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Component-Based Safety Analysis of FPGAs
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Abstract—Component-based and modular software develop-
ment techniques have become established in recent years. Without
complementary verification and certification methods the ben-
efits of these development techniques are reduced. As part of
certification, it is necessary to show a system is acceptably safe
which subsumes both the normal and abnormal (failure) cases.
However, nonfunctional properties, such as safety and failures,
are abstraction breakers, cutting across multiple components.
Also, much of the work on component-based engineering has been
applied to software-based systems rather than field programmable
gate array (FPGA)-based systems whose use is becoming more
popular in industry. In this paper, we show how a modular design
embedded on a FPGA can be exhaustively analyzed (from a safety
perspective) to derive the failure and safety properties to give the
evidence needed for a safety case. The specific challenges faced
are analyzing the fault characteristics of individual electronic
components, combining the results across software modules, and
then feeding this into a system safety case. A secondary benefit of
taking this approach is that there is less uncertainty in the per-
formance of the device, hence, it can be used for higher integrity
systems. Finally, design improvements can be specifically targeted
at areas of safety concern, leading to more optimal utilization of
the FPGA device.

Index Terms—Component-based, field programmable gate ar-
rays (FPGAs), safety analysis.

1. INTRODUCTION

AFETY critical and safety related systems typically un-

dergo some sort of certification process prior to their de-
ployment. The certification details are dictated by domain spe-
cific standards and guidance, and cover many dependability is-
sues such as reliability, availability, security, and safety. There
are a number of common practices and procedures within these
standards. One common item is a safety case which demon-
strates how potentially hazardous failures within the system are
prevented or mitigated. This involves two distinct phases. First,
how to construct a system to increase the likelihood that it is
safe [1], and second, how to demonstrate whether the system is
safe. This paper concentrates on the latter of these. Safety is a
crosscutting concern and may link multiple components which
are otherwise physically or logically separated (e.g., a system
hazard could be caused by two physically separated subsystems
misbehaving at the same time or interacting in an unanticipated
way). Thus, safety analysis of an individual component must be
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combined with analysis of other components in order to ensure
the system is acceptably safe.

Field programmable gate arrays (FPGAs) are becoming in-
creasingly popular for use within safety critical systems. They
contain thousands of logic gates and are highly complex once
configured. Hence it is extremely difficult to determine the ef-
fect that a single low-level fault can have at the system level, or
upon multiple functions which may be embedded on the same
device. If this information cannot be provided, a conservative
design approach (e.g., Triple Modular Redundancy (TMR) [2],
[3]) has to be taken. This protects against single points of failure
and improves reliability, but is inefficient in terms of power and
weight costs. FPGAs naturally support high levels of parallelism
so that multiple software components can be executed at the
same time. Again, this ability is not being fully exploited in the
safety critical domain due to difficulties in assessing failure and
safety relationships.

In this paper, the authors propose an approach which traces
very low-level FPGA faults to high-level system hazards. This
is achieved by performing exhaustive bottom-up failure analysis
of the FPGA’s circuit to determine how potentially hazardous
outputs can occur at the Input Output (IO) pins of the FPGA de-
vice. A hierarchical component-based approach is then used to
manage scale. The approach is shown to be compatible with cur-
rent widely used international safety standards such as DO254
[4] and IEC61508 [5]. An example mine-pump control system
embedded on an FPGA is used to demonstrate the techniques.

This paper is laid out as follows. Section II describes FPGAs
in more detail. Section III describes the necessary steps in certi-
fying a device for safety, and hence the constraints within which
a safety analysis technique must fall. The section also compares
common techniques used for dealing with FPGA faults outside
of the safety critical domain, and argues why these are not sat-
isfactory. Section IV describes the overall approach presented
in this paper. Sections V and VI describe, in turn, two processes
associated with the approach, and discuss how they are used in
combination. Section VII demonstrates the technique using an
example. Finally, conclusions are presented.

II. FIELD PROGRAMMABLE GATE ARRAYS (FPGAS)

An FPGA is programmable logic device which has thousands
of connected logic cells. The basic structure of these cells is
identical but they can be configured to perform different op-
erations. For example, each cell typically contains a Look-Up-
Table (LUT) which can be configured to perform different bi-
nary comparisons on input signals such as AND or XOR. These
cells are connected together via a series of interconnects to per-
form higher level processing tasks. Due to its design, an FPGA
can perform many tasks in parallel, e.g., to perform digital signal
processing.
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FPGAs can have different hardware implementations, espe-
cially for the interconnects. FPGAs with SRAM interconnects
can be reconfigured as many times as the user requires. Antifuse
interconnects can only be configured once, however they are
smaller and offer more routing flexibility. In addition, some
FPGAs include extra hardware devices such as static memory,
multipliers and even traditional sequential microprocessors.
This assists with tasks that the FPGA is not well suited for,
e.g., dealing with floating point numbers, but can add further
complexity to the certification process as each different device
will need to be assessed. The approach taken in this paper is
to perform a technology neutral analysis, although parts of the
tools need to be altered for the particular data formats from the
tools used, of a single configuration of the device.

A. Component-Based Design on FPGA

FPGAs are configured by synthesizing code written in a
Hardware Description Language (HDL) such as VHDL [6]
or Verilog. The first stage of synthesis converts the code into
a netlist which describes the hardware parts and connections
which will be used to implement the code. The netlist then
undergoes a place and route operation that describes which
logic cells will actually be used on the FPGA and how they are
connected. The routing will be calculated based on criteria such
as acceptable timing performance.

VHDL can be used to construct a modular design. It is pos-
sible to synthesize this into a modular layout on the FPGA with
each module separated within the logic cells. However, the syn-
thesis tool may optimize and integrate some modules in order
to meet timing and power requirements. In addition, while the
design might appear modular, if the same data needs to be used
by multiple modules they may be closely physically located on
the FPGA once synthesized and share a single link. In addition,
if data is processed by one module prior to it being received by
another, then delays are introduced across the board per clock
cycle and further relationships are established. This paper does
not identify different strategies for synthesis or design in order
to avoid this (after all, they are a side effect of good design and
necessary optimizations for performance purposes), but rather
seeks to illuminate where these relationships occur, and further
illuminate how these relationships can affect the overall safety
of FPGA functions and its host system. Instead an assumption
is made that the design has been mapped down onto a tech-
nology-specific format that is readable by both human and com-
puter. However available tools, such as PlanAhead from Xilinx
[7], provide a powerful means to influence placement and main-
tain componentization.

B. FPGA Faults and Dependability

FPGAs are susceptible to a number of different random hard-
ware faults, but those which are most often cited are grouped
as Single Event Effects (SEEs) [8]. An SEE causes a bit flip in
the device, i.e., from O to 1 or vice versa. The most commonly
discussed is a Single Event Upset (SEU) in which a flipped bit
may be stuck on a certain value until the device or the cell is
reset. Other SEEs are transient (reset without intervention) or
permanent. Several SEEs may be found in a group together, e.g.,
caused by a radiation burst.
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One often quoted mantra in the safety community is that
“safety is a system property” [9], [10]. This encapsulates the
idea that the safe behavior of a system may cross physically
independent subsystem boundaries and forms a different view
of the system. Therefore, care must be taken to ensure that any
independent safety analysis of a component can be traced up
to the system level [11]. One of the difficulties in analyzing
an FPGA is determining the effect (if any) that an SEE has at
the system level. In some instances an SEE may never cause a
failure, for example if an SEE causes an incorrect input into a
multi-input LUT the output may still be correct depending on
the internal bit comparison tables and other input values. For
example, if two values undergo an AND then the same output
will be achieved for 00, 10, and 01. More detailed discussion
of SEE effects can be found in [12] and [13].

On the other hand, the fault may be very significant if a
flipped value is used by many other cells, effectively becoming
a common mode failure across cells, and hence for multiple
functions. However, it may be that even though outputs from
the FPGA are affected there is actually no safety concern. Also,
an SEE which affects multiple cells may be of little concern
as it is easier to detect. However, an SEE which causes an
output value to be subtly incorrect but credible may be of more
interest. This reflects the inherent complexity of an FPGA
which is not just due to the number of internal cells but also to
the number of permutations of interactions between them.

In the authors’ experience, and that of others [2], [14], the in-
ability to determine the effect of an SEE has led to safety critical
systems developers making pessimistic assumptions about the
reliability of FPGAs. As a result, conservative (and expensive)
system designs such as multiple lanes or external monitoring de-
vices are used [2], [14]. Additionally, FPGAs are often not even
considered as an option by developers of systems of a very high
criticality, even when they may offer considerable benefits (e.g.,
due to their inherent parallelism). Therefore, one driver for this
work is to help determine the safety effect of an SEU, leading
to design improvements in areas of significance. This has the
potential to improve both the ability to certify an FPGA-based
system and also to support less conservative designs. In order to
combat the problem of complexity, the approach is composable,
with independent analysis of modules at both VHDL and syn-
thesized code level. These analysis results are then combined.

One feature of this work which differs from others is that
hardware faults of concern other than SEEs are considered, in
particular, clock errors which can lead to synchronization, prop-
agation, and timing issues.

C. Certification Standards and Guidance

Certification is used within this paper as a general term for
the process of demonstrating that a high-integrity system per-
forms as intended and/or required to an authority of some kind.
For the safety critical systems being discussed here, safety anal-
ysis will form a large part (or in some cases all) of the cer-
tification process. Safety analysis is the term used to describe
any method which shows how a failure within a system could
lead to a hazardous event (i.e., one which could lead to an ac-
cident, e.g., engine fire). Here, we use the term failure to indi-
cate some problem with the performance or output of a system,



CONMY AND BATE: COMPONENT-BASED SAFETY ANALYSIS OF FPGAS

in other words, a failure is a deviation from the desired or ex-
pected intent. This may be caused by an internal fault, or by a
logic problem (bug), or due to an incorrect specification for the
system. This paper mainly concentrates on the faults within an
FPGA which lead to failures in board output and performance.
One major issue for FPGA developers is that there is some con-
fusion over whether an FPGA should be classified as software
or hardware. On one hand, it is highly programmable or repro-
grammable, but on the other hand the code is run directly in
hardware. The pragmatic approach is to assume that develop-
ment of the HDL code will be performed using processes similar
to that for software (e.g., a V lifecycle), as well as examining the
hardware using established techniques for electronics analysis.
This paper adopts a dual approach. After analysis, it should be
possible to show how potentially hazardous failures have been
managed. There are various techniques for this, some or all of
which are prescribed by standards or guidance within a domain.
For example, IEC 61508 [5] is used in many different domains in
multiple countries. It is a generic standard used for the develop-
ment of electronics and programmable electronics. To meet the
standard the developer must first assign a Safety Integrity Level
(SIL) to the system or its functions based on the risks associated
with it malfunctioning. Note that a function may not necessarily
map to a specific component but may instead map to multiple
components or multiple parts of component. Hence, the safety
view of a system may be very different to an architectural view
of the system and component groupings and relationships need
to be considered.

SIL assignment is assisted by various safety analyses. Then,
the rigor of processes applied during development is dictated by
the assigned SIL and the need to demonstrate that risks are man-
aged (e.g., in a high SIL a formal proof of code might be required
but not for lower SIL). Software and hardware are treated sepa-
rately in the standard. It is likely that some of the recommended
software practice would need to be adapted for application to
an FPGA, e.g., how to ensure code is fully tested, and how to
assess the synthesis tools and their output, however, the general
principles still hold.

Hardware guidance requires (amongst other things) an esti-
mation of the failure of safety functions due to random hard-
ware failures. This is of significance when certifying an FPGA
since it is very hard to identify the effect of an SEU so, even
if an estimate of the rate of occurrence is known, it cannot be
linked easily to a specific safety function at a system level. This
can lead to a very pessimistic failure rate assumptions when an
FPGA is used. For example, in [12], Isaac suggests assuming a
much higher failure rate for FPGAs than tests would indicate,
purely due to uncertainty in determining failure effects.

Another applicable document is the internally mandated civil
aviation guideline DO254 [4] which provides guidance for de-
sign assurance of programmable electronics in avionics safety
systems. It is based on similar concepts to IEC 61508, in other
words processes and design methods are dictated based on a de-
rived level of integrity for a function. Again, the safety func-
tion view of the system may be very different to the architec-
tural view. In addition, some of the suggested methods may be
hard to apply to FPGAs. It advocates the use of very low-level
elemental analysis of high integrity system parts, for example,
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at the individual electronic component level of an FPGA. The
FPTC analysis approach presented in this paper would be suit-
able for this purpose.

III. RELATED WORK

The previous section established that determining the safety
effect of faults within an FPGA would be extremely helpful to
support the certification process. From this discussion, two basic
requirements for FPGA safety analysis have been formed.

1) Identification of safety relationships within FPGA func-

tionality and between other system components.
2) Determination of the effect of low-level FPGA faults on
those relationships.

As a backdrop to this, it is assumed that it is desirable to
minimize the need for physical replication to mitigate against
failures, either via board or code replication within the FPGA
cells.

This section first examines typical techniques used to deter-
mine the effect or significance of SEEs outside of the safety crit-
ical domain. Then, different generic failure and safety analysis
techniques are detailed and their applicability to FPGAs consid-
ered. A discussion on the choice of the demonstrated approach
in this paper is also presented.

A. SEE Detection

In [3] the authors describe a method for determining the ef-
fect of SEU in a TMR system, i.e., one in which three iden-
tical lanes are used for redundancy in calculations and a mon-
itor determines whether there is (intolerable) disagreement in
their output. In their case all three lanes are on the same FPGA.
They use a tool to determine if an SEU at a given location can
affect more than one lane, and, if it can, they consider it signif-
icant. The advantage of their approach is that it can highlight
the extent of the effect of an SEU. However, it is limited to a
certain type of design solution, and, at present, does not deter-
mine whether there is an actual safety effect, rather it is assumed
that any effect is undesirable. As discussed in the previous sec-
tion, the main driver for the research presented in this paper is
to support the safety analysis of FPGAs, but also there is a wish
to avoid TMR type replication, if possible. Therefore, this tech-
nique does not meet the requirements.

A common method for detecting the effect of SEUs is to use
fault injection to simulate an SEU. One example of this can be
found in [13] where the authors use two FPGAs, one loaded with
a correct configuration file and one with an configuration file
with a simulated SEU inserted. A third FPGA is used to compare
the output of the two FPGAs and note when they differ. If they
do, it is assumed that the SEU is significant. Again, this tech-
nique suffers from an inability to determine whether the SEU is
significant in terms of safety effect, although it could be adapted
to do so. This paper does not use this type of method, as the
approach presented here looks at a broader class of fault than
simply SEEs. However, an advantage of the fault injection ap-
proach is that test case generation can be fully automated.

A third method to detect permanent SEEs is described in
[15] by Emmert et al. who use “Roving STARs” (Self-Test
AReas) within reconfigurable FPGAs. They reconfigure the
FPGA cells around any permanent SEEs detected and, by
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moving the STARs around during operation, they can cover the
entire FPGA. The disadvantages of such an approach (apart
from the fact that only permanent SEEs are detected) is that
it requires the FPGA to be reconfigured around the test areas
during operation, which can have an effect on system timings
and cause output to be interrupted. As safety critical systems
typically have hard real-time deadlines, a reconfigurable ap-
proach may introduce intolerable or unpredictable execution
times. In addition, the effect of an SEU occurring in a non test
area would be different for each configuration. Hence, safety
analysis would need to consider all potential configurations.
The issue of certification of a system using reconfiguration is
not addressed in this paper, instead this work is seen as a natural
precursor to reconfiguration as the first necessary step is to give
evidence that a single configuration is safe. A discussion of
one possible approach can be found in [14]. It is of note that
a system which can reconfigure around faults is potentially
more reliable and, hence, can offer safety benefits compared
to a static one. However, this raises other issues in terms of
justifying the integrity of the reconfiguration method. In [16],
the authors discuss different SEEs and describe their generic
effects upon the operation of an FPGA. However, the authors
do not attempt to discern individual effects of an SEE. Instead
the use of TMR is advocated and partial scrubbing (reloading
of part the configuration file) to mitigate against any effects.
As discussed, reconfiguration (even only scrubbing), would
interrupt the operation of the device which may have timing
effects. Also avoiding the overuse of replication, e.g., TMR, is
one of our aims.

The authors of [17] demonstrate how VHDL for a safety-
critical avionics systems can be auto-generated from an Esterel
model. As part of their work they look at fault modelling. They
do this at a coarse grained level, viewing all faults at the edges
of an FPGA only. This means they cannot effectively determine
the risk of any of the faults on the output actually being caused
by internal faults. As a result, pessimistic assumptions would
have to be made as to the cause and effect of internal faults.

Different low-level FPGA faults are described in [18]. They
perform fault emulation, by injecting the different fault types
into an FPGA. Traces of execution were then examined and
outputs classed as failure (output differed to that expected), la-
tent (failure remaining in the system but not manifesting straight
away), and silent (no change in expected output). Again, there is
no attempt to differentiate between failures with a safety effect,
and those with incorrect output with no safety effect.

B. Failure and Safety Analysis

There are numerous different safety analysis techniques
which can be applied at different times during a systems devel-
opment lifecycle. A good overview of these can be found in [9].
At early stages of development these help provide insight into
whether a design needs to be adapted to deal with identified
failures and at later stages of development the results of the
analysis can be used as evidence to demonstrate failures are
adequately managed. Techniques can be top-down, i.e., starting
with a hazardous system level event then working down to
individual components, to see how they could contribute to
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its occurrence. A typical top-down technique is Fault Tree
Analysis which shows how component failures combine (and
their probabilities) to cause a single event. Other techniques
are bottom-up, i.e., they show how individual component
failures can contribute to one or more hazardous events at the
system level. A typical technique would be Failure Modes and
Effects Analysis (FMEA) which looks at individual failures
and considers their effects. FMEA can be supported using
different guide words which suggest different failure types,
e.g., late arrival, data omission, or value error for computer
data analysis. FMEAs can be applied at a very low-level or at
a higher architectural level to help assess preliminary design
and requirements generation. Top-down analysis, by its very
nature, includes significant manual effort as only a human can
judge the severity of failures for a given operational context of
a system.

A bottom-up technique would best support the second re-
quirement to determine the overall effect that a single SEE, or
low-level failure, can have, i.e., how it could fan out to mul-
tiple system level events. However, FMEA-based techniques
are generally manually applied, and an FPGA can have thou-
sands of different connections and routes to consider. Hence, it
is impractical to use manual analysis. Various works [19]-[21]
have looked at how FMEASs can be automated, however none of
these have been demonstrated with a low-level starting point of
a FPGA’s circuit design. Also, as noted by the authors of [22],
the majority of automated fault analysis techniques do not sup-
port feedback loops between components, hence are unsuitable
for use modelling FPGAs. Two potentially useful techniques are
described in [23] and [24]. The first of these two approaches
considers hardware at an abstract level and does not describe
specifically how to link an FPGA design to the FMEA analysis
presented. The second of these is tied to a specific language,
Esterel, which has formally defined syntax and semantics. How-
ever, Esterel is not universally adopted in critical systems.

Another two techniques, which support cyclic loops, are the
Architecture Analysis and Description Language (AADL) [22]
and the Fault Propagation and Transformation Calculus (FPTC).
AADL allows rich modelling of fault characteristics including
state transitions, property sets, port maps and events. However,
the low-level components of an FPGA do not require this depth
of description, and the models would be over complex to gen-
erate with no additional benefit from the features. Hence, FPTC
was used for this case study as it supports the expressive re-
quirements for an FPGA, while still being relatively simple to
generate models.

FPTC [25] is a bottom-up safety analysis approach in which
individual components can be analyzed independently to iden-
tify their fault characteristics, and then a tool can be used to
calculate the actual faults which could propagate through a net-
work of these components. An analyst can then look at the con-
catenated results in order to determine overall safety effects.
This technique has the potential to assist in the assessment of
the failure effect of faults in FPGAs. FPGAs are constructed of
the same types of hardware components, replicated many times.
Hence, the faults of each component type can be analyzed indi-
vidually and the results reused. Then, a network can be con-
structed to represent how they are connected together on the
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Fig. 1. System and components viewpoints.

FPGA (based on the synthesis outputs) and assess how an in-
dividual SEE or clock drift would propagate through the system
outputs. However, some automation to help generate FPTC net-
works and to guide the analyst may be required for a device as
complex as an FPGA, due to the sheer number of internal com-
ponents. FPTC has also mainly been applied at a higher level
for analysis in previous case studies (e.g., software process level
[25]), soitis efficacy for such a low-level analysis needs to be as-
sessed. Industrial partners, including both engineers and system
safety analysts, have showed considerable interest in the FPTC
approach, indicating that there is a need for this level of analysis.

A top-down technique would best support the first require-
ment to establish safety relationships between different compo-
nents. There are many existing techniques which support this
down, breaking down the system into relatively large compo-
nents, e.g., subsystems or software modules. However, tracing
these relationships down to the depth of individual FPGA gates
would be a lengthy complex process, closely coupled with the
final FPGA configuration. Since the top-down analyses are usu-
ally performed during the initial design stages to drive the de-
velopment process, this would be inappropriate. Therefore, this
paper proposes an approach which takes full advantage of both
top-down and low-level bottom-up analyses, meeting halfway.
Furthermore it is usable in a component-based way in order to
support scalability and incremental certification.

The evidence generated by applying the technique can be
used to strengthen the safety case. It would be used alongside
other evidence, for example, that the synthesis tools are trusted
and that functional requirements are valid.

IV. PROPOSED APPROACH

In order to support the mixed approach, this paper considers
the system from three different viewpoints, with well defined re-
lationships between each level, as shown in Fig. 1. The top-level
is the safety viewpoint, at which a set of system functions and
their related safety requirements are defined. The second-layer
is the architectural design level, at which architectural compo-
nents and complete functional blocks (such as VHDL or soft-
ware modules or subsystems) are defined. For the purposes of
this paper, the bottom-level is the much lower level electronic
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FPGA component level which includes items such as I/O pins,
flip-flop gates and clocks. Obviously, other types of components
could also be examined at the lowest level, but this is outside

—the scope of this paper. To a certain extent, this is similar to the

Model Driven Architecture (MDA) approach described by the
Object Management Group (OMG) [26] which uses different
levels of hardware abstraction. However, the purpose of MDA
is to automatically generate code from a series of models and
mappings—always moving downwards, whereas this approach
uses only partially automated technique at the lowest level. In
addition, alterations and updates can occur upwards and down-
wards between layers, whereas MDA techniques move down-
wards only. Also, generation of the FPGA configuration uses
traditional VHDL design and synthesis tools rather than UML-
based models and transformation languages.

The thicker lines in Fig. 1 represent the relationships between
the entities at one level to another. For example, one safety re-
quirement is mapped onto components A and C at the architec-
tural level, and another maps only onto D. These relationships
are identified using top-down analysis.

Between the FPGA level and the architectural level, the lines
indicate which individual electronic components perform the
functionality described in VHDL modules. Bottom-up FPTC
analysis identifies how architectural components are affected by
faults in hardware components.

Also shown are the functional relationships within layers, for
example, A sends data to B, and C shares data with D at the ar-
chitectural level. It would appear that these are potentially areas
where further safety coupling between components exists, for
example if safe operation of C can be affected by the data D
sends. This will be determined by failure analyses within each
level, compared with the top-down safety requirements. Note
that a failure condition does not necessarily have a safety effect.

V. ToP-DOWN ANALYSIS—REQUIREMENT 1

As discussed, in previous sections, there are a number of ex-
isting (informal and manual) safety analyses which can be used
to identify safety requirements and relationships. As these are
well established this paper does not offer any new techniques.
Using those found in [9] and [27], the following steps are fol-
lowed for top-level analysis. These steps are largely manual but
no more labor intensive than for systems where FPTC analysis
is not used.

* Identification of hazards associated with the system via:

* Prior knowledge and engineering judgment.
e FMEA or FTA type analyses that only look at architec-
tural components.

* Determination of methods for dealing with these hazards

leading to:

* Allocation

components.

¢ Alteration of system design to avoid hazards.
If system design alteration is required then the analysis should
be started again as there is a possibility that new hazards
have been introduced. In fact, as with aspects of software
engineering, this can be an iterative process with a number of
repeats.

of methods/requirements to system
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Fig. 2. Summary of bottom-up FPGA analysis process.

VI. BOTTOM-UP ANALYSIS—REQUIREMENT 2

This section discusses the low-level bottom-up analyses de-
signed to satisfy the second analysis requirement. Based on the
previous discussion, our aims in this analysis are to provide ev-
idence about the effects of low-level failures on system level
events and improve the design, and also to enhance confidence
in an FPGAs ability to perform in more critical systems, thus
supporting more efficient designs. A summary of the overall
FPTC process is shown in Fig. 2. It comprises of three parts:
Generic reusable FPGA component analysis (A.1), generation
of FPGA hardware design (B.1-B.2), and system specific safety
analysis (C.1-C.3). These are now described in turn. All the
stages in the approach can be automated (given the results from
the system hazard analysis) except for the “Design ok?” and
“Generate System Specific FPTC Annotations” steps. It is nec-
essary that these steps are partly manual as currently the deci-
sion as to whether the system is sufficiently safe is a subjective
activity using concepts such as ALARP [5].

However, the other parts can still be automated without com-
promising safety as long as the manual checks on outputs are in
place. It is noted that for the approach to be used in real systems,
any tools providing automation would need to be qualified. As
the FPTC analysis itself cannot directly introduce errors into
the system, the tools would be classed as verification tools, and
could be qualified as such using the criteria found in guidance
such as DO178B [28].
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d d flip_flop
q
clk clk
Fig. 3. Flip-flop component.
TABLE 1
FLIP-FLOP INPUT FAULT
Input/Output | Fault Comments
clk Early/late | The clock may be running
correctly or may be early or
late due to drift
do Value The value of d0 may be

correct or may be false
high/low or undetermined.
We express this as a single
fault of “value”

A. Part A: FPTC Component Analysis

This section describes the FPGA component analysis process
(A.1) used to generate a reusable library of FPTC annotations.
An FPGA is made of numerous different logic cells. These cells
typically contain components such as LUTs, flip-flop circuits,
multiplexors, inputs, outputs, and clock signals [13]. As we are
using the Xilinx ISE, we are basing our analysis on their lists
of generic design elements for a typical recent Xilinx FPGA as
described on their website [29]. It is worth noting the process
and analysis are not tied to these tools and could easily be ported
to others. Each component can have some kind of internal fault,
for example, a physical degradation of materials meaning a bit
is stuck at a particular value. The fault causes a component to
produce an incorrect response which is summarized as to its
type, e.g., early, late, data omission, incorrect value.

Fig. 3 shows a flip-flop component of the type typically found
in an FPGA. This component copies the value of dO to its output
q on the low to high clock (clk) transition. In order to produce
an FPTC annotation, an analyst needs to consider the possible
faults which could be provided on input and how they would
affect the component. The possible input faults to the flip-flop
are shown in Table I. They have been derived by considering
the internal faults of the input components and categorizing
them. The analyst must also consider any internal faults which
could be introduced by the component itself. Finally, a set of
output fault categories is produced based how both sets might
be transformed or manifest themselves. The output faults for the
flip-flop are summarized in Table II.

The results are expressed in the FPTC notation as shown in
Fig. 4 (see [25] for full syntax and semantics). The left-hand
side of an FPTC annotation indicates the values which are re-
ceived on input, and the right hand side (after the arrow) indi-
cates the corresponding outputs. Each separate input and output
set is contained in curled braces, faults are labelled as “fault x”.
The asterisk “*” symbol is used to indicate that no fault is re-
ceived on input, and the underscore “_” is used to indicate that
any value can be received on a given input. If multiple input
faults lead to a single output type of fault (as is true in this case
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TABLE II
FLIP-FLOP OUTPUT FAULTS

Input [Output Comment
Fault [Fault
clk  stale_value |If the clock triggers the flip-flop to copy
Early the value of d0 early then d0 may not
contain the most recent value, hence
stale value is produced

clk  |stale value [If the clock triggers a late copy of d0 to q

Late then it is possible the value of q has been
read already hence the output fault is again
stale_value

d0  [Value If the value of d0 is incorrect then the flip-

Value flop will simply pass this on

INone |Value It is possible that the flip-flop may have

been affected by an SEE hence it could be
the source of a value fault

({*}, {fault early, fault late})->({fault stale_value})
()->({fault value})
({fault value} {*})->({fault value})

Fig. 4. FPTC annotations for flip-flop component.

for both early and late faults), then these can be concatenated
together.

FPTC components are linked together to form a network
using the Eclipse-based analysis tool described in [30]. The
network is an acyclic graph that represents hierarchies of
components starting from the bottom with a single FPGA
component (e.g., flip-flop) to a VHDL module and then to the
whole program. The stages between the VHDL module and
the whole program are defined by the designer of the VHDL.
In practice, when using the technique the number of low-level
components produced by the synthesizer for each module varies
depending on the nature of that code, but typically 50 lines of
code could be represented by about 15-20 actual components.
The synthesizer will typically map a VHDL module onto the
FPGA components. The tool can be used to either generate the
entire set of potential faults throughout the network, or to ana-
lyze the propagation of an individual injected fault anywhere
in the network. Essentially, the tool attempts to match inputs
to a component with the left-hand side patterns, as provided
in the annotations. Every time there is a match, the right-hand
side is provided as input to next component it is connected to.
An example of this is shown in Fig. 5. In this example, a clock
is the source of a late fault (shown on the output arrow) and
another input (Inputl) is correct. These two inputs match with
the first annotation on FLIP_FLOP but not the second, and
hence its output is stale_value only.

Note that the fault tokens are entirely generated by the analyst
and not dictated by the notation or the tool. While this gives
great flexibility, it is up to the analyst to ensure that token names
are consistently spelled and that there are appropriate matches
between components.

Using the method laid out in this section, we have analyzed a
number of common FPGA hardware components. These results
are used in the next analysis stage described in Section VI-C.
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Clock
(->({fault late})

Input1
0->({"H

49,\/ /
FLIP_FLOP

({fault late}, {*})->({fault stale_value})
({*}.{fault value})->({fault value})

S
%
N Y
%

4

Fig. 5. FPTC matching example.

B. Part B: FPGA Design

This section describes the processes corresponding to B.1 and
B.2 in Fig. 2. The aim of this work is to investigate the potential
safety effects of hardware faults within an FPGA. Therefore, a
hardware representation of the intended design is required. To
this end, VHDL descriptions of potential designs are produced
based on system requirements, and then synthesized currently
using Xilinx ISE Project Designer. However, the method is inde-
pendent of specific tools. Currently, netlist files are used as this
makes producing tools easier and the results are more straight-
forward to validate. Taking this approach is not uncommon, e.g.,
structural testing of software is often done at the source code
level. In practice, the approach can easily be ported to a lower
level or limited low-level validation performed to ensure prob-
lems have not arisen in the later parts of synthesis, e.g., due to
optimizations. The different areas of concern in terms of safety
effect are the identification of systematic design flaws, i.e., flaws
in the program logic and also analysis of the effect of random
hardware faults upon the design.

In both cases, the ideal situation is to improve the design so
that a safety weakness is no longer included. However, if that is
not possible, then an attempt will be made to alter the program
design to mitigate against unacceptable faults. Also, it is the
intention that results of the analysis (once changes are made)
can be used as evidence to support a system safety case. The key
point is that modifications can be targeted better, e.g., adding
limited replication, rather than coarse grained decisions such as
replicating the whole design.

C. Part C: FPTC Analysis of FPGA Design

This section describes the processes corresponding to
C.1-C.3 in Fig. 2.

Once a netlist has been generated using the ISE tool, it is con-
verted to a network of FPTC components instances and their
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Clock LuT

L (->({fault late}) J
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(%} {")->({fault value})
({fault value}, {*},)->({fault value, *})

FLIP_FLOP
({fault late}, {*})->({fault stale_value})
({*}{fault value})->({fault value})

({fault late}, {*})->({fault stale_value})
({*},{fault value})->({fault value})

FLIP_FLOP

VALUE,
STALE_VALUE

l

STALE_VALUE

[

CH4_alert
({fault value, fault stale_value})
->({fault no_alert})

— i

S

Fig. 6. CH4 sensor processing module FPTC analysis.

outputs within the Eclipse tool. This process is currently per-
formed manually but could in the future be automated using a
MDA merging program [26] to link the FPTC annotations to
the netlist. This corresponds to C.1 in Fig. 2. Fig. 6 shows an
example.

The ISE tool has a compilation option which can be used to
ensure that the VHDL component hierarchy is maintained. This
means that each module of VHDL corresponds to a specific area
of the netlist. Hence, each module can be examined as a separate
FPTC network. This has two advantages. First, it improves the
scalability of the approach as only a section of the system needs
to be examined at once. Second, when an alteration is made in
one VHDL module then it should have no impact on any of
the other synthesized modules. To date, no case has been found
where this didn’t hold true during experiments. This means that
the only FPTC network which needs to be regenerated and ex-
amined is that relating to the module being changed.

C.2 involves the production of system specific fault anno-
tations on the output pins and some internal pins on the edge
of components. The purpose here is to link faults to specific
system level events which may or may not be hazardous, thus
linking with the top-down analysis. This allows the generic in-
ternal hardware fault types to be traced to one or more system
level events, consequently supporting the aim of identifying how
internal failures cause system level hazards. This is described in
more detail in Section VII using a case study for illustration.

VII. CASE STUDY: MINE PUMP CONTROL SYSTEM

In order to test the proposed approach, the mine pump con-
trol system described in [31] was used as a case study. The main

CH4_stat

({fault value, fault stale_value})

-> ({fault value, fault

stale_value})
T

functions of the control system are to ensure that water perco-
lating into the mine is kept to a safe level, and to ensure that
the air quality is sufficiently safe. A water pump is automat-
ically deployed when water rises above a certain level, but it
can also be controlled by a human operator if they are worried
about a rapid rise. In the event of either a pump failure or in-
adequate air quality the mine needs to be evacuated. In order
to achieve this, the system has sensors to detect the following:
Carbon Monoxide levels, Methane Levels, Sufficient Air Flow,
High Water Mark, Low Water Mark. An evacuation alarm is
raised if any of the sensors detect gas at intolerable levels. The
pump must not be used if methane levels are above a certain
amount as there is a risk of explosion.

The proposed design uses seven VHDL modules, synthesized
for an FPGA, in order to mange the sensors and pump. These are
the systems architectural components in our viewpoints. Three
individual modules are used to monitor each different air sensor,
and a single module monitors both water sensors for validity of
data. An operator panel module collates information and con-
trols a series of indicators. These are viewed by an operator
so that they can assess whether an evacuation is necessary. An
automatic pump control module activates the pump if the high
water mark is breached and switches off when the low water
mark is reached (if methane levels are acceptable). In addition,
there is a data logging module and an overall control module.

The designers have been asked to see if the amount of equip-
ment can be minimized (to lower power requirements and costs).
Therefore, the safety analysis will explore whether the safety of
the system can be maintained with a single board running all
modules.
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TABLE III
TOP-DOWN SAFETY ANALYSIS

HazardSafety Requirement Safety Relationships
1 |Air flow is measured to ensure [None
fresh air supply
Carbon monoxide levels are ~ [None

imeasured to ensure they are
within safe limits

Methane levels are measured to [None
ensure they are within safe
limits

2 |Pump is automatically activatedNone
when water levels breach
acceptable high water mark

Pump can be activated by Between pump
operator if water flow judged tojcontroller and
be unacceptable operator panel

3 [Pump is not activated when Between methane
imethane levels beyond limit X [sensor monitor and
pump controller

A. Top-Down Analysis

This section shows how the safety relationships between the
modules can be identified. First, three hazards are associated
with the system.

1) Poor air quality for mining staff.

2) Flooding with associated danger of drowning.

3) Methane ignition caused by pump activation.

Hazards 1 and 2 are derived via engineering knowledge,
whereas hazard 3 is derived with an understanding of the actual
system components via an architectural FMEA. Table III shows
the safety requirements (not other functional requirements) and
relationships derived to manage these hazards.

Note that there are other relationships and dependencies be-
tween components, such as data sharing between the operator
panel and sensor monitors, but these relationships are not di-
rectly safety critical. There is a need for accurate and reliable
data or an accurate assessment of data validity of course, but
this is mitigated by operator intervention as discussed in the re-
sults section.

B. Bottom-Up Analysis of Mine Pump

In order to generate an FPTC network for analysis, the seven
VHDL modules described at the beginning of this section have
been coded and converted into a netlist. The resultant network
included six modules, each with multiple LUTs, flip-flops, and
inverters, a clock and the required input/output pins to carry
data. These are contained within an overarching network, cor-
responding to the overarching VHDL Module. The components
could be categorized into just five different types with the same
basic failure patterns, with differing numbers of inputs and out-
puts. The VHDL modules were synthesized using the “keep hi-
erarchy” option so that each module could be turned into a sep-
arate FPTC network and examined individually as described in
the next section.
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C. Results

The outputs of each module’s network were examined man-
ually one by one, in order to identify whether the fault cate-
gories listed could contribute to any of the high-level hazards
and break individual safety requirements. If they could then
they were annotated with an additional fault describing this sce-
nario. For example, the water flow indicator value from the
water_sensor_management module was annotated with outputs
of “fault value, fault stale value” to indicate the generic fault
categories which could be introduced. An additional output of
“fault unreliable_flow_indicator” was added in order to indicate
the specific effect which could contribute to a failure to activate
the pump. This allows the safety analyst to trace back possible
paths within the module network which could lead to this poten-
tial safety effect and consider the risk associated with it. Note
that as there is a safety relationship between this module and
the operator panel they must consider this within their risk as-
sessment. From the assessment, they can then identify poten-
tial areas where the design needs to be strengthened, or isolated
within that module. For example, any single component that
could introduce an unsafe output can be replicated at the netlist
level, via alterations to the HDL. This may be achieved using
additional comparisons, translating to the use of multiple LUTSs
in the netlist to compare data. This helps protect against single
points of failure, thus ensuring that our aim of using a single
board can be supported. This type of design response could be
viewed as similar to crude TMR, but it is targeted towards an
actual known safety issue in a specific part of the design, rather
than being applied across the whole design.

The key is safety insight is provided to the developer to aid
their decision process. When the design has been finalized the
annotated networks can be used as additional evidence to sup-
port the system safety case and show that contributions to haz-
ards have been considered and managed.

The water flow indicator value is an input into the operator
panel module. The specific bespoke annotation about unreli-
able data is not added to the FPTC network for the operator
panel, however. There are two reasons for this. First, injecting
the value/stale_value fault types is adequate for considering the
types of problems which could propagate within an individual
network and cause issues on the outputs. Second, the ability to
create the FPTC networks automatically will be lost if bespoke
fault types need to be considered on inputs as well as outputs.
The analyst of this module will also need to consider a safety re-
lationship, for example if one of the inputs is from an untrusted
module they may consider that the risk of that input being in-
correct is higher than one from a trusted module. Again, if some
internal protection against that can be made then they need to
consider it as part of their own design strengthening strategy. In
other words some knowledge is required of the overall system
design, but the modules internal faults can still be examined in
isolation.

Fig. 6 shows an FPTC network for the methane sensor
module. This small module example is representative of some
of the larger networks examined in the case study. There are
two sensor value inputs (from two different sensors replicated
to mitigate against a single point of failure) and also the clock
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input. In the figure, the clock has a late failure, and a fault in one
LUT has introduced a value fault. The two LUTs have a dif-
ferent number of inputs, but their failure behavior is essentially
the same. They can introduce a fault, pass on a fault, or absorb
a fault. The full set of LUT FPTC annotations is not shown
in order to simplify the diagram, but involves permutations of
those shown.

There are also two clocked flip-flops which are affected by
the late fault on the clock, thus introducing a stale_value fault.
In addition, the value fault introduced via the LUT is also passed
on. These can cause faults on the two outputs. The CH4_alert
output has the failure of no_alert for both stale_value and value.
This failure is hazardous since a false negative on the alert could
mean that personnel are exposed to dangerous levels of methane.
A false positive is not listed as a possible failure since it is not
hazardous, and so is out of scope. It may, of course, be costly
if an unneeded evacuation is ordered. Note that an additional
safety relationship was identified between the CH4 monitor and
the water pump manager module. In fact, the CH4_alert value
is passed onto the pump manager and so if a false negative is
passed on then the hazard of methane ignition remains as ex-
pected. In order to counter this, an independent check of the
CH4 sensor data validity has been introduced into the oper-
ator panel module, rather than via the CH4_alert value. In other
words, some targeted redundancy has been introduced. This has
a couple of effects. First, if the pump is still activated when the
gas alert is displayed on the operator panel, then the operator
can override and shut down the pump. Thus, the hazard is mit-
igated. However, this breaks the modularity of the design and
introduces a new implicit safety relationship, whereby the op-
erator panel should not be altered to remove this functionality
and just use the CH4_alert as the system then becomes less safe.
Thus, our list of safety relationships needs to be updated.

The CH4_stat output is used as an input to the operator_panel
module where it is used to determine whether certain warning
lights should be displayed to the operator. There are a number
of failures uncovered by the FPTC analysis which could mean
the air monitor status potentially contradicts with the alert status
(e.g., an alert is shown but the sensor data is shown to be faulty).
In this situation, the operator can perform further investigations
and take action (e.g., order precautionary evacuation) if neces-
sary. In other words, although there was a safety effect it was not
of high risk (safety related rather than safety critical). Hence, no
design alterations were necessary. One other important point, is
that the signals were passed around the network via each clock
tick, and, due to the parallel execution performed on the FPGA,
some data shared between modules could be slightly out of date.
This is not an issue as long as the timing constraints can be met.
For example, the CH4_sensor module output data is not pro-
cessed by the pump controller or operator panel until the next
clock tick. However, if the total length of processing time is
within the timing constraints then there is no timing concern.
An examination of the synthesis reports generated indicated that
the initial timing requirements described in [31] could be met.

The VHDL source for the case study consisted of 320 lines
of useful code (ignoring comments and dead space). The output
netlists contained 97 components in total, reduced to 65 by com-
bining IO buffers and ports as single items. Converting these
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into FPTC format took an afternoons manual effort, obviously
this would be considerably reduced with automation. Running
the FPTC tool took at most a couple of seconds for each netlist.
Manual analysis of the outputs was again approximately one
afternoons work. It should be noted that undertaking a manual
failure analysis, such as an FMEA, is an extremely time con-
suming process. In fact it can take so long it exceeds design time
[20]. Therefore, even with only partial automation there are sig-
nificant potential benefits by being able to feed the results into
the design process.

VIII. CONCLUSION

This paper has demonstrated how analysis of individual faults
within electronic components, which are supporting a modular-
ized design embedded on an FPGA, can be linked with cross-
cutting safety analysis in order to enhance and verify the safety
properties required. The paper used the semi-automated FPTC
analysis technique tailored to individual fault types found on an
FPGA. The analysis exposed a number of potential issues, and
the mine pump system design was given minor alterations to
mitigate against those with a safety effect. Thus, we were able
to strengthen the design in areas of concern, without having to
resort to crude methods of TMR due to pessimism about the
FPGAs failure characteristics. Therefore, the aim of supporting
less conservative designs is supported.

In order to develop the technique, the following areas will be
examined. First, the possibility of formalizing the safety rela-
tionships as contracts will be examined as this will allow more
rigorous mathematical analysis to determine whether proper-
ties are broken. Second, conversion of netlists to FPTC net-
works will be partially automated in order to improve the scala-
bility of the technique. Although high integrity functionality is
often kept relatively simple in order to aid analysis, a reasonably
complex netlist may still be generated. This could lead to mis-
takes being made during a manual conversion. In addition, the
FPTC network may be difficult for the analyst to assess. There-
fore, the FPTC tool is being extended to highlight certain fault
propagation paths for the analyst, and to check automatically
for common failure patterns. Also, further work will examine
whether the FPTC only needs to be targeted at certain areas of
code that are considered the most critical.

Finally, there is potential to extend the FPTC technique to
include information such as probabilities of faults [32], in order
to further support a system safety case.
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