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a b s t r a c t

This paper considers the dynamic scheduling of parallel, dependent tasks onto a static, distributed
computing platform, with the intention of delivering fairness and quality of service (QoS) to users. The
key QoS requirement is that responsiveness is maintained for workloads with a wide range of execution
times (minutes to months) even under transient periods of overload. A survey of schedule QoS metrics
is presented, classified into those dealing with responsiveness, fairness and utilisation. These metrics are
evaluated as to their ability to detect undesirable features of schedules. The Schedule Length Ratio (SLR)
metric is shown to be the most helpful for measuring responsiveness in the presence of dependencies.
A novel list scheduling policy called Projected-SLR is presented that delivers good responsiveness and
fairness by using the SLR metric in its scheduling decisions. Projected-SLR is found to perform equally
as well in responsiveness, fairness and utilisation as the best of the other scheduling policies evaluated
(Shortest Remaining Time First/SRTF), using synthetic workloads and an industrial trace. However,
Projected-SLR does this with a guarantee of starvation-free behaviour, unlike SRTF.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

High-Performance Computing systems (HPCs) made up of a
large number of parallel processors have become ever more
popular in recent years, due to their ability to provide large
quantities of computing capacity at a relatively low cost. Where
a single HPC cluster cannot satisfy an organisation’s desire for
computing power, geographically-distributed networks of such
clusters have been created, and these are known as grids [1]. HPC
platforms built on a grid architecture have nowbeen created to sell
their computing capacity in real-time, and these are now known as
clouds [2].

These parallel architectures are ideally suited to workloads
where work can be divided into independent pieces, and
distributed accordingly. However, many grid workloads can only
be parallelised to an extent, as they contain dependencies that
necessitate some serial execution. The pieces these workloads
are broken into may also be of significantly different sizes.
While producing a schedule using a policy such as First In First
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Out may be trivial, scheduling over a grid to meet quality of
service requirements or a level of optimality in the presence of
dependencies can be difficult [3].

Optimal scheduling in the general case is an NP-Complete
problem [4]. Therefore, optimal scheduling is intractable at the
scale of grid systems, where heterogeneity [5] and network
delays [6] are also present. Many heuristic scheduling policies
have been proposed (see [7,8,5] for surveys), but these must
be evaluated in order to identify their respective strengths for
particular platforms and workloads.

Organisations that run their own HPC capacity as well as cloud
providers have an interest in providing Quality of Service (QoS) to
their users. The productivity of an organisation may be impacted if
its users are having to wait too long for their work to be returned
from the HPC. Poor QoS for cloud providers may lead to loss of
business due to users changing provider. Low levels of QoS can
be caused by poor scheduling decisions, leading to low throughput
or unacceptably long task waiting times. Metrics are essential for
providers to be able to monitor the QoS they are delivering and
these metrics should be appropriate to the needs of their users.

There is an inherent challenge in maintaining QoS because
the kinds of workload run on HPCs, grids and clouds tend to
have significant variations in demand. This variation is one of the
reasons that customers choose to use the resources of a cloud
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provider in the first place. While cloud providers can attempt to
manage demand through the adjustment of spot pricing, there
is still a significant likelihood that there will be times when the
rate of work arrival is greater than the maximum possible rate of
processing. This is because it is likely to be uneconomic for a cloud
provider to maintain significant idle capacity just for the servicing
of such peaks. Therefore, providers need metrics to know whether
a peak in load on constrained resources will actually lead to an
inadequate level of service.

The scheduling ofworkmatters to the provision of QoS, because
there will often be a mix of high- and low-priority work in the
system. If the provider’s scheduling policy handles periods of
overload well by ensuring sufficiently graceful degradation, this
may reduce the amount of computational capacity required in
order to achieve acceptable QoS. Alternatively, it may make it
possible to make better use of their existing capacity by running
at a higher average utilisation.

The paper will be divided into several sections, examining the
background of the research, a classification and evaluation of QoS
metrics, followed by the definition and evaluation of scheduling
policies.

Section 2 will describe the industrial context that the work
described in this paper is based on. This section will also provide
themotivation for themetrics and improved scheduling presented
throughout the rest of the paper. Genericised application, platform
and schedulingmodels of the industrial scenariowill be presented.
Thesemodelswill form the base for the evaluations throughout the
rest of the paper, while their general nature, derived from models
already in the literature, should ensure that the results of this paper
are relevant outside the scope of the industrial scenario.

Section 3 will present a survey of metrics for each category
identified in the industrial scenario. These categories are the Util-
isation, Responsiveness and Fairness metrics. Several scheduling
issues that have been observed to cause user dissatisfaction in an
industrial case studywill be described. Themetrics proposed in the
survey will be evaluated as to their ability to detect these schedul-
ing issues. The identification of a situation where overly-high in-
terleaving of work leads to low responsiveness lead the authors to
propose a novel metric: the peak in-flight count. The evaluation
identifies some inherent weaknesses in alternative metrics, such
as their inability to expose issues related to workloads containing
dependencies. Therefore, wewill specifically draw attention to the
insight power of the Schedule Length Ratio (SLR) metric [9] due to
its appropriate handling of dependencies.

Section 4 presents a short survey of common scheduling
policies. The authors then present a novel list scheduling policy
termed Projected Schedule Length Ratio (P-SLR) that aims to
perform well across all three categories of metrics, especially in
situations of high- and overload. This novel scheduler will then be
evaluated against the other surveyed schedulers in twoways. First,
an evaluation will be made using a range of synthetic workloads
so that the performance of the scheduler can be evaluated across a
wide parameter space. Second, to validate the results gained from
the synthetic studies, an analysis of the performance of P-SLR will
also be performed using a large-scale industrial workload.

2. Context

2.1. Industrial scenario

The research in the paper was done in the context of
an industrial case study, for an organisation operating in the
aerospace industry. This organisation owns and operates a
significant HPC capacity, organised into a grid of clusters with
significant geographical distribution and joined by point-to-point
network links. The purchase of additional capacity happens

sufficiently infrequently that for the scheduling of tasks, the
platform can be considered to be static. The HPC is used primarily
for Computational Fluid Dynamics (CFD) studies, although many
other kinds of work are also run. Each CFD study (a job) is
formed of a number of separate tasks that are linked through data
dependencies. Wewere able to make use of the log files of the HPC
that spanned a period of approximately 10 months and contained
in excess of 100,000 jobs.

Each task runs on a number of cores, that are required
to be within the same cluster for performance reasons. Tasks
require input data files, and produce output files, which may
then be consumed by further tasks, or returned to the user. The
production and consumption of the data files mean that there
are dependencies inherent between tasks. The patterns we found
tended to reflect fork–join computing models. Furthermore, as the
studies tended to combine several stages of work, we observed a
patternwhere each stagewas computed in a fork–joinmanner, but
with a single data dependency between each stage. Alternatively,
some larger jobs contained detailed hand-crafted connections of
data production and consumption between tasks.

The execution times of jobs, especially when used for analysing
the performance of scheduling policies, have often been assumed
to follow normal or uniform distributions [9]. However, we found
a distribution of task and job execution times that follows a
power law, or a logarithmic distribution. There are several classes
of users, each producing differently sized jobs with differing
responsiveness requirements. Their respective jobs have execution
times of tasks ranging from a few minutes to several months.
The users submitting the shortest jobs (minutes to hours) require
a quick turnaround as a fast cycle time is essential to their
productivity. We confirmed with the users that the longest jobs
were not anomalies or jobs that had entered an infinite loop—
instead, there is a need for final validations to be performed
in very high fidelity. The longest jobs also tend to require the
highest number of cores and in addition require significant disk
and memory resources.

The tasks are executed without preemption—they either
terminate or fail. On small-scale systems, this would seem to
preclude the possibility of achieving good QoS, because short,
urgent jobs may be stuck waiting for the largest ones to finish.
However, with an HPC on the scale we observed, the rate that
tasks finish is more than sufficient to ensure that something is
always about to finish. This negates the need for the complexity
of preemptive scheduling, because the time taken to wait for the
next free resources is always small.

All the work runs on the same platform. There is a natural cycle
during each day, where the vast majority of work is submitted
during working hours. However, the queues on the platform are
longest outside of working hours, as a significant fraction of the
work is submitted at the end of the daywith the results desired the
next morning. Similar patterns are also evident on slightly longer
timescales,with users submitting jobs at the end of theweek to run
over the weekend, and submitting large jobs before they go away
on vacation. Despite these cycles of submission rates, the platform
is almost always fully loaded and has some work queueing.

The scheduling policy currently used follows a ‘Fair Share’
scheme [10,11]. This is a list scheduling scheme that attempts
to mimic a partitioned scheduling scheme. Fair Share works by
comparing each user and each group’s entitlement against what
resources they are currently using, and prioritising the work of
those who are below their entitlement. This works fairly well in
practice, but responsiveness could be improved for the smallest
and largest jobs. This is especially the case when these jobs are
submitted as part of the same fairshare group. This is because
although the longest-running jobs can require the most capacity,
and hence the highest share, this leaves the smallest jobs with
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lower capacity, and therefore lowest effective share. This then
means that the smallest jobs, with the highest responsiveness
requirement effectively being given the lowest queue priority,
which leads to a lower responsiveness than is required. If the share
is adjusted to improve the responsiveness for small jobs, this can
lead to a situation where the largest jobs never get enough share
to start.

Balancing this tradeoff is done bymanually adjusting the shares
assigned to each group, but this balancing must be frequently re-
done, because the load placed on the cluster by different groups
varies over time. The automatic, online load balancing between the
clusters is done purely on core utilisation statistics, and does not
take into account the share allocations. This can also lead to poor
performance, where there are toomany jobs of one share group on
one cluster, and too few on another.

Although this industrial scenario considers the classes of users
and the teams that they are part of as being members of a single
organisation, this need not be the case from a cloud perspective. In
a cloud context, each ‘team’ in the organisation would represent a
separate customer. The demands of each team/customer on the in-
frastructure change over time, and are subject to significant peaks.

In the case study, we found that the perspectives of the system
owners and the teams using the computing resources tended to
differ. The system owners and administrators are concerned with
metrics that show whether they are making the best use of the
hardware that they own. Owners of the platform like the platform
to be busy, because they feel that shows that the investment in
such capacity was worthwhile. However, users tend to be less
interested on whether the main computational capacity is busy or
not. Instead, they care about getting their jobs back quickly. If the
users’ jobs ever do have towait, however, theywould like to be feel
that their jobs are being treated with a level of fairness compared
to those of other users of the system.

The fundamental research challenge, therefore, is to design a
scheduling policy that can ensure responsiveness for the small
jobs but avoid starvation for the largest jobs, while ensuring a
high level of throughput. Although research into answering this
question is setwithin the context of this case study,we believe that
the scheduling problem it represents is not atypical for owners of
substantial computing capacity. All the teams or customers require
a level of QoS to be maintained, and it is the responsibility of
the provider to ensure this. The next two sections will present
models designed to represent the infrastructure, application and
scheduling structures of an HPC or cloud resource provider.

2.2. Models

A composition of three primary models is considered as the
context for the definitions and evaluations undertaken in this
paper. An applicationmodel represents the kinds of workflows run
on HPC and cloud platforms when dependencies are present. A
platformmodel represents the computing infrastructure owned by
the provider. A scheduling model is also presented which captures
what scheduling decisions are to be made, and where they are
made.

2.2.1. Application model
The problem that is investigated in this paper is the dynamic

scheduling ofmulticore taskswith dependencies onto a static plat-
form. Jobs are continuously arriving and require scheduling. The
execution time of tasks is known when they arrive. Heterogeneity
in the resources is considered in the sense of partitioning the grid
into zones where tasks can and cannot run. Each task runs on one
or more resources (cores) simultaneously. Each resource can only
run one task at once.

Throughout this paper, the application model is considered
to be as follows. A single, non-preemptible piece of work to be
executed on one or more processors concurrently will be known
as a task, denoted by T i. A set of tasks with dependencies between
each other are grouped into a job, denoted by Jk. A set of jobs
will be known as a workload W . This follows the nomenclature of
Chapin [6].

The dependencies between tasks inside a job will take the
form of a Directed Acyclic Graph (DAG), following the usual
construction for HPC workflows, as referred to by [5,9]. The
structure of the DAGs can take a wide variety of forms. In this
work, we consider four principal patterns, based on work in [12].
The first is that of independent tasks, which is a baseline model
without dependencies. The second pattern is termed Independent
Chains (see Fig. 1(a)), and reflects the common fork–join parallel
programming model. If each fork–join unit is considered as a
block, the third pattern shows a chain of such blocks (Fig. 1(b)).
This third model is common where different stages of processing
are required, and where each stage follows the fork–join model.
These patterns of dependencies were observed in the workloads
studied as part of our industrial case study. In order to capture
a wide variety of graphs, the fourth model chosen was the
Erdős–Rényi [13] or probabilistic dependencies model (Fig. 1(c)).
These more randomly-structured graphs are helpful to evaluate
the scheduler over a wide variety of DAG shapes, but can alsomore
closely reflect the shapes of hand-crafted dependency trees that
were observed in the industrial case study.

Tasks and jobs have several parameters that can be defined,
relative to a time-base. This paper uses a discrete model of time,
with all events taking place at time ticks τ ∈ N0. However, the
following parameters and the metrics in Section 3.1 could equally
be calculated for a continuous model of time.

• Task execution time: T i
exec ∈ N⋆.

• Task cores required: T i
cores ∈ N⋆.

• Task start time: T i
start ∈ N0.

• Task finish time: T i
finish = T i

start + T i
exec.

• Job arrival time (not necessarily the same as start time):
Jkarrive ∈ N0.

• Job start time: Jkstart = min

T i
start


• ∀ T i

∈ Jk.
• Job finish time: Jkfinish = max


T i
finish


• ∀ T i

∈ Jk.
• Job response time: Jkresponse = Jkfinish − Jkarrive.
• Job total execution time: Jkexec =

 
T i
exec × T i

cores


•∀ T i

∈ Jk.
• Workload total execution time:Wexec =


Jkexec • ∀ Jk ∈ W .

A job is considered to be in flight during the interval

Jkstart, J

k
finish


.

The critical path time JkCP (CP) of a job is the longest path through
the DAG of the dependencies [14], and defines the minimum time
that the job can be executed in even if the number of processors
was unbounded. The edges of the DAG are weighted to represent
possible network delays between tasks. If tasks are run on the same
cluster, these delays are not manifested. However, tasks with dif-
ferent architectures may never be able to run on the same cluster,
and hence have an unavoidable network delay. Any unavoidable
network delays must be taken into account when determining the
critical path of a job.

2.2.2. Platform and scheduling model
While each job that executes on a grid can be considered a batch

job, we consider the scheduling problem over modern grids to be
dynamic, not static. There are static schedulers thatmimic dynamic
behaviour by repeatedly queueing up a certain amount ofwork and
then executing it, as in the Generational Scheduling approach [15].
However, this is unsuitable for our workload, because the large
execution times of some jobs and low desired response times for
others cannot both be satisfied in a single batch.
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(a) Independent Chains. (b) Chain of
Blocks.

(c) Erdős–Rényi (probabilistic)
dependencies (T = 10, P = 0.3).

Fig. 1. DAG shape patterns.
Source: Reproduced from Ref. [12].

Fig. 2. Platform architecture.

Therefore, we consider the family of scheduling algorithms
known as list schedulers. These split the scheduling problem into
two phases. One phase is known as ordering, where a set of tasks
are sorted according to an ordering policy. The other phase is
known as allocation, where tasks are assigned to resources in the
order specified by the ordering policy.

In a simple case, a single list scheduler for a whole grid would
suffice. A single queue would manage all incoming work, and a
single allocator would send work to the various clusters that make
up the grid as andwhen resources became free. However, in reality,
this poses practical problems because a single scheduler is likely
to be a significant bottleneck once the grid reaches a certain scale.
Furthermore, grids have a distributed nature and are hence subject
to network costs and limitations in bandwidth between their
component clusters. This means that a single schedulermay not be
able to have highly detailed and up-to-date information about the
state of the whole grid, as simply communicating this information
to a central node would swamp the available bandwidth.

We therefore consider a hierarchical schedulingmodel: a tree of
list schedulers. Nodes in the tree are referred to as routers, and the
leaves of the tree are the clusters that make up the computational
resources of a grid. Jobs are submitted to the root of the tree, and
are scheduled through child routers until they reach the leaves of
the tree, which represent clusters. Each cluster itself also contains
a list scheduler. An example of this platform, which will form the
basis for the later synthetic evaluations (Section 4.4), is shown in
Fig. 2.

In the model considered in this paper, the routers cascade a
job down to a cluster as soon as it arrives. The job will only

spend time queueing once it has already been allocated to a
cluster. The router list schedulers order the jobs in FIFO order,
and allocate them between clusters based on a load balancer. This
load balancing algorithm calculates the expected queue length
by taking the amount of work (in core-seconds) in each cluster’s
queue and dividing it by the number of processing resources that
cluster contains. The jobs are assigned to the cluster with the
smallest expected queue length. These statistics are considered
suitably high-level that they could be obtained by routers in a grid
without imposing an undue performance penalty. Where the load
balancing takes place between routers, each router will offer the
best performing value of any clusters beneath it.

Each task in a workload and each cluster have an associated
architecture. Each cluster can only contain processing units of a
single architecture. Jobs can contain tasks of diverse architectures.
If a router can find a sub-router that can supply all the
architectures, the job is passed down to the sub-router whole. If
this is not possible, then the job is split up into its component
tasks, and the tasks are allocated down the tree independently.
This is done because the network costs between the routers in
our model follow a thin tree model [16]. Network delays are
only considered between tasks running on different clusters, as
these links are likely to represent long-distance geographical links
in reality. Within a cluster, network delays are assumed to be
small enough to be negligible. This means that tasks running on
different clusters will see network delays between them, but a
multicore task running on a single cluster will not see network
delays between the running cores. Multicore tasks are only run
inside a single cluster, and it is assumed that there is at least one
cluster in the grid able to provide sufficient processing resources.

Inside a cluster, allocation is simply done to processors as they
become free (an Earliest Start Time allocation), because of the lack
of network costs. Within a homogeneous cluster, this is equivalent
to an Earliest Finish Time allocation [9].

Although routers and clusters both implement list schedulers,
the ordering policy of the load balancer and the allocation policy
of the cluster are trivial. This architecture effectively gives the
result that allocation is done first through the load balancing in
the routers, and then ordering is applied when the tasks are on the
clusters. This is the reverse of most list scheduling architectures,
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Table 1
Insight given by selected metrics.

Metric Utilisation Responsiveness Fairness

Workload makespan •

Flow •

Average utilisation •

Peak in-flight •

Cumulative completion • •

Average or
worst case

Speedup •

Stretch •

Schedule length ratio •

Standard
deviation

Speedup •

Stretch •

Schedule length ratio •

and yet is suitable for the architecture of grids where perfect
knowledge of thewhole cluster is impractical to achieve due to the
slow network links between clusters.

The key part of this model is the ordering policy applied on
each cluster, because it is reasonable to assume that at this level, a
great deal more information about the state of the cluster and the
work to be performed can be analysed. It is alsowhere the jobswill
actually spend their time queueing. The cluster ordering policywill
therefore be the one that will most affect the ability of the grid to
achieve good QoS. Measuring the ability of a scheduler to achieve
good QoS requires metrics, which the next section will describe
and evaluate.

3. Metrics

3.1. Metric definitions

In order to objectively compare schedulers, metrics are
required. Different metrics are more or less relevant to different
stakeholders in the system, however. We have selectedmetrics for
consideration in this paper that represent each of the industrial
stakeholder perspectives. The metrics relevant to the system
administrators correspond to those related to utilisation, and the
metrics that represent the users’ point of view correspond to the
responsiveness and fairness metrics. A further category of metrics
was noted as being commonly used in the literature, and these
were the relative metrics. Relative metrics compare schedulers by
counting the number of ‘best’ schedules (by another metric) over a
number of scenarios in a problem space.

All these metrics are considered here specifically within the
context of the industrial scenario outlined above, which is the
dynamic or online scheduling of jobs onto a fixed, distributed grid
platform. However, the metrics are not limited to being used in
such circumstances, and most should provide insight into both
static and dynamic scheduling approaches. A summary of the
applicability of each metric is presented in Table 1.

3.1.1. Utilisation metrics
Utilisation metrics measure of how much of a platform’s

maximum potential is actually being used. Achieving a high
throughput of work is contingent on achieving good utilisation.
Wherever possible, it is desirable to avoid having idle resources if
there is ever work queueing. The platform will be denoted as G,
with a number of processing resources Gcores.
Workloadmakespan. The classicmetric used to compare schedulers
is the workload makespan, which is widely referenced in the
literature [17,7,18,8,14,19]. This is defined by the time at which all
the work in the workload was completed.

Wmakespan = max

Jkfinish


• ∀ Jk ∈ W . (1)

While some papers use only this metric for comparing sched-
ulers, it is insufficient for measuring the responsiveness or fairness
in a schedule. This is because, in the simulation of a dynamic sys-
tem, theworkloadmakespanmaybemostly determined by the last
few jobs in the workload to arrive. What it can help to measure, on
the other hand, is utilisation, as a component of the flow or aver-
age utilisation metrics. Because it requires the workload to com-
plete execution, the workloadmakespanmetric only really applies
to the evaluation of static scheduling problems.

Flow. A measure of throughput is simply to count the number
of tasks or jobs completed over the workload makespan. This is
known in the literature as flow [20].

|W |

Wmakespan
. (2)

Flow does not attempt to account for the differing sizes of work,
so a platformmay be able to achieve wildly different values of flow
depending on the makeup of the workload. This makes it.

In a dynamic system, it may not be possible to measure the
makespan of a workload, because work is continually arriving. In
this case, flow can be defined as the number of jobs to finish in a
given time interval (τstart, τfinish].Jk
τfinish − τstart

• ∀Jk ∈ W ∧ τstart < Jkfinish ≤ τfinish. (3)

Average utilisation. A further metric can be derived from the work-
load makespan, known as average utilisation [21] or efficiency [9].
This is defined as the proportion of the possible execution time de-
termined by the workload makespan that was actually consumed.
The number of processing units in the grid can be denoted by
Gcores.

Jkexec
Wmakespan × Gcores

• ∀JK ∈ W . (4)

This metric can also be extended to dynamic systems by
taking the utilisation between two points in time, although the
calculation for this is a little more involved because it has to
consider the calculation for tasks that are running at the interval
time points. Interval utilisation is useful because weekly or daily
average utilisation values can be monitored.

Peak in-flight count
As mentioned in Section 2.2.1, a job can be considered in-flight

betweenwhen the first task of that job starts execution and the last
task of that job finishes.We propose a novel metric, known as peak
in-flight count, that gives the maximum number of jobs in flight at
any given time.

max
Jk • ∀Jk ∈ W ∧ Jkstart ≤ τ < Jkfinish


•∀τ ∈


0,Wmakespan


. (5)

This can be used to determine how much the scheduler
has interleaved the jobs in the workload. Very high levels of
interleavingmay indicate scheduling problems, especially because
high peaks may indicate that some jobs are starving for resources.
The peak in-flight count can also reveal the effect of network
delays. An abnormally high peak in-flight count might indicate
that the scheduler is starting work on new jobs because all the
current in-flight jobs are blocked waiting for network transfers to
complete. This may point to using an alternative scheduler that is
better suited to avoiding network bottlenecks.
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3.1.2. Responsiveness metrics
Responsiveness metrics compare how a scheduler is able to

keep job latency low. There will always be a minimum time that
a job will take to execute, and this is determined by its critical
path. However, the time spent queueing or on network transfers
will impact the responsiveness of a job. Responsiveness metrics
can be a tool for measuring how well the scheduler is able to
cope under periods of heavy load. The metrics of speedup, stretch
and SLR are defined for each job in a workload. Therefore, the
average value of these metrics for all the jobs in a workload can be
used to provide a single value to compare scheduler performance.
It can also be useful to compare the worst-case performance of
the responsiveness metrics, because it is the users whose jobs
are experiencing worst-case performance that will be the ones to
complain, especially if the worst-case is significantly different to
the average.
Cumulative completion. A metric that rewards early completion of
work, and hence good average responsiveness, was proposed by
Braun et al. [7]. Whereas the utilisation metrics only derive value
from the time theworkloadwas completed, this gives some insight
into the way this was achieved. This metric calculates the sum of
completed job execution times at each time tick in the execution.
Because it is assumed that only a completed job is useful to a user,
it can only count the completed tasks’ execution times once the
whole job is finished. 

1 + Wmakespan − Jkfinish

× Jkexec • ∀Jk ∈ W . (6)

The cumulative completion metric values work being com-
pleted early in the schedule, by cumulating the values of com-
pleted jobs at each subsequent tick. If the workload makespans
between schedules are different, the values of cumulative com-
pletion are not directly comparable. Therefore, where cumulative
completion values need to be compared, the cumulative comple-
tion value should be calculatedwith theworkloadmakespan value
of the longest schedule.

This metric also gives partial insight into utilisation, because
schedulers that achieve higher utilisation and higher throughput
will cause more jobs to finish sooner, and hence raise the
Cumulative Completion value. A shortcoming of this metric is that
it is most suited to static schedules, because the finishing of the
workloads is all relative to their makespan. However, it can be
extended to the dynamic case by only sampling jobs that arrived
in a given duration.
Speedup. A common metric to measure responsiveness is known
as speedup Topcuoglu et al. [9]. It is defined as how much faster
the job was able to run compared to if it had been run on a single
processor.

Jkexec
Jkresponse

. (7)

This can be useful to see how much parallelism the scheduler
has been able to extract from the job. However, in most HPC and
grid systems, jobs are usually designed to be highly parallel in
order to take the fullest advantage of the grid platform and because
it would take vastly too long on a single processor. Therefore,
while a speedup above 1 may intuitively sound desirable, speedup
values may only be considered acceptable at a much larger value.
Furthermore, it has no notion of comparing the actual speedup to
the maximum possible speedup, when dependencies are present,
because it does not take into account the critical path.
Stretch. Stretch is the reciprocal value to speedup, as described
by [20].

Jkresponse
Jkexec

. (8)

The stretch metric is useful because it removes the effect that
jobs of different sizes have on their execution times. It shows
the ‘retardation’ of jobs due to the scheduling and load of the
system. However, it may be somewhat misleading because the
minimum execution time of a job is not necessarily correlated to
its total execution time. This is because the parallelism available
in two jobs with the same total execution time can be different
due to differences in the core count of tasks or the structure of
dependencies (see an examination of this issue in Section 3.2.3).
Schedule Length Ratio. To counteract the problem of the stretch
metric not taking into account the minimum execution time of a
job, Topcuoglu et al. [9] introduced the concept of Schedule Length
Ratio (SLR). This is a similarmetric to stretch, but is defined relative
to the critical path rather than the total execution time. This is
because the shortest execution time of a job on a highly parallel
platform is determined by the length of its critical path.

Jkresponse
JkCP

. (9)

Of the three responsivenessmetrics, SLR is themost representa-
tive of the performance of the scheduler alone. This is because it is
simply a comparison between the actual and ideal response times.
SLR is independent of the total execution time or the parallelism
available in the job. The SLR metric is particularly useful to mea-
sure scheduler performance where jobs have a wide variation in
the lengths of their critical paths even if their total execution times
are the same. This is pertinent because this situation was observed
in the industrial case study.

The ideal value for SLR is represented as 1, where the actual
response time is equal to the ideal response time. This ideal
value may be impossible to achieve in a finite grid. Furthermore,
network delays that are not present on the critical path, but are
still introduced by the scheduling decisions made, may contribute
to raising the SLR value above 1.

To obtain a single value for the performance of the scheduler
over a whole workload, the mean or worst-case SLR values for
the whole workload can be used. These metrics are particularly
useful in the case of system overload, where some SLR values must
increase over a value of 1.

3.1.3. Fairness metrics
It is possible to achieve a kind of perfect fairness in a naïve

way by only running a single job at a time. However, this will
almost certainly mean that utilisation and throughput over the
whole grid are unacceptably low. This means that there can be
a tradeoff in a non-preemptive system between fairness and
utilisation. Hence, metrics are needed to quantify the level of
fairness, to ensure that the tradeoff is managed appropriately.
As far as we have found, fairness metrics with respect to grid
scheduling have been little mentioned in the literature, because
the overwhelming focus is on achieving high throughput. There
may be an underlying assumption that by raising utilisation,
responsiveness is maximised, and hence fairness will be near
optimal as well. This assumption may hold when the task/job
execution times follow a normal distribution. However, it breaks
down when a power-law distribution is encountered, because
even if there is high utilisation, this may be where all the
largest jobs are running, and the smallest jobs experience very
poor responsiveness. Therefore, when a power-law distributed
workload is encountered, it is necessary to measure fairness.

The average values of the speedup, stretch and SLR metrics
can be used to gauge the responsiveness a scheduler is able to
achieve with a given workload. By examining the distribution of
the responsiveness metrics, however, we propose that fairness
metrics can be developed. Tight clustering of the responsiveness
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(a) Workload. (c) Job metrics.

(b) Gantt Chart. (d) Workload metrics.

Fig. 3. Low utilisation issue example.

values may indicate a fair distribution of grid resources to jobs.
The spread of the responsiveness values can bemeasured using the
standard deviation of each of the responsiveness metrics.

The importance of measuring fairness can be illustrated with
the following example. A First In First Out scheduler might
introduce a relatively constant delay to all jobs that come through
the system. However, this would penalise the SLR of jobs with a
short critical path far more than that for jobs with a long critical
path. This is likely to be perceived by users as an unfair situation.
Furthermore, this may be particularly undesirable because short
jobsmaywell also be the ones forwhich responsiveness is themost
important, as was observed in the industrial case study.

A small value for the standard deviation of the responsiveness
metrics is likely to be considered fair if the desire is to treat each job
equally. However, the perception of fairness can depend on human
factors external to the system. Discussion of these human factors
that may imply some kind of prioritisation, capacity reservation or
otherwise is beyond the scope of this paper.

3.1.4. Relative metrics
A further common means of comparing schedulers is by their

relative performance over a set of problems. For a given problem
instance, the performance of all the considered schedulers is com-
pared against a given metric, often the workload makespan [19].
Thewinner is then decided. This is repeated over a number of prob-
lem instances. The ‘best’ scheduler is then considered to be the one
that had the highest number of wins over the problem space.

These approaches are known as relative metrics. Relative met-
rics can often be useful for real-world scheduling problems, be-
cause finding the optimal schedule is computationally intractable.
A simple count may not be able to show howmuch better the best
scheduler is. Where a numerical value for relative performance
is desired instead of a count, it is common to compare the met-
ric(s) for the considered scheduler against some accepted ‘baseline’

scheduler [19]. While they may help in the end decision of which
the best scheduler is, they do not provide any greater insight into
the schedules produced than the underlying metrics that they are
based on. Therefore, they will not be evaluated in this paper.

3.2. Metric evaluation

Metrics are used to provide insight into schedules. The different
classes of metrics defined above provide different kinds of insight.
This sectionwill apply themetrics to three example schedules that
contain known scheduling issues. The ability of themetrics to iden-
tify the issues involved will be evaluated. The examples show the
importance of being able to measure issues of utilisation, respon-
siveness and fairness, respectively. The examples contained in this
section are deliberately small so that they can be completely de-
scribed briefly, yet still demonstrate the presence of the scheduling
issues. For the purposes of simplicity, all the jobs are given arrival
times of τ = 0. Nevertheless, they are designed to be viewed as
dynamic scheduling problems, as the issues of responsiveness and
fairness are less relevant to static scheduling problems.

The discussion here will attempt to identify those metrics
that provide the best insight into these scheduling issues. This
evaluation will be reinforced and validated by applying these
metrics to the larger-scale scheduler evaluation in Section 4.4.

3.2.1. Low utilisation issue
If the packing of tasks on to processors is not sufficiently dense,

then low utilisation of the processors will result. Graham [18]
contains a classic example of contrasting schedules. The workload
given by Graham is presented in 3(a) and is intended to run on
three processors. Schedule A is Graham’s workload scheduledwith
an anomaly that increases makespan, whereas schedule B is a
schedule without the anomaly (see 3(b)). Metrics for these two
different schedules are presented in Tables 3(d) and (c).
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(a) Workload. (c) Job metrics.

(b) Gantt Chart. (d) Workload metrics.

Fig. 4. Multiple waits issue example.

The significant feature of this workload is that the critical
path of J1 is long enough that it defines the minimum workload
makespan (Table 3(d)). In schedule A, the whole workload
makespan is extended because T 3 delays the execution of T 2.
The flow and average utilisation metrics depend on the workload
makespan. Because the workload is the same but its makespan in
schedule A is longer than in schedule B, then the flow and average
utilisation metrics are lower for schedule B. The peak in-flight
count metric remains the same, although Schedule B only has a
single duration of the peak between τ0 and τ2, whereas schedule
A has two periods of time at the peak value, τ0 − τ2 and τ3 − τ5.
The utilisation metrics are useful here, because they show that
schedule B contains lesswasted capacity in the schedule, andhence
makes more efficient use of the resources.

All the responsiveness metrics except cumulative completion
show an improvement from schedule A to schedule B (Table 3(d)),
because three jobs finish earlier and only one job finishes later.
The cumulative completion metric rewards the early finish of the
larger J4 in schedule A. This is because the cumulative completion
metric rewards jobs that finish earlier, and themovement of empty
scheduling space to the end of a schedule. If a new job arrived
only after this space had passed, the capacity represented by the
empty space would have been wasted. This stands in contrast to
the average utilisation metric, which would suggest that the lower
average utilisation is better, but does not take into account where
in the schedule this low utilisation phase appears.

A high value for cumulative completion may be valuable, but
it does not indicate how fairly the jobs in the workload are being
treated. The fairnessmetrics (Table 3(d)) show that schedule A is an
improvement over schedule B. This is because J1 and J3 complete
sooner, and hence closer to their critical path time. The finish
time of J4 is extended, but as this is one of the larger jobs, the
increase is less when taken as proportional to its execution and
critical path time. This means that the variation as a proportion of
the job responsiveness metrics for each job is lower (Table 3(c)),

giving a lower standard deviation of these metrics which defines
an increase in fairness.

From this example, it can be seen that utilisation metrics
are important, because they can reveal inefficiency in how the
platform is being used. The responsiveness metrics for each job
show how smaller jobs are proportionally affected more than
larger ones when they are subjected to delay. This is further
revealed in the fairness metrics, which show an improvement in
fairness (lower variation) for schedule B compared to schedule A.

3.2.2. Multiple waits issue
Themultiple waits problem is exhibitedwhen there is too great

an interleaving of jobs in a system, leading to low responsiveness
even though utilisation is high. This example evaluates how well
themetrics can reveal themultiple waits problem. In this example,
a single processor is available for execution, and as the two jobs
arrive at the same time, the one with the lower index begins first.
The dependencies of two jobs are shown in Table 4(a).

A trivial example of the multiple waits problem is shown in
Fig. 4(b). Schedule A shows a high interleaving of the two jobs,
as could have been scheduled by a list scheduler using FIFO
ordering over tasks (e.g. the scheduler given in Section 4.1.2).
Schedule B, on the other hand, shows the two jobs executed in
sequence. This could have been created using a list scheduler using
a FIFO ordering over jobs instead of tasks (e.g. scheduler from
Section 4.1.3). The most pertinent feature of this example is that
J1 completes execution significantly earlier under schedule B than
under schedule A, while J2 completes execution at the same time
(Fig. 4(b)).

The utilisation metrics for this example that depend on the
makespan are the same, because the workload makespan is the
same. Only the utilisation metric of peak in-flight count shows a
difference between these two schedules. The peak of 2 in schedule
B suggests that there is greater than desirable interleaving of work,
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(a) Workload. (b) Gantt Chart. (c) Responsiveness metrics.

Fig. 5. SLR advantages example.

because the peak in-flight count is greater than the processor
count.

The earlier completion of J1 in schedule A means that a
higher cumulative completion value is achieved (Table 4(d)). The
average stretch, speedup and SLR metrics also favour schedule
A, also because J1 finished earlier. It is important to note that
in schedule A, the stretch metric has a value of 1, whereas the
SLR metric has a value of 1.5. This is because stretch is defined
relative to execution on a single processor, which matches this
situation. Having a stretch value of 1 may seem to indicate that
there is no further improvement that can be made. However, the
dependency structure in J1 shows that there is parallelism that
has not been exploited in this example. The SLR metric reveals the
potential for a lower response time if there were more processors
available.

The fairness metrics of the standard deviation of stretch and
speedup indicate instead that Schedule B is to be preferred
(Table 4(d)), because the two jobs finish closer in time. While this
seems more fair, this should be considered in light of the decrease
in responsiveness. Interestingly, the standard deviation of SLR does
not change, indicating that when dependencies are taken into
account, the schedules are equally fair.

This example demonstrates that responsiveness metrics of
mean SLR, stretch and speedup are important, because they reveal
howquickly each job is getting through the system. The cumulative
completion metric also reveals the benefit of having some jobs
finish earlier, even if the workloadmakespan is the same. The peak
in-flight count is also shown to be useful, because it reveals where
there is excessive interleaving of jobs. The responsiveness metrics
also show that while a schedule may seem fairer, it may also be
less responsive, and both sets of metrics should be considered if a
tradeoff is to be made between them.

3.2.3. Advantages of SLR over stretch/speedup
This example is intended to highlight the advantage gained

by using the SLR metric over the stretch of speedup metrics
on tasksets containing dependencies. The schedule shown in
Fig. 5(b) contains two jobs, with identical numbers of tasks
and identical execution times (of tasks and of the whole job),
as defined in Table 5(a). The only thing that differs between
the jobs is their dependency structure, and hence the length of
their critical path. The critical path length of J1 is 3, whereas
for J2 the critical path length is 5. When these two jobs are
scheduled onto a single processor each, the SLRmetric reveals that
this is optimal for J2, because of its dependency structure, and
yet it is suboptimal for J1, because J1 has further opportunities
for parallelism (see Table 5(c)). Nevertheless, the stretch and
speedup metrics cannot distinguish between the scheduler’s
performance, because both jobs have the same total execution
time.

This section has shown, using the examples of three issues,
that themeasurement of utilisation, responsiveness and fairness is
important. Scheduling issues can occur in each of these categories.
Where dependencies are concerned, it has been shown that taking
the critical path of jobs into account (as the SLR metric does) is
essential, as there is otherwise a loss of insight. Now we have
defined and evaluated a number of metrics, they will be applied
to the evaluation of a number of scheduling policies running over
synthetic and industrial workloads.

4. Scheduling

4.1. Policy definitions

This section will define a set of ordering policies that can be
applied on each cluster, within the platform model outlined in
Section 2.2.2 above. The next section will evaluate these policies
as to their ability to achieve good utilisation, responsiveness and
fairness with a range of different synthetic workloads and load
ratios, along with an industrial workload.

As previously mentioned in Section 2.1, the load on grids and
clouds can vary, and it is likely that there will be times when
the arrival rate of work is greater than the maximum processing
capacity. If a platform is perennially overloaded, then the queues
will grow in an unboundedmanner. Under some ordering policies,
it may be the case that under such periods, certain jobs will never
reach the head of the queue, and so suffer from starvation. On the
other hand, the structure of some ordering policies will guarantee
that all jobswill eventually run, and these are known as starvation-
free ordering policies.

4.1.1. Random
The random ordering policy randomly chooses from the set of

ready tasks which should be the next task to run. This policy is
useful as it can provide a baseline against which the performance
of other ordering policies can be compared, because it operates
with no information about theworkload. For any ordering policy to
be worth using, it must demonstrate that it produces significantly
better schedules than the randomscheduler. Although in the short-
term, the random scheduling policy could suffer from starvation, it
is statistically improbable that a job could starve forever.

4.1.2. FIFO Task
The FIFO Task orderer is another simple ordering policy, albeit

one that is widely used. Jobs are decomposed into their component
tasks. As tasks become ready, they are placed into a FIFO queue.
Tasks are removed from the head of the queue and allocated to the
grid as resources become free. Any FIFO queues are starvation-free,
because while ever the cluster is executing work, jobs will rise to
the head of the queue and be executed in the order they arrived.
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4.1.3. FIFO Job
This is a slight modification to the FIFO Task ordering policy,

designed to avoid the multiple waits problem. Ready tasks in the
queue are ordered first by the order in which their respective jobs
were submitted, then by the order in which they became ready.
FIFO Job is starvation-free in the same way as FIFO Task, because it
is based on a FIFO queue.

4.1.4. Fair Share
The ‘Fair Share’ ordering policy is designed to approximate the

behaviour of a partitioned scheduling scheme, but implemented
as a list scheduler Oracle Corporation [10], Platform Computing
Corporation [11]. The Fair Share orderer is based on a tree of shares.
The root of the tree has a 100% share of the cluster. Each branch
of the tree divides out this share until the leaves of the tree are
reached. These leaves represent the users. The leaves of the tree
do not all need to be at the same depth. Each job in the system is
assigned a path in the tree, which must be a leaf.

As the grid is executing, a share factor for each task is calculated.
This is achieved by calculating the share allocated to that path over
the share actually used by each node on the path. The share factor
for each task is then the multiplication of these factors all the way
down the tree until the leaf is reached. The tasks are then ordered
by their share factor.

This is intended to ensure that if the cluster is busy that the
resources of the cluster are distributed according to the share tree.
However, if the cluster is underutilised, then there is still scope for
jobs to run outside their share. Jobs with the same share factor are
processed in FIFO order. Dependencies are not taken into account
by the fair share scheduler, meaning that only ready tasks are
added to the task queue.

The Fair Share ordering policy is not starvation-free, even
though jobs with the same share factor are run in FIFO order. This
is because a job requiring a large number of processors that was
assigned to a leaf with a low share may never run because it would
need more than its share to run.

4.1.5. Longest and Shortest Remaining Time
The Longest Remaining Time First (LRTF) and Shortest Remain-

ing Time First (SRTF) ordering policies use concept of Upward Rank
introduced by Topcuoglu et al. [9]. Upward Rank is defined for
each task, and is the length of the critical path that remains to be
completed after the task has executed. The Longest and Shortest
Remaining Time ordering policies sort the list of tasks by decreas-
ing and increasing Upward Rank, respectively. The highly regarded
HEFT scheduler uses the LRTF ordering policy [9]. This ensures that
the largest tasks are started first, which is a useful heuristic when
performing bin-packing to optimise the workload makespan for
static schedules. In a dynamic schedule, however, the workload
will never end, so prioritising other metrics, such as those for re-
sponsiveness or fairness is advantageous. Using the LRTF scheduler
in a dynamic systemwouldmean that the smallest tasks suffer pro-
portionately farmore than the largest tasks. Furthermore, LRTF and
SRTF are not starvation-free. This is because in overloaded clusters,
either the shortest or the longest jobs may wait forever.

4.1.6. Projected SLR
Having considered the benefit realised by using the SLR metric

to measure scheduling performance, we now present a novel
ordering algorithm that we call Projected-Schedule Length Ratio
(P-SLR). The P-SLRordering policy uses the concept of upward rank,
but uses it to give a projection of when the job would finish if the
considered task was run immediately. This projection of the job
finish time is used to calculate a projection of what the job’s SLR
metric would be, which is used as the basis of the ordering policy.

The nominal intent of the P-SLR orderer is that as the load of
the system rises (especially into a state of overload), all jobs should
‘suffer’ equally. At a scheduling instant, the upward rank of every
task is used to predict what the SLR of the job would be if this
task were executed immediately. The task where the predicted
SLR is largest is then run first. This means that the task that is
currently most ‘late’ is the one to be run next. The advantage of
using the SLR metric is that small jobs can ‘jump’ the queue to run
quickly because their SLRs are more sensitive to the same waiting
time. However, eventually, even large jobs will run because their
projected SLR will rise as they wait, just more slowly than for
small jobs. This means that the P-SLR orderer is starvation-free, a
desirable attribute in systems where overload may be present.

A particular factor of note that is shown in Algorithm 1 is that
the predicted finish time is incremented by 1. Two jobs of differing
sizes could be submitted at the same scheduling instant. Without
this increment, both jobs’ projected SLR would be 1, and hence
the choice between them would be arbitrary. By adding a lateness
penalty to every calculation, the projected SLR is able to distinguish
between short and long jobs that arrive at the same time, and
prefer running the shorter one first.

Another factor to note is that tasks not on the critical path for a
jobmay have a small upward rank, even though theymay be ready
early on. This canmean that the projected SLR for these tasks is less
than 1. However, the result of this is that they are prioritised lower
than the tasks on the critical path; a desirable attribute.

Algorithm 1 Projected SLR ordering algorithm

projected_s l r ( task ) :
job_predicted_f inish_t ime = now( ) + task_upward_rank + 1
job_predicted_response_time =

job_predicted_f inish_t ime − job_submit_time
job_predicted_SLR =

job_predicted_response_time / job_c r i t i ca l _pa th
return job_predicted_SLR

4.2. Hypotheses and testing approach

The new P-SLR policy needs to be evaluated in order to compare
its performance to the other policies given. This section will give
three hypotheses that we will investigate, along with the ways in
which the hypotheses will be tested.
• Hypothesis 1. The P-SLR orderer gives schedules with a higher

degree of fairness than alternative policies i.e. it does not
particularly favour small or large jobs, but achieves the same
responsiveness across the range of job total execution times.

To measure fairness, the standard deviation of the SLRs for each
workload will be used. These will be displayed graphically as a
box plot, to show the relativemeasures. Statistical significancewill
be tested using a repeated measures t-test. It is useful to use the
repeated measures test, because the workload and load ratio are
the same, and only the ordering policy has changed; this means
that pairs of values can be compared. The threshold for statistical
significance is set at the 5% confidence interval. The null hypothesis
will be that the P-SLR ordering policy gives values of SLR Standard
Deviation indistinguishable from the alternative scheduler.

However, it is useful to visualise how the different ordering
policies achieve fairness across the spectrum of job execution
times. This will be achieved by plotting the worst-case SLR value
by the decile of job execution time. This will make it possible to
see which schedulers effectively prioritise large or small jobs, or
achieve a fair balance of SLRs across the range of job execution
times. At low load ratios, it is possible that no jobswould prioritised
over others because anything can run immediately, and hence the
plot would be uninformative. Therefore, the worst-case SLRs by
decile of execution times will be plotted at 120% load ratio.
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Table 2
Parameters used in workload generation.

Uniform
independent

Log.
independent

Probabilistic
dependencies

Fan-in/fan-out Chain of fan-in/fan-out

Task core count distribution Random selection from {1, 5, 10, 15, 20}
Number of workloads 30
Total workload exec time 1010

Proportion of Kind1:Kind2 Tasks 80:20
Communication to computation ratio 0.2
Distribution of job exec times Uni. Log. Log. Log. Log.
Distribution of task exec times – – Log. Log. Log.
Number of jobs 10000 10000 1000 1000 1000
Tasks per job (uniform distrib.) 1 1 1–20 – –
Dependency probability – – 0.3 – –
Fan-out width – – – 1–10 1–5
Fan-out length – – – 3–15 3–15
Fan-out chain length – – – – 1–3

• Hypothesis 2. The P-SLR orderer gives schedules with a higher
degree of responsiveness than alternative policies.

As outlined above, responsiveness is best measured using the SLR
metric for each job in a workload. The responsiveness of the P-SLR
ordererwill be evaluated by examining theworst-case SLR for each
workload when runwith each scheduler. This will be evaluated for
statistical significance also using the repeated measures t-test. For
further insight, the worst-case SLR metric will be plotted against
load ratio to see how the different ordering policies cope as load
increases.Worst-case SLR is a better metric of responsiveness than
mean SLR, because the mean could mask poor performance on a
small subset of jobs, even though that poor performance may be
critical to users.

At each step of load ratio, the worst-case SLRs of each workload
will be recorded for each ordering policy. To see if P-SLR is themost
responsive, the percentage of cases in which P-SLR dominates the
other ordering policies will be calculated. To check whether this
dominance is statistically significant, the repeated measures t-test
will also be used. The null hypothesis is that the P-SLR orderer gives
no significant improvement in worst-case SLR values.

• Hypothesis 3. The P-SLR orderer does not give a significantly
different rate of utilisation over alternative policies.

Utilisation metrics that use the makespan are not ideal for
measuring a dynamic system, because the makespan will tend
to be most influenced by the last few tasks to arrive. Average
utilisation may be poor if most of the cluster is idle while the
last task finishes. However, if an ordering policy gave significantly
lower utilisation than others, it may not be as desirable because
it cannot make good use of the cluster. Average utilisation values
given by each ordering policywill be plotted in a box-plot to see the
range of values. The null hypothesis is that there is no statistically
significant difference between the average utilisation values of the
other orderers and the P-SLR orderer.

Further metrics will not be analysed in as much detail, but
will still be plotted for completeness. The cumulative completion
metric, using a standardmakespan for all schedules, will be plotted
on a box-plot. This will be to see how quickly the schedulers are
able to finish the work that has arrived. The peak in-flight count
will also be plotted on the box-plot, to see how much interleaving
of jobs is made to happen by the ordering policies.

4.3. Synthetic test generation

In order to fairly evaluate the performance of these scheduling
algorithms, they need to be applied to equivalent workloads on
an equivalent platform. We use a simulation framework in order
to be able to perform a comprehensive comparative analysis. The
application model allows a great deal of flexibility in the kinds of

workloads that could be produced. Yet in order to be able to fairly
evaluate the scheduling policies, it is important to generate a wide
variety of realistic workloads.

Both the tasks and jobs that form part of a work can
have execution times that follow specific distributions. For this
evaluation, we created workloads with uniform and power-law
distributions. These distributions were obtained using a method
based on UUnifast-Discard [22], and described in detail in [12].

The shapes of the DAGs that define the dependencies have
already been described in Section 2.2.1.Workloadswere generated
according to these shapes, with their parameters presented in
Table 2. For the Fair Share scheduler, each jobwas randomly placed
into one of 5 equal shares.

The level of load on the platform can be measured by the
percentage rate at which work is arriving compared to the
maximum rate at which this work can be processed. Comparing
schedulers at a range of loads is essential, because of the variation
experienced in grid and cloud scenarios. A load ratio for aworkload
can only ever be defined with relation to a platform, yet it is
desirable to be able to adjust the load ratio independently of the
workload andplatform. This canbe achievedby adjusting the inter-
arrival times of jobs, following the algorithm described in [12].
The evaluations were run at load ratios between 80 and 120%,
in increments of 10%, to examine how gracefully performance
degraded under the different policies as the threshold of overload
is passed.

Networkingdelays are considered in thismodelwhenever there
needs to be communication between clusters. The edges of the
DAG representing the dependencies can be weighted to represent
the data transfer requirements. Rather than calculating the data
volume, instead, we use the computation to communication ratio
(CCR) to define how long the network transfer will take. If a task’s
execution time is Texec, then the time taken to transfer data from
its host cluster to any other cluster is taken to be Texec × CCR. A
CCR value of 0.2 was used so that network delays were present,
but were relatively small compared to the computation costs.

The platform used in simulation is fixed, and consists of
4 clusters of 1000 cores each. Three of the clusters used an
architecture Kind1, and one of the clusters was of Kind2. The
proportion of the workload that requires the Kind2 architecture
(see Table 2) is deliberately lower than the share of the grid, in
order that the network was the bottleneck in running tasks on the
Kind2 cluster. The network topology was that of a central router
connected to each cluster with the same bandwidth network link.
This network architecture and topology is displayed in Fig. 2.

4.4. Scheduler evaluation (synthetics)

To give confidence in our investigation the performance of the
scheduling policies, a large number of synthetic workloads were
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Fig. 6. Standard deviation of SLR by ordering policy.

generated, according to the parameters in Table 2. There were 5
kinds of workload with 30 individual workloads each, evaluated
for 5 load ratios, each using one of 7 ordering policies. This gave
5250 individual schedules produced. The approach described in
Section 4.2 was used to evaluate whether or not the hypotheses
held.

4.4.1. Fairness
Standard deviation of SLR. To evaluate the fairness of the ordering
policies, the standard deviation of the SLR valueswas calculated for
each schedule produced. These values are displayed in a box-plot,
shown in Fig. 6. The null hypothesis stated that the P-SLR orderer
would produce standard deviations of SLR indistinguishable from
the other ordering policies. The null hypothesis was refuted for
all orderers except the SRTF orderer. As is visually observed from
Fig. 6, and confirmed by a repeated measures t-test, the P-SLR and
the SRTF orderer produce values for the standard deviation of SLR
that are not statistically distinguishable. To further examine this
result, we will examine how the scheduling policies affect tasks by
their size.
Mean SLR by decile. Fig. 7 shows the mean SLR by decile of job
execution times at 120% load ratio.

The LRTF orderer prioritises the longest jobs the most, with the
lowest decile score for the largest tasks, and penalises the smallest
tasks most, with the highest mean SLR score for the smallest tasks.
This is exactly what would be expected of the ordering policy.

The Random, Fair Share and FIFO ordering policies all follow a
similar profile. This is due to the fact that in these orderers, all tasks
will wait in the queue for approximately the same amount of time.
Naturally, this penalises the SLR of the shorter tasks more than the
larger ones.

The SRTF orderer follows the opposite pattern, prioritising the
smallest tasks the most and penalising the largest tasks. Across
most of the workload space, the SRTF orderer gives the lowest
mean SLR value. However, this crosses over for the 10th decile
(the largest jobs), where the highest mean SLR is produced by
SRTF. However, because the largest tasks are so large, they are
much less sensitive to delays than shorter tasks. In our simulation,
the workloads were allowed to run to completion after jobs had
finished arriving, which meant that every job would eventually
finish. In reality, in an overloaded system, this may not be the case.
Because the Shortest Remaining First scheduler is not starvation-
free, the worst-case for the largest jobs may be much worse in
reality.

Fig. 7. Mean SLR by decile of job execution times, 120% load ratio.

The P-SLR orderer, as intended in its design, shows no bias
in terms of SLR across the range of execution times. Because the
largest jobs are guaranteed to run, this will have an impact on all
of the smaller jobs in the system. However, this penalty is shared
out equally across the workload.

The uptick in mean SLR seen in the first decile can be attributed
to small jobs arriving when no resources are free in the cluster.
Even the delay until the next instant when until some resources
become free can therefore cause SLR to increase significantly. As
the size of a cluster increases, however, this uptick would be less
pronounced for a similar workload, because the expected delay
until some processors become free will decrease.

For the fairness metrics, we can see that the P-SLR ordering
policy provides a significant improvement in fairness over the
LRTF, Fair Share, Random and FIFO-based ordering policies. The
P-SLR orderer also delivers a statistically insignificant difference in
fairness from the SRTF ordering policy, even while P-SLR offers a
guarantee that no job will ever starve.

4.4.2. Responsiveness

Worst-case SLR. The responsiveness achieved by each ordering
policy can be measured by the worst-case SLR for each schedule.
The null hypothesis for responsiveness states that worst-case SLR
values produced by the P-SLR ordering policy are indistinguishable
from those produced by alternative policies. The distributions
of worst-case SLR values for each schedule are shown in
Fig. 8. Statistical significance between the distributions was
evaluated using the repeated measures t-test. As with the fairness
hypothesis, the null hypothesis is rejected for P-SLR compared
to all the ordering policies except SRTF. P-SLR and SRTF give
significantly better responsiveness than the other scheduling
policies, and are statistically indistinguishable from each other.
These ordering policies achieve low worst-case values because
they prioritise or give equal treatment to the smaller jobs in the
workload, as shown in the previous section. Because the smallest
jobs are also the most sensitive to delays, reducing their SLR value
is the key to achieving the best responsiveness possible.
Mean values of worst-case SLR. The ordering policies can also be
compared as to how their ability to achieve responsiveness as the
load ratio is increased. This is plotted in Fig. 9. Throughout most
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Fig. 8. Worst-case SLR by ordering policy.

Fig. 9. Mean worst-case SLR by load ratio.

of the range, the Longest Remaining First orderer has the worst
worst-case SLR. This is to be expected, because it prioritises the
largest tasks, and the smallest tasks’ SLRs suffer proportionately
more when they are delayed. At the other end of the scale, SRTF
and P-SLR show similar values for the lowest worst-case.

It is not surprising to observe that the random orderer achieves
better or similar mean worst-case SLR values across the spectrum
of load ratio when compared to the Fair Share and FIFO-based
orderers. This is because shorter tasks must always wait the whole
length of the queue in FIFO-based ordering policies. This will
penalise small tasks heavily, and lead to a high worst-case SLR.
The random scheduler, on the other hand, allows some small tasks
to ‘jump the queue’, and hence lower the likelihood that they will
have to wait the full duration of the queue before being executed.

It is possible to use the worst-case SLR metric to calculate
a relative metric of dominance. Dominance is the number of
schedules where the worst-case SLR achieved by P-SLR is less than
or equal to that achieved by the alternative orderer. The values of
the dominance metric across the load ratio spectrum are shown
in Table 3, where values in bold indicate a lack of statistically
significant difference between P-SLR and the alternative policies.
As with the other metrics, it is found that P-SLR dominates all the

Table 3
Dominance of Projected-SLR orderer over worst-case SLRs.

% Dominated by projected-SLR 80 90 100 110 120

Longest remaining time first 96 100 100 100 100
Shortest remaining time first 54 47 56 58 57
Random 87 93 100 93.3 100
FIFO task 87 98 100 100 100
FIFO job 92 94 100 100 100
Fair share 87 95 98.6 100 99.3

Table 4
Dominance of Projected-SLR orderer over mean SLRs.

% Dominated by projected-SLR 80 90 100 110 120

Longest remaining first 97 100 100 100 100
Shortest remaining first 59 54 44 26 21
Random 88 97 100 100 100
FIFO task 91 98.3 100 100 100
FIFO job 94 97 100 100 100
Fair share 92 98.6 100 100 99.3

other ordering policies except SRTF. In the case of SRTF, the null
hypothesis cannot be refuted and therefore P-SLR is statistically
indistinguishable, across the load ratio spectrum.
Mean values of SLR. The dominancemetric can also be applied to the
mean SLRmetric, another responsivenessmeasure (Table 4, values
in bold again indicate a lack of statistically significant difference).
As previously observed with the other metrics, P-SLR dominates
all the orderers except SRTF. However, at higher load ratios, the
null hypothesis is again refuted, showing that there is a significant
difference between the performance of P-SLR and SRTF. This is
because SRTF achieves better performance for small tasks, which
make up the majority of the workload considered. This brings the
mean down, and has SRTF dominate P-SLR formean SLR under high
load.

The responsiveness measures, therefore, show that the P-SLR
orderer gives more responsive schedules than the Random, LRTF,
Fair Share and FIFO-based orderers, by dominating their mean
and worst-case SLR values across the load spectrum. The P-SLR
achieves worst-case SLR results indistinguishable from the SRTF
order, although the SRTF orderer achieves significantly better
mean SLR results at high load.

4.4.3. Utilisation
Average utilisation. Fig. 10 shows the average utilisation across
the different orderers. In this experiment, the null hypothesis
is rejected for all other ordering policies. Statistically, P-SLR has
a higher average utilisation than SRTF and a lower utilisation
than all other schedulers. However, although this may produce a
statistically significant result because of the large sample size, it
can be argued that the difference is small, as can be seen from the
size of the boxes in Fig. 10.

Furthermore, utilisation is calculated based on the workload
makespan. In this simulation, where the workload was left to run
to completion, the workload makespan is likely to be decided
by a single large job that arrived late in the schedule. This is
corroborated by the lowmedian values for utilisation shown. These
are only low over the whole makespan, because the makespan
is significantly extended by large jobs running at the end of the
schedule.

We therefore conclude that although the utilisation achieved by
the P-SLR scheduler is statistically significantly lower than for the
orderers other than SRTF, it is not of a magnitude that is cause for
concern. Utilisation can be considered to be effectively equal over
the orderers, because the differences between them are so small.
Cumulative completion. A box-plot showing the cumulative com-
pletion values for the different scheduling policies is shown in
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Fig. 10. Average utilisation by ordering policy.

Fig. 11. Cumulative completion by ordering policy.

Fig. 11. Although the plots look fairly similar, the P-SLR orderer is
statistically significantly better than all other orderers except SRTF,
as we have found previously. This is because cumulative com-
pletion is linked to responsiveness. If more tasks finish earlier in
the schedule, then the schedule will be more responsive, and the
cumulative completion metric will be higher. Because the P-SLR
and SRTF metrics are indistinguishable in their responsiveness, it
would follow that they are indistinguishable in their cumulative
completion.
Peak in-flight. The results for the peak in-flight metric are shown
in Fig. 12. Similarly to the results found for the other metrics, P-
SLR has a statistically significantly lower peak in-flight for all other
ordering policies except SRTF. This is also to be expected due to
the responsiveness findings, because a high level of responsiveness
will mean that more tasks are finishing more quickly, and hence
there will be fewer in-flight.

Another interesting feature to notice is to consider the peak in-
flight count of the LRTF orderer. From the cores per task presented

Fig. 12. Peak in-flight by ordering policy.

in the workload parameters above (Table 2), we can see that the
average number of cores per task is expected to be just over 10.
The median value for peak in-flight jobs given for the LRTF orderer
is just over 400. Therefore, at the point in the schedule of peak in-
flight, there are more jobs in-flight than there are possible to be
servicing at once, given that the platform consists of 4000 cores.
This finding reinforces the responsiveness metrics that show the
LRTF ordering giving poor responsiveness. LRTF starts a lot of jobs
quickly, but takes a long time to finish them, as is shown by the
high peak in-flight and the lower responsiveness achieved.

4.4.4. Evaluation summary
In this evaluation of policies using syntheticworkloads,wehave

shown that the P-SLR ordering policy has significantly improved
fairness and responsiveness when compared to the Random,
LRTF, Fair Share, FIFO Task and FIFO Job policies. The P-SLR
produces fairness and responsiveness results that are statistically
indistinguishable from the SRTF ordering policy. However, we
would argue that the P-SLR ordering policy is a better choice for a
production policy, because it is starvation-free. P-SLR guarantees
that all jobs and tasks will eventually run, however large they
are. Using SRTF, on the other hand, may lead to the largest jobs
starving for resources indefinitely in a system in overload, where
the arrival rate of work continually exceeds the ability for the
system to service this work.

4.5. Scheduler evaluation (industrial)

In this section, the performance of the P-SLR ordering policy
will be evaluated using a single workload obtained from the logs
obtained in the industrial case study. The platform used for these
experiments reflects the platform used in the number, size and
connectivity of the clusters. Therefore, the results for the Fair Share
policy shownhere reflect the values seen in the production system.

4.5.1. Fairness
Standard deviation of SLR. The fairness of the schedules produced
using the industrial workload is shown in Fig. 13(a), as measured
by the standard deviation of their SLR values. It is clear that
P-SLR and SRTF show dramatically higher levels of fairness
compared to the alternative policies. P-SLR shows a slightly higher
standard deviation of SLR, though this difference is small compared



Author's personal copy

A. Burkimsher et al. / Future Generation Computer Systems 29 (2013) 2009–2025 2023

(a) Standard deviation of SLR. (b) Mean SLR. (c) Worst-case SLR.

Fig. 13. Functions of metrics over SLR by ordering policy (industrial workload).

Fig. 14. Mean SLR for decile of job execution time (industrial workload).

to the differenceswith any of the alternative policies. Furthermore,
the benefit of having a guarantee that a schedule will always be
starvation-free (given by P-SLR) is likely to outweigh the slight
decrease in fairness over SRTF. When also considering SLR across
the range of execution times (Fig. 14), the slightly lower degree
of fairness can be explained by the P-SLR policy having a slightly
higher average SLR across thewholeworkload. Because the shorter
jobs aremore sensitive to an increase in SLR than the large jobs, this
would amplify their differences and hence give a higher standard
deviation.

What is worth noting is the strong performance, in terms of
fairness, of the random policy. It is slightly fairer than the currently
used Fair Share policy and much better than the FIFO and LRTF
policies. It can be argued that random ordering could give fair
results, but thatwere equally poor in responsiveness, although this
is not the case for reasons outlined below.
Mean SLR over decile of execution time. The pattern for responsive-
ness when using the industrial workload parallels the patterns
seen using the synthetic workloads. The SRTF policy achieves the
highest mean responsiveness, although the results given by P-SLR
are closely competitive (Fig. 13(b)). Across the deciles of execution

time (Fig. 14), SRTF consistently outperforms P-SLR, albeit slightly.
Interestingly, even for the highest deciles, the mean SLR values are
equivalent for SRTF and P-SLR. This is likely due to several reasons.
First, the largest jobs are so large that even with a pending time
of weeks, when their execution times are in the order of months,
their SLR value may still be low. Second, load balancing between
the clusters may direct shorter jobs to alternative clusters when
there are large jobs pending on a given cluster, which may miti-
gate the likelihood of starvation for the large pending jobs. Third,
in the industrial scenario, it is likely that simply through natural
variation in the submission rates of work, there will be occasions
where the clusters are not fully loaded and therefore the longest
jobs can start. Even though these occasions may happen only ev-
ery few months, this will hardly affect the SLR of the largest jobs,
that themselves run for a few months.

It could be argued therefore that SRTF is the most appropriate
policy for achieving high responsiveness and fairness for most
users most of the time. However, the clusters tend to get busier
over time, and procuring a new cluster is a lengthy process. This
will lead to it becoming ever more likely that the largest jobs will
starve. Furthermore, there are genuine organisational needs of the
data, and by using P-SLR, the waiting time for these largest jobs
will be bounded, which is helpful for organisational planning for
when the data is ready. Therefore, the guarantee of non-starvation
offered by P-SLR is valuable, and the impact of the slightly higher
mean SLR across the workload is so small as to be very likely to be
acceptable (especially noting the logarithmic scale on the y-axis of
Fig. 14).

As expected, the LRTF policy gives the poorest responsiveness
of any policy, because it intentionally penalises the shortest jobs
to the advantage of the longer jobs. Both of the FIFO policies suffer
for responsiveness because of the wide range in execution times
between the shortest and longest jobs. The SLR value of a minute-
long job will naturally be very high if it is waiting in the queue
behind a month-long job. The Random policy improves slightly on
this, because the shortest jobs do have some chance of getting in
before the largest jobs.

Most interestingly is that the Fair Share policy seems to be
working favourably compared to Random across most of the space
of execution times. This suggests that the organisation have crafted
their Fair Share table mostly correctly. However, it is poorer than
Random for the shortest jobs, which tend to also be those where
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Table 5
Utilisation metrics (industrial workload).

Policy Average utilisation Cumulative completion Peak in-flight

P-SLR 58.64 7.685 × 1018 489
Random 58.64 7.686 × 1018 515
LRTF 58.64 7.688 × 1018 490
FIFO job 58.64 7.686 × 1018 543
SRTF 58.64 7.684 × 1018 439
Fair share 58.64 7.687 × 1018 441
FIFO task 58.64 7.688 × 1018 407

responsiveness is most highly prized. However, no matter what
Fair Share tree is used, it is not possible for Fair Share to be
competitive with P-SLR and SRTF due to the fact that Fair Share
does not take into account any information about execution times.

4.5.2. Responsiveness

Worst-case SLR. During the 10monthduration of the industrial logs,
there were some periods of overload. The worst-case SLR results
are useful measures of how well the policies were able to keep
up with responsiveness even under such overload as experienced
in a real system. The high values for these jobs are most likely
to be those jobs with very short execution times, as they are the
most sensitive to any changes in pending time. For worst-case SLR,
once again P-SLR and SRTF show values of comparable magnitude,
although SRTF is again slightly ahead for the industrial workload.
This is due to its aim in prioritising the shortest jobs that have the
most sensitive SLRmeasurements. LRTF returns the poorest worst-
case responsiveness, for much the same reason. FIFO Job does
surprisingly poorly, as it has poorer worst-case responsiveness
than Random and FIFO Task. It is to be expected that theworst case
for Random would be poor, because of some unlucky short task
that has to wait a very long time. For some reason in this particular
workload, the multiple waits problem does not cause FIFO Task to
be poorer than FIFO Job. Because it is a single worst-case, however,
it could well be that it is a single task in a pathological case.

4.5.3. Utilisation
The results for the utilisation metrics were so close as to

be unhelpful to display graphically, and so have instead been
presented in Table 5. The average utilisation values were identical
because theWorkloadMakespan values were also identical. This is
because of a single long-running job arriving just before the end
of the sampling period of jobs, and which kept on running long
after everything else in the sample had completed. This is also the
reason the average utilisation seems so low — it is not that the
clusters were actually that quiet in reality, instead it is because of a
significant periodwhere in the simulation, only the last single long-
running task was executing. However, both the average utilisation
and the Cumulative Completion values demonstrate that P-SLR is
able to keep utilisation as high as the alternative policies, even
while increasing fairness and responsiveness.

The peak in-flight values are not identical but none have a huge
degree of difference. SRTF has the lowest peak, which is not sur-
prising because it will tend to get short jobs out of the way quickly.
In contrast to the comments of the users about this workload, the
multiple waits problem does not seem to be manifested statisti-
cally here, with the peak in-flight value for FIFO Job being higher
than for FIFO Task, rather than vice versa. However, this could be a
pathological casewhere thisworkload on this platform causes FIFO
Job to perform particularly poorly on this metric.

4.5.4. Industrial evaluation summary
The results from the industrial evaluation corroborate those

from the synthetic workloads. When the P-SLR ordering policy is

applied to theworkloadderived from the trace of an industrial HPC,
it gives fairness, responsiveness and utilisation results comparable
to that of the best alternative policy—SRTF. However, it does this
while still providing a starvation-free guarantee. It is seen in
Fig. 14 that P-SLR can achieve responsiveness across the range of
execution times, just as SRTF can.

5. Conclusions

The collection of metrics is essential for the owners and
operators of grid and cloud platforms to ensure good utilisation
of their platforms and quality of service for their users. This
was motivated with an industrial scenario of familiarity to the
authors, and which argues that the perspective of the users
necessitates the evaluation of metrics that deal with quality of
service. A number of metrics were then presented, grouped into
those dealing with Utilisation, Responsiveness and Fairness. It
was shown that while utilisation metrics have traditionally been
used to evaluate scheduling policies, they are less suitable in a
dynamically-scheduled system such as a grid or a cloud. Instead,
responsiveness and fairness metrics are better able to show how
a scheduling policy is managing the resources under its control in
order to maximise the benefit to users.

The metrics were evaluated as to their ability to give insight
into scheduling issues. The Schedule Length Ratio (SLR) metric
of [9] was shown to be particularly useful for workloads with
dependencies, because it uses the critical path of the job as the
performance benchmark to compare against.

The authors compared the ordering decision of list scheduling
policies designed to run at the cluster level within a hierarchical
grid scheduling scheme. The Projected-Schedule Length Ratio
(P-SLR) policy was then developed with the aim of achieving
high responsiveness and fairness even under periods of overload,
without significantly impacting the cluster utilisation.

Evaluation of these scheduling policies was then performed in
simulation. First, using synthetic heterogeneous workloads with
a logarithmic distribution of execution times and a selection
of dependency patterns. This evaluation took place using a
simulated grid comprising a number of heterogeneous clusters
with networking delays between them. Second, by using a
workload extracted from 10-month trace of an industrial grid
running over a simulated platform designed to reflect the
configuration of the production grid.

The P-SLR scheduler was found to give more responsive and
fairer schedules than the Random, Longest Remaining Time First,
Fair Share, FIFO Task and FIFO Job ordering policies; without
having a major impact on utilisation. The P-SLR orderer achieved
responsiveness and fairness performance that was statistically
indistinguishable from the Shortest Remaining Time First ordering
policy, even though P-SLR is guaranteed to be starvation-free,
while SRTF is not.

The authors conclude that the average,worst-case and standard
deviation of Schedule Length Ratio metrics provide a suitable
level of insight for evaluating quality of service from a users’
perspective. This is because these capture the users’ concerns
about responsiveness and fairness while taking into account the
structure of dependencies for workloads that contain them. The
authors also propose that the Projected-SLR policy is a suitable
candidate for production use as a scheduler for HPC systems, due to
its ability to achieve good responsiveness, fairness and utilisation
and to degrade gracefully under periods of overload.

Future extensions of thiswork envisaged by the authors include
investigating the robustness of the P-SLR scheduler under more
varied conditions. This may include the situations where network
delays are more significant than considered in this paper, or
where the execution times of tasks can only be estimated and
not known precisely in advance. The authors also wish to pursue
industrialisation of the P-SLR scheduler.
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