which was described in detail in [32]
(and first presented in an early form in [33]). The current
version produces the same results as the previously
described version, differing only in finding the formula
more quickly due to two changes. Firstly, the underlying
algorithms have been rewritten to be more efficient using
techniques such as tail recursion, difference lists and
dynamic programming, none of which have changed the
functional operation of the code. Secondly, the equation
search space has been tuned slightly to achieve the same
results while considering fewer theories. An overview of
the workings of the tool now follows at a level sufficient
to replicate its functionality; readers interested in lower
level implementation details and improvements made
are referred to [32]. An outline of the algorithm behind
the tool is shown in Fig. 4.

Input to the tool consists of a list of Progol predicates
of the form target (A,B) where A is a list of values
for program variables which, it is believed, affect the
loop iteration count, and B is the observed number of
loop iterations when the loop has been executed with
the given values in A. At present, this input must be
compiled into this form manually. In future versions of
the tool, it is envisaged that the relevant variables will
be found through flow analysis of the program code (or
some representation of it, such as a control flow graph)
and that the iteration count will be extracted from an
appropriate program trace. Methods for automating both
of these aspects already exist (for example [23], [34])
making integration primarily an engineering task.

The tool attempts to fit various equations to this data
set through the choice of suitable coefficients. Specifi-
cally, it tries to find a coherent polynomial in the given
program variables using Gaussian elimination, as de-
scribed in the previous chapter. Beginning with a degree
1 polynomial, the tool constructs candidate polynomials
up to a specified degree. From the previous chapter, it

follows that this is equivalent to looking in turn for a
formula which could be produced by an unnested loop
through to one that could be produced by a nesting with
equal depth to the highest order polynomial considered.
In the current implementation, a depth of up to 8 loops
is considered, which should prove sufficient for realisti-
cally encountered code. Amending the tool to consider a
greater depth can be achieved trivially by the alteration
of constants. However, the greater the maximum depth
to consider, the longer the tool will take for analysis.
A depth of 8 levels is chosen in order to cover almost
all loops likely to be encountered in practice without
placing excessive overhead on the time to infer from the
more common simpler loops.

Having attempted to find polynomials consistent with
the observed behaviour, the program selects the one of
lowest degree which is fully consistent with the input
data. Assuming that the loops are of the required form
and that sufficient observations were available (which
can be checked using the formula derived in Section 5)
then this can be shown to be the lowest degree poly-
nomial to give the correct number of iterations for all
inputs; no simpler polynomial could be correct or it
would be chosen in preference and the given degree
polynomial must be right by the previously established
proof.

It is worth noting that the search through polynomials
of varying degrees could be avoided if the method were
to be used in conjunction with a static analyser. In this
case, examination of the control flow graph would reveal
the loop nesting depth for each loop body. Given this
information, the maximum degree of the polynomial can
be deduced as shown in the earlier proof. Coefficients
could then be computed for this polynomial without the
search for the relevant degree which is carried out in the
current tool.

Output from the tool consists of a Prolog predicate
representing the polynomial function found to predict
the number of loop iterations. This is then transformed
into the equivalent polynomial in a more natural form,
such as would be found in a manual annotation of
program code. Adding this annotation back to the code
under examination or passing it to a static analyser is a
trivial step to be performed in integrating the tool in to
a larger WCET analyser.

Results obtained with this tool are presented in Sec-
tion 7.

6.1

In order to infer the correct formula, it is necessary to
obtain data from program runs. By necessity, this entails
some manner of instrumentation. There are multiple
techniques that can be and are used in measurement-
based analysis to examine both the functional and tem-
poral behaviour of systems. The various methods (in-
cluding logic analyzers, in-circuit emulators and inject-
ing instrumentation code) are well known, as are the

Instrumenting Code

trade-offs that exist between altering the behaviour of
code and simplicity of collection [24].

For the presented approach, the specific data that must
be gathered consists of the value of several variables at
the beginning of the loops and the number of executions
of each loop. As there is no necessity to deal with the
timing behaviour of the code, rather only control flow
information, very temporally intrusive instrumentation
can be used, providing the flow is not altered, and
the techniques by which the data can be collected are
very broad. Furthermore, the number of loop iterations
performed is a property of the code and is independent
of the target hardware. Therefore simulated execution
can be used to give results that remain valid on the actual
hardware platform.

In the results presented in this paper, instrumentation
is achieved through addition of extra code to the pro-
gram under examination. This outputs the values of the
relevant variables and tracks the number of entries to
each loop body. In general, such instrumentation may
be too intrusive and alter the timing behaviour of the
code, but is acceptable for this approach for the reasons
noted above.

For the sake of simplicity, the analysis reported in this
paper is performed at the source code level, and hence
the code is instrumented at this level too. This makes
the results obtained on the benchmark cases comparable
with results obtained by other techniques; for an analysis
at an intermediate or compiled level, the actual code
examined may differ between approaches due to the use
of different compilers. Validation of the results obtained
is also simpler. However, as it is ultimately compiled
code that is executed, analysis at the source code level
would not be as useful in a real world setting. In
some cases, the structure of the source code does not
correspond to that of the compiled code. In particular for
the current application, the number of loop executions
may vary due to compiler optimisations such as loop
unrolling. In any case, as long as the compilation process
does not introduce unstructured flow or non-Presburger
expressions, the presented technique will work equally
well at the object code level.

6.2 Zero-Entry Loops

The proof previously presented, that the formulae can be
correctly inferred from a given number of observations,
is contingent on the lower bound of each loop being
less than or equal to its upper bound. However, this
condition is not always met in real code, for example
Fig. 5 shows a loop where the upper bound may be
less than the lower bound depending on the value of
the variable X. Where X is greater than 10, an imple-
mentation of such code in most programming languages
would result in the body of the loop never executing. In
some languages, it is possible that this could result in the
body being executed either once or infinitely, but only
the more usual case will be considered here. In order for

for [, = X to 10
Loop Body
next

Fig. 5. A loop which may have zero entries of the body

the method presented to be generally applicable, code
with such zero-entry loops must be permitted. Note that
we need only deal with those loops for which only some
inputs cause the zero-entry behaviour to be exhibited;
if the loop cannot be entered for any input value (for
example if it can be proved that X would always be
greater than 10 when the snippet in Fig. 5 is encountered)
then it is impossible to generate examples from which to
induce a formula.

The problem which occurs where zero-entry loops oc-
cur is that the function for the number of loop executions
is not smooth as in the simpler case where upper bounds
are not less than lower bounds. Instead, they must be
expressed as a piecewise function of the input variables,
where the number of intervals grows exponentially with
the depth of nesting.

As our approach is unable to infer such functions,
a method to detect these situations is instead imple-
mented. Through appropriate instrumentation of the
code, it is possible to detect when a zero-entry situation
has occurred; the head of the loop will be seen to be
evaluated and anything other than the loop body will
execute subsequently.

Two options are available if this case occurs. Firstly, the
fact that this situation can happen may be just be noted
and the user informed. No formula will be generated,
but the tool detects the limitation and therefore does
not generate an incorrect formula. Secondly, the cases
in which the zero-entry loops are observed may be
discarded and a formula learned as normal from the
other observations. Calculation of roots of the inferred
formulae at each level of the loop nesting can then be
used to reveal the range for which the inferred formulae
are positive and hence for which these formulae are
applicable. This may be useful if it can be assumed or
proven that the usual mode of execution is within this
range, for example if X can be proven to be less than 10
in Fig. 5.

6.3 Beyond Polynomial Functions

As formulated, the inference engine is only capable of
learning formulae which are polynomial expressions of
the input variables. This has been shown to be sufficient
where the components of the loop guards are Presburger
expressions. In fact, it remains sufficient for loop guards
that are any polynomial expression, though the degree
of the resulting expression may be higher than for an
equivalent number of nested Presburger loops.
However, the number of executions of some loops are
not polynomial expressions in the exogenous variables.
Most commonly, such loops are encountered in divide

and conquer algorithms, which split the problem to solve
in half and hence have a total number of executions
based on the base 2 logarithm of the problem size. The
fast Fourier transform previous discussed in Section 2.2
is one such algorithm.

In order to allow the technique presented to func-
tion on such programs, there are two ways in which
alterations may be made. Firstly, the range of functions
composing the functional hypothesis space could be in-
creased to allow the inference engine to explore a greater
range of functional forms, including logarithms, expo-
nentiation, etc. However, this would entail significantly
rewriting the inference engine. It would also increase the
number of functions to consider significantly resulting
in a longer time taken to learn the correct function, even
in the cases where the functional form was eventually
found to be solely polynomial. Finally, it can be shown
through theoretical considerations that if the range of
learnable functional forms was increased to allow any
possible function then for any observed dataset, there
would be an infinite number of formulae consistent with
it and no way to choose between them.

Therefore, a second, alternative technique has been
adopted to deal with these non-polynomial cases. In this
approach, the inference engine is not altered, but rather
the inputs given are enriched with additional inputs,
each derived from one or more of the default exogenous
variables. For example, rather than provide two variables
as input for induction, four variables may be supplied,
the standard input variables and their respective loga-
rithms. The resulting formula would then consist of a
polynomial in which terms were either exogenous vari-
ables or logarithms of the exogenous variables. While
still polynomial in the input variables supplied, the fact
some input variables are based on others means that
the expression is not polynomial in the base exogenous
variables.

Augmenting the input to the inference engine with
all conceivable (or even likely) derived inputs would
massively increase the size of the input vector. In Sec-
tion 7.4, it will be shown that increasing this size results
in a corresponding exponential increase in the time
needed for induction. Therefore, adding large amounts
of additional inputs is an infeasible technique. However,
an alternative exists.

Rather than add all derived inputs at once, a series of
runs of the inference engine can instead be made. On the
first run, the unaltered inputs are used. On subsequent
runs, inputs are augmented with a single type of derived
inputs (for example, logarithms). Once all runs with only
a single type of derived input have been conducted, runs
with pairs of derived inputs are performed. Then three
types of additional input and so on. Execution of these
runs is halted as soon as a formula consistent with the
observed data is induced. Such a scheme implements
a bias towards finding the simplest consistent formula
possible, but still allows a more complex formula to
be found. Additionally, the simplest formulae are found

10

without any additional search to the basic Presburger
case considered before and therefore requiring no extra
time. While such an approach requires multiple runs of
the inference engine, this can still be undertaken in an
automated way:.

This method assumes that the likelihood of a formula
being correct is positively correlated with the simplicity
of its terms. Such a bias conforms to Occam’s razor.
However, if more information is known about the likely
functional forms in a given domain, then this could be
used to alter the order in which derived inputs are tried
in order to decrease the average number of runs needed.

7 RESULTS

This section presents results of using the tool outlined
in the previous sections. Except where necessary and
noted, only the basic version of the tool is utilised, i.e.
inputs consist of only the exogenous variables and not
any variables derived from these and the possibility of
zero-entry loops is not considered. As previously stated,
the results presented are based on analysis at the source
code level. Times reported are the times for inference and
do not include time to gather the required observations.

The results of evaluating the tool against the two
motivating examples shown in Section 2 are presented.
This is then followed by an analysis of the time taken
to infer these results and those for another benchmark
from the Malardalen WCET benchmark suite. Finally, the
scalability of the tool is explored through experiments
on a range of synthetic examples. The use of synthetic
examples allows the number of variables and depth of
nesting to be controlled and set, making a systematic
investigation possible.

71

Table 1 shows the formulae for the number of execu-
tions of each loop in the LU decomposition program
introduced in Section 2.1. The first formulae are those
that would be obtained using a simple method that just
multiplied the maximum number of iterations for each
level together, that is to say, a method that can accurately
infer the maximum iteration of each loop but which is
unable to account for the non-rectangular effects. For
loop 3, it has been assumed that the flow analysis would
be able to correctly identify the iterations for which the if
condition was not satisfied; if not, the overestimation for
this loop would be even greater. The formulae inferred
by our method are then given, as are the actual number
of iterations that the code produces.

As can be seen, the number of iterations using the
inference method always match the actual number of
iterations. As would be expected, the simple method
produces a formula which is always greater or equal to
the correct one, for any given n. This overestimation is
also shown as a function of n in table 1.

This result confirms the mathematically proven results
from the earlier section and also illustrates the need for

LU Decomposition Benchmark

11

TABLE 1
Formulae for the number of entries of each loop in the LU decomposition algorithm. Formulae are shown for the
predicted number of iterations under the simple bound scheme, the number inferred by the learning algorithm, the
actual number that occur and the number of overestimated iterations of the simple bounds versus the actual number.
The number inferred always matches the actual number.

Loop Number Simple Bounds Inferred Iterations Actual Iterations Overestimation
1 n n n 0
2 n? %n(n +1) %n(n +1) %n(n -1
3 (n—1)3 %n(n—i—l)(n—l) én(n—&-l)(n—l) %(n—l)(n—2)(5n—3)
4 n? %n(n +1) %n(n +1) %n(n -1)
5 n3 én(n+1)(n+2) én(n+1)(n+2) én(nf 1)(5n + 2)
6 n n n 0
7 n? %n(n +1) %n(n +1) %n(n -1
8 n n n 0
9 n? %n(n +1) %n(n +1) %n(n -1

a method that accommodates non-rectangular effects in
loops.

Evidence that there is a necessity to deal with non-
rectangular effects, using a technique such as this, is
provided in table 2. Here, the overestimates shown in
the previous table are enumerated for various values of
n to show how much pessimism this can result in. The
effect of the pessimism is obviously greater for the more
deeply nested loops. It is notable however that even
for relatively low values of n, the amount of pessimism
experienced grows very rapidly. For example, even in a
10 x 10 matrix, over 350% pessimism will be present in
the estimate for the number of executions of instructions
inside loop 5.

7.2 Fast Fourier Transform Benchmark

The fast Fourier transform benchmark (see Section 2.2)
was introduced to highlight the issue of dealing with
loops with non-Presburger loop guards. Specifically, sev-
eral of the loops in this algorithm execute a number
of times related to the logarithm base 2 of the input
variable.

Table 3 shows the results of running the inference
tool on observations of this benchmark. Two results are
reported for each loop, the inferred formula when the
tool is used in its basic form and the inferred formula
when the input was enriched with the logarithms as
described in Section 6.3.

The table shows that several of the loops had formulae
that were expressible without the need for logarithms.
While there was no practical need to infer from observa-
tions of these loops again using logarithms, such results
are reported for completeness. In all cases, the same
formula was still inferred as was expected, illustrating
that providing additional unneeded variables does not
interfere with the tool’s functioning.

For the remaining loops, the basic inference process
failed to compute formulae for the number of iterations.
As the correct formulae were not able to be considered
by this inference process, this was the correct behaviour.
However, when the input was increased to include both
the input variable and its logarithm, formulae for all
loops were correctly learned. It should be noted that
these expressions are no longer polynomials of the input
variable n, but are polynomial in » and logn.

These results validate the applicability of the tech-
nique, suitably modified, in domains where the loop
guards are not Presburger expressions.

7.3 Benchmark Timing Results

Having demonstrated the usefulness of the technique in
the previous sections, the practicality is now assessed.
Specifically, the time required for the tool to infer formu-
lae is measured to evaluate its potential for real world
use.

In addition to the two benchmark examples previously
explored in detail, the Mélardalen benchmark suite was

TABLE 2
Overestimation in the number of entries to each loop of the LU decomposition algorithm if non-rectangular effects are
neglected. Overestimation is shown for various values of n, the number of rows of the matrix to be decomposed.

n Loop number
1 2 3 6 7 8 9
1 0% 0% — 0% 0% 0% 0% 0% 0%
10 0% 82% 342% 82% 355% 0% 82% 0% 82%
100 0% 98% 482% 98% 482% 0% 98% 0% 98%
1000 0% 100% 498% 100% 498% 0% 100% 0% 100%
10000 0% 100% 500% 100% 500% 0% 100% 0% 100%

TABLE 3
Inferred formulae for fast Fourier transform function with
and without logarithms.

Loop number | Without Logarithms | With Logarithms
1 Not found logn
2 Not found logn
3 n—1 n—1
4 Not found %nlogn
5 n—1 n—1
6 Not found n —logn — 1
7 n n

examined to identify any other benchmarks suitable for
analysis by the tool. In order to be analysable by the tool,
the benchmark needed to contain loops in which there
was only a single, non-data-dependent exit point. Addi-
tionally, only benchmarks containing nested loops with
non-rectangular effects were considered due to the trivial
formulae associated with all appropriate unnested loops
identified. These criteria led to the identification of only
one additional benchmark, that for matrix inversion. For
some of the loops in the matrix inversion benchmark, the
loops were not of a form which could be analysed by
the tool (for example, one loop had a return statement
within its body) nevertheless, analysis was attempted on
all loops.

The times taken for the analysis are reported in Table 4.
Each formula found by the tool has been checked against
the code and found to be exact and therefore safe. For
the loops in which formulae could not be induced, each
was found to violate some aspect of the requirements for
analysability by the tool, such as multiple exit points.
Inference times for each of the loops were remarkably
consistent at between 0.28 and 0.38 seconds each. Such
times would certainly be acceptable in real-world appli-
cations.

7.4 Scalability of the Approach

While testing on the established benchmarks in the field
is useful, doing so fails to establish the general applica-
bility of the technique. It is widely acknowledged that
the benchmark suite is very limited and not necessarily
reflective of code that requires analysis in the real-world.
For example, in the benchmarks studied, the maximum
depth of loop nesting encountered was three, while
only one or two variables were ever found to affect
the iteration count. Unfortunately, real-world code is not
generally available either. Where access to such code is
possible, confidentiality prevents the code that a tool
is evaluated on being placed in the public domain or
described in sufficient detail to permit repeatability of
the findings. Without access to similar real-world code,
it is impossible to compare one’s own methods against
published techniques.

Due to the limited number of programs which are
analysable and interesting in the benchmark suite, and
the lack of suitable real-world code, testing of this tool is

12

best performed using a test harness. This harness takes a
number of variables and a depth of loop nesting as input
and returns a randomly generated program with the cor-
responding characteristics as output. In order to ensure
that the formulae for the number of loop iterations is of
the maximum possible degree and complexity, the start
and end values for every loop counter is a Presburger
expression of all exogenous variables and all outer loop
counters. This testing methodology allows for a more
systematic test of the tool. By altering the two inputs
to the harness, it is possible to establish how well the
technique scales as these factors vary.

The test harness is allied to a simulator for the code.
This takes the generated programs and runs them with
various values of the program’s input parameters, out-
putting the information required by the tool for its
inference. Specifically, it generates a file containing a list
of binary Prolog predicates recording the input values
given and the observed number of innermost loop ex-
ecutions. Sufficiently many predicates are generated for
each program to allow the iteration count to be uniquely
determined as described in Section 5.

In Section 5, it was shown that, for the type of
loop considered here, a specific number of observations
would be sufficient for the number of iterations to be
determined. Namely (""LV“‘/‘) examples of the loop’s be-
haviour must be observed. As a first step in examining
the scalability of the technique, this function is shown
in Fig. 6. It can be seen that the number of examples
that must be generated is nearly exponential in both
the maximum depth of nesting and in the number of
variables considered.

However, for real-world code nesting of the level
graphed here is rarely encountered [2]. In order to find
practical application, it is unlikely that a tool would ever
need to deal with more than 8 levels of nesting, and
seldom with more than four. At these depths, a few thou-
sand observations are likely to be more than sufficient,
depending on the number of variables that it is necessary
to consider. Program slicing [23] may also be used to
further reduce the number of variables to consider, and
hence observations needed. Such quantities of data can
be practically generated in a reasonable timeframe to
make the technique usable.

The second issue of scalability relates to the time
that is needed for inference once the data has been
collected. In order to assess this, the test harness was
used to generate random programs from which data was
collected and inference conducted. The resulting times
taken for inference are shown in Fig. 7. All times have
been collected from a PC with an Intel T2300 1.66GHz
processor with 1GB of RAM running Microsoft Windows
Vista. As the loops generated in the sample programs
were maximally complex in terms of interaction effects
between nested loops, the values shown in this graph
represent an upper bound on the time needed to learn
in each situation in the general case.

The time taken for the inference can be seen to increase

TABLE 4
Times taken for inference of benchmark programs. For
loops marked with a cross, (x), formulae could not be
inferred by the tool.

Benchmark Time (s)
0.375
0.281
0.297
0.328
0.343
0.296
0.281
0.296
0.328
0.359
0.343
0.359
0.328
0.328
0.327
0.327
0.390
0.312
0.375
0.359
0.343
0.327
0.312
0.358
0.343
0.374

o

Qo

Q
s

LU Decomposition

Fast Fourier Transform

w
~

Matrix Inversion

[e)}
~

\O
I~ > » > = a1 w = \O 0o ;] w =
<3><><\]>< rPXN N o =~ N N o =~ N

NG

greatly with the number of variables, but appears almost
independent of the depth of loop nesting. The invariance
with depth is due to the tool used to perform the infer-
ence process. This first generates the set of best fitting
polynomials up to the maximum degree to consider and
then subsequently tests to see which of these is the
lowest order that fits. Given that generating potential
functions takes substantially longer than testing these, an
almost equal amount of work is done regardless of the
complexity of the function returned. Altering the tool to
test the functions as it generates them would presumably
lead to the time taken and depth of nesting becoming
positively correlated.

In contrast, increasing the number of variables has a
large effect on the time taken for inference. This is in
line with what might be intuitively expected. Increasing
the number of variables leads to a larger number of
equations being needed during the Gaussian elimination
process and a larger number of terms in each of them.
This also appears to mirror the increase in the number
of examples needed for inference, see Fig. 6.

As was also noted for the number of observations
that must be generated, the values obtained here appear
acceptable for real-world applications especially for the
range of parameter values likely to be encountered in
practice.

In order to test the iteration formulae learned for
correctness, each formula was tested against a further set
of examples of the loops” behaviour, obtained using the
same test harness as was used to generate the examples

13

lel2
1el0
1e8

1le6

1led [/

100 |

Number of Variables

Fig. 6. Sulfficient observations to infer the number of loop
iterations for a given number of variables and depth of
loop nesting.

for inference. The test data was formed by limiting each
variable to the range 0 to 10, and exhaustively exercising
the loop. This resulted in 10, 100, 1000 or 10000 obser-
vations, depending on the number of variables under
examination. In every case, the formulae were found to
be consistent with the test data. This was to be expected
given the proof of the validity of the method in Section 5
and simply confirms the correct implementation of the
tool.

One final aspect of these results that could be re-
ported is the WCET estimate that could be obtained if
these iteration formulae were included in a full analysis.
However, this is not done here. Doing so would only
obfuscate the pertinent issues with extraneous informa-
tion. The generated code is simply a shell of loops into
which any code might be placed. The approach could
be made to show arbitrarily good improvement over a
simpler method of deriving loop iterations by inserting
increasingly large amounts of code inside the innermost
loop or by choosing hardware in which branch mispre-
diction was particularly detrimental. Any such form of
evaluation therefore becomes meaningless and hence is
not reported here.

8 CONCLUSIONS

This paper has presented a dynamic technique for the
determination of the number of iterations of a loop,
or nested loops, for use in calculating tight estimates
of Worst-Case Execution Time. As has been shown
throughout, the benefits from deriving tighter estimates

1 Variable ——
2 Variables ——2><--—

3 Variables --—-—-¥---
4 Variables -]

100 T T
H = = f]
— 10 .
€@
£
[T—— S — T — ¥
o
)
E
= 1L |
b1 T
1 1
0.1 1 L
1 2 3 4

Depth of Loop Nesting

Fig. 7. Time taken to infer loop iteration formula for given
number of variables and depth of loop nesting.

in non-rectangular loops can be very significant. The
approach presented differs from those currently used in
that it is closer to a black box technique. Whereas other
automated techniques rely heavily on analysing the
code used, the new technique presented merely requires
that the loops within the program can be identified as
such and that the values of given variables may be
obtained. This should make it more easily portable to
new languages and overcome issues of compiler specific
analysis that blight other techniques. The method has
been proven to produce exact loop counts for well-
structured code in which the loop guards are Presburger
expressions.

Specific to this paper has been the demonstration that
the technique can still be of use in situations in which
loop guards do not meet these strict criteria. The method
has been shown to be adaptable to provide potentially
useful estimates in these cases, but these can no longer
be guaranteed to be safe. Two causes of violations of
the loop conditions have been considered. Firstly, the
applicability of the technique was shown in situations
in which non-Presburger conditions were present. Sec-
ondly, methods of identifying and coping with zero-
entry loops were presented.

The results presented have shown the applicability of
the technique to both standard benchmarks and more
complex manufactured examples. Inference of the correct
formulae for nests of loops up to four levels deep and
with up to four variables has been shown to require
tens of seconds on a typical desktop computer. For the
standard WCET benchmarks studied, the computation
time is even lower.

14

REFERENCES

(1]

(2]
(3]

(4]

(5]

6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

R. Wilhelm,]. Engblom, A. Ermedahl, N. Holsti, S. Thesing,
D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra,
F. Mueller, 1. Puaut, P. Puschner, J. Staschulat, and P. Stenstrom,
“The worst-case execution-time problem — Overview of methods
and survey of tools,” Transactions on Embedded Computing Systems,
vol. 7, no. 3, pp. 1-53, 2008.

R. Chapman, “Static timing analysis and program proof,” Ph.D.
dissertation, University of York, UK, 1995.

C. Cullmann and F. Martin, “Data-flow based detection of loop
bounds,” in 7th International Workshop on Worst Case Execution Time
(WCET) Analysis, C. Rochange, Ed. Dagstuhl, Germany: Inter-
nationales Begegnungs und Forschungszentrum fiir Informatik
(IBFI), Schloss Dagstuhl, Germany, 2007.

C. Park and A. Shaw, “A source level tool for predicting deter-
ministic execution times of programs,” Department of Computer
Science and Engineering, University of Washington, USA, Tech.
Rep. 89-09-02, 1989.

J. Gustafsson, A. Ermedahl, C. Sandberg, and B. Lisper, “Auto-
matic derivation of loop bounds and infeasible paths for WCET
analysis using abstract execution,” in RTSS "06: Proceedings of the
27th IEEE International Real-Time Systems Symposium. Washington,
DC, USA: IEEE Computer Society, 2006, pp. 57-66.

M. de Michiel, A. Bonenfant, H. Casse, and P. Sainrat, “Static loop
bound analysis of C programs based on flow analysis and abstract
interpretation,” in 14th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications (RTCSA '08),
2008, pp. 161-166.

M. Bartlett, I. Bate, and D. Kazakov, “Guaranteed loop bound
identification from program traces for WCET,” in Proceedings of
the 15th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS 2009), San Francisco, CA, United States, April
2009, pp. 287-294.

R. Stansifer, “Presburger’s article on integer arithmetic: Remarks
and translation,” Technical Report TR84-639, Department of Com-
puter Science, Cornell University, 1984.

E. Vivancos, C. Healy, F. Mueller, and D. Whalley, “Parametric
timing analysis,” in Proceedings of the ACM SIGPLAN Workshop on
Languages, Compilers and Tools for Embedded Systems (LCTES’01),
J. Fenwick and C. Norris, Eds., Snowbird, Utah, 2001, pp. 88-93.
S. Bygde, A. Ermedahl, and B. Lisper, “An efficient algorithm for
parametric WCET calculation,” in Proceedings of the 16th Interna-
tional Conference on Real-Time Computing Systems and Applications
(RTCSA’09), P. Kellenberger, Ed. Beijing, China: IEEE Computer
Society, 2009, pp. 13-21.

E.]J. Weyuker, “Axiomatizing software test data adequacy,” IEEE
Transactions on Software Engineering, vol. 12, no. 12, pp. 1128-1138,
1986.

J. Wegener, H. Sthamer, B. F. Jones, and D. E. Eyres, “Testing real-
time systems using genetic algorithms,” Software Quality Journal,
vol. 6, pp. 127-135, 1997.

R. Kirner, I. Wenzel, B. Rieder, and P. Puschner, “Using mea-
surements as a complement to static worst-case execution time
analysis,” in Intelligent Systems at the Service of Mankind. UBooks
Verlag, 2005, vol. 2.

P. Puschner and C. Koza, “Calculating the maximum execution
time of real-time programs,” Real-Time Systems, vol. 1, no. 2, pp.
159-176, 1989.

C. Y. Park, “Predicting program execution times by analyzing
static and dynamic program paths,” Real-Time Systems, vol. 5,
no. 1, pp. 31-62, 1993.

A. Ermedahl and J. Gustafsson, “Deriving annotations for tight
calculation of execution time,” in Euro-Par '97: Proceedings of
the Third International Euro-Par Conference on Parallel Processing.
London, UK: Springer-Verlag, 1997, pp. 1298-1307.

C. Healy, V. Rustagi, D. Whalley, and R. Van Engelen, “Supporting
timing analysis by automatic bounding of loop iterations,” Real-
Time Systems, vol. 18, pp. 121-148, 2000.

D. Sehlberg, A. Ermedahl,]J. Gustafsson, B. Lisper, and
S. Wiegratz, “Static WCET analysis of real-time task-oriented
code in vehicle control systems,” in ISOLA '06: Proceedings of the
Second International Symposium on Leveraging Applications of Formal
Methods, Verification and Validation. Washington, DC, USA: IEEE
Computer Society, 2006, pp. 212-219.

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

[32]

[33]

[34]

R. Wilhelm, D. Grund,]J. Reineke, M. Schlickling, M. Pister,
and C. Ferdinand, “Memory hierarchies, pipelines, and buses
for future architectures in time-critical embedded systems,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 28, pp. 966978, 2009.

X. Li, A. Roychoudhury, and T. Mitra, “Modeling out-of-order
processors for software timing analysis,” in Proceedings of the 25th
IEEE International Real-Time Systems Symposium, 2004, pp. 92-103.
D. Kazakov and I. Bate, “New directions in worst-case execution
time analysis,” in Proceeding of the 2008 IEEE World Congress on
Computational Intelligence, 2008.

B. Lisper and M. Santos, “Model identification for WCET anal-
ysis,” in Proceedings of the 15th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS 2009). 1EEE, April
2009.

A. Ermedahl, C. Sandberg, J. Gustafsson, S. Bygde, and B. Lisper,
“Loop bound analysis based on a combination of program slicing,
abstract interpretation, and invariant analysis,” in 7th Interna-
tional Workshop on Worst Case Execution Time (WCET) Analysis,
C. Rochange, Ed. Dagstuhl, Germany: Internationales Begeg-
nungs und Forschungszentrum fiir Informatik (IBFI), Schloss
Dagstuhl, Germany, 2007.

N. Wilde and D. Knudson, “Understanding embedded software
through instrumentation: Preliminary results from a survey of
techniques,” Technical Report, Department of Computer Science,
University of Florida, 1999.

E. Kligerman and A. D. Stoyenko, “Real-time Euclid: A language
for reliable real-time systems,” IEEE Transactions on Software En-
gineering, vol. 12, no. 9, pp. 941-949, 1986.

N. Tawbi, “Estimation of nested loops execution time by integer
arithmetic in convex polyhedra,” in Proceedings of the 8th Interna-
tional Symposium on Parallel Processing. Washington, DC, USA:
IEEE Computer Society, 1994, pp. 217-221.

W. Pugh, “Counting solutions to Presburger formulas: How and
why,” in SIGPLAN Conference on Programming Language Design and
Implementation, 1994, pp. 121-134.

P. Clauss, “Counting solutions to linear and nonlinear constraints
through Ehrhart polynomials: Applications to analyze and trans-
form scientific programs,” in International Conference on Supercom-
puting, 1996, pp. 278-285.

D. E. Knuth, “Johann Faulhaber and sums of powers,” Mathemat-
ics of Computation, vol. 61, no. 203, pp. 277-294, 1993.

S. Muggleton, “Learning from positive data,” Inductive Logic
Programming: 6th International Workshop, ILP-96, Stockholm, Sweden,
August 26-28, 1996, Selected Papers, 1997.

A. Srinivasan, “The Aleph manual,” Computing Laboratory, Oxford
University, 2000.

M. Bartlett, 1. Bate, and D. Kazakov, “Challenges in relational
learning for real-time systems applications,” in Proceedings of the
18th International Conference on Inductive Logic Programming, ser.
Lecture Notes in Computer Science, vol. 5194. Springer, 2008,
pp- 42-58.

D. Kazakov and I. Bate, “Towards new methods for developing
real-time systems: Automatically deriving loop bounds using
machine learning,” in Proceedings of the 11th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA),
2006.

A. Betts and G. Bernat, “Tree-based WCET analysis on instru-
mentation point graphs,” in ISORC ’06: Proceedings of the Ninth
IEEE International Symposium on Object and Component-Oriented
Real-Time Distributed Computing. ~ Washington, DC, USA: IEEE
Computer Society, 2006, pp. 558-565.

15

Mark Bartlett received his PhD. from the De-
partment of Computer Science at the University
of York in 2006. He is currently a postdoctoral
research associate jointly in the Real-Time Sys-
tems and Artificial Intelligence Groups at the
University of York. His recent research focuses
on the application of Machine Learning tech-
niques to Real-Time Systems problems.

lain Bate is a lecturer in Real-Time Systems. His
research interests include scheduling and timing
analysis, design and analysis of safety-critical
systems, and engineering of complex systems of
systems including sensornets. He is the Editor-
in-Chief of the Journal of Systems Architecture
and a frequent member of programme commit-
tees for distinguished international conferences.

Dimitar Kazakov received his first degree in
Technical Cybernetics from the Czech Technical
University of Prague in 1993, followed by a PhD
in Biocybernetics and Artificial Intelligence from
the same university in 2000. He is a Senior
Lecturer at the Department of Computer Sci-
ence at the University of York, UK, where he
has been since 1998. His research focusses on
the applications of machine learning and multi-
agent systems in areas as varied as computa-
tional linguistics, language evolution, real time

systems and systems of systems. He has been a committee member
of the UK Society for the Study of Artificial Intelligence and Simulation
of Behaviour (SSAISB) since 2004.

