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Abstract

The use of trade-off analysis as part of optimising designs has been an emerging technique for a number of years. However, only
recently has much work been done with respect to systematically deriving the understanding of the system problem to be optimised
and using this information as part of the design process. As systems have become larger and more complex then a need has arisen
for suitable approaches. The system problem consists of design choices, measures for individual values related to quality attributes
and weights to balance the relative importance of each individual quality attribute. In this paper, a method is presented for establishing
an understanding of a system problem using the goal structuring notation (GSN). The motivation for this work is borne out of expe-
rience working on embedded systems in the context of critical systems where the cost of change can be large and the impact of design
errors potentially catastrophic. A particular focus is deriving an understanding of the problem so that different solutions can be assessed
quantitatively, which allows more definitive choices to be made. A secondary benefit is it also enables design using heuristic search
approaches which is another area of our research. The overall approach is demonstrated through a case study which is a task allocation
problem.
� 2008 Elsevier Inc. All rights reserved.

1. Introduction

For a number of years research has been performed
research into two important areas in isolation from one
another. These are: understanding design choices, trade-
offs and evaluation criteria during the design of systems;
and the application of search-based techniques to optimise
designs. These two areas are by their very nature linked
with the former effectively being an input to the latter,
i.e., the first stage derives an understanding of the problems
and the second stage finds the solution. However, the
majority of work in either one of these areas has been done
quite independently of the other. This has lead to a loss of
traceability and rationale between the derivation of the
problem and its solution.

The aim of this work is to present a technique for under-
standing the trade-offs. This information can then be used

as part of either a manual or automated design process.
The motivation for the work is borne out of experience
working on embedded systems in the context of critical sys-
tems where the cost of design changes can be large and the
impact of design errors potentially catastrophic. During
our previous work (Bate and Burns, 2003), adapting exist-
ing scheduling and timing analysis for use in ‘real’ critical
systems, a number of important design decisions (e.g., the
type of timing watchdog used to identify timing failures)
were faced whose impact had far reaching consequences
across the system’s design. However, a lack of suitable
techniques was found for considering the trades-off
involved. The key deficiencies with these techniques are a
lack of a systematic method and poor support for captur-
ing rationale and assumptions. Both of these meant a lack
of support for maintenance and the results obtained were
of questionable integrity. Therefore, the research into suit-
able methods presented in this paper was instigated.

The method used for deriving the trade-off analysis
problem is based on the goal structuring notation (GSN)
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(Kelly, 1999). GSN was originally developed for construct-
ing safety arguments for systems and has since achieved
widespread use. In the context of this work, it is considered
to have some advantages including stronger traceability,
better support for capturing rationale and is easily mapped
onto traditional optimisation algorithms. However, the key
contribution in this paper, with respect to GSN, is how
GSN is used as part of designing systems rather than for
constructing safety cases. It is noted that other notations
offering similar ways of decomposing objectives and cap-
turing assumptions etc could be used within the technique
proposed.

The process of establishing the trade-off analysis prob-
lem begins with using GSN to decompose the top-level
objectives (often referred to as quality attributes) of the sys-
tem in a hierarchical tree-like fashion. The decomposition
is continued until the objectives reach a suitably low-level
that they measure how well the specific individual objec-
tives are met. An example of this is a higher-level objective
of meeting the requirements could be decomposed through
an objective of meeting the timing requirements to a lower-
level objective that tasks’ response times must always be
less than or equal to their deadline. This last objective
can be assessed, and appropriate evidence gathered, using
timing analysis (Audsley et al., 1995). Using the hierarchy
information given by the tree, individual results can later
be combined to give results for higher-level objectives.
For instance, a weighted sum of results for lower-level
objectives may be used to provide a single higher-level
result. Combining the results of individual objective func-
tions into a single overall objective. This can then be often
used in any form of cost benefit analysis including as part
of a fitness functions within a search algorithms. As such
the approach represents a logical approach to systemati-
cally building knowledge of how to optimise designs featur-
ing arbitrarily complex trade-offs.

At the same time as performing this decomposition,
design choices (e.g., choice of computational model
between static scheduling and fixed priority scheduling)
and assumptions (e.g., the tasks have predictable and
bounded execution times) are captured.

This is a distinctly different approach from techniques
such as the Architecture trade-off analysis method
(ATAM) (Bass et al., 2003) as their method relies heavily
on the information being provided by experts or reusing
information derived during previous applications of the
technique (e.g., from an associated handbook). There are
also a wide variety of methods of performing trade-offs
including automated search techniques such as simulated
annealing and genetic algorithms (Rayward-Smith et al.,
1996). Of these, to the best of our knowledge none of the
work has addressed how the problems should be derived
by systematic means. This is a key benefit of the work pre-
sented here.

The combination of deriving an understanding of the
design problem with the mechanism for making the design
decisions in a more traceable manner at the same time as

capturing the rationale has a number of significant advan-
tages for practitioners in different domains. For all
domains, the rationale will provide better support for the
change process as the reasons behind the original design
and links between parts of the design will allow the risk
and impact of change to be considered more thoroughly
(Bass et al., 2003). For safety-related domains, the trace-
ability of design through to objectives (including the
decomposition of high-level objectives to low-level objec-
tives), mapping the objectives to assessment criteria and
mechanisms and then to evidence the objectives are met
is the basis for most standards (Herrmann, 2000; United
Kingdom Ministry of Defence, 1996; RTCA Inc, 1992;
CENELEC, 2001; United Kingdom Ministry of Defence,
2004). In particular, some standards are now moving away
from traditional process-oriented approaches (United
Kingdom Ministry of Defence, 1996) to product-based
(in other words evidence-based) standards (United King-
dom Ministry of Defence, 2004). The reason is the pro-
cess-oriented standards tend to lead to a tick box
mentality rather than fundamentally questioning the needs
of the project regarding safety (McDermid, 2001).

Therefore, the key contributions of this paper are: the
understanding of the contextual information upon which
the design trade-offs are made in order to support reuse
and maintenance of the system’s design; the well-defined
and systematically derived knowledge of the design prob-
lem and solution aids certification which could also be
reused on similar systems; and then the mapping of these
onto quantitative measures, where possible, raising the
possibility of using these measures as part of an automated
search strategy. A significant part of the contribution is the
means of turning difficult to assess criteria into quantitative
measures using a variety of means, e.g., through the use of
scenarios.

The structure of the paper is as follows. Section 2 con-
tains a literature survey that considers what related work
exists and as such helps establish the contribution in this
paper. Background on the GSN and its application in the
critical systems domain is given in Section 3. A detailed
description of the method is given in Section 4. A case
study is then used to demonstrate the method in Section
5. Finally, Section 6 provides a summary of the work, con-
cluding remarks and suggests areas for future work.

2. Related work

The purpose of this section is to consider the existing
work on design and trade-off analysis that is related to this
paper. A comprehensive survey of the subject can be found
at Dobrica and Niemela (2002).

ATAM, a technique for evaluating architectures for
their support of architectural qualities and trade-offs in
achieving those qualities, has been developed by the
Software Engineering Institute (Bass et al., 2003; Kazman
et al., 1999). The approach is largely based on deriving
quality attributes from overall system objectives, and then
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turning the quality attributes into questions that can be
asked of the architecture and its designers. Our approach
could be used as part of the ATAM approach in order to
give a more systematic means for deriving the quality attri-
butes and to help improve maintainability of the informa-
tion. There are a number of stages within ATAM in which
our work would fit including the following: identify archi-
tecture approaches, generate quality attribute utility tree,
analyze architecture approaches and analyze architecture
approaches, respectively.

There are numerous other techniques that follow a sim-
ilar philosophy as ATAM – for example goal question met-
rics (GQM) (Rombach and Basili, 1988), cost benefit
analysis method (CBAM) (Moore et al., 2003), goal-based
requirements analysis method (GBRAM) (Anton, 1996;
Anton and Potts, 1998), software architecture analysis
method (SAAM) (Kazman et al., 1994), quality function
deployment (QFD) (Kogure and Akao, 1993) and Mylop-
oulos’ goal graphs (Mylopoulos et al., 1992; Tahvildari
et al., 2003; Chung et al., 1999).

GQM (Rombach and Basili, 1988) addresses slightly dif-
ferent needs to our approach and as such the two
approaches could also be integrated. GQM is a process
by which objectives can be turned into specific questions
for which the answers are measurable. For instance,
GQM could be used to derive assessment criteria from
the objectives contained within augments in GSN. Again,
we can use some of the findings when converting our argu-
ments into assessment criteria. SAAM (Kazman et al.,
1994) was produced by the same people as ATAM and
as such it effectively represents an early cut-down version
of the approach. In a similar fashion to ATAM approach
could be used within SAAM’s process to derive the under-
standing of the quality attributes. CBAM (Moore et al.,
2003) provides a means of gaining measures of software
quality in financial terms, however even though it has been
developed by the same people as ATAM only a small
amount of work has been done to explicitly integrate the
two approaches and this is largely superficial (Nord
et al., 2003). CBAM again complements our approach in
that it uses the knowledge of the quality for the system,
and turns this knowledge into measures.

GBRAM (Anton, 1996; Anton and Potts, 1998) is
another goal-oriented approach that explores the systems
objectives and how they can be evaluated. However, there
are two distinct differences. First, the goals are organised
in a flat structure rather than supporting hierarchical
decomposition. Secondly, it is assuming the objectives are
mined from existing sources, e.g., documentation and uses
cases, rather than determined as a by-product of the process
itself. One of its main foci is to capture the rationale linking
the requirements mined from the documentation to the
actual design. A language to support the work on GBRAM
is provided by Lee (Lee, 1991). Lee’s work also extends
GBRA to provide better support for capturing the rationale.

Potentially the closest work to ours is that of Mylopou-
los (Mylopoulos et al., 1992; Tahvildari et al., 2003; Chung

et al., 1999) in that it is largely based on a graphical nota-
tion and it originated from the consideration of non-func-
tional properties of systems. Again, the work is more
focussed on representing the requirements of the system
rather than how they are derived and consequently used
in the design of systems.

The differences between our strategy and other existing
approaches for deriving quality attributes and measures,
e.g., ATAM, include the following:

1. The techniques used in our approach are already
accepted and widely used for constructing safety argu-
ments (e.g., nuclear propulsion system and missile sys-
tem safety arguments) (Anton and Potts, 1998), and as
such processes exist for ensuring the correctness and
consistency of the results obtained.

2. The techniques offers: (a) strong traceability and a rigor-
ous method for deriving the attributes and assessment
criteria (this is considered to be more rigorous than
questions) with which designs are analysed; (b) the abil-
ity to capture design rationale and assumptions which is
essential if component reuse is to be achieved (Kelly,
1999).

3. Information can be reused in a context different from
their original intended use, rather than repeating the
effort (Bate and Kelly, 2003).

4. The method has considered how to derive the quality
attributes as well as deduce what is needed from quanti-
tative measures to show whether they are met or not.

5. The method is equally applicable as a design technique
to assist in the evaluation of the architectural design
and implementation strategy as it is for evaluating a
design at particular fixed stages of the process.

As stated above, a defining characteristic of our pro-
posed method is the use of a well-established argumenta-
tion notation, GSN, to explore alternative satisfaction
arguments for desirable architectural criteria.

3. Background on the GSN and its Previous Use

3.1. Overview of GSN

As stated earlier, the problem derivation is based on
GSN (Kelly, 1999). GSN was originally derived for use
in the production of safety cases as part of the certification
of systems. During the establishment of the safety argu-
ment’s claims (often referred to as goals), context, assump-
tions and justifications are captured which has a number of
uses including managing change. The GSN (Kelly, 1999) –
a graphical argumentation notation – explicitly represents
the individual elements of any safety argument (require-
ments, claims, evidence and context) and, perhaps more
significantly, the relationships that exist between these ele-
ments (i.e., how individual requirements are supported by
specific claims, how claims are supported by evidence and
the assumed context that is defined for the argument).
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The principal symbols of the notation are shown in Fig. 1
(with example instances of each concept).

The principal purpose of a goal structure is to show how
goals (claims about the system) are successively broken
down into sub-goals until a point is reached where claims
can be supported by direct reference to available evidence
(solutions). As part of this decomposition, using the GSN
it is also possible to make clear the argument strategies
adopted (e.g., adopting a quantitative or qualitative
approach), the rationale for the approach (i.e., assump-
tions, justifications) and the context in which goals are sta-
ted (e.g., the system scope or the assumed operational role).
To prevent the need for a single arguments for the whole
system, decomposition is supported by allowing arguments
to be split into smaller parts. The link between arguments is
provided by the parent/child goal concept which is a link-
ing goal between arguments. That is, the parent (or devel-
oped) goal sits at the bottom of a higher-level argument
and the child goal at the top of the supporting argument.
For further details on GSN see (Kelly, 1999). It should
be noted that GSN has been widely adopted by safety-crit-
ical industries for the presentation of safety arguments
within safety cases and hence appropriate processes exist
to support their production.

3.2. Example safety case argument in GSN

Fig. 2 presents an example of the use of GSN as part of
a safety case. The argument presents a portion of an argu-
ment towards supporting a claim that a system is accept-
ably safe. In particular, the argument decomposes the
goal ‘‘Show that a system meets its timing requirements”

to lower-level claims (evidence requirements) until solu-
tions are reached, e.g., evidence based on the ‘‘Results from

sensitivity analysis”. Where an argument has not yet been
developed to a point at which a solution has been reached,
then the lowest-level claim is considered undeveloped, e.g.,
claim G6, and this is indicated by having a small diamond
below the claim. The argument also shows the use of con-
text information (i.e., defining the context C1 as the system
has hard real-time requirements), the use of justifications
(i.e., justification J1 that explains why the evidence from
sensitivity analysis supports the claim G4), and the use of

assumptions (e.g., assumption A1 that the timing require-
ments have been validated).

A key aspect of GSN is the clarity with which decisions
about how claims are argued is presented. For instance
claim G3, that the system is shown to meet its timing
requirements in the presence of anticipated failures, can
be supported in a number of ways. G3 can be supported
in one or more ways which means either a single tactic
can be used or a defence in depth approach featuring multi-
ple tactics. A defence in depth strategy helps strengthen the
argument of a system as it adds diversity and possibly inde-
pendence to the evidence (United Kingdom Ministry of
Defence, 1996). It is feasible for more than one of the
options to be chosen, however to be beneficial clear inde-
pendence needs to be maintained. For example it is usual
to have a timing watchdog to protect against timing failures
implemented in both hardware and software. However, the
best solution, from a dependability perspective, tends to be
one where there is an enforced separation between the pro-
tection mechanism for hardware and software.

4. Method for deriving an understanding of system trade-offs

This section is concerned with presenting the method
that has been derived along with the reasons behind it.

4.1. Process

In Bate and Kelly (2002); Bate and Kelly, 2003, our
method for architectural trade-off analysis for use within
a systems engineering process was originally introduced.
Fig. 3 provides an overview of the method. The individual
stages are explained in the following sections.

4.2. Stage 1 – Presenting the current design

Stage (1) of the trade-off analysis method is producing a
model of the system to be assessed. This model should be
decomposed to a uniform level of abstraction. In this
paper, simple block diagram-based approaches are used
for this purpose, however it could be applied to any mod-
elling approach that clearly identifies components and the
interfaces between the components. For instance other

System can tolerate
single component

failures

Sub-systems are
independent

Argument by
elimination of all

hazards

Fault Tree for
Hazard H1

A/J

Goal Solution Strategy
Assumption /
Justification

All Identified System
Hazards

Context

Undeveloped Goal
(to be developed)

Developed Goal Child Goal ChoiceUninstantiated Context

Parent

Fig. 1. Principal elements of the goal structuring notation.
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examples have used UML class diagrams. There are two
key parts to this stage. Part 1(a) is presenting the initial
design and part 1(b) performing any modifications that
may be needed. If changes are made to the design then it
may be necessary to repeat stages 1–3 of the process.

4.3. Stage 2 – Producing an argument for the key objectives

In stage (2), the key objectives and properties of the sys-
tem are decomposed into detailed design requirements that
need to be satisfied. Rationale for these detailed require-
ments is encapsulated by structured arguments, along with
the appropriate context, identifying where design choices
are available. The arguments are structured using GSN
(Kelly, 1999). Key properties of interest include: lifecycle
cost, dependability, and maintainability. Clearly these
properties can be broken down further, e.g., lifecycle cost
into development, future upgrades and maintenance.
Objectives of interest include; managed change, ease of
integration and ease of verification.

Fig. 4 presents the GSN symbols but this time annotated
with design-related comments.

The type of argument presented in Fig. 2 is also repre-
sentative of how the design of systems is typically

approached. To illustrate this a complementary, to
Fig. 2, design argument is given in Figs. 5 and 6. The design
arguments show some key similarities and differences
between the safety and design arguments.

One of the key similarities between the arguments for
safety and design is that there are often similar choices
available independent of whether the argument is con-
cerned with design or safety. For example, both arguments
contain a higher-level claim that the timing requirements
are met in the presence of failures and similar choices of
ensuring there is spare capacity, degradation is graceful
and fault tolerance schemes are sufficient. Another similar-
ity, is higher-level objectives for both safety and design are
decomposed to lower-level ones by stepwise refinement. At
the lowest level, both design requirements and safety claims
need to be supported by evidence showing, with sufficient
confidence, that they are met.

The key differences are that:

1. Rather than there being an assumption (A2) in the safety
case argument concerning the availability of a failure
model, for the design argument there is context that
the failure model has actually been obtained via simula-
tion. The reason for the difference is that for the safety

G1

Show that a system
meets its timing
requirements 

A

A1

Timing requirements
are valid

G2

Show system meets its
timing requirements in fault-
free conditions

G3

Show system meets
requirements in the
presence of anticipated
failures A

A2

Appropriate fault
model is available

G4

Schedule has sufficient 
spare capacity

m-of-n

A

A3

Failures can be
recovered by simply re-
running tasks

S1

Results from
timing

an alysis 

A

A4

Computational
model is predictable

G5

Show that the system
degrades gracefully (safely)
in the presence of failures

G6

Demonstrate that the fault
tolerance mechanisms are
sufficient

S2

Results from
sensitivity
analysis

G7

Design has been produced
to support graceful
degradation

m-of-n

G8

Design shown to handle
failures through graceful
degradation 

C1

System is
considered to be
hard real-time

J

J1

Sensitivity analysis provides
evidence of how many failures
can be tolerated while still
meeting the system's timing
requirements 

Fig. 2. Safety argument example.
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case argument it is sufficient to make the assumption the
failure model is available and the actual details are not
needed. For the design argument, the actual details are
needed in order to do a quantitative analysis.

2. The argument is augmented with an importance factor.
In the case of Goal D10, it is annotated with the symbol
VHO which indicates its relative importance to other

objectives. The importance factor can later be used to
identify the range within the set of weightings that
should be used.

3. In the case of safety arguments the goals are either met
or they are not, i.e., it is a binary result. In contrast a
design goal can be partially met, for example a goal
may be that percentage of the task deadlines are met.

Model of the System

Arguments
Containing Quality

Attributes

Stage 2 - Produce Arguments
for Key Objectives/Properties

Quantitative and
Qualitative

Assessment Criteria 

Stage 3(b) - Extract
Assessment Criteria

Design Evaluation
Results

Stage 3(c) - Evaluate
Architectural Design

St
ag

e1
(b

)-
Im

pr
ov

e 
D

es
ig

n
(w

he
re

 n
ec

es
sa

ry
)

Interface
Requirements

Accept Design

Scenarios

Design Choices

Stag
e3

 (a
) -

 E
xtr

ac
t

Des
ign

 C
ho

ice
s

Stage 4(a) - Derive
Interface Requirements

Static Analysis and
Test

Stage 3 (d) - Scenario-
Based Assessment

Stage 3 (e) - B
aseline

Assessm
ent

Stage 4 (b)-Produce Refined

Architectural Model

(possib
lyusingmulti-o

bjective

optimisation)

Initial Architecture Model
Stage 1(a) - Produce

Fig. 3. Overview of the method stage.

System can tolerate
single component

failures

Fault tolerance
function is isolated

from function
protected

Split into fault
elimination and fault

tolerance

Exceeding
WCET leads to
a HW interrupt
triggering task

overrun
recovery A/J

Objective Solution Strategy
Assumption /
Justification

System is hard real-
time

Context

Undeveloped Goal 
(to be developed)

Developed Goal Child Goal

Pa rent

ChoiceUninstantiated Context

Fig. 4. Principal elements of the goal structuring notation for design.
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For our work, three levels of importance have been used
as application of this method has shown this to be suffi-
cient. Less levels lack expressiveness but more levels are dif-
ficult to distinguish between. EO are those objectives
considered essential to the correct operation of the system.
For example in a hard real-time system an objective to
meet the timing requirements is considered essential. The
other two levels are value added objectives that improve
the design but are not considered essential. VHO refers
to value added objectives that are considered more impor-
tant than those classed as VLO. An example of a VHO

objective could be the ability to meet timing requirements
in a soft real-time system. A VLO objective could be the
ability to increase task execution times during software
maintenance. Once the importance levels have been
assigned then weightings can be chosen to support the eval-
uation of systems.

There are two principal drivers for choosing the appro-
priate weightings. First, and most importantly, the weigh-
tings help balance the individual results from cost
functions to give an overall cost function for the full range
of objectives. Second, in the case of automated searching

D1

Produce a design that is
sufficient from a timing
perspective

DC1

Sufficient means the
timing requirements
can be met

D2

Ensure timing requirements
are met in fault-free
conditions

D3

Ensure timing requirements
are met in the presence of
anticipated failures

D4

Use a suitable V&V
model

D12

Choose a suitable
computational model

DC2

Suitable = safe
but not too
pessimistic

D11

Provide sufficient
spare capacity

m-of-n

D10

Support graceful
degradation in the
scheduling

D5

Use a compilation model
that is predictable

D13

Schedule in a fault
tolerant manner

DC3

Failure model obtained
by simulation -
accuracy <= 10%

EOEO

VHO VLO VHO

A

DA1

Schedule should cope
with M out of N task
failures

Fig. 5. Design argument example.

D12

Choose a suitable
computational model

Design

D7

Use a static scheduling
model

D8

Currently running task is
continuously updated, i.e.
allow preemption

D9

Tasks run to completion,
i.e. preemption is
prohibited

D6

Use a fixed priority
scheduling model

D14

Selection of
appropriate task
execution model

1-of-2

D15

Selection of
appropriate task
scheduling model

1-of- n

Fig. 6. Continuation of the design argument example.
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the weightings should be chosen in order to reduce the like-
lihood of the system getting stuck in a local minima
(Rayward-Smith et al., 1996; Coello Coello, 1999).

The precise value of weightings has been the subject of a
great deal of academic work. The current approach taken in
this work is an initial assignment based on a subjective
assessment of the relevant objective category. Then, some
degree of hand tailoring is performed based on the results
of the optimisation. Future work will explore more princi-
pled methods of using the information from the GSN-based
representative of the system’s objectives into weightings.

4.4. Stage 3 – Extracting information from the argument

Stage (3) uses the structured argument to further derive
design and verification options, and to determine assess-
ment criteria which can be used to judge how well a partic-
ular design solution meets the system objectives. Initially in
the early stages of design, the evaluation may have to be
qualitative in nature but as the design is refined then quan-
titative assessment may be used where appropriate. Part of
this activity may use representative scenarios to evaluate
the solutions. In the case of timing, representative scenarios
will include situations where the software/system is chan-
ged which leads to modified task execution times and
added/removed tasks. The use of scenarios in the context
of real-time control systems has been extensively investi-
gated in Bate et al. (2003), Bate et al. (2003) and Bate
and Emberson (2006).

4.4.1. Stage 3(a) – Extracting design choices
When decomposing objectives, sometimes there is an

option over how the objective may be met. For example,
an objective that the system is dependable could lead to a
choice of fault elimination, or fault identification and
recovery. Where a choice is reached, from a safety perspec-
tive both choices are normally decomposed until a solution
is reached. However, from a design perspective an individ-
ual choice may not be pursued further. The reason for this
could be one of many including certain design restrictions
have been made before the derivation of the problem com-
menced (signified as an assumption) or the designer(s)
applying the method decides not to pursue the option fur-
ther. A choice may not be pursued further based on any
number of reasons including experience or simply a desire
to manage the size of the potential design space. Such a
decision could be supported by a justification.

In Fig. 6 a number of objectives are shown for which
there are design options, e.g., over the choice of execution
and scheduling approaches as part of the computational
model. Objectives can be satisfied by one or many of the
options proposed. The figure also shows dangling refer-
ences, signified by a filled diamond under the goal symbol,
which indicates that in this particular example there are
other design options that are not extrapolated.

Fig. 6 also shows how at one level there can be a choice
over how an objective is met and then at another (lower

level) the individual choices can lead to further choices in
how the system is designed. This reflects the natural way
in which decisions can be made in a hierarchical fashion
and hence provides an appropriate mapping onto real
world problems. This will be demonstrated later in this
paper.

4.4.2. Stage 3(b) – Extracting evaluation criteria

Once a suitable design argument exists, the evaluation
criteria (i.e., objectives) need to be extracted. This is a rel-
atively simple step as they are indicated in the argument by
their importance level. For example in Fig. 5 there are a
number of criteria including support for graceful degrada-
tion, providing sufficient capacity and scheduling in a fault
tolerant manner.

4.4.3. Stage 3(c) – Evaluating the design

Given a set of evaluation criteria to be assessed, the next
stage is to determine how an individual objective from the
argument can be converted into a value such that different
design options can be compared. The stages involved in
turning a given objective into a value function are: under-
standing how different solutions may meet the objective
to varying degrees, deriving a means of metrication and
turning the function into a normalised form. The require-
ments for deriving a value function are as follows:

1. Normalised: Independent of the scoring mechanism
used, the value returned should be normalised because
(a) It eases the problem of weighting different functions
as with normalised values a function that is twice as
important as another is simply given a weighting that
is twice the magnitude of the other.
(b) It prevents the function returned being dependent on
the particular application being considered and hence
greater reuse (without modification) can be achieved.
For example, a measure of task schedulability should
not be proportional to the number of task deadlines
achieved as the value returned is then dependent on
the number of tasks associated with the application.
This could cause two problems. First, the weightings
in the value function may need to be altered in order
to accommodate the number of tasks. Second, it makes
it difficult to compare how well the same design copes
with two different applications and hence reuse is
affected. Instead, the measure of task schedulability
could be based on the ratio of the number of deadlines
met versus the number of tasks. This results in a range
of values between zero and one.

2. Quantitative: Wherever possible the function should be
evaluated by quantitative rather than subjective means.
There are a number of reasons for preferring quantita-
tive assessment but the main ones are that greater con-
sistency is achieved between repeated applications of
the function and that subjective assessment cannot be
automated. It is however recognised that some objec-
tives cannot easily be represented quantitatively.
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The following two sections describe the methods used to
evaluate the criteria.

4.4.4. Stage 3(d) – Scenario-based assessment

The simplest form of objective to evaluate are those
that can be evaluated using standard static analysis
and test, i.e., stage 3(e) of the overall method – refer
to Section 4.4.5 for details. Examples of these forms
of analysis include the system meets its timing require-
ments and sufficient capacity is provided. Both of these
can be assessed using appropriate analysis techniques.
The first of these objectives can be scored according
to the percentage of requirements that are met. The lat-
ter by the ratio of the utilisation needed versus the util-
isation available.

However, not all objectives are as easy to assess. The
main reason for this is a lack of precise information that
can be used as an input to the evaluation. An example of
a seemingly difficult objective to turn into a quantitative
normalised function is given to illustrate how the require-
ment for quantitative assessment can be achieved. Consider
an objective that a particular part of a design is flexible to
change. This type of objective is considered difficult to
change as it is a very open question especially as the prop-
erty considered or the type of change is not specified. How-
ever, even this objective can be measured using quantitative
methods. One method of assessing this objective is to use
scenarios. Scenarios of change can be applied to a particu-
lar design configuration and the impact of change assessed
(Kazman et al., 1994). The impact of change can be
assessed from two perspectives; whether the specific
changes requires a change to the wider design and if the
wider design has to be altered then by how much.

Taking the example further. For a given set of changes
to how a software procedure is implemented, this can be
assessed to see whether the procedure’s interface is affected
and whether the resulting changes to its execution time
affect the scheduling of the system. If the interface is
affected, then the effect could be measured based on the
resulting lines of code that need to be changed. If the sched-
uling is affected, then the effect could be measured based on
the number of priorities that need to be changed. These
forms of measure allow a wide range of properties and sce-
narios to be evaluated limited by the time required to assess
the scenarios. Clearly some scenarios and properties will
take longer to evaluate than others. If the changes are mea-
sured via the lines of code changed then this is likely to be
costly and laborious. However, changes to task attributes,
e.g., priority levels, can be performed quickly via automa-
tion. Due to the time, and hence cost, involved in perform-
ing the scenarios combined with the potential lack of
certainty of the exact changes to be handled, then the care-
ful selection of the number and types of scenarios needs to
be made. A tiered approach could be performed where dif-
ferent weightings are given to different types and degrees of
change. The selection and use of scenarios is outside the
scope of this work. Refer to Dobrica and Niemela (2002)

and Bate and Emberson (2006) for further details. The
results of the scenario-based assessment are then norma-
lised by considering the ratio of scenarios handled without
change to the overall number of scenarios. Further details
are provided in Section 5.4.4 of the mapping of the sce-
nario-based assessment to a quantitative measure.

An important decision to be made during the conversion
of an objective into cost functions is choosing the best way
of performing the calculation when there are a number of
options. For instance, static analysis of how well a system
copes with certain parameters changing and under these
conditions the results are accurate. For example, using sen-
sitivity analysis (Burns et al., 1996) to find out by how
much individual task’s WCET (worst-case execution time)
can be increased. However, scenarios can cope with many
more parameters being altered, e.g., whether the schedule
can cope with different combinations of tasks and different
magnitudes of WCET increase. When choosing the most
appropriate method the principal influences are the possi-
ble errors in value and the time required for computation.

4.4.5. Stage 3(e) – Baseline assessment

The final stage of evaluation is to consider the baseline
design, i.e., the design operating without any form of sce-
nario being applied. For most system problems there
already exists a wide range of analysis and test methods
that can evaluate the key properties and objectives of con-
cern. For example, with respect to timing there exists
schedulability analysis, e.g., for fixed priority scheduling
(Audsley et al., 1995), energy usage means of assessing
the cost of processing, e.g., WATTCH (brroks et al.,
2000), and reliability means of assessing failure properties,
e.g., mean time between failures (Villmeur, 1992).

4.5. Stage 4 – Decomposing the design

Once a suitable design has been produced as part of
stages 1–3 of the process, the next stage is to consider
how the design should be decomposed to the next level
before the stages recommence at stage 1. There are two dis-
tinct parts to this stage; defining appropriate interfaces and
considering the choices that are available.

The interface requirements refer to those constraints
that exist between different parts of the design. These
may be represented by assumptions and context within
the design argument. For example in Fig. 5 the design
assumption DA1 represents a constraint between the tim-
ing requirements of the applications, the scheduler and
more specifically the scheduler’s fault model. The con-
straint is that the scheduler should allow the applications
to meet their requirements in the presence of M out of N

task failures. Another constraint between the applications’
requirements and scheduler is given by context DC3. This
states that the design should be tolerant to bounded errors
in the simulation used for analysis.

Examples of design choices are shown in Fig. 6. The two
sets of choices are related in that the first deals with how
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tasks are scheduled and the second with how they are exe-
cuted. The choice of scheduling model, which emerges from
the decomposition of goal D15, is concerned with whether
fixed priority scheduling or static scheduling is used. This
form of design decision can be taken at any time but it is
more appropriate to do so once more information is avail-
able on the applications’ timing requirements, the fault tol-
erance characteristics needed from the system and the
desired flexibility.

5. Case study

5.1. Background on the problem

The problem considered in this paper is that of task allo-
cation. The main aim of the task allocation problem is to
ensure the system’s timing requirements are met where
the requirements feature both independent tasks and rela-
tionships (i.e., dependencies) between tasks. The task allo-
cation problem has two main parts. First assigning tasks to
specific processors (when there are more than one). Second
choosing attributes (e.g., priority, ordering, etc.) for tasks.
Where there is more than one processor, then similar attri-
butes and allocations have to be made to messages that
communicate information between tasks via databus(s).
For example, the message has to be allocated so that data
are routed between the two tasks and so the message is sent
at the same rate as the source task generates data.

The task allocation problem has been chosen because it
has already been studied by a number of research projects
including (Fohler and Koza, 1989; Nicholson, 1998, 1996).
However, none of these have established the problem to be
solved, and the eventual solution, by systematic means.
Also, the majority of work on this subject has solved the
problem with little regard for properties other than those
judged essential. For instance, their main goal is to meet
the timing requirement with some of the work having other
goals such as a secondary goal of minimising the amount of
hardware needed. That is, most have entirely concentrated
on ensuring timing requirements with a few projects also
considering the issue of optimising the resources used.

5.2. Stage 1 – Presenting the current design

In this paper, the starting position for the design is
shown in Fig. 7. It is noted that at this stage the structure

corresponds to that of most evolutionary and heuristic
search algorithms.

The diagram shows five principal components that are
used when turning the requirements (including the objec-
tives) into a satisfactory solution. These are:

1. Initial solution – an initial solution is provided by an
appropriate means, e.g., random selection.

2. Modify task allocation – the search algorithm modifies
the task allocation of the current solution.

3. Modify task attributes – the search algorithm modifies
the task attributes of the current solution.

4. Range of design choices – represents the means of chang-
ing the design space over which the search algorithm
operates.

5. Check objectives are met – evaluates the current solution
against the objectives. Depending on the results, the
solution will either be judged as satisfactory or fed back
to an earlier stage so that it can be modified.

5.3. Stage 2 – Producing an argument for the key objectives

The design in Fig. 7 corresponds to the argument shown
in Fig. 8. The argument shows three principal sub-goals, to
the overall objective of Best possible system is produced,
each related to one of the basic components represented
in Fig. 7. The first two goals are aimed at having a suitable
mechanism for taking the current solution and adapting it.
The concern here is the adaption mechanism results in a
suitable design within a reasonable amount of time which
is influenced by the number of times we have to go round
the loop. The final goal is concerned with how we assess
the quality of the solution. It is this goal we concentrate
on here. Figs. 9–13 show how the goal is developed.

Fig. 9 presents the decomposition of the goal, G1, which
is considered to be the system meets its requirements in a
cost effective manner. The purpose of this leg of the argu-
ment is to consider the range of design choices and means
of evaluating task allocations. In contrast the goals Alloca-
tion and Assignment are concerned with how fast and well
the chosen search algorithm operates. In the context of this
work it is assumed, A1, that the work is to concentrate on
the timing properties of the system. Context C1 also estab-
lishes that in terms of cost the argument is concerned with

Search Algorithm Design Space

Initial
Solution

Modify Task
Allocation

Modify Task
Attributes

Range of
Design
Choices

Improvement
Possible

Requirements
Satisfactory

Solution

Check
Objectives

are Met

Fig. 7. Top level design.
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C1

Cost is concerned
with the whole
lifecycle

G2

System meets its
requirements with minimum
cost

G3

System designed to
reduce the cost of change

A

A1

Work is to
concentrate on
timing properties

A

A2

Two categories of change
exist - anticipated and un-
anticipated

G4

Design is tolerant to
change

G5

Impact of change is
minimised

A

A3

No changes are
needed

A

A4

Changes are
needed

VLO VHO

G1

System meets its
requirements in a cost
effective manner

Overall

Fig. 9. Top-level argument for objectives met.

Overall

Best possible system
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System meets its

requirements in a cost
effective manner

A

Assumption

Initial solution is

valid

Allocation
Efficient and effective
allocation of tasks  is

made

Assignment

Efficient and effective

assignment of task

properties  is made

Fig. 8. Top-level argument for overall system objective.
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cost

View 1

G21
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scheduled so that individual
requirements are met

G22

Task dependencies
are met

G23

Cost is minimised

G24

Scheduling policy is
appropriate

G25

Cost of software is
minimised

G26

Cost of hardware is
minimised

A

A23

For a particular phase
software is largely a non-
recurring cost and hardware is
a recurring cost

VHO VHO

A

A24

Across phases the hardware
may need to be updated
leading to software changes

Fig. 10. Trade-offs related to minimum cost.

I. Bate / The Journal of Systems and Software 81 (2008) 1253–1271 1263



Author's personal copy

that of the whole lifecycle, i.e., from project inception all
the way to de-commissioning and disposal.

The top-level goal is then split into two distinct argu-
ments. First, the system meets its requirements with mini-
mal cost, G2, and second the cost of change is minimised,
G3. The assumption A2 clarifies that changes are consid-
ered to fall into two categories; anticipated and un-antici-
pated. This assumption recognises the important fact that
in the development of embedded systems many of the
changes to be performed are not to fix errors but instead
planned as part of a phased development program. Whilst
it is recognised that changes cannot be predicted with 100%
accuracy, other work (Bate and Emberson, 2005; Bate and
Audsley, 2004) has shown that using scenarios to introduce
flexibility helps reduce the impact of change even if the sce-
narios differ from the actual changes introduced.

The goal G3 is further separated into two parts. First,
goal G4 introduces the objective that the design should
be tolerant to change. Then, goal G4 deals with the situa-
tion where a change is necessary but its cost should be
minimised. These goals are not expanded further as they
are measurable quantities.

The only goal from Fig. 9 that needs further expansion is
goal G2 which is concerned with the system meeting its
requirements with minimum cost. A key assumption A1 is
made that in the context of this work we are to concentrate
on the timing properties of systems. This goal is expanded
further in Fig. 10. Fig. 10 shows how goal G2 can be decom-
posed into four sub-goals – G21, G22, G23 and G24. The
four sub-goals deal with individual requirements, task
dependencies, cost and scheduling policy separately. In
Fig. 10, goal G23 is decomposed so that minimal cost is sep-
arated into hardware and software, respectively. These
goals are now considered to be measurable. The goal G26
represents an interesting objective from a project lifetime
perspective as on the surface its assessment is simple, i.e.,
the sum of the unit costs for the hardware including the
manufacturing and assembly costs. However, allowing for
the bigger picture the hardware costs have to allow for
the potential problems of scalability and obsolescence. That
is, the costs should allow for the risk that changes will be
needed to the hardware to accommodate future expansion
of the software and that the hardware goes obsolete neces-
sitating a re-design of the system including its software.

G21

Tasks are allocated and
scheduled so that individual
requirements are met

Minimum cost

A

A22

Analysis is safe which
relies on an appropriate
scheduling policy, G243

A

A21

Analysis includes
appropriate
overheads

G211

An appropriate allocation for
tasks and messages is
derived

G212

Each task or message is
uniquely allocated to a
processor or bus
respectively

1-of-N

G213

No resource is
overloaded

G214

Allocation constraints
are met

G215

Weight, particularly
from wiring, is reduced

G217

Resources are well
balanced

C211

Resources =
processor, bus,
memory, buffers etc

EO VLO EO

VHO

G218

Tasks and messages on
each resources are
scheduled appropriately

G219

Each task and message
is given appropriate
attributes

C212

Attributes =
ordering, period or
event, offset

1-of-N

EO

Fig. 11. Trade-offs related to individual requirements.
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As such there is a strong link between goals G25 and G26
which is reflected in the assumptions A23 and A24. Captur-
ing key points such as these is a key benefit of using a sys-
tematic structured approach to argumentation.

Of the un-expanded goals in Fig. 10, goal G21 is
expanded further in Fig. 11. Here, goal G21 is split into
two sub-goals that deal with the problems of allocation
and attribute assignment separately. Goal G214 is then fur-
ther split into a number of sub-goals G213–G216 which
deal with a variety of objectives. For example, goal G213
deals with resources should not be overloaded. The sub-
goals are then satisfied by the design choice of exactly
which processor or databus that each task or message is
allocated to. Similarly, goal G216 is handled by a design
choice over the exact value of the task and messages attri-
butes assigned. As no scheduling policy has been defined
yet, general purpose attributes are used as detailed in con-
text C212.

Goal G22 from Fig. 10 is expanded in Fig. 12. The goal
is decomposed into three sub-goals which are the tasks that
form the transaction are executed in the required order
(goal G221), there is a means of passing data between com-

municating tasks (goal G222) and timing aspects of the
requirements are met (goal G231). A justification, J221, is
added here that this definition of task dependencies is
appropriate based on existing papers (Torngren, 1998).
Goal G231 does not need further decomposition as it is
already measurable. Goals G221 and G222 are measurable
but are decomposed further to represent the set of design
choices (i.e., release and scheduling attributes) that are
relevant.

In Fig. 13 goal G24 is expanded. In this figure, the goal
is decomposed in such a way that considers whether the
scheduling policy is efficient (goal G241), effective (goal
G242) and safe (goal G243). Goals G242 and G243 are
decomposed further with goal G245 being decomposed to
represent the range of scheduling policies that may be used
(note the set of policies is not considered complete) and
goal G243 is split into whether the scheduling policy is pre-
dictable (G249) and whether shared resources are protected
(Goal G250). Goal G250 is further decomposed to consider
the design choice of using off-line or on-line mecha-
nisms. Assumption A242 shows how objectives in different
arguments may be linked and hence trade-offs between

G22

Task dependencies
are met

Minimum cost

G221

Tasks execute in the
required order

G222

Data passed between
appropriate tasks in a timely
fashion

G224

Precedence constraints
between tasks and
messages are upheld

M-of-N

G225

Tasks and messages
released based on the
appropriate event
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Tasks and messages
released in the appropriate
order

G227

Task and message
offset or event trigger

1-of-N

G228

Task and message
ordering

1-of-N

A
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variety of scheduling
policies, e.g. priority, slot
ordering etc

A

A221

Offset supports a wide
variety of scheduling
policies, e.g. slot position

EO EO

G231

Separation and end-to-
end deadlines are met

EO

G216

Number of messages
are minimised

VLO

J

J221

Task dependencies mean task
precedence, appropriate
messages linking tasks and end-
to-end deadline have to be met
defined in Torngren (1997)

Fig. 12. Trade-offs related to task dependencies.
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properties formally established. Other trade-offs will still
exist, e.g., having more processors may improve scalability
but adds weight/cost, but these may not be formally stated
in the arguments.

The problem is now considered decomposed in sufficient
depth as all goals have reached the stage that they can be
measured and the majority have a number of design
choices available.

5.4. Stage 3 – Extracting information from the argument

In Section 5.3 a great deal of discussion has already
taken place concerning the information contained in the
argument, e.g., design choices. Rather than repeat this
information, the purpose of this section is to summarise
the relevant information contained within the arguments.

5.4.1. Stage 3(a) – Extracting design choices

The following are the choices that emerge relating to the
design:

1. From goal G211 emerges the choice of where each task
or message is allocated.

2. A choice of task and message attributes results from the
decomposition of goal G216.

3. In Fig. 12 there are choices related to how tasks and
messages are released. It is noted this is an example of
a hierarchical design choice where a higher level decision
then influences the lower level choices that are available.

The first choice comes from goal G224 which is related
to how task precedence is maintained. There are two
options; through the use of higher-level scheduling
mechanisms such as priorities or slot position, or at
the individual task level. Depending on this higher level
choice, there are lower level choices. That is, a choice of
priorities or slot position for the scheduling level
approach, or a choice of release mechanisms (and corre-
sponding attributes) if the objective is handled at the
individual task level. It is noted these decisions are
related to the earlier goal Assignment from Fig. 8.

4. The final choices are taken from Fig. 13. These choices
are related to the type of scheduling policy used (from
goal G245) and how resources are protected from fail-
ures (from goal G250).

5.4.2. Stage 3(b) – Extracting evaluation criteria

The arguments and Section 5.3 highlighted a number of
objectives to be evaluated. These are all signified by the
goals having either EO, VHO or VLO in the top right hand
corner. These are represented in Table 1.

5.4.3. Stage 3(c) – Evaluating the design

The design of the system is assessed in two parts: sce-
nario-based assessment that deals with a variety of test
cases encompasses specific situations (failure and non-fail-
ure) the system must handle but also covering the ability to
handle future requirements (i.e., changes); and general
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Fig. 13. Trade-offs related to scheduling policies.
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analysis of the current design’s ability to meet its objec-
tives. To illustrate the difference consider a timing analysis.
A scenario may be the ability to handle a processor failing
or an execution time being increased by 20% larger,
whereas the general analysis would using timing analysis
to show all the timing requirements are met. These two
forms of assessment are considered in the following sec-
tions. As far as the overall evaluation is concerned, there
is a need to combines the results from each of these stages.
This is done using Eq. (1) that takes the results of the indi-
vidual evaluations and combine them in a weighted norma-
lised fashion.

fo ¼
ðwg � fgÞ þ ðws � fsÞ

wg þ ws

; ð1Þ

where fo is the overall fitness value for the system, fg is the
result of the general analysis of the current design, fs is the
result of the scenario-based assessment, wg is the weighting
for the results of the general analysis and ws is the weight-
ing for the results of the scenario-based assessment.

5.4.4. Stage 3(d) – Scenario-based assessment

There are two goals, G4 and G5 in the arguments con-
sidered difficult to quantify as they deal with how the sys-
tem may change through the development lifecycle.
However, through the use of scenarios changes can be
applied to the system (e.g., the worst-case execution time
of a task could be increased) and an assessment made of
whether any changes are needed to the task allocation in
order to solve the new problem. In Bate and Emberson
(2006), it is shown how taking this approach can be used
to assess the flexibility of systems to change and use this
information as part of the design process to improve
flexibility.

Eq. (2) assesses the tolerance of the design to change,
i.e., if any changes to the design solution is needed to cope
with the change then zero is returned otherwise one is

returned. In Eq. (3), tac is the number of task allocation
changes, mac is the number of message allocation changes,
tpc is the number of task ordering changes and mpc is the
number of message ordering changes. A weighting factor,
aN, is applied to each change type in order to reflect the rel-
ative importance of each type of change before the values
are combined. The result from Eq. (3) is a measure for
the cost required for a particular change to the design solu-
tion. Clearly if the value returned by Eq. (2) is zero then the
value given by Eq. (3) will also be zero. Each of the two
equations can be assessed for each individual change con-
sidered. In our previous work, (Bate et al., 2003; Bate
et al., 2003; Bate and Emberson, 2006), a change is consid-
ered a scenario and for each potential design a number of
scenarios are applied. An individual design can be assessed
with respect to a number of scenarios using Eqs. (4) and
(5). These equations effectively show two levels of assess-
ment which possibly feature more than one level of impor-
tance. That is, the first equation (Eq. (4)) is of higher level,
and more important, as it signifies whether the change is
handled appropriately. In contrast, the second equations
give a detailed evaluation of how large a change is needed.
The overall result from the scenario-based assessment is
given in Eq. (6) where wcost and wtol are the weightings
for the cost and tolerance, respectively.

tolerance cost changes ¼
1 if changes > 0;

0 if changes ¼ 0;

�
ð2Þ

change cost ¼ a1 � tacþ a2 �macþ a3 � tpcþ a4 �mpc

a1 þ a2 þ a3 þ a4

;

ð3Þ
overall tolerance ¼

X
8scenarios

tolerance cost changes; ð4Þ

overall cost ¼
X

8scenarios

change cost; ð5Þ

fs ¼
ðwcost � overall costÞ þ ðwtol � overall toleranceÞ

wcost þ wtol

: ð6Þ

5.4.5. Stage 3(e) – Baseline assessment

There are a number of arguments with quantifiable
objectives related to the baseline design. The first argument
to be considered is Fig. 11. This argument essentially deals
with whether the individual tasks are allocated and sched-
uled so that their timing requirements are met and to help
support other physical properties of systems. The objec-
tives within the argument that can be quantitatively mea-
sured are discussed below. The final value obtained is
overload.

1. G213: This objective is concerned with whether any
resource, e.g., processor or network, is overloaded.
For most systems overload can be considered when
the utilisation is greater than 100%. However, for some
systems the designers are contracted to provide spare
resource to support a growth margin and provide

Table 1
Objectives for the system

Id Objective

G4 Design is tolerant to change
G5 Impact of change is minimised
G25 Cost of software is minimised
G26 Cost of hardware is minimised
G213 No resource is overloaded
G217 Resources are well balanced
G214 Allocation constraints are met
G215 Weight, particularly from wiring, is reduced
G218 Tasks and messages on each resource are scheduled appropriately
G221 Tasks execute in the required order
G222 Data passed between appropriate tasks in a timely manner
G231 Separation and end-to-end deadlines are met
G216 Number of messages are minimised
G241 Scheduling policy is efficient
G242 Scheduling policy is effective
G249 Computational model is predictable
G250 Shared resources are predicted
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flexibility for changes. The utilisation of a resource can
be measured using Eq. (7), where i is the set of services
hosted on the resource. A fitness function can then be
formed over the set of resources, j, using Eqs. (8) and
(9), where U bound

j is the upper bound on the utilisation
allowed and and #j is the number of resources. It is
noted that many of the quantitative measures could be
made in ways that give different degrees of information.
For instance, a form of Eq. (8) could be altered to mea-
sure by how much the utilisation bound is not met
rather than a simple yes/no answer.

Uj ¼
X
8i

Ci

T i
; ð7Þ

U met
j ¼ 1 if U j > Ubound

j ;

0 otherwise;

(
ð8Þ

foverload ¼
X
8j

U met
j

#j
: ð9Þ

2. G217: This objective is concerned with whether each of
the available resources has a similar utilisation. The pur-
pose of this is to help make each resource equally diffi-
cult to schedule and equally likely to be scalable. Eq.
(10), where Umin is the utilisation of the least lowest
resource, shows how the objective could be assessed.

fbalance ¼
X
8j

U j � U min

#j
: ð10Þ

3. G214: This objective is concerned with whether allocation
constraints are met or not. An allocation constraint can
be of two forms. First, two tasks or messages may be pro-
hibited from being resident on the same processor. This
may be the case when the tasks or messages are replicas
used for fault tolerance in which case there is little point
in both being on the same resource as a resource failure
would be a common cause failure. The second case is
where a specific task or message needs to be allocated to
a specific resource, e.g., if a task was reading a sensor
value and there was a limit on the physical length of the
wiring. This can be assessed simply by checking what per-
centage of the constraints are met as shown in Eq. (11).

falloc const ¼

P
8constraints

1 if constraint met

0 otherwise

� �
#constraints

:
ð11Þ

4. G215: This objective is concerning the weight of the
resources used in the solution. Weight can be reduced
in two ways. First, by using less resources, e.g., proces-
sors, which tends the solution to hardware efficiency.
Second, by reducing the amount of cabling needed. This
second aim can be achieved in two main ways; not using
a fully connected network, and by physically locating
the processors appropriately. The weight can simply be
assessed by adding up the weight of all resources and

cabling. In some applications, more advanced forms of
assessment may be needed. For example, in aircraft
applications centre of gravity (CoG) is also important.

5. G218: The final objective is whether the individual tim-
ing requirements are met. This can be assessed straight-
forwardly using Eq. (12). As discussed earlier, a step
function may be applied to the objective so that the dif-
ference between a 100% successful solution and a par-
tially successful solution is clear.

find req ¼

P
8individual requirements

1 if requirement met

0 otherwise

� �
#individual requirements

:

ð12Þ

The argument whether dependent tasks are adequately
handled is given in Fig. 12. This argument essentially deals
with whether the fundamental requirements are met at the
same time the number of messages is reduced. The objec-
tives within the argument can be assessed in the following
way:

1. G221, G222 and G231: These objectives can be collec-
tively described as whether the timing requirements are
met. This can be assessed straightforwardly using Eq.
(13). As discussed earlier, a step function may be applied
to the objective so that the difference between a 100%
successful solution and a partially successful solution
is clear. If the different categories of requirements (i.e.,
precedence and end-to-end deadline requirements) had
different levels of importance then Eq. (13) could be split
further with each category being given a different
weighting which equate to importance.

fdep req ¼

P
8dependency requirements

1 if requirement met

0 otherwise

� �
#dependency requirements

:

ð13Þ

2. G216: The final objective for this argument is that the
number of messages are reduced. That is, tasks with
dependency requirements tend to be co-located on the
same processor. There are two benefits of taking this
strategy; the utilisation of the inter-processor communi-
cations is reduced and schedulability is improved. How-
ever, it is noted that this objective may conflict with
other objectives such as the need for certain tasks to
be allocated on specific processors or for pairs of tasks
not be co-located. This leads to a need for a careful bal-
ancing act within the trade-offs performed.

The final argument shown here, Fig. 13, is concerned with
whether an appropriate choice of scheduling policy has been
taken. The objectives within the argument can be assessed in
the following way. It is noted that the scheduling policy is
often a fixed design variable and therefore would not be
considered as part of the trade-off analysis.
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1. G241: This objective considers whether the scheduling
policy is efficient, i.e. whether it has low overheads. Hav-
ing low overheads can make it more likely that the sys-
tem is schedulable assuming the policy chosen is
effective. The balance between the complexity/optimal-
ity of the scheduling policy and the amount of run-time
overheads is an issue that should not be ignored when
designing systems. Another benefit of low overheads is
that more of the systems resources would be used by
‘‘useful” functionality. The objective can be assessed
using Eq. (7) to determine the amount of run-time
overheads.

2. G242: As discussed above, an important objective is that
the scheduling policy chosen is effective. The main
whether of measuring this objective is by judging whether
all the timing requirements of the system are met. The
objective can be assessed by returning a value of ‘1’ if they
are, otherwise a value of ‘0’ is returned. Using such an
objective represents an alternative way of providing a dis-
criminating factor for whether objectives relating to
requirement being met, e.g., G218 are completely satisfied
without the need for a bonus factor, e.g., step function.

3. G249: Many of the other objectives rely on there being
suitable analysis that allows a quantitative assessment
of whether the requirements are met. Therefore this
objective is simply concerned with whether the schedul-
ing policy is predictable and hence analysis is possible.
The objective can be assessed by returning a value of
‘1’ if it is possible, otherwise a value of ‘0’ is returned.

4. G250: The final objective is whether the scheduling
mechanism used provides adequate protection where
needed, e.g., for shared resources. Again, the objective
can be assessed by returning a value of ‘1’ if it is possi-
ble, otherwise a value of ‘0’ is returned.

An overall value, fg, for the fitness of the baseline design
can be found using Eq. (14), where wi are the individual
weightings for the baseline objectives.

fg ¼
P
8i2baseline objectivesfiwiP
8i2baseline objectiveswi

: ð14Þ

5.5. Stage 4 – Decomposing the design

In Fig. 7 the top-level design of the system is presented.
Based on the method presented in this paper, the next level
of design is given in Fig. 14 that shows how Design Space,
which contains Range of Design Choices and Check Objec-

tives are Met is handled. The figure clearly shows the set of
design choices and objective measures established. It is
noted the Evaluate Baseline Design is not expanded for rea-
sons of clarity. One key issue the designer might make at
this stage is to fix certain design choices to limit the search
space. An obvious example is the scheduling policy that
should not be continually changing. At this stage the
designer can decide whether to carry on iterating around
the design using this method or proceed to implementation.
As part of this decision process, it is reasonable to only
apply the method to crucial, or difficult, parts of the design.

6. Conclusions and summary

In this paper, we have motivated the need for more sys-
tematic approaches to understanding the trade-offs within
the design of systems. The specific contributions of the
paper are to show how our approach provides the degree
of rigour suitable for critical systems applications at the
same time as capturing the rationale and justifications to
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Fig. 14. Decomposed design.
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help support maintainability of systems in general. The
approach presented is based on a well-established
approach to safety argumentation that has been adapted
for the purpose of building design arguments and then
extracting the relevant information needed, i.e., design
choices and assessment criteria. The assessment criteria
are then converted to a quantifiable measure and an appro-
priate weighting applied. During the course of the paper a
number of ways have been demonstrated for evaluating the
assessment criteria and clear relationships (trade-offs)
between objectives and assessment criteria demonstrated.
Finally, a case study, the task allocation problem, is used
to demonstrate the approach. Open research problems
include deciding which parts of the design problem the
method should be applied to and to what depth, and
how to derive weighting in a more systematic manner.
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