IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR 1

Stressing Search with Scenarios for Flexible
Solutions to Real-Time Task Allocation Problems

Paul Emberson, lain Bate, Member, |IEEE

Abstract —One of the most important properties of a good software engineering process and of the design of the software it produces is
robustness to changing requirements. Scenario-based analysis is a popular method for improving the flexibility of software architectures.
This paper demonstrates a search-based technique for automating scenario-based analysis in the software architecture deployment
view. Specifically, a novel parallel simulated annealing search algorithm is applied to the real-time task allocation problem to find
baseline solutions which require a minimal number of changes in order to meet the requirements of potential upgrade scenarios.
Another simulated annealing based search is used for finding a solution which is similar to an existing baseline when new requirements
arise. Solutions generated using a variety of scenarios are judged by how well they respond to different system requirements changes.
The evaluation is performed on a set of problems with a controlled set of different characteristics.

Index Terms —maintainability, extensibility, heuristics, search, scheduling, scenarios

1 INTRODUCTION

ARCHITECTURE design choices in software-based
systems development can have a significant effect
on the quality attributes of the system such as perfor-
mance and maintainability [1]. Good software architec-
ture design involves modelling it from more than one
view. The focus of this paper is the mapping of software
tasks to a hardware platform for real-time systems which
is associated with the transition from the process view to
the physical / deployment view [2] of an architecture. These
views are further explained by figure 1. The process view
defines the tasks and the dependencies between them. It
is only when a mapping of this software to the physical
hardware platform is chosen that the non-functional
properties of the system become fully apparent [2]. In
particular, software modules which are independent of
each other in the logical view can still have timing
interactions between corresponding run-time tasks. With
a system using a system wide shared message bus, as in
figure 1, there is the potential for small changes to a
tasks” schedule to ripple throughout the system.

It is desirable for each iteration of a design to be
closely related to the previous one on the assumption
that the original design was not fundamentally flawed.
Reasons for this include:

o maintaining documentation and the understanding

engineers have of the system [3]

o containing changes may lower the cost of testing
and re-certification of safety critical systems [4],
which “dwarfs hardware costs” [5]

o changes to an interface between third-party compo-
nents at the time of integration is expensive [6]

Along with understandability and testability, the mod-

e Paul Emberson and lain Bate are with the Department of Computer
Science, University of York, York, YO10 5DD, U.K.
E-mail: {paul.emberson,iain.bate}@cs.york.ac.uk

Manuscript received September 01, 2008; revised ...

ifiability of an architecture is one of the key qualities
for determining architecture maintainability [7]. Much
of the work on creating flexible software architectures
has focused on scenario-based analysis methods [8], [9].
These methods rely on applying potential requirements
changes onto an existing architecture model and viewing
the responses of metrics for qualities such as perfor-
mance or dependability. Modifiability is the most preva-
lent architectural quality targeted for evaluation and
improvement by software architecture analysis methods.
Even when modifiability cannot be measured directly,
the effect of a change scenario on other measurable
qualities gives an indication of how difficult it will be
to make the change. Therefore, a combination of change
scenarios and one or more quality metrics, which aren’t
a direct measure of flexibility, can give insights into the
modifiability of the architecture.

Within real-time system design, the assignment of
tasks to processing units and the construction of a suit-
able schedule is called a task allocation problem. It has
been identified as one of the most important architec-
tural problems in automotive software engineering [10].
The problem also involves assigning messages to com-
munication buses with tasks and messages collectively
referred to as schedulable objects. There are well defined
quantitative real-time system models which can calculate
a response when a scenario is applied to a possible
solution. This makes task allocation a good target for
automated scenario-based analysis. Depending on the
requirements of the system, the response metrics used
could include missed deadlines, jitter, volume of net-
work traffic, and load balancing between processors.

The direction of recent research in task allocation has
been towards finding solutions which not only meet
hard timing requirements but are also of a high quality
with respect to other attributes such as reliability [11],
[12] and flexibility [13]. This work addresses flexibility

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR

(Task 1 H Task 2 H Task 3
(Task 9

Task 12)
Task 10)

Task 5

Task 6 H Task 7

(a) Process view

(Tkt

General Purpose Processor 1

% Task 1

Graphics Processor

Task 12

{HK

. l

t T —t + T

Network Bus | | ! |
[

T |

)

(

|

| General Purpose Processor 3
L

|
|
|
|
|
! ‘ ! Task 6 Task 7
Task2 [Task 3 | | ask6 | 1 as
| | |
| I |
| | | |
= i
Task 9 | Task 8 | |
) I Y D
e 8 J

(b) Deployment view
Fig. 1. Process and deployment architecture views

by applying scenarios to solutions within a search-based
task allocation framework. The emphasis on improving a
diverse range of non-functional requirements with auto-
mated optimisation and, in particular, search techniques
coincides with other work in the field of Search Based
Software Engineering (SBSE) [14]. Harman has stated
that the robustness of solutions is an important area of
future research in SBSE [15]. The work in this paper
addresses this concern for the task allocation problem.
The algorithms also have the potential to be applied to
other scheduling problems in the field of SBSE such as
software project management [16].

There are three main contributions made in this paper.
The first is a parallel simulated annealing algorithm
which searches for solutions for both the current problem
to be solved and one or more change scenarios. In par-
ticular, it has been designed to remove platform depen-
dent variance and repeatability issues which can cause
problems when doing experimentation whilst still taking
advantage of modern multicore platforms. The second
contribution is an investigation into how different styles
of scenarios enhance the flexibility of problems with dif-
fering characteristics. This demonstrates the additional
insight that search-based software engineering combined

with systematic experimental method can bring to a
problem. It is important not to give the impression that
an algorithm can be taken off the shelf and provide total
automation without any additional effort. The algorithm
will require configuration of its parameters and must
be considered within the wider software engineering
process. The third contribution of this work is the process
used to configure the algorithm, its use in the initial
development of a flexible baseline solution and then how
it can evolve this solution during maintenance.

The structure of the remainder of this paper is as
follows. Section 2 presents related work in the areas of
scenario-based architecture evaluation and real-time task
allocation. Section 3 describes the step-by-step process
used to configure the algorithm and generate solutions at
different stages of the software engineering process. The
sections following this carry out this process. Section 4
describes how the set of test cases was generated and
how the search algorithms were configured to meet the
varying demands of different problems. Section 5 pro-
poses and evaluates an algorithm for finding solutions
in the vicinity of an existing solution. Section 6 utilises
results from sections 4 and 5 in constructing the algo-
rithm for generating flexible solutions with scenarios.
Conclusions are given in section 7.

2 RELATED WORK

Scenarios form a core part of software architecture analy-
sis. An early method is the Scenario Architecture Analy-
sis Method (SAAM) [8] which measures modifiability by
counting how many and by how much components are
affected by a scenario. An equivalent metric is used in
section 6 for assessing how flexible a generated solution
is. A survey of architecture analysis methods [17] shows
that a large proportion of the work concentrates on the
social and organisational issues involved in generating
scenarios and undertaking architecture analysis as part
of a wider development process. These issues are also
relevant to the generation of scenarios for automated
methods but are outside the scope of this paper.

Task allocation is an NP-hard problem and much
research has looked at how to solve increasingly large
and more complex problems using a variety of opti-
misation techniques. Some examples include simulated
annealing [11], [18], [19], solving via conversion to a SAT
problem [20], branch and bound [21], particle swarm
optimisation [12] and constraint programming [22]. Di-
rect performance comparisons between these works is
difficult since the underlying system model and schedu-
lability analysis varies between studies.

Whilst conversion to another class of problem such
as SAT opens up the use of many high-quality off the
shelf optimisation tools, it also requires the extra step
of converting the objective function and constraints to
a suitable form. For the purposes of this work, meta-
heuristic search has the advantage of being able to build
implementations of timing analysis and other quality

EMBERSON et al.: STRESSING SEARCH WITH SCENARIOS FOR FLEXIBLE SOLUTIONS TO REAL-TIME TASK ALLOCATION PROBLEMS 3

metrics into the objective function with little additional
work. The chosen algorithm for TOAST (Task Ordering
and Allocation Search Tool), described in sections 4 to 6,
is based upon simulated annealing [23] which has a
proven track record in task allocation.

In all previous work on task allocation, there has been
little attention paid to the affects of different problem
characteristics, such as the ratio of tasks to processors,
on the performance of optimisation methods and the
flexibility of the solutions generated. Most experiments
are limited to variations in problem size based on the
number of tasks and processors [11]. Yin et al. [12]
acknowledge that the level of inter-communication be-
tween tasks, referred to as task interaction density, is an
important factor. Extrapolation of results outside of the
class of problems experimented upon without a good
understanding of their characteristics is an issue not
just within the field of task allocation or even SBSE but
throughout many areas of experimental research with
heuristics [24], [25]. This work pays close attention to
these criticisms.

An alternative to scenario-based analysis for improv-
ing flexibility at the architecture level is sensitivity anal-
ysis. For real-time systems, the limits of the attributes
of the system such as task execution time are found
using binary search. Racu et al. [6] also take an SBSE
approach by combining sensitivity analysis with a multi-
objective search optimisation framework. They currently
only adjust priority levels of tasks and assume the allo-
cation is already defined. Each sensitivity calculation is
effectively evaluating a scenario for particular values of
object attributes several times over and is computation-
ally expensive. Scenario-based analysis selects a smaller
number of possible changes. The overall computational
cost of sensitivity analysis will depend on whether it is
applied to each individual object or for larger groups
of objects. The TOAST tool includes a coarse grained
sensitivity analysis across all objects but primarily as
a heuristic to guide the search towards schedulable
solutions rather than as an aid to flexibility.

This work is an evolution of previous work by the
same authors. Initial work [13] with the same aims of
improving flexibility in real-time system design used an
algorithm that was inferior both in terms of performance
and solution quality. A new parallel simulated annealing
algorithm was presented in a paper on finding task
allocations for systems with multiple modes [26] which
has a similar problem formulation to finding allocations
for multiple scenarios. Further improvements to the
algorithm are introduced in this paper. Specifically, a sec-
ond step which required running further searches based
on the solutions from each thread has been eliminated
by exchanging more information between threads whilst
they are running. Furthermore, a new synchronisation
mechanism ensures repeatability of experiments and
ensures variations in results are not affected by the oper-
ating system environment. Neither the process of config-
uring the algorithm for different problem characteristics

nor the relationship between problem characteristics and
flexibility has been investigated in any of the authors’
previous work.

3 EXPERIMENTAL PROCESS

The technical aspects of this paper are described in three
parts:
1) the creation of problems and configuration of the
search algorithm to solve them,
2) an evaluation of an algorithm for minimising dif-
ferences between previous and new solutions,
3) the creation of an algorithm for generating more
flexible solutions through the use of scenarios.

These are described over the course of sections 4, 5 and 6
respectively. In order to facilitate understanding, this sec-
tion gives a broad overview of the process and explains
some key concepts and terminology used throughout the
rest of this paper.

3.1 Terminology

The meanings of some key phrases as used in the context
of this paper are given below.

A schedulable object is a task or a message. A scheduler
is a processor or communications bus.

A system specification is a set of schedulable objects and
schedulers along with their attributes such as task worst
case execution time, message size and communication
bus speeds.

A (system) configuration is a table of assignments of
schedulable objects to schedulers as well as an assign-
ment of priorities to schedulable objects which defines
their schedule.

A task allocation problem is the problem of finding a
configuration for a given system specification in order
to meet some criteria. A solution to a task allocation
problem is any such configuration.

A scenario is a system specification for a hypothetical
situation which would change the system requirements.

A system upgrade or actual specification change is a
change to the original system specification which is
actually needed at this point in time — unlike a scenario,
which is a prediction of changes in the future.

A baseline configuration is a configuration created at
some time in the past. This is usually mentioned in the
context of a system upgrade to emphasise the difference
between the new configuration which is needed to meet
the system upgrade specification and the configuration
already in existence.

A problem characteristic is any quantifiable measure-
ment that gives information about a problem specifica-
tion. Examples include the number of tasks and the ratio
of messages to tasks.

A problem class is a group of problems related by the
values of one or more problem characteristics.

A cost function is a term for an objective function used
in a problem where the aim is to minimise the value of
the objective function, i.e. to minimise the cost value.

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR

In the case of the TOAST tool used for the evaluations
in this paper, the cost is calculated as a weighted sum
of the values of other functions. For example, the pro-
portion of missed deadlines and object sensitivity. Each
of these functions is a cost function component or cost
component. The weight associated with each cost function
component is a cost component weighting.

An algorithm parameter is any parameter which affects
the behaviour of the search algorithm other than cost
component weightings. For example, the cooling rate
used in simulated annealing.

Parameter tuning is the activity of finding algorithm
parameter values and cost component weightings which
are good at solving at problems in a particular class.

3.2 Process

There is an important distinction between the experi-
mental process used to decide whether, for example,
one scenario causes the search to generate more flexible
solutions than another scenario and the practical steps an
engineer would use to generate a flexible baseline con-
figuration. With the former, experimental rigour needs to
be emphasised though sensible compromises sometimes
need to be made due to limitations in available compute
resources and time. For a practitioner, this rigour is less
important than achieving acceptable results. However,
tuning of the algorithm at each stage of the process as
set out below is important in generating high quality so-
lutions. A process which includes these additional steps
should be more robust to differences between problems
when compared to a process which only involves the
running of the algorithm.

The key to any good experimental method is control-
ling sources of unwanted variance [27] so that they do
not mask or distort the effect caused by the factor of in-
terest. For experiments with heuristic search algorithms
which have a deterministic objective function, variance
in the response can be caused by any of the following:

1) differences in algorithm parameters and cost com-
ponent weightings or use of a different algorithm
2) differences in the environment in which the algo-
rithm is run which can affect decisions within the
algorithm or the response it gives
3) seed values used to initialise pseudo-random num-
ber generators
4) solving different problems
Two types of experiment are performed in this paper.
The first are parameter tuning experiments where values
for the first type of factor are chosen and the factors
need to be controlled. The other investigates the effects
of different problems and scenarios on the ability to
generate a flexible baseline. In this situation, the partic-
ular problems are chosen and the first three sources of
variance need to be controlled.
The algorithm and its parameters are predetermined
by source code and input data and so are easy to control.
Environmental differences which affect response include:

o the interaction with other processes and / or pro-
cessor speeds if the response is time dependent

o scheduling decisions made by the operating sys-
tem which can affect asynchronous parallel algo-
rithms [28] especially when running on a hetero-
geneous platform

In this work both of these issues are avoided; responses
are based on the number of cost function evaluations and
the parallel algorithm in section 6 uses a synchronous
communications mechanism to ensure repeatability.

The effect of using different random number seeds
is a source of nuisance variance [27] which cannot be
eliminated but can be managed with the use of repeti-
tions. Previous work has suggested that finding good
algorithm parameters which reduce the mean search
running time can also reduce its variance [29]. This is
corroborated by results in section 4.

Managing variance due to different problems is an
exercise in deciding which characteristics should be used
to classify problems in the context of the selected algo-
rithm and its parameters. If the characteristics used to
classify problems are not sufficiently specific then there
will be too much variance between results for problems
in the same class for the classification to be useful.
This has to be balanced with the reduced practicality of
using problem classes which are too small [25]. In this
work, four problem characteristics are considered and,
in section 4.4, all possible pairs are tested to see which
classification has the biggest impact on performance.

A step by step overview to clarify the experimental
process is now given. The section of this paper which
covers each step is given in parentheses.

1) Select classes of problem to be studied and generate
example problems. (Section 4.2)

2) Tune algorithm parameters and cost component
weightings for different classes of problem. Once
the search is configured, generate three solutions
for each problem. These will act as a control for
evaluating increases in flexibility when scenarios
are used. (Section 4.4)

3) Generate changes to problem specifications which
will act as system upgrades to test flexibility. (Sec-
tion 5.2.1)

4) Evaluation of algorithms and parameters for min-
imising change. Using baselines generated in step
2, try to find solutions to system upgrades gen-
erated in step 3 which have as few differences as
possible from the baselines. (Section 5.2)

5) Generate scenarios for evaluation. (Section 6.2)

6) Using method developed in step 4, evaluate the
baselines generated with scenarios with each other
and also with the baselines generated in step 2. If
the requirements of an upgrade specification can
be met with fewer changes, the baseline is said to
be more flexible. (Section 6.3)

EMBERSON et al.: STRESSING SEARCH WITH SCENARIOS FOR FLEXIBLE SOLUTIONS TO REAL-TIME TASK ALLOCATION PROBLEMS 5

4 PROBLEM SELECTION
4.1 System Model

The real-time system model is described here in suffi-
cient detail to comprehend the issues surrounding the
generation of example task allocation problems. For a
more in depth description readers are referred to the
work on distributed scheduling analysis by Palencia and
Harbour [30] which is used to calculate response times.

Tasks send messages to one another which creates
dependencies between tasks. The structure of these de-
pendencies take the form of directed acyclic graphs with
tasks represented as nodes and messages represented
as edges. Each independent task graph is a transaction.
Within the system specification, each task is assigned a
worst case execution time (WCET) and a period. The
utilisation of a task is its WCET divided by its period.
The total system utilisation is the sum of all task utilisa-
tions. Each task also has a deadline. Timing requirements
are specified in terms of calculated response times being
less than or equal to deadlines. In this work, deadlines
are set equal to periods. Messages have a maximum size
attribute. When a message is assigned to a communica-
tions bus, a worst case communication time is calculated
based on the speed and latency characteristics of the bus.
All messages and tasks within the same transaction have
the same period.

The hardware model consists of a number of pro-
cessors connected together with communications buses.
A bus is attached to each processor for messages sent
between tasks on the same processor. The attributes of
these buses can be set to simulate what in reality may
be an alternative mechanism such as shared memory
communication. As discussed in section 3 the aim is
to understand the effects of a small number of charac-
teristics and control others. For this reason rather than
technical ones, the example hardware platform is fairly
conservative. All processors are connected together with
a single broadcast network and are homogeneous in
the sense that a task’'s WCET does not depend on the
processor it is allocated to.

4.2 Test Case Generation

A test case generator tool is used to generate system
specifications whose characteristics are dependent upon
parameters given to the tool. The number of tasks is used
as a unit of size for the problem. Where relevant, other
parameters are specified as proportions of the number of
tasks. The number of processors is calculated from the
tasks per processor parameter. The number of messages
sent between tasks is set by the messages per task
parameter. Tasks are randomly grouped into transactions
according to the tasks per transaction parameter.
Periods for each transaction are chosen from a given
range such that different orders of magnitude are sam-
pled from with equal probability as suggested by Davis
et al. [31]. They are rounded to a whole value with a
granularity of 1/10 of the lower limit of the period range.

TABLE 1
Varied problem characteristics

Problem Utilisation Tasks Messages Max period
Specification per proc. per proc. per task / min period
01 40 5 1 10 (5.90)
02 65 5 1 10 (5.00)
03 40 8 1 10 (2.3)
04 65 8 1 10 (6.4)
05 40 5 2 10 (5.9)
06 65 5 2 10 (8.6)
07 40 8 2 10 (9.6)
08 65 8 2 10 (6.0)
09 40 5 1 1000 (30.8)
10 65 5 1 1000 (62.0)
11 40 8 1 1000 (39.3)
12 65 8 1 1000 (81.3)
13 40 5 2 1000 (110.6)
14 65 5 2 1000 (367.8)
15 40 8 2 1000 (14.9)
16 65 8 2 1000 (127.2)
TABLE 2
Fixed problem characteristics

Characteristic Fixed Value

number of tasks 40

processor connectivity 1 (single broadcast network)

network bandwidth 2048

network latency 0

30000

message size
25% * 40 = 10 tasks (implies
4 transactions)

40% * 10 = 4

tasks per transaction

transaction length

WCETs are set so that the overall utilisation per pro-
cessor meets a value set by a parameter to the problem
generation tool and utilisation is distributed evenly be-
tween transactions.

The final stage of system generation is to connect
tasks together with messages to form the task graphs
for each transaction. A parameter, which is specified as
a percentage as the number of tasks in a transaction,
decides the average transaction length defined as the
longest path through the task graph. Another parameter
sets the ratio of messages to tasks.

For the experiments conducted in this paper, 16 prob-
lems were generated using all combinations of four
problem characteristics set at two different levels. These
characteristics and their values are shown in table 1. The
characteristic shown in the final column is the upper
limit of the range of periods divided by the lower limit.
The ranges used were [1000,10000] and [1000, 1000000].
The values given in parentheses is the actual maximum
period value divided by the minimum period within that
particular test case. The levels of utilisation leave scope
for system upgrades which increase utilisation in later
experiments.

Table 2 gives a list of problem characteristics which are
set at fixed values for all problems. The size of problem

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR

TABLE 3
Number of unscheduled objects with random search

Problem Tasks Mess. Total || Problem Tasks Mess. Total

01 5 0 5 09 2 0 2
02 17 5 22 10 9 0 9
03 1 0 1 11 4 0 4
04 9 0 9 12 8 1 9
05 5 2 7 13 10 10 20
06 18 13 31 14 16 19 35
07 6 6 12 15 10 2 12
08 13 9 22 16 15 8 23

in terms of the number of tasks, messages and processors
is similar to that used by Zheng et al. in an evaluation
of a subsystem of an experimental vehicle [32].

4.3 Search Algorithm
4.3.1 Random Search

For a quick assessment of problem complexities, a ran-
dom search was performed. Each run of the search
tried 400000 random solutions and stored the solution
with the lowest number objects not scheduled. For each
problem, the best result from three repetitions is shown
in table 3. No solution met all constraints but the number
of unscheduled objects gives a crude estimate of prob-
lem difficulty. The results suggest that problems with
higher utilisation and more messages per task are more
challenging.

4.3.2 Simulated Annealing

To find solutions which meet all requirements, a guided
search is needed. The algorithm used is simulated an-
nealing [23]. Pseudo-code for this algorithm is listed in
figure 2. At each iteration step, ssize configurations are
sampled from the neighbourhood. The configuration in
the sample with the lowest cost is then put forward
to the simulated annealing acceptance criteria. The al-
gorithm has three configurable algorithm parameters:
the initial temperature, sample size and the number
of inner loop iterations. The cooling factor is fixed at
0.99 but the rate of cooling can be changed via the
inner loop iterations parameter. The stopping condition
function depends on the needs of each experiment. The
neighbourhood of a solution is the union of the set of
all single task and message reallocations and the set of
priority reorderings which change the priority of a single
task or message to a new slot position.

The other parameters which need to be tuned are the
cost component weightings. The list of cost component
functions are given in table 4. The full formulae and
details of these functions are given in previous work [33].
The purpose of each is now briefly described.

e g1 is a function which gives the proportion of dead-
lines missed. When this reaches 0, it shows that the
solution meets all timing requirements.

e g2 penalises tasks which need to communicate but
are assigned to separate clusters of processors. For

/* the initial solution */

/* sample size parameter */

/¥ initial temperature */

/* inner loop iterations */

/* stopping condition function */

input: init ;
input: ssize ;
input: inittemp ;
input: maxinner ;
input: stop ;
begin
curconf = init; bestconf = init;
curcost = cost f n(curconf) ;
bestcost = curcost;
repeat
i=0;
repeat
(newconf, newcost) = sanpl enei (curconf, ssize) ;
if newcost < bestcost then
bestconf = newconf; bestcost = newcost;
end
if randuni for () < exp(-(newcost - curcost)/t) then
curconf = newconf, curcost = newcost;
end
i=i+1;
until i == maxinner or st op() ;
t=1t%0.99;
until stop() ;
end

Fig. 2. Simulated annealing algorithm

all the test problems in this work, all processors are
interconnected so it will always evaluate to 0 but is
included for consistency with previous work.

e g3 penalises any task or message which is allocated
in such a way so as not to be able to receive its input
or send its output. This could happen if a message is
assigned to the intra-processor bus for the processor
the source task is allocated to but the destination
task is on a different processor.

o g checks for any schedulable objects involved in the
same transaction but whose priority ordering does
not match their precedence ordering.

e g5 performs sensitivity analysis on the execu-
tion/communication times of tasks and messages.

o g¢ measures the variance in utilisation between pro-
cessors. Reducing this improves the balance of load
between processors.

e g7 is a metric for whether schedulable objects in-
volved in the same transaction are allocated to
the same schedulers. This reduces communication
overheads.

e gs has a similar purpose as g7 but concentrates on
pairs of tasks which are adjacent to each other in a
transaction.

e g9 adds a penalty for any schedulers which are more
than 100% utilised since no feasible solution can
include such a configuration.

All cost function components produce a value in the
range [0,1]. The weighted sum of these component val-
ues is normalised using the sum of the weights so that all
cost function values are also in the range [0, 1]. This is im-
portant in reducing interactions between weightings and
algorithm parameters which makes parameter setting
easier. In particular, the temperature based acceptance
criteria which uses the absolute change in cost value
would not be affected if all cost component weightings

EMBERSON et al.: STRESSING SEARCH WITH SCENARIOS FOR FLEXIBLE SOLUTIONS TO REAL-TIME TASK ALLOCATION PROBLEMS 7

TABLE 4
Cost function components

Function

(as in [33]) Name

g1 Missed Deadlines

g2 Unreachable Tasks

g3 Unconnected input / output

g4 Incompatible Priority /Precedence Order
gs All object sensitivity

g6 Processor load balance

g7 Transaction object grouping

gs Separated communicating tasks

g9 Over utilised schedulers

were multiplied through by a constant.

These component functions are designed to act as
good heuristics for particular classes of problem. For
example, grouping objects in the same transaction to-
gether will generally create a good solution. However,
for situations where this is not possible, weighting this
component too highly will severely reduce performance.

4.4 Parameter Tuning

The cost component weightings and search algorithm
parameters must be tuned to work with the set of test
case problems described in section 4.2. The reasons for
tuning parameters is twofold. Firstly, it will improve per-
formance so experiments can be run in less time. More
importantly, optimising the search algorithm according
to different problem characteristics should reduce the
variance between runs and reduce the likelihood of the
algorithm failing to find a solution when one exists.

In this work, the cost component weightings and
search algorithm parameters are tuned separately. This
makes the total number of experiments, which has an
exponential relationship with the number of parame-
ters, more manageable. It is a potentially sub-optimal
approach since there is no guarantee that the two pa-
rameter sets are independent. The aim, however, is to
find a set of parameters which performs well across the
problem test set and optimality is not a requirement.

The method used for tuning parameters is the same as
described by Poulding et al. [29] who also gives further
references on experimental methodology. The method
can be condensed into three stages:

1) run experiments with different input levels,

2) use regression techniques to create a model which
maps the input levels to the response variable,

3) use optimisation to find the inputs which minimise
the response according to the generated model.

The model of the algorithm behaviour is an approxi-
mation based on interpolating between parameter levels
used in experiments. It can also be inaccurate by over-
fitting to effects caused by sources of nuisance variance.
Nevertheless, it will systematically and efficiently find a
good design point in the parameter space [29] to which
small adjustments can be made if necessary.

4.4.1 Tuning Component Weightings

Since the cost function is normalised, they can sum to
any constant value which is chosen arbitrarily at 30000
for these experiments. A suitable experimental design
where relative proportions rather than absolute values
need to be found is a mixture model simplex lattice
design [29]. Using this design for each of the 9 factors
at 3 levels requires 165 runs per problem. To cover all
16 problems with 3 repetitions for each combination of
weightings requires 7920 runs. Within each repetition
of the experiment each factor level will be assessed 55
times, counteracting sources of nuisance variance such
as different random seed values. With each experiment
having the potential to run for several hours if no
acceptable solution is found, the White Rose Grid at
York [34] was utilised connected to other clusters of
computers using BOINC [35].

The stopping condition for these experiments was
when all timing requirements were met (g1 = 0) or
the maximum number of evaluations, set to 300000, was
reached. This value, known as a censoring level, is chosen
to balance having a high number of successful runs,
which improves the accuracy of the fitted model, and
the time required to complete. The search algorithm
parameters were set to values found by trial-and-error
in preliminary work. Initial temperature was set to 0.003,
sample size to 1 and max inner loop iterations to 5000.
The response variable was the number of evaluations
recorded when the search stopped. A model was created
using survival regression based techniques which take
account of runs which terminate without finding a valid
solution. Inputs which minimised the value of this model
were found using LINDO Optimization [36] software.

Since the aim is to take account of problem charac-
teristics, as well as generating a model to best fit data
across all 16 problems, the problems were classified in
different ways using all possible combinations of two of
the four problem characteristics. For each of these six
classification schemes, a model was fitted to each of the
four groupings within it and minimised. The mean of
the minimal response estimated by the model was used
as a guide to the quality of the classification scheme.
The classification scheme which gave the best response
was to form problem groups by their utilisation per
processor and tasks per processor characteristics. Both
the weightings found by fitting a model over all 16
problems and those found by classifying the problems
were tested by running the search algorithm with the ap-
propriate weightings with 3 repetitions on each problem.
For these 48 runs, the maximum number of evaluations
was increased to 400000 to reduce failed runs and the
search algorithm parameters were left as before.

The results of these tests are shown in table 5. For the
single set of weightings 10 runs failed to find a solution
within the allowed number of evaluations so a precise
value for the mean cannot be calculated. The second
line of the table shows that using separate weightings

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR

TABLE 5
Tuned parameter tests

Parameters Mean . Failures
Evaluations
Single weightings set > 100945 10
Classified weightings 51137 0
As above with specific
weights for prob. 06, prob. 14 36416 0
TABLE 6

Problem dependent component weightings

Problem(s)

g1 g2 g3 94 95 ge gr g8 99
01,05,09,13 16434 3 3 4173 3 3 9375 3 3
02,10 14578 3 3 2840 5199 3335 3 4036 3
03,07,11,15 16264 3 3 5030 3 3 8688 3 3
04,08,12,16 16413 3 3 4630 3 3 8939 3 3
06 12000 3 7364 3 4076 2605 3 2446 1500
14 17773 3 3000 3 2513 3 3 3804 2898

for different problem classes substantially improved the
performance of the algorithm.

These tests showed that two problems, 06 and 14, were
needing an order of magnitude more evaluations to find
solutions for. These problems both have a combination
of high processor utilisation, low number of tasks per
processor and a high message to task ratio. The fact that
problems with only two of these characteristics appear
to be substantially easier is an example of the insight
that can be gained from systematic experimentation with
search algorithms. After reviewing the data used to fit
the models for these two problems it was found that
from the 990 runs covering these two problems, only
1 run found a solution within the censoring level. To
get a more varied response for different weightings, a
constrained mixture model was used so that only inputs
where the weighting for missed deadlines was greater
than 12000 were considered. This experiment had 271
successful runs from the 990. The final row of table 5
shows the results from this experiment and that the
mean number of evaluations was further reduced.

The final table of weightings to be used for future
experiments is given in table 6. A look at this table shows
that the results are sensible. Component weightings for
component g;, upon which a stopping criterion is based,
has consistently high values and weightings for go,
which was noted in section 4.3.2 not to be useful for
these problems, has the lowest permitted value.

4.4.2 Tuning Algorithm Parameters

Once component weights had been decided, the other
search algorithm parameters could be tuned. A full fac-
torial experimental design was performed for the three
parameters at 3 levels for all problems, again with 3
repetitions. This lead to a further 3% x 16 « 3 = 1296
experimental runs. The results of fitting and optimising
the model gave an initial temperature of 0.001, with 500

init. temp 2

Fig. 3. Algorithm parameter model

inner loop iterations and a sample size of 7. A slice of the
model, with inner loop iterations fixed at 500 is shown in
figure 3 shows the minimum for the sample size close
to 7. Raising the value higher causes the search to be
more aggressive in finding lower cost solutions but at
the expense of it getting stuck in local optima. Lower
values help the search avoid becoming trapped in local
optima but takes longer to find a solution. The interac-
tion between sample size and initial temperature is also
revealed by the plot. Lowering the initial temperature
and increasing the sample size both cause the search
to be more exploitative as opposed to explorative. At
high sample sizes, the model shows that better results
will be obtained using a higher initial temperature to
avoid getting stuck in local optima. At low sample sizes,
the graph indicates better performance at lower initial
temperatures which reduce search exploration.

In reality, when the proposed algorithm parameters
were tested, they were found to be overly aggressive
with many runs becoming stuck in local optima and fail-
ing to find a solution. Modelling according to problem
classes produced similar results. This demonstrates that
the fitted model is not totally representative of the algo-
rithm behaviour. This is most likely due to limitations in
the shape of the model and sources of nuisance variance.
It did however, act as a good guide towards using more
aggressive search parameters than were originally be-
ing used for component weighting tuning experiments.
Within just a couple of trial-and-error runs, it was found
that setting the initial temperature to 0.002, the sample
size to 5 and the inner loop iterations to 5000, much
improved results could be obtained.

The result of testing these parameters versus those
used in the test for the last result in table 5 is shown
in figure 4. Despite the improvements made by select-
ing specific weightings for problems 06 and 14, these
problems were still requiring a much larger number of
evaluations and more crucially, as can be seen in figure 4,

EMBERSON et al.: STRESSING SEARCH WITH SCENARIOS FOR FLEXIBLE SOLUTIONS TO REAL-TIME TASK ALLOCATION PROBLEMS 9

250
200
©
% 150 parameters
S E original
k5]
S tuned
T 100 -
[0}
501 ﬁ Ci
ﬁ L = =
—_ﬁis“ﬁ_ —-— * *—_E——_‘=_ — — r
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16
system
Fig. 4. Original vs tuned algorithm parameters

a much larger degree of variance between repetitions.
By tuning the search algorithm parameters, both the
number of evaluations and variance between repetitions
was dramatically reduced. The only compromise was an
increase in variance between repetitions for problem 15
though the mean number of evaluations for this prob-
lem still decreased. The mean number of evaluations
required over all 48 test runs was reduced by over 73%
from 36416 to 9567.

5 MINIMISING CHANGES TO SOLUTIONS

This section presents the algorithm used for finding
a solution that is similar to a baseline yet still meets
the needs of an upgrade specification. The flexibility
of a particular baseline will be measured in terms of
the number of modifications required to transform the
baseline into the solution found by this algorithm for
different upgrade specifications.

5.1 Configuration Difference Cost Components

Two additional cost function components are introduced
to penalise solutions which are further away from a base-
line. They use metrics for measuring allocation changes
and priority changes, for which full formulae can be
found in previous work [26]. Each one takes two con-
figurations as inputs and outputs a value indicating the
difference between them.

e Gtac i the component used to measure task alloca-
tion changes. It is a measure of the proportion of
tasks which are not allocated to same processor in
both configurations.

e Gipc is the component used to measure task priority
changes. It only has non-zero values for tasks which
are allocated to the same processor in both con-
figurations since comparing priorities on different
processors has no meaning. Only changes to order
rather than absolute priority value are penalised
since a relabelling of priorities which maintain the
same order will have no effect on the schedule.

These two components can be combined into an over-

all measure of change using a normalised weighted sum
such as that given below.
10 - gticl-‘r Gtpe (1)
The cost a priority change incurs versus the cost of
an allocation change will depend on the motivation
for reducing change and how these costs relate to real
world financial costs. Since a priority change value for
a particular task is non-zero only if its allocation is the
same, allocation changes should have a higher weighting
else the search may favour different allocations to reduce
the priority change metric. The 10 to 1 ratio used above
is suitable to demonstrate the use of this function.

9mod =

5.1.1 Combining With Timing Constraint Components

The cost function that was used throughout section 4 is
relabelled as g,.neq and then this value is combined with
the result of gnoq, defined in equation (1), to produce
an overall cost value. Grouping components together to
form these higher level components simplifies balancing
the effects of components which guide the search to-
wards solutions which meet timing constraints and those
components which penalise changes.

Influenced by the importance of component g; in find-
ing solutions which meet all schedulability constraints,
the following equation was proposed to balance the two
sets of components.

WschedYsched + (1 - gl)bgmod
Wsched T (1 - gl)b

f=)
where wscheq changes the balance between meeting
schedulability requirements and the need to reduce the
number of modifications. As the proportion of objects
with missed deadlines, g;, decreases, more emphasis is
put on minimising change. The value of b alters the bias
towards the constraints.

5.2 Algorithm Evaluation

Experiments were conducted to evaluate the perfor-
mance of a search algorithm using (2) as a cost function.
The steps taken were:

1) Generate upgrade specifications to use as a test set

2) Ensure existing parameters are suitable for finding
solutions to upgrade specifications and a solution
can be found for each one

3) Evaluate values for the parameters wgcneq and b in
equation (2) for their ability to find solutions with
minimal changes from a baseline.

5.2.1 Upgrade Specification Generation

The upgrades which were generated were limited to util-
isation increases where the increase was spread evenly
between transactions. The levels of utilisation increase
are given in table 7. Initially the utilisation increases
used were the same for all problems. However, when

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR

TABLE 7
Utilisation increase levels

Actual Utilisation Increase

Utilisation - - -
Increase Level Lo_w_ S.tartmg Hl_gb S.tartmg
Utilisation Utilisation

1 4% 2%

2 8% 4%

3 12% 6%

4 16% 8%

5 20% 10%

large utilisation increases were applied to some problems
which already had a higher starting utilisation, it was not
possible to find solutions for the upgrade specifications.
Therefore, smaller utilisation increases were made for the
upgrade specifications associated with problems having
a higher initial utilisation as listed in table 1. For each
utilisation increase level and each problem, 3 separate
upgrades were generated to be used for repetitions in
later experiments. There were 5 * 16 * 3 = 240 upgrade
specifications generated in total.

5.2.2 Upgrade Validation

Upgrade specifications were checked to be feasible by
searching for a solution to each of them without regard
for any existing baseline. The cost component weightings
used were taken from the results for higher utilisation
problems in table 6. Given the additional challenge
posed by the utilisation increases, the sample size was
reduced from 5 to 3 to allow the search to be more explo-
rative. These weightings and parameters were successful
in solving all of the upgrade specifications.

As a reference for future experiments, the solutions
found while checking the feasibility of upgrade specifica-
tions in section 5.2.1 had a mean proportion of allocation
changes from their baselines of 0.842. Given that there
are be several valid solutions for each problem, this high
value is not surprising.

5.2.3 Parameter Evaluation

An evaluation was performed for a range of values of
Wsehea With b = 0 and with b = 40. Experiments with
b = 0 are labelled as “fixed” since the balance between
schedulability constraints and minimising change be-
tween solutions does not change throughout the course
of the search. Experiments with b = 40 are labelled
as “adaptive”. The problem to be solved is to find a
value for wgepeq such that the solution which the search
produces has as few modifications as possible but with
all schedulability requirements met.

For all experiments where modifications from a base-
line needed to be reduced, the search algorithm uses the
baseline as an initial solution. For the experiments in this
section, the solutions generated from the final set of tests
described in section 4.4 were used as baselines. Since the
upgraded specifications have much in common with the
original problem specifications, the previous baseline is

TABLE 8
Failures for different weighting levels

Wseheq Fixed (b=0) Adaptive (b = 40)
2.5 36 25
5 14 11
20 6 3
40 5 4
80 2 2
200 2 2
method e
0.25 - - fixed =
-4 adaptive
0.20
1)
)
o
G
80.15 -
3]
c
o
$0.10 -
o
o
©
0.05 ~

50 100 150 200
Wsched

Fig. 5. Comparison of methods for solved problems only

often a good partial solution with many schedulability
constraints already met. Rather than allow the search to
be over explorative, parameters were modified so that
it would perform a thorough search near the baseline.
The sample size was maintained at 3 but the initial
temperature was dropped to 0.001. The stopping criteria
were set so that 300000 evaluations were performed or
the search stopped immediately if the initial solution met
all schedulability requirements with 0 modifications.

The weightings used were the same as those in the
initial experiment which checked the solvability of the
upgrade specifications but with one important change:
the weighting for component g; which penalises missed
deadlines was increased for the following reasons. Com-
ponents gs,...,g9 are aimed at guiding the search to-
wards a solution which meets all timing constraints
(91 = 0). However, even after all timing constraints are
met, they continue to be in tension with cost components
for minimising change making this objective harder to
achieve. Since the search problem is made easier by us-
ing a baseline configurations as starting point, the utility
of these guiding components is reduced. Increasing the
weighting of g; by a factor of 6 reduced their influence
by a suitable amount.

The number of times that a schedulable solution was
not found for the fixed and adaptive weighting methods
are shown in table 8. There was a common subset of
200 problems solved in every experiment. A comparison
of the number of allocation changes required for each
method applied to this subset is shown in figure 5. This

EMBERSON et al.: STRESSING SEARCH WITH SCENARIOS FOR FLEXIBLE SOLUTIONS TO REAL-TIME TASK ALLOCATION PROBLEMS 11

method .
- fixed :
0.25 -4 adaptive
3
0.20
C
]
ey
(3]
c
©0.15
©
o
o
©
0.10 -

T T T T
50 100 150 200
Wsched

Fig. 6. Comparison of methods including all problems

graph shows that at low to medium values of wsched
the performance is nearly identical. However, when
weightings are set to favour schedulability over change
more strongly, the fixed weighting method outperforms
the adaptive method. As the value of wycneq increases,
the number of changes increase. This is because, even
when solutions with fewer changes exist, if there is little
pull towards the original baseline, the search will tend to
move away until it finds a solution with all constraints
met and become trapped in this good local optimum.

To be able to compare the flexibility of baselines in
future experiments the results from table 8 and fig-
ure 5 need to be combined. This raises the question
of how to treat a failed result. It is known from the
validation experiment described in section 5.2.2 that a
solution exists for all upgrade specifications. However,
each failure indicates that the search was not able to
find a solution near the given baseline. One possibility
is to substitute the result for the number of changes
between the baseline and the solution found in the
experiment in section 5.2.2. However, this is a somewhat
arbitrary data point and using these solutions compared
to an alternative set of solutions could have a significant
impact on results. Instead, a value of 1 which is the
worst case proportion of allocation changes was used.
The results of treating failures in this way are shown in
figure 6. At low values of wscpeq, the adaptive method
performs better since it appears to be more robust at
finding a schedulable solution with small amounts of
change when weightings are set strongly in favour of
reducing modifications. However as the value of wscped
increases, it becomes easier for the search to find schedu-
lable solutions and the fixed weighting method achieves
better results.

Figure 6 shows that the best compromise of having
few failed results and minimising change occurs when
Wsched 15 5. A more in depth analysis of the two methods
was performed for this value. From the 240 runs, a
feasible solution was found by both methods 224 times.
The number of allocation changes differed on only 17

TABLE 9
Selected wgepeq Values

Problem wgcheq || Problem — wgcped

01 2.5 09 2.5
02 20 10 5

03 2.5 11 2.5
04 2.5 12 2.5
05 2.5 13 2.5
06 2.5 14 20
07 5 15 2.5
08 2.5 16 2.5

of these 224 runs and the mean proportion of changes
was 0.0087 for both methods so there is little to separate
them on this basis. When failures are included, the mean
proportion of allocation changes for the fixed method
is 0.0671 and 0.0563 for the adaptive method. A paired
Wilcox exact test of these two sets of data returned a p-
value was 0.370. This means that, when wg.peq is 5, the
null hypothesis that these two methods are equivalent
cannot be rejected. As a comparison, for a wscheq value
of 2.5, at which point both methods performed worse,
the p-value from the equivalent test was 0.02244. In
this situation, the null hypothesis can be rejected at the
95% confidence level, so the evidence that the adaptive
method provides benefit is stronger.

Finally, this raises the question of which values of
Wsched to use and with which algorithm. Although exper-
iments such as those run here can suggest values to be
used as a starting point, it is recommended that values
should be determined on a case by case basis for real
world use since much will depend on the baseline. Since
invalid solutions will be rejected in this case, there is no
reason not to use the simpler fixed weighting method.
For the purposes of experimentation, however, which
tests many baselines over several problems, values were
derived from these results which provided the best guide
available. Some failed runs were expected in the results
and so the adaptive method is preferred. Assuming that
baselines generated using scenarios will be at least as
flexible as one generated arbitrarily, low values of wgcped
were favoured apart from for problems which had a high
proportion of failures. The selected values are given in
table 9. The results corresponding to these values using
the adaptive method produce a mean allocation change
value of 0.036. This is a further improvement on selecting
a Wsched Value of 5 for all experiments which produced
a mean of 0.0563 as previously stated.

6 SEARCHING WITH SCENARIOS

The search algorithm for generating baseline solutions,
presented in section 6.1, is based on the assumption that
if a solution for a problem specification meets all or
nearly all of the requirements of a scenario, the solution
produced will be more flexible with respect to changes
of a similar nature to the scenario. This assumption is
tested in sections 6.2 and 6.3.

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR

[_ Best & Confguraion |

Global Best Solution

Best C Configuration]

i | current A Configuration ‘ Best B Configuration |
|
|

. Local Solution for A

(@]
c
3
3
o
3
=
@
0
o
=}
=h
Q
c
=
Q
=4
(=]
=]

Fig. 7. Solution representation for multi-problem search

6.1 Flexible Baseline Algorithm
6.1.1 Requirements

The functional and non-functional requirements driving
the design of the flexible baseline algorithm are moti-
vated by the needs of the broader process outlined in
section 3. These are:

1) to allow there to be differences between solutions
produced for each scenario and the problem spec-
ification and possibly for a valid solution to a
scenario to never be found

2) to minimise the differences between the final solu-
tions for each of the input specifications

3) to be scalable in terms of the additional computa-
tion required for evaluating multiple scenarios

4) to produce repeatable results for a fixed set of in-
puts (including a random number generator seed)

The first requirement was accomplished by assigning
the main problem specification and each of the sce-
nario specifications to separate instances of the search
procedure. This means that multiple solutions can be
produced and if one search fails to find a solution, others
will not automatically fail. Minimisation of the differ-
ences between solutions is performed by exchanging
details of the best solution found so far between each in-
stance of the search and trying to pull solutions towards
each other. The third requirement is attained by running
each of these search procedures in parallel. This allows
the algorithm to scale as long as the hardware plat-
form provides sufficient processing cores for the number
of scenarios used. To be able to reproduce results, a
synchronisation mechanism overlays the parallel search
threads so that the sequence of interactions between the
searches does not depend on the time at which those
interactions occur. This mechanism is described later in
this section.

6.1.2 Representation And Cost Evaluation

Figure 7 shows the representation of the solution which
would be held by three search threads, labelled A, B
and C, solving three specifications, i.e. the main prob-
lem specification and two scenarios. Each search thread

operates on a section of the solution specific to its
specification. The other parts of the solution are filled
with the best solutions found by other search threads
for their section of the solution. The global best solution
is a configuration made up of the best solutions found
for each specification. This is the solution returned by
the search when all search threads have terminated.

The cost function used by each search thread operates
on the whole of its locally stored solution, not just the
part pertaining to the specification it has been assigned
to. Within each thread, the schedulability of each system
and differences between each section of the configuration
are assessed using equation (2) from section 5.2 and then
the mean is taken across all systems to obtain a final
cost value. By penalising solutions with more differences
between configurations each search is encouraged to find
solutions similar to the others.

As with work in the previous section the correct
balance of achieving schedulable solutions and minimis-
ing change must be found. In this case the difference
between solutions for each specification rather than the
difference to a fixed baseline is being reduced. The sce-
narios act as a stress on the solution to the main problem
and the emphasis on minimising change is less critical
than before. With reference to equation (2), a value of 10
was chosen for wscpeq parameter and b is set to 40 once
again. On a small number of occasions, this emphasis
on obtaining similar solutions was too great to meet all
timing requirements of the main problem specification
and the baseline was regenerated with wscpeq set to 40.

6.1.3 Synchronisation Mechanism

The strategy for synchronising threads is to exchange
information whenever a search thread finds a solution
better than the currently held global best solution. For a
given set of inputs, a search will find its first improve-
ment on the initial solution after the same number of
evaluations on every run. Therefore, this can be used as
a basis for creating a repeatable sequence of interactions.

When each search thread is first spawned from the
main application, each thread locally stores a copy of
all its state variables which can affect the decisions it
takes. For simulated annealing, this includes the current
temperature and inner loop count. In order to achieve
repeatability, the state of the pseudo-random number
generator must also be controlled. The implementation
in TOAST uses a separate instance of the Mersenne
Twister [37] in each thread. These are seeded by the main
application when each thread is initialised.

The steps taken to synchronise the searches are best
explained by way of the example shown in figure 8. At
the top of the diagram, the searches have just passed
a synchronisation point, which could be the start of
the search. The next synchronisation point is based on
which search finds a solution better than the global
best solution in the fewest evaluations since the last
synchronisation point. If more than one search finds a
better solution after the same number of evaluations,

EMBERSON et al.: STRESSING SEARCH WITH SCENARIOS FOR FLEXIBLE SOLUTIONS TO REAL-TIME TASK ALLOCATION PROBLEMS 13
sync. point n A B C
0 — T T T
Evaluations ! ! !
since previous : ﬁ : :
synchronisation 1 =(10+6)s 1
| Sync. request detected. \ |
10000 — I — Continue./, I
1 1 1
i 1 1 1
) sync. pointn+1 | e=20vo)s) =208 X m | /rﬁ/‘?*'”‘\
1 // 1 \Continue / Best found. | \Continue / 1 | \Continue /
/ t=10s ! | Set sync. point | I I/ |
20000 — Check for sync. Ok. 1
Set Best f°”r“1t‘ : Update global best. : 1 / :
Ci Sf'fc' point. 1 Store local state. 1 . t= (10+6)s\ 1 1
10000 ecktor ?Iz:ii. 1 Restore A and C. 1 s ¢ detected r_/ 1
L) \|/ Set sync. complete. \|/ \ ync. request de e;v:t/ \I/
Fig. 8. Synchronisation mechanism
then the one with the lower cost is preferred. After this, ;ABLE _10
ties are broken based on a deterministic ordering of the cenarios
search threads. Figure 8 shows the following steps. viane tacks Utiliean
. . . . oage tasks 111sation
1) After 10 seconds, search A finds a new best solution Scenario Num scenarios changed increase
and sets a global data flag requesting synchronisa- :
. . noscen no scenarios used - -
tion. It now waits for other searches to reach the scenl 1 scenario 40% 4%
same number of evaluations. scen2 1 scenario 40% 11%
3 0, 0,
2) Just after 10 seconds searches B and C read this zgﬁﬂi izgiggﬂg igé" ;gof’
o o
synchronisation request. Search B hasn’t performed scen5 1 scenario 20% 25%
enough evaluations and continues. Search C is past scen6 1 scenario 60% 25%
scen?’ 3 scenarios 40% 11%

the synchronisation point so stops and waits.
After 20 seconds, search B still hasn’t reached the
synchronisation point but has found a new best
solution. It sets the synchronisation point to a lower
number of evaluations. All searches are now at or
past the synchronisation point. Search B is the only
search exactly at the synchronisation point so it
updates the global best with its solution. It then
makes a copy of its local state. The other searches
restore their local state from the last copy made. B
sets a flag indicating synchronisation is complete
and continues.

Searches A and C continue using the new best
solution found by B as their starting point.

An additional optimisation which has been found to
greatly improve performance is to try the solution for
one specification on another. Since scenarios are usu-
ally a modified version of the original problem, high
quality solutions are often common to both problems.
After each synchronisation, instead of sampling from the
usual neighbourhood of solutions, the algorithm uses
the sections of the configuration for other specifications
as its possible next steps. For example, thread A would
evaluate solutions for B and C on its own portion of the
configuration. These can be accepted or rejected using
the usual simulated annealing acceptance criteria.

3)

4)

6.2 Scenario Generation

Scenarios were generated in a random but controlled
way so that the tasks which were modified were differ-
ent to the tasks changed in the upgrade specifications
described in 5.2.1. The flexibility of baselines gener-
ated with scenarios was assessed using these upgrade

specifications and the techniques developed throughout
section 5. The characteristics of the scenarios are shown
in table 10. Each row of the table corresponds to the
scenarios used for generating a set of 3 baselines.

The scenario labels have the following meanings.
noscen corresponds to the results from the previous
section where baselines were generated without the use
of scenarios. Scenarios scenl,...,scen4 were generated
by randomly selecting an equal number of tasks from
each transaction so that, in total, 40% of the systems’
tasks were changed to achieve a range of different utili-
sation increase levels. Certain problems were selected for
further evaluation with scenarios scen5, scen6 and scen?.
Scenarios scen5 and scen6 change different proportions
of tasks and scen7 uses three separate scenarios, each
generated in the same manner as scen?.

6.3 Scenario Evaluation Results

The same weightings which were used to generate pre-
vious baselines, i.e. those tuned for the characteristics
of each problem and listed in table 6, are also used to
generate baselines with scenarios.

Results showing the combined flexibility of all base-
lines generated with the first four scenarios and without
any scenarios are shown in figure 9. The first point of
note is that the baselines generated without any scenario
performs better than may be expected. This can be ex-
plained by the fact that the parameters used to minimise
change between a baseline solution and one for the
upgrade specifications were specifically tuned for these

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR

utilisation
increase level
1

allocation changes

g A~ W N

) -
4

T T T
scen2 scen3 scen4

scenario

T T
noscen sceni

Fig. 9. Changes required to meet upgrade requirements

baselines in section 5.2.3. This puts the new baselines
generated with scenarios at a slight disadvantage. For
the other solutions, increasing the size of utilisation
increase in the scenario gradually improves the flexibility
of the system. The shading in each bar in figure 9 shows
the proportion of the number of changes attributed to
each upgrade. For scen4, nearly all allocation changes for
upgrades with lower level utilisation increases have been
eliminated and allocation changes required for higher
level utilisation increases have been reduced.

Figure 10 breaks down the results of figure 9 by
problem characteristic. This shows a very clear pattern.
The problems which have the least flexible solutions by
far are those with a high utilisation and a low number of
tasks per processor. In a problem with a lower number
of tasks per processor, each task is using a larger chunk
of utilisation on average and so it is more difficult to
fully utilise the available resources of each processor.
One problem in particular requires more changes but
there is insufficient data within a single cell to draw
conclusions with respect to its characteristics.

As was described in section 5.1, priority changes can
only be compared once allocation changes have been
removed. Figure 11 shows the priority changes required
to meet the upgrade specifications but only for the
12 systems which were shown in figure 10 to have
negligible allocation changes. This graph once again
shows that using scenarios which stress the solution with
larger utilisation increases reduce the number of changes
required to perform an upgrade.

For the four systems which had a high per proces-
sor utilisation and low number of tasks per processor,
further baselines were created using scenarios described
in the final three rows of table 10. The flexibility of
the baselines generated for just these four systems is
compared in figure 12. Scenario scen5 increased utili-
sation per processor by the same amount as scen4 but
concentrated the change amongst fewer tasks. In general,
if it were known which tasks would change, then a
more targeted scenario makes sense but for the style

of upgrade tested here, these scenarios do not perform
well. Scenario scen6 does the opposite, spreading the
utilisation increase over a larger number of tasks. This
style of scenario actually generates the most flexible
baselines for these upgrades showing that diluting the
utilisation increase over more tasks does not have a
negative effect. Finally, scen7 represents a combination
of 3 scenarios each with the same characteristics as
scen2. It has been shown that increasing the amount of
stress a scenario applies via a larger utilisation increase
improves flexibility. An alternative way of increasing the
stress is to use multiple scenarios with smaller utilisation
increases. A comparison between baselines generated
with scen2 and scen7 validates this statement.

7 CONCLUSION

The task allocation problem is an important part of the
architecture selection process for distributed real-time
systems and affects the system’s flexibility with regard
to requirements changes and upgrades. A three stage
process was given for generating flexible solutions to
task allocation problems and then taking advantage of
the flexibility. The first two stages, used during system
design, were tuning the algorithm for the problems of
interest and generating baseline solutions using scenar-
ios to enhance flexibility. The third stage, upgrading the
baseline with as few changes as possible, is used during
the maintenance part of an engineering process.

A simulated annealing based search algorithm was
tuned for a set of problems. It was found that classifying
problems according to certain characteristics can greatly
improve algorithm performance. The best characteristics
for classifying problems were found to be the utilisation
per processor and tasks per processor.

The method of generating baselines used a parallel
search algorithm where threads collaborated to produce
similar solutions for a current problem specification and
potential upgrade scenarios. By using a synchronisation
mechanism based on the thread which found a new
best solution with the fewest evaluations since the last
synchronisation point, experiments could be conducted
in a repeatable manner on a variety of platforms.

The use of scenarios was found to allow upgrades
to be performed with fewer changes to baselines even
though the predicted changes were different from the
upgrades tested. This was true of all problems evaluated.
Using single scenarios which contained larger changes
or multiple scenarios with smaller changes enhanced
flexibility more than a single scenario with made only
a small change to the original problem.

Four problem characteristics were studied throughout
this paper. It was found that problems with a combina-
tion of high processor utilisation, a low number of tasks
per processor and a high message to task ratio required
the most effort to solve efficiently. In terms of produc-
ing flexible baseline solutions, the interaction between
processor utilisation and number of tasks per processor

EMBERSON et al.: STRESSING SEARCH WITH SCENARIOS FOR FLEXIBLE SOLUTIONS TO REAL-TIME TASK ALLOCATION PROBLEMS

messages per task: low
period spread: low

messages per task: low
period spread: high

messages per task: high

period spread: low

messages per task: high

period spread: high

MO| :UojesI|iin
Mo :-00.id Jad syse}

MO :UopES||IIN
ybiy :-o0id Jad syse}

allocation changes

ybly :uopesyAn
Mo :-o0id Jad syse}

yb1y :uopes|n
ybiy :-oo01d 1ad syse}

noscen scen1 scen2 scen3 scen4

I I I I
noscen scen1 scen2

I I I
scen3 scen4

scenario

I I I
noscen scen1 scen2 scen3 scen4

I
noscen

Fig. 10. Changes required for upgrades for each problem class

priority changes
s & S

o
i

o
<

utilisation
increase level

1

a A~ W N

T
noscen

Fig. 11.

T
sceni

T T T
scen2 scen3 scen4

scenario

Priority changes required for upgrades

characteristics proved to be the most challenging. The
range of task periods within a system was the least
important of the four characteristics.

ACKNOWLEDGMENTS

This work is funded by the Software Engineering By
Automated Search (SEBASE) program, EPSRC Grant

I I I I
sceni scen2 scen3 scen4

allocation changes

T T T
noscen scen1 scen2

Fig.

T T T T
scen3 scen4 scen5 scen6 scen7
scenario

15

utilisation
increase level

utilisation
increase level

1

a A~ W N

12. Results of additional scenario evaluations

EP/D050618/1. We would also like to thank Simon
Poulding for his advice on experimental methods.

16

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, MONTH YEAR

REFERENCES

(1]

(2]
(31

(4]

(5]

6]

(71

(8]

(9]

[10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

L. J. Bass, M. Klein, and F. Bachmann, “Quality attribute design
primitives and the attribute driven design method,” in PFE "01:
Revised Papers from the 4th International Workshop on Software
Product-Family Engineering, 2002, pp. 169-186.

P. Kruchten, “The 4+1 view model of architecture,” IEEE Softw.,
vol. 12, no. 6, pp. 42-50, 1995.

A. Jansen and J. Bosch, “Software architecture as a set of archi-
tectural design decisions,” in WICSA '05: Proceedings of the 5th
Working IEEE/IFIP Conference on Software Architecture (WICSA'05),
2005, pp. 109-120.

P. Koopman, “Embedded system design issues (the rest of the
story),” in ICCD "96: Proceedings of the 1996 International Conference
on Computer Design, VLSI in Computers and Processors. ~ IEEE
Computer Society, 1996.

L. Sha, “Real-time virtual machines for avionics software porting
and development,” in Real-Time and Embedded Computing Systems
and Applications, 2004, vol. 2968, pp. 123-135.

R. Racu, A. Hamann, and R. Ernst, “Automotive system optimiza-
tion using sensitivity analysis,” in Embedded System Design: Topics,
Techniques and Trends, 2007, vol. 231, pp. 57-70.

B. W. Boehm, J. R. Brown, and M. Lipow, “Quantitative evaluation
of software quality,” in ICSE '76: Proceedings of the 2nd International
Conference on Software engineering, 1976, pp. 592-605.

R. Kazman, L. J. Bass, M. Webb, and G. D. Abowd, “SAAM: A
method for analyzing the properties of software architectures,” in
International Conference on Software Engineering, 1994, pp. 81-90.
R. Kazman, M. Klein, and P. Clements, “Evaluating software ar-
chitectures for real-time systems,” Annals of Software Engineering,
vol. 7, no. 1-4, pp. 71-93, 1999.

A. Sangiovanni-Vincentelli and M. Di Natale, “Embedded system
design for automotive applications,” IEEE Computer, vol. 40,
no. 10, pp. 42-51, 2007.

G. Attiya and Y. Hamam, “Task allocation for maximizing relia-
bility of distributed systems: A simulated annealing approach,”
Journal of Parallel and Distributed Computing, vol. 66, no. 10, pp.
1259-1266, October 2006.

P-Y. Yin, S.-S. Yu, P.-P. Wang, and Y.-T. Wang, “Multi-objective
task allocation in distributed computing systems by hybrid par-
ticle swarm optimization,” Applied Mathematics and Computation,
vol. 184, no. 2, pp. 407420, January 2007.

I. Bate and P. Emberson, “Incorporating scenarios and heuristics
to improve flexibility in real-time embedded systems,” in RTAS
"06: Proceedings of the 12th IEEE Real-Time and Embedded Technology
and Applications Symposium, 2006, pp. 221-230.

J. Clark, J. J. Dolado, M. Harman, R. Hierons, B. Jones, Lumkin,
S. Mancoridis, K. Rees, M. Roper, and M. Shepperd, “Reformu-
lating software engineering as a search problem,” IEE Proceedings
- Software, vol. 150, no. 3, pp. 161-175, June 2003.

M. Harman, “The current state and future of search based soft-
ware engineering,” FOSE 07: Proceedings of Future of Software
Engineering, pp. 342-357, 2007.

E. Alba and F. J. Chicano, “Software project management with
GAs,” Information Sciences, vol. 177, no. 11, pp. 2380-2401, June
2007.

M. A. Babar, L. Zhu, and R. Jeffery, “A framework for classifying
and comparing software architecture evaluation methods,” in
ASWEC '04: Proceedings of the 2004 Australian Software Engineering
Conference, 2004, pp. 309-318.

K. Tindell, A. Burns, and A. Wellings, “Allocating hard real-time
tasks: An NP-hard problem made easy,” Real-Time Systems, vol. 4,
no. 2, pp. 145-165, 1992.

J. Beck and D. Siewiorek, “Simulated annealing applied to multi-
computer task allocation and processor specification,” in Proceed-
ings of the 8th IEEE Symposium on Parallel and Distributed Processing,
1996, pp. 232-239.

A. Metzner and C. Herde, “RTSAT- an optimal and efficient ap-
proach to the task allocation problem in distributed architectures,”
in RTSS '06: Proceedings of the 27th IEEE International Real-Time
Systems Symposium, 2006, pp. 147-158.

D. T. Peng, K. Shin, and T. Abdelzaher, “ Assignment and schedul-
ing communicating periodic tasks in distributed real-time sys-
tems,” Software Engineering, vol. 23, no. 12, pp. 745-758, 1997.
P-E. Hladik, H. Cambazard, A.-M. Deplanche, and N. Jussien,
“Solving a real-time allocation problem with constraint program-

ming,” Journal of Systems and Software, vol. 81, no. 1, pp. 132-149,
January 2008.

[23] S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Optimization by simu-

lated annealing,” Science, vol. 220, no. 4598, pp. 671-680, 1983.

[24]]J. N. Hooker, “Testing heuristics: We have it all wrong,” Journal

of Heuristics, vol. 1, pp. 3342, 1995.

[25] A. E. Eiben and M. Jelasity, “A critical note on experimental

research methodology in ec,” in CEC "02: Proceedings of the 2002
Congress on Evolutionary Computation, 2002, pp. 582-587.

[26] P. Emberson and I. Bate, “Minimising task migration and priority

changes in mode transitions,” in RTAS '07: Proceedings of the 13th
Real Time and Embedded Technology and Applications Symposium,
2007, pp. 158-167.

[27] D. C. Montgomery, Design and Analysis of Experiments, 6th ed.

Wiley, December 2004.

[28] E. Alba and J. M. Troya, “Analyzing synchronous and asyn-

chronous parallel distributed genetic algorithms,” Future Gener-
ation Computer Systems, vol. 17, no. 4, pp. 451-465, January 2000.

[29] S. Poulding, P. Emberson, I. Bate, and J. Clark, “An efficient

experimental methodology for configuring search-based design
algorithms,” in Proceedings of 10th IEEE High Assurance System
Engineering Symposium, 2007, pp. 53-62.

[30] J. Palencia and M. G. Harbour, “Schedulability analysis for tasks

with static and dynamic offsets,” in Proceedings of the IEEE Real-
Time Systems Symposium, 1998, pp. 26-37.

[31] R.I. Davis, A. Zabos, and A. Burns, “Efficient exact schedulability

tests for fixed priority real-time systems,” IEEE Trans. Comput.,
vol. 57, no. 9, pp. 1261-1276, 2008.

[32] W. Zheng, Q. Zhu, M. Di Natale, and A. S. Vincentelli, “Defini-

tion of task allocation and priority assignment in hard real-time
distributed systems,” in Proceedings of 28th IEEE International Real-
Time Systems Symposium (RTSS 2007), 2007, pp. 161-170.

[33] P. Emberson and I. Bate, “Extending a task allocation algorithm

for graceful degradation of real-time distributed embedded sys-
tems,” in RTSS '08: Proceedings of the 29th IEEE International Real-
Time Systems Symposium, December 2008, accepted to appear.

[34] “White Rose Grid at York,” http:/ /www.wrg.york.ac.uk, accessed

August, 2008.

[35] “Berkeley Open Infrastructure for Network Computing,”

http:/ /boinc.berkeley.edu/, accessed August, 2008.

[36] “LINDO Systems,” http://www.lindo.com/, accessed August,

2008.

[37] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-

dimensionally equidistributed uniform pseudo-random number
generator,” ACM Trans. Model. Comput. Simul., vol. 8, no. 1, pp.
3-30, January 1998.

Paul Emberson is a research associate in the
Real-Time Systems group at the University of
York. His research interests include local search
methods, software engineering processes and
software architecture analysis. He previously
worked as a professional software engineer in
the field of mobile telecommunications.

lain Bate is a lecturer in Real-Time Systems. His
research interests include scheduling and timing
analysis, design and analysis of safety-critical
systems, and systems engineering. He is the
Editor-in-Chief of the Journal of Systems Archi-
tecture, a frequent member of programme com-
mittees for distinguished international confer-
ences, and a member of the Scientific Advisory
Board for the Progress research centre at Mal-
adarlen University, Sweden, which specialises in
Component-Based Software Engineering.

http://www.wrg.york.ac.uk
http://boinc.berkeley.edu/
http://www.lindo.com/

	1 Introduction
	2 Related Work
	3 Experimental Process
	3.1 Terminology
	3.2 Process

	4 Problem Selection
	4.1 System Model
	4.2 Test Case Generation
	4.3 Search Algorithm
	4.3.1 Random Search
	4.3.2 Simulated Annealing

	4.4 Parameter Tuning
	4.4.1 Tuning Component Weightings
	4.4.2 Tuning Algorithm Parameters

	5 Minimising Changes To Solutions
	5.1 Configuration Difference Cost Components
	5.1.1 Combining With Timing Constraint Components

	5.2 Algorithm Evaluation
	5.2.1 Upgrade Specification Generation
	5.2.2 Upgrade Validation
	5.2.3 Parameter Evaluation

	6 Searching With Scenarios
	6.1 Flexible Baseline Algorithm
	6.1.1 Requirements
	6.1.2 Representation And Cost Evaluation
	6.1.3 Synchronisation Mechanism

	6.2 Scenario Generation
	6.3 Scenario Evaluation Results

	7 Conclusion
	References
	Biographies
	Paul Emberson
	Iain Bate

