
Scheduling and Timing Analysis

for Safety Critical Real�Time

Systems

Submitted for the degree of Doctor of Philosophy

Iain John Bate

Department of Computer Science�

University of York�

November ����

�

Abstract

The scheduling of tasks in safety critical systems such that the timing require�

ments are reliably met is often di�cult� Safety critical systems are di�erent to

other systems because a failure to meet a requirement may lead to a catastrophic

e�ect� for example an accident leading to loss of life� For this reason� there is

a greater emphasis on veri�cation and validation of software than with other

types of systems� Safety critical systems are found in a wide range of industries

including� nuclear� chemical� aerospace and automotive industries� The partic�

ular area of interest for this thesis is in the avionics industry and in particular

engine controllers� This provides a greater emphasis on hybrid systems� where

the software is responsible for the performance of the mechanical components�

Frequently� the systems developed have problems caused by insu�cient resources�

this leads to costly redesigns and timing requirements having to be altered so that

they can be met� A major contributor to the problems is the nature of the cyclic

scheduler that is often used� When this work began� �xed priority scheduling

was proposed as a potential solution to the problems� However� additional work

was required for �xed priority scheduling so it could be used in practice� The

areas of work covered are� task attribute assignment� the development of a new

or modi�cation of an existing infrastructure� and the production of appropriate

timing analysis� Through the course of the thesis� solutions are developed for

the required areas of work for both uniprocessor and distributed systems�

As a measure of success Rolls�Royce have used the work on an actual engine con�

troller� This followed the Joint Aviation Authority 	JAA
� which is the relevant

certi�cation authority� approving its use� In addition� the Guards project 	which

is a multi�company ESPRIT funded collaboration developing new techniques for

critical real�time systems
 is also using parts of the analysis developed� The fact

that technology transfer has been achieved is an indication of its acceptability

to industry�

�

�

Contents

� Introduction ��

�
 Current Scheduling Practice ��

�� Alternative Approaches to Scheduling � � � � � � � � � � � � � � � � ��

�� Domain Speci�c Oppositions to Change � � � � � � � � � � � � � � � ��

�� Thesis Proposition ��

�� Thesis Structure ��

� Current Approaches to Scheduling in Safety Critical Systems ��

��
 Timing Requirements to be Met ��

��� The In�uence of Certi�cation Requirements on Scheduling of the

System ��

��� The Current Lifecycle for Producing a Schedule and Scheduler � � ��

��� An Infrastructure For Cyclic Scheduling � � � � � � � � � � � � � � �

��� Problems With The Cyclic Scheduler Approach � � � � � � � � � � ��

��� Summary ��

� Literature Survey for the Fixed Priority Scheduling Technique ��

��
 Fixed Priority Scheduling on Uniprocessor Systems � � � � � � � � ��

��� Fixed Priority Scheduling of Distributed Systems � � � � � � � � � ��

��� The Time Triggered Architecture � � � � � � � � � � � � � � � � � � ��

��� Integrated Modular Avionics ��

��� Summary ��

�

� The Transition from Cyclic Executive Scheduling to Fixed Pri�

ority Scheduling ��

��
 Is the Fixed Priority Scheduling the Solution to the Problems of

Cyclic Scheduling� ��

��� Solving the Problems of Fixed Priority Scheduling � � � � � � � � � ��

��� How Can Fixed Priority Scheduling Support the Domain�s and

Application�s Requirements� ��

��� Work That Remains for Fixed Priority Scheduling to Be a Com�

plete Solution �

�

��� Summary �

� Infrastructure Choice and Associated Timing Analysis ���

��
 Implementing and Analysing the Task Release Mechanism � � � �

�

��� Handling Timing Overruns �
��

��� Summary �
��

� Task Attribute Assignment ���

��
 Calculating the Response Times of Transactions � � � � � � � � � �
��

��� Meeting Transaction Deadlines in Uniprocessor Systems � � � � � �
��

��� Jitter �
��

��� Separation �
��

��� Overall Task Attribute Assignment � � � � � � � � � � � � � � � � �
��

��� Contrast With Other Techniques � � � � � � � � � � � � � � � � � �
��

��� Summary �
��

�

	 Case Study � The BR	�� Engine Controller ���

��
 Purpose of the Electronic Engine Controller System � � � � � � � �
��

��� Technical Details of the System � � � � � � � � � � � � � � � � � � �
�

��� Technical Transition to Fixed Priority Scheduling � � � � � � � � �
��

��� Details of the E�ect on the Process � � � � � � � � � � � � � � � � �
��

��� Summary �
��

� Analysis of Task Sets That Feature O
sets ���

��
 Analysis of Task Sets That Feature O�sets Assuming a Critical

Instant �
��

��� Exact Analysis �
��

��� A Composite Approach �
�

��� Evidence of E�ectiveness �
��

��� Further Improvement to the Composite O�set Analysis � � � � � � ���

��� Summary ���

� Transition from Uniprocessor to Distributed System ���

��
 The Composite O�set Analysis �
�

��� Explanation of the Distributed Systems Timing Analysis Using

the Composite O�set Analysis �
�

��� Simulation to Demonstrate the Relative E�ectiveness of the Dif�

ferent Computational Models ���

��� Summary ���

�� Conclusions and Further Work ���

��
 Future Work ���

��� Final Comment ���

References ���

�

�

List of Figures

��
 A Typical Control Loop for An Embedded System � � � � � � � � � ��

��
 Diagram to Illustrate the Timing Analysis of a Transaction � � � � ��

��
 Illustration of Blocking Model Pessimism � � � � � � � � � � � � � �
��

��� Task Executions to Illustrate the Edge E�ect � � � � � � � � � � � �
��

��� Task Executions to Illustrate the Edge E�ect � � � � � � � � � � � �
��

��� Worst�Case Task Execution for Deadline Monotonic Priority Or�

dering �
��

��� Worst�Case Task Execution for Another Priority Ordering � � � �
��

��
 Diagram to Illustrate the Approach to Meeting the Timing Re�

quirements �
��

��� Timing Requirements for a Transaction � � � � � � � � � � � � � � �
��

��� A Time�Line for the Transaction Illustrated in Figure ��� � � � � �
��

��� A Time�Line for the Transaction in Figure ��� � � � � � � � � � � �
��

��� Timing Requirements for a Transaction � � � � � � � � � � � � � � �
��

��� A Time Line for the Transaction in Figure ��� � � � � � � � � � � �
��

��� A Time Line for the Transaction in Figure ��� � � � � � � � � � � �
��

��� A Time Line For the Transaction in Figure ��� � � � � � � � � � � �
��

��� Timing Requirements For a Transaction � � � � � � � � � � � � � �
��

��
� A Time Line for the Transaction in Figure ��� � � � � � � � � � � �
��

��

 A Time Line for the Transaction in Figure ��� � � � � � � � � � � �
��

�

��
� Timing Requirements For A Transaction � � � � � � � � � � � � � �
��

��
� Time�line For the Transaction in Figure ��
� � � � � � � � � � � � �
��

��
� Time Line for the Transaction in Figure ��
� � � � � � � � � � � � �
�

��
 Overview of an Electronic Engine Control Unit � � � � � � � � � � �
�

��� Diagram to Illustrate the System�s Transactions Requirements � �
��

��� Diagram to Illustrate the Attributes of the Tasks in the Transactions
��

��� A Time Line for the Transaction Involving Tasks P��� P��� P���

P� and P

 before the Attributes are Modi�ed � � � � � � � � � �
�

��� A Time Line for the Transaction Involving Tasks P��� P��� P���

P� and P

 after the Attributes are Modi�ed � � � � � � � � � � �
��

��� Operation of the Hybrid Scheduler � � � � � � � � � � � � � � � � �
��

��� Diagram to Illustrate the Word Format � � � � � � � � � � � � � � �
��

��
 Comparison of the Approaches Without the Free Variable Argument��

��� Comparison of the Approaches with the Free Variable Argument � ���

��� Comparison of the Composite Approach With�Without the New

Blocking Model� Resource Range �����
���� � � � � � � � � � � � � ���

��� Comparison of the Composite Approach With�Without the New

Blocking Model� Resource Range �����
���� � � � � � � � � � � � � ���

��� Comparison of the Approaches ���

��
 Basic Architectural Structure �

��� Diagram to Illustrate the Timing Analysis of a Transaction � � � � �
�

��� Phasing of Tasks on Di�erent Processors � � � � � � � � � � � � � � �
�

��� Comparison of the Simulation Results for
� Tasks � � � � � � � � ���

��� Comparison of the Simulation Results for �� Tasks � � � � � � � � ���

��� Comparison of the Simulation Results for �� Tasks � � � � � � � � ���

�

List of Tables

��
 Schedulability Results for the Improved Blocking Model � � � � � �
��

��� Schedulability Results with DMPO � � � � � � � � � � � � � � � � �
��

��� Schedulability Results without DMPO � � � � � � � � � � � � � � �
��

��
 Basic Task Set �

�

��� Analysis for a Tick Driven Scheduler� where Tclk � ����� with a

Single Task to Model Overheads � � � � � � � � � � � � � � � � � � �
��

��� Analysis for a Tick Driven Scheduler� where Tclk � ����� with

Multiple Tasks to Model Overheads � � � � � � � � � � � � � � � � �
�

��� Analysis for a Time Driven Scheduler � � � � � � � � � � � � � � � �
��

��� Analysis for a Hybrid Scheduler� where Tclk � ����� with a Single

Task to Model Overheads �
��

��
 Task Attributes �
��

��� Task Attributes and Schedulability Analysis Results � � � � � � � �
��

��
 Example task set �
��

��� Results of the Simple Analysis �
��

��� Results of the Exact Analysis �
��

��� Number of Task Releases to be Veri�ed � � � � � � � � � � � � � � �
��

��� Results of the Composite Analysis � � � � � � � � � � � � � � � � � �
��

��
 Task Set�s Characteristics �
�

��� Transaction Characteristics �
�

��� Task Set�s Characteristics and Schedulability Analysis Results � � �
�

��� Task Set�s Characteristics and Schedulability Analysis Results � � �
�

��� Transaction Characteristics �
�

��� Schedulability Analysis Results with the Composite Approach � � ��

��� Results Generated Using the Composite Approach � � � � � � � � � ���

�

Table of Abbreviations

Abbreviation Meaning

SPARK SPade Ada Real�time Kernel

IMA Integrated Modular Avionic

AOCS Attitude and Orbital Control System

TTA Time Triggered Architecture

TDMA Time Division Multiple Access

FIFO First�In First�Out

COTS Commercial O��The Shelf

DMPO Deadline Monotonic Priority Order

LCM Least Common Multiple

JAA Joint Air�Worthiness Authority

COMP Composite task

WCRT Worst�Case Response Task

�

�

Table of Symbols

Symbol Meaning

Ci worst�case execution time of task i

Ti period of task i

Umax maximum processor utilisation

Ri worst�case response time of task i

Rn
i nth iteration of the calculation of Ri

Bi blocking time for task i

Ii interference time for task i

Di deadline of task i

wi worst�case response time of task i

wn
i nth iteration of the calculation of wi

pi priority of task i

Ji release jitter for task i

ni instance being analysed of task i

clk task representing the overheads due to the clock tick occurring

first task representing the overhead of releasing the �rst task at a particular

time

sub task representing the overhead of releasing tasks subsequent to task

first at a particular time

Si separation requirement for task i

Oi o�set for task i

TD end�to�end deadline requirement of a transaction

RJ worst�case response time calculated using the release jitter approach

RE worst�case response time calculated using the exact approach

RC worst�case response time calculated using the composite o�set approach

�

�

Acknowledgements

I would like to thank my colleagues in the Real�Time Systems and High Integrity

Systems Engineering groups at the University of York� and the engineers at

Rolls�Royce for the fruitful discussions that have taken place� In particular� I

acknowledge the support of Tim Kelly� Professor Andy Wellings� Dr Andrew

Vickers 	now with Praxis Critical Systems
� Dr Ben Whittle 	now with Union

Bank of Switzerland
� and Stuart Hutchesson of Rolls�Royce� The main thanks

goes to Professor Alan Burns 	my supervisor
� Professor John McDermid� and

Kate Utting� without their support and tolerance I could not have completed

the work for this thesis� The work was performed under contract for Rolls�Royce

plc� whose support I am grateful for�

�

�

Declaration

Certain parts of this thesis have appeared in previously published papers specif�

ically the following references 	marked � for principal author
�

Technology Transfer� An Integrated �Culture Friendly Approach� Approach� I�J�

Bate� et al� Proceedings of Technology Transfer Workshop � Part of the
�th

International Conference on Software Engineering� Berlin� Germany� �����th

March
����

Putting Fixed Priority Scheduling Theory into Engineering Practice for Safety

Critical Systems� I�J� Bate�� A� Burns� N�C� Audsley� Proceedings of the �nd

Real�Time Applications Symposium� pp� ��
�� Boston� USA� June
����

Towards a Fixed Priority Scheduler for an Aircraft Application� I�J� Bate�� A�

Burns� J�A� McDermid� A�J� Vickers� Proceedings of the �th Euromicro Confer�

ence on Real�TIme Systems� IEEE System Press� pp� ������ L�Aquilla� Italy�

June
����

Flexible Scheduling for Advanced Engine Controllers� I�J� Bate�� A� Burns� N�C�

Audsley� IEE Colloquia on Hybrid Control in Real�Time Systems�
�th December

���

Flexible Scheduling for Engine Controllers� I�J� Bate�� A� Burns� The Patent

O�ce� UK Patent Application Number ��
������ and US Patent Application

Number ���������� May
����

Schedulability Analysis of Fixed Priority Real�Time Systems with O�sets� I�J�

Bate�� A� Burns� Proceedings of the �th Euromicro Workshop on Real�Time

Systems� IEEE System Press� Toledo� Spain� June
����

Building a Preliminary Safety Case� An Example from Aerospace� I�J� Bate�� A�

Burns� T�P� Kelly�� J�A� McDermid� Proceedings of the
��� Australian Work�

shop on Industrial Experience with Safety Critical Systems and Software� Octo�

ber
����

A Dependable Distributed Architecture for a Safety Critical Hard Real�Time Sys�

tem� I�J�Bate�� A� Burns� IEE Colloquium on Hardware Systems for Dependable

Applications� November
����

�

The Role of Timing Analysis in the Certi�cation of IMA Systems� N� Audsley�

I� Bate� A� Grigg� IEE Symposium on Certi�cation of Ground�Air Systems�

February
����

Investigation of the Pessimism in Distributed Systems Timing Analysis� I�J�

Bate�� A� Burns�
�th Euromicro Workshop on Real�Time Systems� June
����

��

Chapter �

Introduction

Safety�critical systems are di�erent to other systems because a failure to meet

a requirement may lead to a catastrophic e�ect� e�g� an accident leading to loss

of life� An example de�nition of �catastrophic� is taken from MIL STD ���C

�
� �Death� system loss or severe environmental damage�� For this reason� there

is a greater emphasis on veri�cation and validation of software in safety�critical

systems than with other types of systems�

The importance of veri�cation is indicated by the fact over ��� of the software

e�ort for the Boeing ��� has been in the areas of analysis and testing ��� ��� Typ�

ically� the costs of producing safety critical systems are signi�cantly higher than

for other domains� Therefore� there is a greater potential for process improve�

ment initiatives because the savings have the potential to pay for the investment

costs� Safety critical systems are found in a wide range of industries� including�

nuclear� chemical� aerospace and automotive industries� The particular domain

of interest for this thesis is avionics and in particular engine controllers�

The aspects of safety critical systems being considered in this thesis are those

that either control or supervise the operation of the system�s functionality� Until

relatively recently 	in the context of safety critical systems� recent could be con�

sidered to be
���� years
 control systems were implemented entirely in hardware

using hydro�mechanical operations� There are a number of problems with hard�

ware solutions� including� the cost of producing systems is high� the hardware

that provides the control is large and heavy� and the hardware has a �nite slew

rate performance that limits the system�s responsiveness ����

�

The need for cheaper operating costs during the lifetime of the system has lead

to more advanced controllers with reduced weight being used� This need has seen

the gradual introduction of computers to form embedded systems that provide

hybrid control� Hybrid control is where an embedded system is used to make the

calculations used in the control of the system� Computer controlled systems have

the advantage that a great deal of functionality can be implemented on a single

processor� leading to reduced cost and weight� An added bene�t is that software

is a non�recurring cost due to the fact it is only produced once 	ignoring the

e�ects of maintenance
� whereas hardware adds cost to every system produced�

In comparison to many established engineering disciplines� such as control sys�

tems engineering� software engineering can be considered to be in its infancy�

particularly for safety critical systems� Part of the reason for the high cost of

safety critical systems is that the development of these systems is prone to a large

amount of change� The systems are susceptible to change because the systems

are produced by a concurrent life�cycle� where parts of the system are produced

before others dependent parts are fully considered� Production is concurrent be�

cause some parts of the system have longer supply lead times than others� As

the di�erent parts of the system evolve there is likely to be change to the other

parts of the system�

One of the activities in the implementation and veri�cation of safety�critical

systems is the meeting of the timing requirements� The mechanism for controlling

the system�s timing behaviour is through a scheduler� which dictates the run�time

order that functionality units are performed in� This thesis presents research

performed on scheduling and timing analysis� in the context of safety critical

systems� The term �timing analysis� is taken to mean the overall process of

guaranteeing the system�s timing requirements are met�

��� Current Scheduling Practice

An evaluation of industrial practice for avionic systems con�rms that the major�

ity of safety critical systems currently employ a cyclic scheduler� The operation

of the cyclic scheduler involves two constituent parts� a minor cycle and a major

cycle� The major cycle is a sequence of tasks that are executed periodically�

��

Each major cycle consists of a number of minor cycles that split the major cycle

into uniform parts�

The schedule is produced by allocating each task to speci�c positions in a number

of minor cycles so that the timing requirements are met� There are two principal

reasons for splitting up the major cycle into minor cycles rather than having a

single cycle of tasks� The reasons being the ease of synthesis and the reduction

of jitter�� The synthesis problem is simpli�ed by a �divide and conquer� strategy

in which the system being developed is split into a number of parts� The parts

are initially handled separately and later as an integrated unit� Splitting the

major cycle into minor cycles reduces jitter because more synchronisation points

are provided�

Many cyclic schedulers have similar characteristics� which are largely dictated by

the nature of the systems being developed� The characteristics are�

� Many tasks � There is a tendency to have a large number of small tasks

	small in terms of their worst�case execution times
� more than �� per pro�

cessor� The reason is a smaller task is more likely to �t in the available gaps

when balancing and packing minor cycles that are almost full� Therefore�

the production of a schedule for the system is seen as more manageable�

However� the number of tasks is often not representative of the natural de�

composition of the software� which leads to maintenance and development

problems�

�� Heavily loaded � Safety critical systems have a tendency towards high pro�

cessor utilisation� often almost
���� This is in part due to the designers

needing to try to maximise the use of the available hardware� For a number

of reasons� the choice of processor tends to be of an older generation rather

than the most powerful up�to�date available� Older generation processors

have more operational experience� which increases the likelihood of design

errors being known� Therefore� the design of the software can account

for discrepancies in the design of the hardware that may otherwise cause

problems�

�Jitter is the change in the time when a task is released� Jitter is caused by variations in

the time tasks take to execute� The jitter increases through the course of the cycle� starting

with a value of zero at the start of the cycle�

��

For example� the ����� processor is often chosen instead of the Power PC

range� which is technically more advanced and provides greater perfor�

mance� The reasons are partly because it has been used before in safety

critical systems� but also because design errors are already known through

its use in many applications� These applications include Personal Comput�

ers� photocopiers etc�� Other reasons include� the design is simpler than

the Power PC processor making it easier to analyse� the likelihood of MIL�

SPEC components being available is increased� and they are cheaper to

purchase� The cheaper cost of the processor may seem insigni�cant when

compared to the overall system� However� while a commercial version of

the ����� may only cost a few pounds� a military version costs hundreds

of pounds� This is particularly important because hardware is a recurring

cost through the lifetime of the system� whereas software is an up�front

cost paid for once 	except for maintenance
� The simpler processor design

also helps to ease the certi�cation process�

All the factors point towards a choice of the older generation processor�

However� the older generations of processor have less processing capability

than more modern processors� In practice� whichever processor is chosen

the system is always likely to be heavily loaded since engineers invariably

�nd extra functionality that can be included� Therefore� a more powerful

processor may not necessarily solve the problem of the system being heavily

loaded�

�� Single Processor � Currently� the computing infrastructures used tend not

to be distributed throughout the physical system being controlled� Instead�

a single processor� which may be replicated� performs the necessary func�

tionality� The bene�t of this approach is that a uniprocessor is simpler

to certify than a distributed system because it is easier to reason about

tasks� interactions when they are located on the same processor� In this

context� a distributed system is considered to be a number of processors

that communicate using messages via a fully interconnected data bus� The

drawback of the single processor approach is that the functionality is not

executed where it is needed� For example� a data calculation is performed

remotely from the actuator that uses it� Therefore� more cabling is required

leading to an increase in weight ����

��

Through discussions with engineers from industry� a number of problems with

cyclic scheduling have been highlighted� Locke ��� also discusses similar problems

with cyclic scheduling� In brief� the following points are highlighted�

� the cyclic scheduler is hard to maintain due to the di�culty in synthesising

the scheduler and poor robustness to change�

�� a great deal of resource is wasted due to the restricted computational model

	i�e� only having periodic tasks whose rate is an integer multiple of the

minor cycle
� and

�� it is di�cult to assess whether the system is likely to be schedulable until

the �nal system is available�

These problems are discussed in greater detail in section ����

��� Alternative Approaches to Scheduling

There are a number of trends that are going to greatly in�uence the development

of future systems� primarily the need for cheaper development and maintenance�

A number of papers� for example ��� �� ��� describe how novel architectural ap�

proaches simplify the design and maintenance of systems� This is achieved by

facilitating technology transparency 	the ability to abstract the system�s be�

haviour from the speci�c environment
� interchangeability 	the ability to run the

software on a number of platforms
� and systematic reuse 	to have a process and

architecture that encourages the reuse of the system�s components
� One of the

principal enabling technologies for the trends to be successful is the provision of

a more �exible and predictable scheduling technique�

Having recognised the need to use a di�erent scheduling approach than the cyclic

scheduler� there are two issues to be dealt with� These issues are whether there

is a more suitable scheduling approach� and how it should be used within the

current framework of safety critical systems�

The largest body of research work into scheduling has been performed on priority�

based scheduling� which has two variants� �xed priority and dynamic priority�

Both approaches rely on all the tasks having a priority� and that runnable tasks

��

are executed in priority order� The fundamental di�erence between the two

priority�based approaches is that in �xed priority scheduling each task has a

static priority assigned o��line� whereas in dynamic priority scheduling tasks

have changing priorities at run�time dependent on a particular metric� For ex�

ample� in �xed priority scheduling the task priorities could be assigned so the

higher priority tasks have smaller periods� which is referred to as rate monotonic

scheduling �
��� In dynamic scheduling� the task priorities could be assigned so

the higher priority tasks have the closest deadlines� which is referred to as earliest

deadline �rst scheduling �

��

For a scheduling approach to be acceptable in the safety critical domain the tech�

nique has to be predictable� In the context of scheduling� predictability is the

ability to state at any time the task that will be executed next� A predictable

scheduling approach allows analysis that demonstrates the timing requirements

are met� This forms part of the justi�cation of the integrity of the system� Pre�

dictability is determined by two entities� the method for selecting task priorities

and the mechanism for releasing tasks based on the priorities� In these respects

both the �xed and dynamic priority based schedulers are predictable� A key

point is the worst�case schedule� from a timing perspective� for both priority�

based approaches is deterministic� In the context of scheduling� deterministic is

the ability to state before execution commences the run�time ordering of tasks�

The principal di�erence between the cyclic scheduling approach and the priority�

based approaches is that the cyclic approach is deterministic 	i�e� a static run�

time ordering of tasks
 and the priority�based approach is only predictable 	i�e�

there is a dynamic run�time ordering of tasks in general
� The safety critical sys�

tems industry is very conservative� and �xed priority scheduling is often viewed

as di�cult to certify �
��� The problem of certifying a �xed priority system is

simpler than one using dynamic priority scheduling� Other prohibitors to the

use of dynamic scheduling is that the scheduler becomes more complex and over�

heads larger when compared to techniques where decisions are taken o��line� In

contrast� the �xed priority scheduler run�time model is relatively simple�

For the reasons given above� �xed priority scheduling is investigated within this

thesis as the solution to the problems of cyclic scheduling� This solution is

viewed as a smaller evolutionary step than dynamic priority scheduling� Later in

the thesis it will be seen that a simpli�ed version of �xed priority scheduling is

��

advocated to ease technology transfer problems� In Locke�s paper ���� problems

of cyclic scheduling are highlighted and �xed priority scheduling is viewed as

the �best� 	in this context best is the minimal technological change capable of

solving the problems
 solution to the problems� A key observation about Locke�s

paper is that it deals with a purely academic scheduling model and does not

consider the practicalities of using the technique in industry�

��� Domain Speci�c Oppositions to Change

A great deal of academic work is performed that is claimed to be suitable for

safety critical systems� However� little of the work ever seems to be adopted

by industry �
��
��
��� The problem with the work seems to be that it is too

general in nature� trying to cope with a number of domains and a wide range of

systems �
��� The solutions that result can not possibly support all the necessary

constraints of a particular system e�ciently or e�ectively� For this reason� the

work in this thesis is speci�cally targeted at industrial projects developing avionic

systems� Taking this strategy allows the development of a much tighter solution�

which is �t for the speci�c system�s purpose� However� much of the work has

applicability to systems in general�

Avionic systems were chosen over a multitude of other options because it is an ap�

plication with more information available due to personal work experience with

and for British Aerospace plc and Rolls�Royce plc� Having more information

available increases the actual relevance of the work� This is particularly impor�

tant because in�depth details of actual safety critical systems are not generally

available in the public domain� Avionic systems are classed as critical� often the

highest integrity level� systems�

Avionic systems feature hard real�time requirements� Hard real�time require�

ments are de�ned as those that have to be guaranteed to be met� The timing

aspects of the system are controlled by a scheduler� Since the scheduler is re�

sponsible for controlling when any functionality is performed� it is fundamental

to the �exibility and predictability of the system� Also� the scheduler is a�ected

by the maintenance of the system as a whole� As the techniques for producing

systems evolve� scheduling must become more advanced� The work presented in

��

this thesis investigates the evolution of scheduling to support the development

of safety critical systems�

Speci�c oppositions to any change caused by the domain may be considered

more important than the resulting technical and commercial bene�ts� This work

recognises these oppositions and adapts the existing body of work on �xed pri�

ority scheduling accordingly� Certainly technical bene�ts alone are not enough

to ensure the adoption of any proposed change� In practice� commercial factors

	such as cost and risk
 normally have a greater in�uence� Four basic oppositions

to any change to how a system is developed are considered�

� Certi�cation � The safety critical domain is traditionally very conservative�

Any signi�cant change requires a great deal of work to assess the risks

and to show the system is at least as safe as it was before the change� The

measure of success is whether su�cient evidence of the approach�s integrity

can be generated to satisfy the certi�cation authorities�

�� Su�ciency � For reasons of cost� any technique that is developed should

be �exible and e�cient enough to allow the engineer to design� implement

and maintain the system with a minimum of e�ort� The measure of success

is whether the set of requirements can be met if it is feasible to do so�

�� Understanding � A key� but di�cult to assess� criterion is the approach must

be understandable to those who must apply it in the industrial context�

For the purpose of the thesis� the measure of success for this criterion is

whether industry has accepted and�or adopted the work� In addition� it is

important that the engineers who use the technique do not need specialist

knowledge or signi�cant amounts of re�training�

�� Reuse � A great deal of investment exists in the current systems that are

in service and also those currently being developed� Wherever possible the

change should not a�ect the rest of the system� Also� the approach should

allow the majority of the components of existing systems to be reused� The

measure of success is how much of the hardware and software of the system

needs to be changed�

In industry� the risks and probable cost associated with a change must be assessed

before any decision is taken as to whether the change is acceptable� Therefore�

��

the changes to current practice within this thesis are considered with respect to

the four criteria above�

��� Thesis Proposition

The central proposition of this thesis is�

The proposed simpli�ed version of �xed priority scheduling will ease the problem

of meeting timing requirements now� and for the immediate future for industrial

safety critical embedded systems�

There are two strands to this thesis� Firstly� the thesis is concerned with support�

ing the transition from cyclic scheduling to �xed priority scheduling� Secondly�

the thesis addresses the transition from uniprocessor to distributed systems�

��� Thesis Structure

Chapter � contains a description of the current role and approach taken for

scheduling and timing analysis within the safety critical systems domain� The

description is not intended to be an all encompassing statement� instead it is

meant as a general purpose description for systems within the domain� The aim

of the chapter is to provide a basis for the changes proposed and to explain the

problems currently encountered when developing systems�

Chapter � contains a literature survey supporting the rest of the document giving

background information and the history of �xed priority scheduling�

Chapter � considers the transition from cyclic scheduling to �xed priority schedul�

ing� The work addresses the bene�ts of using �xed priority scheduling and

whether the current literature on the subject is su�cient to implement systems

of the kind discussed in Chapter �� Part of Chapter � is to derive an appropri�

ate computational model with timing analysis� and investigate how pessimism in

the timing analysis may be reduced� 	In the context of scheduling� pessimism is

de�ned as where the analysis indicates the system is unschedulable when it is in

fact schedulable�
 During the course of Chapter �� two areas of work are identi�

�ed that need attention to allow complex control systems to be implemented in

��

the safety critical domain� Firstly� a scheduling approach is required that allows

the reuse of the current infrastructure and application� this is derived in Chapter

�� Secondly� a mechanism is needed for assigning attributes to tasks so that the

timing requirements are met� this is derived in Chapter ��

Chapter � presents a case study of how the techniques have been applied to a real

system in order to demonstrate that the concepts are appropriate and capable�

The system chosen currently uses a cyclic scheduler�

Chapter � presents timing analysis for task sets where tasks feature o�sets� An

o�set is a delay from a known reference of when a task is released� The approach

provides a solution to the need for timing analysis� which features low pessimism�

low computational complexity and is understandable�

Chapter � addresses the transition from uniprocessor�based systems to a dis�

tributed system� This chapter provides a computational model for scheduling

within the distributed system� and then proceeds to develop timing analysis

with relatively low computational complexity and pessimism� Extensive simu�

lation is used to evaluate the derived solution� The timing analysis approach

is based on the uniprocessor timing analysis in Chapter �� However� the task

attribute assignment technique has been adapted to improve schedulability and

robustness to change� The work uses the o�set analysis developed in Chapter ��

Finally� Chapter
� summarises the achievements contained in this thesis and

provides suggestions for further avenues of research�

��

Chapter �

Current Approaches to

Scheduling in Safety Critical

Systems

The purpose of this chapter is to de�ne the current techniques and mechanisms

employed for scheduling and timing analysis within the safety critical systems

domain� The aim is to provide a baseline so that the e�ect of the transitions

can be properly assessed later� The transitions are from uniprocessor cyclic

scheduling to �xed priority scheduling� and then to scheduling for distributed

systems� The work is aimed at general safety critical systems� with particular

emphasis being given to avionic systems�

The chapter introduces the requirements relevant to scheduling within safety

critical systems� Typically the scheduling requirements are of two types� appli�

cation speci�c 	in this case avionic systems that provide control or supervision

of operation
� and domain speci�c 	in this case� general constraints for safety

critical systems
� Related to producing a scheduler� there are three principal

categories of requirements� timing� functional� and safety� It is assumed that

appropriate techniques already exist for guaranteeing the functional correctness

of the scheduler� The work covers timing and aspects of safety where it is related

to timing� There are four main parts to the discussion� which are� timing re�

quirements 	section ��

� certi�cation requirements 	section ���
� process issues

	section ���
 and infrastructure details 	section ���
�

�

The �nal part of the chapter� section ���� contains a detailed discussion of the

speci�c problems of using cyclic schedulers�

��� Timing Requirements to be Met

Most of the safety critical embedded systems are developed for commercial ap�

plications� and hence their details are not publicly disclosed� Therefore� realistic

examples of timing requirements are hard to �nd� The purpose of this section is

to discuss the general characteristics of the system to be implemented� and its

domain� to establish the typical timing requirements�

The discussion uses the contents of three main sources� which are� the DICOS�

MOS project by Torngren �
��� the General Avionic System �
��� and the Magneto

Stereotaxis System by Wika and Knight �
��� The three sources are used as ex�

amples to derive the typical timing characteristics� which are then summarised in

section ��
��� The discussion is supplemented with information obtained through

a number of years experience working for the avionics industry� Considering these

three sources� it is possible to provide an outline of the typical timing require�

ments� During the course of the discussion it is necessary to introduce a few

control system concepts in order to place the requirements in context�

����� DICOSMOS

The paper by Torngren �
�� discusses the general timing requirements found in

the DICOSMOS project� The aim of the project is to investigate theories and

design rules needed when applying distributed computer�based solutions� The

systems are used to control complex machinery� such as industrial robots� pro�

duction machines� vehicles� aircraft� etc�� Torngren�s work does not speci�cally

consider the needs of safety critical systems� However� many of the systems dis�

cussed would invariably be classed as critical� i�e� high integrity� Therefore� the

requirements of this project are relevant�

��

Sensor

domaindomain
continuous discrete

ENGINE
PROCESSING

Analogue-to-
Digital Convertor

+

signal

Transformation

Transformation

Digital-to-
Analogue Convertor

Analogue-to-
Digital Convertor

Actuator

discrete
domain

continuous
domain

validation
signal

feedback

-

Figure ��
� A Typical Control Loop for An Embedded System

Overview of Basic Control Systems

Torngren de�nes a control system using three basic modelling entities� trans�

formation� sampling� and feedback� The type of system is illustrated in Figure

��
� Figure ��
 illustrates two transformations� which are the principal means for

controlling the operation of the system� The transformation e�ectively applies a

mathematical function to any signal that is input� The transformations are part

of a feedback loop�

The intention of having a feedback loop is to allow any new output to be based on

the current output as well as the latest input� Two routes for the feedback signal

are illustrated� one is to use the signal that is output to the actuator and the other

is to read the actual actuator value� The bene�t of using the actual actuator

value is that the system�s characteristics 	such as inertia
 that cause non�ideal

operation are accounted for� The feedback path also allows error checking of

the actuator�s operation� However� the drawback is that extra requirements and

functionality are needed�

Feedback is used so that the rate of change of the output can e�ectively be

damped 	i�e� slowed down
� which increases the stability of the output signal

and reduces the impact of any infrequent signal errors� e�g� spikes on the signal�

Stability is a measure of the ease in which a signal can be a�ected leading to

unpredictable behaviour� The stability of any control system is considered im�

portant� Stability should be controlled so that the system performs as expected�

Poor stability control could result in the system going out of its operational

bounds� leading to mechanical damage� However� too much control over sta�

bility reduces the performance of the system by constraining the response to

��

stimuli� The optimum performance is obtained through operating the system at

the limit of its stability �
���

The sampling stages in Figure ��
� analogue�to�digital and digital�to�analogue

conversion� allow the system to convert between the continuous and discrete

domains� Continuous is de�ned as connected throughout in space or time �����

i�e� the value always has the ability to change� Continuous systems process

analogue signals� An analogue signal is one that can assume any value within

a permitted range� Before the use of computers� control systems were entirely

produced with continuous signals using hydro�mechanical components� Discrete

is described as discontinuous ����� i�e� where there is a �nite interval during

which a value does not change� Discrete components� such as microprocessors�

are used to process digital signals� A digital signal has a �nite set of values that

can be chosen� The simplest form is a binary signal where there are two values

zero or one that relate to true or false�

Figure ��
 shows the transformations are performed based on discrete values� The

tasks that complete the path from the sensor input through the transformation

function to actuator output within the processing engine would be represented

as a transaction� A transaction is where a number of tasks are executed in

a pre�de�ned order� normally within a speci�ed time limit� The transaction

would contain a sequence 	data capture� followed by transformation� followed by

data output
 and an end�to�end deadline 	to constrain latency
� Outside of the

transformation stages and feedback loops is the actual system� which relies on

information being in a continuous form�

Problems with the Discrete Domain

Torngren makes a number of observations concerning the relationship between

discrete time control systems 	such as programmable electronic control systems

and continuous time control systems 	such as traditional analogue systems
� For

a discrete control system� a classical result is that time delays deteriorate per�

formance from the ideal ��
�� for example noise is introduced onto the signal�

A drawback of moving to computer controlled system is that calculations and

actions no longer occur virtually instantaneously� Instead� signals have both la�

tency and jitter� Latency is the delay from the �rst point in time when a value

��

could have arrived until when the signal actually does arrive� For an output sig�

nal� the latency is in e�ect from the time just after the generation of the initial

input signal until the actual output� The jitter de�nes the maximum variation

in periodicity of a function� Jitter can also be considered as the variation in

latency� The purpose of de�ning latency and jitter is to provide a constraint

over any instability� There is a direct relationship between stability and jitter �

as jitter increases stability is reduced�

An example of the e�ect of jitter is shown using the di�erentiation function given

in the left hand side of equation 	��

� The di�erentiation function is frequently

used in control loops and is de�ned as the rate of change of a function f	x
 with

respect to time� The value of the di�erentiation function is normally dependent

on the value x� Typically the function is implemented in the discrete domain

based on regularly sampled values using the approximation given in the right

hand side of equation 	��

�

�f	x

�t
�
�f	x

�t
	��

where �f	x
 is the change in value between samples� and

�t is the time between samples�

In a cyclic schedule� the sampling function is implemented with a periodic task�

The di�erence �f	x
 is calculated from successive samples and the sampling rate

is assumed to be a constant� However� the e�ect of jitter is to cause the value

of �t to change� For control algorithms� it is considered di�cult to allow for

varying �t 	i�e� changing the time between samples� this is referred to as multi�

rate control
 ����� The di�culty is that the trim values 	i�e� gains of ampli�ers

for the transformation function must account for changing rates� Therefore�

a constant �t is assumed� which is only correct in a particular case� usually

the average case� Hence� the calculation of the di�erentiation function contains

inaccuracies� which manifests itself as noise� that can cause instability� In the

continuous domain� the function can be implemented with zero latency using a

simple electrical circuit� for instance using a single capacitor� The introduction

of latency means the stability of signals can be a�ected by the latency introduced

when moving from the continuous to discrete domain�

��

A great deal of work ��
� ��� ��� has been performed analysing the e�ects of time

varying delays on control system�s behaviour� including the e�ect on stability of

latency� jitter and data�loss� Considering the earlier example of the di�erentiation

function� a missed sample or latency has a similar e�ect to jitter in that the actual

value of �t is di�erent to the value used in the calculations� The basic e�ect

is that as these factors increase� the stability of the control system decreases�

Torngren�s work con�rms that the management of these factors is fundamental

to controlling system performance� Therefore� it is important that the approach

to scheduling caters for the factors discussed in this section�

In our experience control systems are designed based on requirements that as�

sume actions occur at pre�de�ned times� such as those found in purely hardware

systems� However� in practice the e�ect of jitter is that actions do not occur

systematically at these times�

Scheduling of Control Systems

Even the most advanced scheduling and timing analysis approaches can only

provide a statistical estimate of when functionality is performed� Functionality

is performed at irregular times because the computation times of the software

invariably changes due to the vast number of paths that can be navigated� Any

change in the time at which events occur has an e�ect on the control algorithms�

Torngren �
�� identi�es a number of properties 	period� deadline and jitter
 to

be speci�ed� The properties are related to both tasks and transactions� The aim

of the properties is to provide control over the execution of software in order to

provide an upper limit on the possible latency� The period de�nes the average

time between updates� The period is de�ned in order to provide the required

responsiveness of the system to the stimuli� In addition� regular updates of

actuators is often used to correct mechanical drift� The deadline de�nes the

maximum delay between a task being ready for release and the task completing�

Torngren� amongst others� makes the observation that good engineering practice

implies that task rates� wherever possible� should be maintained as regular mul�

tiples of each other� Also� the iteration rates of transactions and the tasks that

form them should be the same� where possible� By adopting these tactics� the

��

system should function more e�ectively� i�e� scheduling overheads are reduced�

resource usage minimised and data �ow simpli�ed�

����� General Avionics System

A report on the General Avionics System �
�� contains a speci�cation for the

general functions of such systems� The functions are data interactions and tim�

ing constraints for a mission control system typical of those found in existing

U�S� Navy�Marine Corps aircraft� It should be noted that the system described

is distributed� i�e� not all the functionality exists on a single processor� The

speci�cation for the system is signi�cantly simpler than the one discussed by

Torngren reviewed in section ��
�
� since transactions are not considered� The

requirements for tasks are a subset of those discussed in section ��
�
� There�

fore� no extra knowledge of timing requirements is obtained from that found in

Torngren�s paper� However� the General Avionic System�s speci�cation includes

other requirements� such as the importance of a particular requirement being

met and moding considerations� Also� the General Avionics System�s speci��

cation con�rms the requirements described by Torngren are accepted in other

applications�

The importance of a requirement re�ects the potential need to have multiple

integrity levels on the same processor� In the simplest case� requirements could

have two levels of importance� safety critical and non�safety critical� With respect

to timing� the importance can be considered as either having to be met 	i�e� hard

deadlines
 or should be met 	i�e� soft or �rm deadlines
�

Moding is where particular software is only executed when the system has a

certain status� Moding is often used in practical systems because it is not always

necessary or safe to execute all the software all the time� For example� the

software for operating the landing gear of an aircraft is not needed during �ight�

����� Magneto Stereotaxis System

Wika and Knight�s work �
�� examines how the production of a safety kernel may

be the easiest way to achieve or enhance the integrity of a particular system� A

��

safety kernel is a kernel that schedules the usual functionality� as well as the en�

forcing of safety policies� A kernel is the software that provides the fundamental

system services such as scheduling� fault tolerance and handling hardware de�

vices�� A safety policy is a requirement used to control particular functionality�

normally for the purpose of policing certain hazards� The original concept of the

safety kernel was introduced by Rushby �����

Rushby states the bene�t of the safety kernel philosophy� rather than embed�

ding the functionality into the application� is that the kernel is small enough

to be produced to a much more rigorous standard� for example using formal

methods� The philosophy allows a powerful argument that can be used during

the certi�cation process� which formal techniques have been applied in key areas

to reduce the likelihood of hazards� This is particularly important for systems

to be certi�ed against DEF STAN ����� ����� which advocates the use of formal

methods throughout the design lifecycle of systems� In many papers� an example

of which is ����� the opinion is stated that formal methods are impractical in real

systems because they do not scale well to large systems� leading to high costs�

As a compromise� the use of formal methods in key areas is seen as a su�cient

ful�llment of requirements�

The Magneto Stereotaxis system was analysed by Wika to determine the safety

policies to be enforced� A Magneto Stereotaxis system is a device that steers

very powerful magnets during the process of detecting tumours in the brain� The

incorrect control of the magnets could harm� or even kill the patient� This has

lead to a number of safety policies derived through design� referred to as design�

derived requirements� There could be a number of design�derived requirements

aimed at making the kernel �police the system� operation in order to prevent

any unsafe actions� For example� the X�ray source must be turned o� for ���

seconds before an on command is executed� A separation requirement 	e�g� task

A is to be separated from task B by ��� seconds
 is de�ned to ensure a time gap

between the task performing the on operation� and the task performing the o�

operation�

Wika�s work highlights a number of safety�related requirements� such as the need

to protect against failures� Wika�s work provides further support for the existing

�The terms kernel and scheduler are both used through this thesis as a term for the mech�

anism that controls task execution�

��

types of requirements raised through the examples of the DICOSMOS project

and the General Avionic Systems�

����� Summary of the Timing Requirements

An evaluation of industrial practice in the avionics area con�rms the requirements

discussed in this section are realistic� This statement is supported by the case

study presented in Chapter �� There are also a number of other examples that

have similar types of requirements to the ones discussed� including the Olympus

Attitude and Orbital Control System ���� and the mine pump system �����

There are four principal categories of timing requirements considered� those asso�

ciated with tasks 	i�e� existing on only one processor
� those involving messages

which transfer data between processors 	i�e� existing on the databus
� those asso�

ciated with transactions 	i�e� these could exist on more than one processor� and

thus include both tasks and messages
� and those that are derived 	i�e� related

to the system design
�

The timing requirements for a task are�

� Period � All tasks can be considered to have a period� Sporadic tasks are

modelled as a periodic task whose period is equal to the sporadic task�s

minimum inter�arrival time� A sporadic task is one where the task is re�

leased not at a regular rate� but instead following a certain event occuring�

�� Deadline � The deadline of a task is the maximum time allowed from the

expected task release until the completion of the task execution�

The importance of the timing requirement is normally categorised by whether

the deadline is hard or soft� Hard real�time requirements are those that

must be met in all cases� Soft real�time requirements are those that should

be met in the majority of cases� but it does not matter if the occasional

deadline is missed� Locke ���� introduces a third category of �rm deadlines

that should be met in the majority of cases� A �rm deadline is similar to a

soft deadline except if a �rm deadline is missed� then the task should not

be completed� Whereas� a task with a soft deadline is completed anyway�

��

In safety critical systems most requirements are considered to be hard real�

time� One reason is the di�culty in assessing whether soft requirements can

a�ect hard requirements� Soft requirements would tend to be implemented

to a lower integrity standard than hard requirements� which means they

may be less predictable� Therefore� it is often easier to assume all tasks

have hard deadlines�

�� Jitter � The jitter constraint for a task is the allowed variation of task

completion from precise periodicity� Jitter is generally caused by variations

in the worst�case execution time of tasks� Jitter constraints are normally

placed on the outputs from the system to ensure the occurrence of actions

does not vary too much�

A sequence of tasks executed in a �xed order is referred to as a transaction� The

timing requirements for a transaction are�

� Period � Similar to a task� a transaction has a periodic requirement� It

is not unusual for some of the tasks in the transaction to be executed at

di�erent rates� In these cases� the transaction period is equal to the least

common multiple of the tasks� 	that form the transaction
 period� The

reason the least common mutiple is chosen� rather than a lower value� is

that the tasks can only execute in the required precedence order this often�

�� End�to�End Deadline � Transactions normally have a requirement that all

tasks are executed in a particular order within a given amount of time�

Again� transaction deadlines can fall into the same categories as for tasks�

hard� �rm and soft�

�� Jitter � Similar to a task� a transaction may have a jitter constraint� How�

ever in general� a jitter constraint is only applied to the tasks in the trans�

action that gather the inputs or produce the outputs� These are the tasks

where jitter has most e�ect� refer to section ��
�
 for more details�

To implement a transaction� tasks are executed in a �xed order on a number

	possibly just one
 of processors� For transactions featuring tasks on di�erent

processors� a message is scheduled on the communications system to transfer

data� For example� if the system illustrated in Figure ��
 is implemented as part

��

of a distributed control system� then the functionality for the sensor� actuator

and transformations could be executed on separate processors� The reason this

might be necessary is so that the processing can be placed where it is physically

needed to reduce the amount of cabling� Messages are then used to communicate

the required data between the sensor and the processor performing the transfor�

mation� and then another message to communicate the data to the actuator�

Therefore� the message will have the following design�derived requirements�

� Period � The message has a periodic requirement equivalent to the period

of the task that sends it�

�� Deadline � The deadline of a message is the maximum time allowed from

the earliest message release time until the time when the receiving task is

due to be released�

In addition� there will be a number of requirements that could be obtained from

other sources� predominantly as a by�product of the design process� Derived

requirements related to the scheduler include�

� Precedence � A precedence requirement may be speci�ed to ensure that a

particular set of actions always occur in the required order�

�� Separation � A particular sequence of events may have a minimum time

separation enforced to ensure correct operation� Separation requirements

may be used to provide controlled access to a di�erent device from di�erent

tasks� i�e� to not allow resource contentions to occur�

Any approach derived for scheduling should be able to provide proof these re�

quirements are met� A need for any scheduling policy is to have an approach to

task attribute assignment that e�ectively deals with the requirements�

�

��� The In�uence of Certi�cation Requirements

on Scheduling of the System

One aspect that makes the work in this thesis di�erent to other work performed

on scheduling is that it is targetted at a speci�c domain that demands certain

guarantees to be made when justifying system integrity� The purpose of this sec�

tion is to help understand the constraints imposed by the certi�cation standards

on the scheduler and the timing aspects of the system�

There are a multitude of certi�cation requirements for safety critical systems�

An accurate and relevant observation by Tannenbaum ��
� is �The nice thing

about standards is that there are so many of them to choose from�� The work in

this thesis is to be based on the United Kingdom�s certi�cation standards for the

production of avionic systems� The standards include� the military standards

DEF STAN ����� ���� and ����� ����� and the internationally agreed civil stan�

dard DO�
��B ����� The standards are considered at a relatively high level in

order to abstract away from speci�c characteristics and hence capture the key

points�

The consideration of the in�uence of the standards may be separated into a

number of parts� which includes� the timing requirements to be met� the schedule

and scheduler implementation� and the veri�cation techniques�

����� Timing Requirements From the Certi�cation Stan�

dards

The purpose of this section is to explore how the certi�cation standards implicitly

lead to timing requirements on the system� The requirements mostly relate to the

ability to tolerate faults� For example section ����� of DO
��B ����� �Responses

to failure conditions should be consistent with the safety related requirements��

The aim of the requirements is to provide control over how faults are dealt with�

Requirements that deal with faults can be derived from a reliability measure

of how long the system can be �at risk�� i�e� have one replicated version of a

component unavailable� In many systems encountered� the requirement is that

faults are identi�ed� tolerated and recovered 	where possible
 in bounded time�

��

A modern aircraft� particularly military ones� tend to be unstable inorder to

improve manoeuvrability� Therefore the aircraft relies on computers to assist

the pilot� The X�
 aircraft is an example of a system where a failure of the �ight

control system for more than a few milli�seconds is catastrophic�

The timing requirements for fault tolerance may be dictated by the need to�

� still meet timing requirements in the event of certain failures� or

�� restrict the time at risk when parts of the system are unavailable� or

�� limit the time for which the entire system is unavailable without a catas�

trophic event happening�

From a timing perspective� failures tend to manifest themselves as timing over�

runs� Any approach to scheduling must provide adequate control of timing over�

runs commensurate with the integrity of the system�

����� The In�uence of the Certi�cation Standards on the

Scheduler Implementation

Similar to the observation in section ����
� there are no explicit requirements in

the certi�cation standards for producing software that a�ect the scheduler im�

plementation� but there are implicit ones� The implicit requirements are related

to how certain architectural features are more di�cult to verify� Two speci�c

in�uences� both related to software execution� have been established through

contact with companies developing safety critical systems�

The �rst in�uence is related to the �ow control provided by the scheduler� where

the arbitrary interrupting of the application�s tasks is not advisable because of the

increased di�culty in attaining su�cient test coverage� Arbitrary interruptions

lead to a vast increase in the potential paths within the software when compared

to code with no interruptions� The certi�cation standards do not prohibit the

use of interrupts� but simply highlight the potential di�culties in guaranteeing

system integrity when they are used�

��

The second in�uence concerns multiple levels of interrupt� which raises issues

as to whether the interrupt handler functions correctly� Correct functionality

includes�

� when the interrupt has been handled returning execution to the point at

which the interrupt occurred�

�� the interrupt must only disrupt execution when the current execution is

at a lower integrity level 	including all applications correctly relinquishing

control
� and

�� the interrupts should never be nested�

Nested interrupts are when interrupts occur while other interrupts are still being

handled� The certi�cation authorities tend to frown upon the use of interrupts

because of the di�culty in guaranteeing they function correctly in relation to the

rest of the system� Normally signi�cant attention is paid to the relatively simple

problem of the interrupt that signi�es the start of a minor cycle with the cyclic

scheduler� Multiple levels of interrupt would cause a signi�cant increase in the

e�ort required to certify the system�

The two in�uences are considered to be implicit in the certi�cation standards

through the discussion of testing� For example� section ���
�
 of DEF STAN ���

�� ���� states ���Su�cient testing should be performed to show that the dynamic

and performance requirements have been met� and that the assumptions used by

formal methods are valid for the target system�� Clearly to achieve the goal

of full test coverage is easier in a system with no interrupts than in a system

with arbitrary interrupts� Except for the most trivial example� complete test

coverage is considered impossible� However� the system not having interrupts

allows testing to come closer to achieving complete coverage than if the system

used interrupts�

Even though the two in�uences on scheduler implementation are implicit� they

used to be explicitly stated in an older version of Interim Defence Standard �����

����� Their removal could be a re�ection on either the need to allow systems to

become more advanced or a desire not to have unnecessary design constraints�

Any approach to scheduling should minimise the amount of interrupts that occur�

and to ensure the ones that do occur have predictable outcomes�

��

����� The In�uence of the Certi�cation Standards on the

Veri�cation of Software

A key part of the certi�cation requirements is the issue of how veri�cation is

performed� Veri�cation is to provide evidence that the system meets its require�

ments� The requirements cover a number of areas all of which fall into two cat�

egories� functional 	how inputs are translated into outputs
 and non�functional

	properties related to the infrastructure such as timing� memory� communica�

tions and safety
� The in�uence on timing requirements is already dealt with in

section ����
�

The certi�cation standards tend to advocate that veri�cation is performed using

analysis� and testing is used to ensure that the requirements are su�cient and

correct as well as to provide extra veri�cation evidence� Analysis is also used

to ensure the requirements are consistent� i�e� ambiguities do not exist� Where

analysis is not feasible� then comprehensive testing is mandated� In addition�

traceability is required through all parts of the system and documentation in

order to show where and how each requirement is achieved�

There are many more requirements advocated by the certi�cation standards� For

an in�depth survey of certi�cation requirements� refer to Papadopoulos and Mc�

Dermid ����� A key contribution of Papadopoulos� paper is a consideration of

the commonalities and di�erences between standards� Based on the certi�ca�

tion standards and the work of Papadopoulos� the common elements related to

scheduling are�

� The argument of safety or dependability is based on procedural and tech�

nical evidence� This helps justify the bene�t of timing analysis compared

to test as part of the veri�cation process because the evidence is precise�

�� A safety process that drives the system development process� This implies

timing analysis should be a fundamental part of the overall lifecycle� rather

than being performed after the event�

�� Safety requirements are established from functional hazard analysis and

risk assessment� This relates to the need for safety policies such as the

requirement to detect� tolerate and recover from failures within bounded

time�

��

��� The Current Lifecycle for Producing a Sched�

ule and Scheduler

Any technology transfer exercise has many e�ects on the way companies operate�

To understand the impact of the new technique� such as a change of scheduling

policy� it is necessary to assess how the current process has to be modi�ed to

accommodate the change and consequently how change provides bene�t� With�

out this understanding� it is unlikely that the changes would be accepted� This

section tries to de�ne the existing process model at a su�cient level of detail

for the assessment of the e�ect of change to take place� There are two facets

to the discussion� which are the production of an appropriate scheduler and the

production of an appropriate schedule� In our experience the processes used in

industry are di�cult to de�ne 	because the process is complex and each individ�

ual working on the project could have their own slightly di�erent way of working

and are prone to change 	because the process for a project is often negotiated

with the customer
� Many of the statements contained in this section are based

on the process used by Rolls�Royce in the design of aeroengine controllers �����

However� the description is considered to be equally applicable to many other

processes�

Any change of scheduling regime should consider the attributes of the current

process and attempt to �trade�o�� the impact of the change on the process

against the bene�t that is obtained� There is a �ne balancing act when judging

the changes that may be bene�cial� on the one hand radical change could lead

to signi�cant bene�t for scheduling� but on the other hand radical change could

have greater system�wide impact and hence increased risk� Also� changes to the

scheduler need to be considered within the wider scope of the system�

There are a number of stages of the lifecycle not mentioned� such as con�gura�

tion management� which are important but not particularly to scheduling� The

lifecycle stages relevant to the scheduling of the system are considered to be�

requirements� design� implementation� veri�cation and certi�cation� There is a

great deal of literature ���� ��� ��� that investigates the software engineering life�

cycle in detail� However� a general de�nition has been produced here in order to

allow the impact of change to be assessed� Clearly� the process de�ned can not

��

be a perfect match for all lifecycles used to develop systems but it is considered

to be a su�cient representation�

����� Requirement Speci�cation

Requirements speci�cation is the mechanism of capturing and specifying what

the system is to do� in terms of functional and non�functional requirements�

The purpose of the requirements is to convey to the system design team what

the implementation is to do for both design and veri�cation purposes� A key

need is to show that the requirements are consistent� complete and correct� The

scheduling requirements tend to be expressed in a natural English form� i�e� free

�owing sentences are used to express the requirements�

Based on experience� the timing requirements are a legacy from the original

hydro�mechanical systems� A key issue is that iteration rates may have been

chosen with prior knowledge of the available iteration rates with the cyclic sched�

uler� leading to �practical� rather than �actual� requirements� Signi�cant bene�

�ts could be obtained by addressing what are the real timing requirements� not

least because a criterion for successful technology transfer is su�ciency�

����� Design

Design is the practice of determining how the requirements should be imple�

mented� A key part of any design is justifying and demonstrating how the re�

quirements are met� i�e� which parts of the design relate to which requirements�

With respect to the schedule� informal techniques are generally used for design�

The cyclic schedule is initially synthesised for the �rst build using a tool that

places tasks in a number of minor cycles so that the scheduling requirements are

met� The synthesis is performed using estimated values for the worst�case exe�

cution times of tasks� The schedule is sometimes never re�synthesised� Instead�

when there is a requirements change or a cycle overrun� the schedule list is man�

ually altered� This approach is adopted so the e�ect on the data and control �ow

of the system is easier to judge� allowing a reduction in the level of regression

testing� If the schedule is re�synthesised� then a complete re�veri�cation of the

system is required and all the built�up safety evidence is lost� This represents

��

a weakness in relying on having a static run�time ordering as provided by the

cyclic scheduler� The weakness is that although such an ordering may be easier

to guarantee because it is deterministic� when the ordering is changed the whole

basis of the guarantee is lost�

����� Implementation

Implementation is the mechanism of building components to meet the require�

ments with su�cient integrity� A key part of this stage is justifying and demon�

strating that the eventual implementation meets the software speci�cation and

design�

Many of the United Kingdon avionics industry currently implement their sys�

tems using the SPARK 	SPade Ada Real�time Kernel
 Ada subset and SPARK

annotations ����� The SPARK subset eliminates parts of the language whose

implementation characteristics are di�cult to determine� Hence� the likelihood

of safe software is increased� The SPARK annotations support the information

required to perform static analysis� However� the key point is that SPARK Ada

intends to introduce a philosophy that is used throughout the design to add

bene�t to the resultant system� The basis for the SPARK technique is that it

promotes good software engineering because it encourages the designer to reason

about the design as it is produced�

The bene�t of using a subset of a language� such as SPARK Ada� is that then

the operation of the code is predictable� This means that worst�case execution

time analysis can be built to model the system�s timing behaviour�

����� Veri�cation

Veri�cation is the mechanism of ensuring the system meets the requirements� In

terms of cost and time the veri�cation stage is the most expensive for systems

developed to safety critical standards ���� Testing of the system�s timing prop�

erties involves measuring the worst�case execution time and the period of tasks�

followed by analysing whether the timing requirements are met� The worst�case

execution times of tasks are measured during the simulation of a vast range of

realistic scenarios� The time taken to measure the worst�case execution times

��

needs to be commensurately large to provide a su�cient degree of con�dence

that the measured value is close to the actual worst�case� The tasks� worst�case

execution times are then used to prove the system meets its timing requirements�

To test the system� scripts are derived from the requirements that establish

whether the sub�system operates correctly on its own and as part of a larger

system� There are two problems with a test�orientated approach� which are� the

time taken to perform comprehensive tests is large� and the values obtained are

almost certainly optimistic� The value is optimistic since it is unlikely the worst�

case path is exercised 	except in the simplest of cases
 due to the large number of

possible paths� Optimistic values may occur especially when some of the paths

are rarely exercised� for example paths that deal with failures� Unexercised paths

lead to uncertainty in the analysis to show requirements are met� which means

cycle overruns could occur when the system is in service� A cycle overrun is when

the execution of tasks in a minor cycle extends into the next minor cycle�

The reason analysis techniques are rarely used for establishing a task�s worst�case

execution time is because the results tend to be overly pessimistic� The pessimism

may be such that the veri�cation results imply the system�s timing requirements

are not met when they actually are� There is a vast body of research that

attempts to solve the problem of pessimism in worst�case execution time analysis�

the following are examples ��
� ��� ���� However� few of the techniques have been

used in industrial systems� The reason is the techniques rely on support from the

compiler and processor vendors 	i�e� the supplier providing necessary information

on the product and the product providing output of an appropriate form
� which

is not currently available� Another problem with worst�case execution analysis is

that it is rarely portable between di�erent targets� leading to a di�erent version

being required for each�

The timing analysis contained in this work assumes actual worst�case execution

times are available� so the problem becomes a matter of showing whether timing

requirements are met�

����� Certi�cation

Certi�cation is the mechanism for arguing the system meets its safety obligations�

which are derived from the knowledge of the risk 	severity and likelihood
 of

��

hazards� Throughout the development process� speci�c evidence needs to be

captured that allows the safety of the system to be argued� The safety argument

is presented in the certi�cation case� The certi�cation case should evolve through

the development life�time of the system�

A simpli�ed view of the current approach towards certi�cation is to use a number

of well known techniques ���� 	for example fault tree analysis� which is a technique

used to determine how a particular fault could occur
 as well as other information

obtained from other stages of the lifecycle such as the results of timing analysis�

However� whatever techniques are used� a strategy is still required to argue the

system is safe�

There are two basic strategies used that are applied on their own or as combined

evidence to argue the system is safe� The strategies are�

� Software Safety Analysis � Use analysis techniques to show the system is

of the appropriate integrity� The analysis justi�es the four previous stages

of the lifecycle 	Requirements Speci�cation� Design� Implementation and

Veri�cation
 leads to correct� complete and consistent requirements� These

requirements are re�ned into a system in a predictable manner�

Few projects perform software safety analysis due to the di�culty of the

task and the immaturity of the available techniques� Instead� the software

is produced to what is deemed an appropriate process� Software safety

analysis could be considered relatively immature compared to other areas

of engineering� For instance� there is no recognised technique for evaluating

software reliability even though it is needed to justify the overall system

reliability� During the reliability calculations of the system only hardware

reliability is accounted for� as software reliability is assumed to be ideal

	i�e� probability of failure is zero
�

�� Infrastructure Safety Analysis � A di�erent approach is to produce the soft�

ware safety analysis as if the applications based on the system are of a lower

integrity and concentrate on the correctness of the infrastructure� There�

fore� the amount of software safety analysis that needs to be performed

is reduced� This is a similar philosophy as for safety kernels discussed in

section ��
��� where it is deemed impractical to produce all the software

formally� The safety argument becomes a justi�cation that the system is of

��

a reasonable quality� and the infrastructure manages the integrity� The ap�

proach requires the infrastructure to implement any safety policies derived

from the system hazard assessment exercise�

It is unlikely a single technique on its own is su�cient to guarantee integrity�

Independent of whether a software safety analysis is performed� the safety case

would need a justi�cation that the infrastructure detects and tolerates failures

in a manner consistent with the needs of the system� In our experience� many

systems tend to use a combination of both approaches to justify the integrity

of the system� In particular� the scheduler is considered a key part of the in�

frastructure of the system� A great deal of e�ort is applied to ensuring tasks

are released as expected and that timing overruns are detected correctly and in

a timely fashion� Whereas� the actual schedule is considered to be slightly less

important�

��� An Infrastructure For Cyclic Scheduling

The introduction of any new technique has many e�ects� For scheduling� a

major impact is that the infrastructure of the system may need to be altered for

e�cient and e�ective operation� To understand any such transition� the typical

architecture for a cyclic scheduler is outlined� Again� the discussion in this section

cannot possibly represent every form of system produced� instead it is meant to

be a representative example�

Typically the infrastructure for the cyclic scheduler generates a clock tick 	in

the form of an interrupt
 that is used to signify the start of a minor cycle� The

tasks are then released in a pre�de�ned order� A key feature of the task release

mechanism is that tasks� once released� are executed to completion� This is

referred to as non�preemptive execution� When the main software in the minor

cycle has �nished executing� control is passed to a background scheduler� The

background scheduler executes less important functions until another clock tick

arrives to signify the start of the next minor cycle� Therefore� the software to be

scheduled in the background is implemented so that arbitrary interrupts do not

a�ect system integrity�

�

Most implementations take advantage of the clock tick being available to initiate

the timing watchdog functionality� The purpose of the timing watchdog is to

detect and tolerate timing overruns� A frequently taken strategy for the timing

watchdog is to have two modes of operation for executing tasks� The main sched�

uler is executed in �supervisor� mode� i�e� at a higher interrupt level than the

background scheduler that is executed in �user� mode� If the system is operating

in a timely fashion� then the tasks executing in �supervisor� mode should always

be �nished before the next clock tick� Therefore� the timing watchdog simply

detects the mode the system is in when the clock tick arrives� Supervisor mode

means that a timing overrun has occurred� whereas user mode means no overrun

has occurred�

The supervisor�user mode is normally observable by an electrical signal from the

processor� Therefore� a simple timing watchdog may be produced in hardware�

which is triggered when there is a clock tick� The timing watchdog hardware

checks the mode of the processor� and fault recovery is performed if the processor

is still in supervisor mode� The typical fault recovery strategy is to switch the lane

controlling the system to a replicated version and then reset the lane in which

the fault exists� This assumes another lane is available� and this lane would

probably be actively redundant� The timing watchdog approach is considered

e�ective for two reasons� which are� there is no software involved in the test and

the functionality is simple�

��� Problems With The Cyclic Scheduler Ap�

proach

During projects to develop safety critical systems� there are often problems re�

lated to timing� The problems include� resource budgets are exceeded� timing

requirements are not met� unexpected failures arise in service� and resources are

wasted� The fact that projects frequently experience problems with timing is re�

lated to a number of widely recognised weaknesses in the cyclic scheduling model�

documented by Locke ���� The weaknesses include in�exibility� poor maintain�

ability� and lack of support for future needs� The weaknesses are considered in

the following sub�sections�

��

����� In�exibility Leading to Wasted Resources

The in�exibility of the cyclic schedule has two restrictions� These are a limited

amount of iteration rates are available and tasks have to be periodic� The in�ex�

ibility often results in requirements being expressed to suit the model� i�e� only

periodic tasks that are harmonics of the minor cycle rate� The in�exibility leads

to wasted resource 	when the worst�case scenario is considered
 caused by�

� Tasks being executed faster than necessary to meet its period requirement�

For example� to implement a task with a rate of �� units in a cyclic sched�

uler that has a minor cycle rate of �� means the task must be queued in

every minor cycle� i�e� at a rate of ��� Queuing the task every other cycle

would result in an average rate of ��� and the requirement is not met� The

resulting waste in resources is ��
��
�
�� � ����

�� Sporadic tasks having to be implemented using a polling periodic� A polling

periodic is a task that executes at a regular rate to check whether a particu�

lar event has occurred� Using a polling periodic� the average case may have

similar performance but the worst�case would be pessimistic� For example�

a sporadic task with a minimum inter�arrival rate of �� but an average rate

of
��� would have to be implemented using a periodic task with a rate of

��� However if the average rate is
���� then there is a ����� � 	����
��

�
��

waste in resources�

An alternative example is a sporadic task with a minimum inter�arrival

rate of
��� but a deadline of �� would have to be implemented using a

periodic task with a rate and deadline of ��� The reason the periodic task

does not have a period and deadline of �� is that the task would su�er a

release jitter equal to its own period due to uncertainty of when the event

occurs� Again� there is a ����� waste of resources�

Matters are made even worse by the very cyclic nature of the schedule� Tasks

have to be placed in each minor cycle so that the cycles do not over�ow� To

prevent over�ows� space is reserved at the end of each cycle to act as a �timing

margin�� Any type of schedule is invariably produced with a timing margin but

the cyclic scheduler has a number of these 	one for each minor cycle
 that makes

matters worse�

��

Overall� a signi�cant proportion of the valuable resources available may be wasted�

The waste is especially signi�cant when it is considered most safety critical sys�

tems use older generation processors for the reasons explained in section
�
�

Invariably� there is always a shortage of processing resource� Recapturing this

resource is a major driver for the research reported in this thesis�

����� Maintenance Di	culties with the Cyclic Scheduler

The maintenance di�culties of the cyclic schedule arises from the need to cor�

rectly order tasks so that both task and transaction requirements are met� In a

heavily loaded system each minor cycle is nearly full� As the execution times of

tasks change there is a frequent need to move tasks between minor cycles to bal�

ance the load and prevent over�ows� In itself� this can lead to some complicated

juggling acts to ��t everything in��

In most cases� the maintenance di�culties of the scheduler is enough to convince

people that a more appropriate solution is necessary� Garey and Johnson ����

show the bin packing problem� which is equivalent to the synthesis and mainte�

nance of the schedule� to be NP�complete� However� the problem is made even

more di�cult when transaction requirements have to be met� The introduction

of transactions means the job of moving tasks is further complicated by the in�

teractions between particular tasks that have to be maintained� Simply moving

tasks to balance the minor cycles� without consideration of the transactions�

could break precedence constraints previously met�

The computational complexity of synthesising the schedule suggests that tool

automation should be used� Many di�erent techniques have been proposed to

the problem of synthesising cyclic schedules� Burns et al ���� performed an

analysis of some of the available techniques for reducing the complexity of the

problem� Their paper looks at �ve di�erent techniques 	simulated annealing�

brute force� genetic algorithms� heuristic search and stochastic evaluation
 for

synthesising the schedule� Burns et al concludes each technique has its own

bene�ts and drawbacks� and the technique chosen depends on the speci�c needs

of the system�

Automated synthesis may result in a better scheduling solution� but at what cost�

In many cases tool automation is the solution adopted� However� safety critical

��

systems introduce their own speci�c problems� The main problem with using

automated tools is related to regression testing� It has already been stated that

veri�cation is the largest cost in projects to develop safety critical systems� Using

a tool for synthesis gives a new schedule where all the task interactions may be

di�erent� This leads to a signi�cant e�ort being required during re�veri�cation� A

commonly recognised characteristic of safety critical systems is that during their

development the systems are prone to a large number of changes ���� Using an

automated tool would vastly increase the cost of veri�cation due to the amount of

regression testing needed on the functional requirements� Therefore� an approach

often taken is to attempt to manually modify the schedule� which is di�cult and

may lead to requirements not being met� However� the e�ect of change is now

easier to assess�

A general system maintenance problem introduced by the cyclic schedule is sum�

marised by Sha� Liu and Goodenough ����� �Under the cyclic approach� meeting

the responsiveness� schedulability and stability requirements has become such a

di�cult job that practitioners often sacri�ce program structure to �t the code

into the right time slots�� The system used as a case study in Chapter � has

software split into more than seventy tasks 	based on the need to have small

enough chunks of software to organise a cyclic schedule
� rather than having less

than ten tasks 	that represents the principal functional partitions of the system
�

There are a number of side e�ects of splitting tasks� including� there are more

tasks to be scheduled and veri�ed� Also� the software may no longer have the

decomposition dictated by good software engineering practice�

����� Supporting Future Requirements

It is likely that system designers are going to place more and more functionality

into the software� and there is a trend to move away from uniprocessor systems�

The move towards distributed systems is likely to expose further weaknesses in

the cyclic scheduler�

The maintenance of cyclic schedules involving one processor is di�cult enough�

but many processors all working together would be even more complicated� For

instance� the introduction of distributed transactions results in a number of

schedules cooperating to meet a common requirement� Carlow ���� presents an

��

example of a well�known timing problem related to the di�culty in handling dis�

tributed systems with the cyclic schedule� Carlow describes how the �rst launch

of the Space Shuttle Columbia was delayed due to a failure to synchronise two

computers of a distributed system�

An implication of distributed transactions is that a change to the schedule on one

processor has a knock�on e�ect across all the schedules� This greatly increases

the computational complexity� therefore maintenance costs are multiplied� The

problem is further exaggerated by the recent trend towards multi�company and

even worse multi�national collaborations� where the need to keep changes lo�

calised is large� It may be prohibitive for systems to be designed in a manner

involving tight cohesion between schedules on di�erent processors� However� the

use of cyclic schedules to implement distributed transactions would necessitate

the cooperation of all the schedules�

Industry recognises the problems of the cyclic schedules within the systems cur�

rently being produced and maintained� and the fact they are likely to be exag�

gerated in the future� Therefore� a change of scheduling approach is required

particularly if future needs are to be supported�

��	 Summary

In this chapter the principal subject that has been addressed is identifying how

systems are currently developed� The subject has been addressed in a relatively

generic manner so that the transitions discussed within the thesis are widely

applicable� The purpose of identifying how systems are currently developed is

so that a baseline is identi�ed for the transitions to start from� The baseline

has been de�ned for four main areas� life�cycle� infrastructure� typical timing

requirements and the certi�cation requirements� In summary� the characteristics

of current systems includes�

� periodic tasks that are executed non�preemptively�

�� some tasks execute in an integrated fashion as transactions�

�� the control of some tasks� jitter is critical to the correct operation of the

system� and

��

�� there is a single regular interrupt to facilitate the task release mechanism

and timing watchdog�

The problems with cyclic scheduling were then discussed� Section
�� suggests

that �xed priority scheduling is the likeliest solution to the problems of cyclic

scheduling� The remainder of the thesis will explore this claim�

The literature survey of Chapter � provides details of work performed on �xed

priority scheduling� Chapter ��� uses the information in the literature survey and

the details of this chapter to derive a suitable approach for using �xed priority

scheduling in safety critical systems based on a single processor� To manage the

transition� the criteria for successful technology transfer 	certi�cation� su�ciency�

understanding and reuse
 should be considered when making design decisions�

Chapters ��� identify existing theory that can be used with or without modi�

�cation� The chapters also develop new theory to �ll the necessary gaps� and

providing an argument for the techniques� adoption� The �ndings of Chapters

��� are demonstrated in the case study of Chapter ��

��

��

Chapter �

Literature Survey for the Fixed

Priority Scheduling Technique

Chapter
 highlights the fact that �xed priority scheduling may provide solutions

to many of the problems encountered when using cyclic scheduling in safety

critical systems� The purpose of this chapter is to investigate the literature for

�xed priority scheduling in order to understand the existing work on the subject�

There are a number of areas to be surveyed to justify the two transitions 	cyclic

scheduling to �xed priority scheduling and uniprocessor to distributed systems
�

and the actual technical work contained within the transitions�

In section ��
 the computational model� priority assignment and timing analysis

for �xed priority scheduling are introduced� In section ��� a survey is presented to

support the other transition of interest� which is from uniprocessor to distributed

systems� Many new issues� such as meeting distributed transaction requirements

are introduced� for which solutions are to be investigated� In section ���� the

MARS 	now referred to as Time Triggered Architecture
 approach developed by

the University of Vienna is discussed� The MARS approach is deemed to be

the best of the currently available public domain approaches for safety critical

systems� Finally� section ��� looks at work on Integrated Modular Avionic 	IMA

systems that represents a proposed future architecture for avionic systems�

��

��� Fixed Priority Scheduling on Uniprocessor

Systems

The purpose of this section is to present a review of the literature on �xed priority

scheduling for uniprocessor systems�

����� Early Work on Fixed Priority Scheduling

The early work on �xed priority scheduling is published by Liu and Layland �
���

In their paper they discuss �xed priority scheduling within a simple conceptual

framework� where the task executing is always the highest priority task that is

runnable� Therefore� the tasks execute in a preemptive fashion� In Liu and Lay�

land�s model� tasks are assigned priorities so that the highest priority task has the

shortest period� referred to as rate monotonic scheduling� Liu and Layland shows

the rate monotonic scheduling model is optimal for task sets with zero o�sets

and deadline are equal to period� An o�set is classed as the time a task release

is separated from a common reference of time� Typically� the time reference

coincides with when the majority of tasks are released� Liu and Layland� and

Serlin ���� propose the schedule can be veri�ed using a simple utilisation�based

test� The test is expressed in equation 	��

�

Umax �
nX
i��

Ci

Ti
� n	�

�

n �

 	��

where n is the number of tasks

i is a task in the set of tasks

Ci is the worst�case execution of task i

Ti is the period of task i

Umax is the maximum processor utilisation

Equation 	��

 indicates that if the utilisation test is less than a value 	dependent

on the number of tasks in the system
� then the system is schedulable� Using

equation 	��

� if n is equal to one and Umax is less than or equal to one hundred

percent then the task set is schedulable� As n tends to in�nity then Umax has to

��

be less than or equal to ����
� for the task set to be schedulable� The utilisation�

based test provides pessimistic results� An example of the pessimism is a task set

with two tasks whose period and deadline equal to T � and worst�case execution

times of T��� The utilisation for the two tasks is
��� so the test implies the task

set is unschedulable since� based on equation 	��

� Umax � ������� However�

the task set is schedulable because the tasks are simultaneously released� one task

would be dispatched immediately and execute for time T�� and then the other

would be dispatched and execute until time T � Therefore� both tasks execute

within their deadline�

Later work by Lehoczky� Sha and Ding ���� shows how for typical task sets with

a large number of tasks� utilisations approaching ��� are schedulable� This is

despite the utilisation based test indicating the task set would be unschedulable�

Liu and Layland also identi�ed the �critical instant�� which is the point in time

when all tasks are simultaneously released� A task instance is de�ned as the

release� execution and completion of a task� The key results related to the

critical instant are that�

� if all tasks execute for their worst�case time and all tasks are subsequently

released at their maximum rate� then tasks have their worst response�

�� the timing behaviour is monotonic � monotonic is where there is an iden�

ti�able worst�case scenario that if the timing requirements are guaranteed

as met in this case� then they are always met� and

�� the worst�case response time of every task is the response time of the task

instance released at the critical instant� Therefore� only one instance of

each task needs to be demonstrated as meeting its timing requirements�

Liu and Layland�s observation about the critical instant and monotonic be�

haviour is signi�cant because the subsequent timing analysis can be simpli�ed

to ease computational complexity as well as helping to meet the understanding

criterion by the use of relatively simple� well�understood and accepted analysis�

After the initial work on �xed priority scheduling only a small amount of work

was published ��
�� However� during the late
����s �xed priority scheduling

began to attract more attention and publications were written presumably as

�

the complexity of systems started to demand greater �exibility and e�ciency�

Within avionic systems� this relates to the introduction of more computerised

control into systems rather than hydro�mechanical control�

����� Analysis of Tasks
 Worst�Case Response Time

A number of observations were made by Strosnider� Katcher and Arakawa �����

these include the utilisation�based test is pessimistic and the priority assignment

algorithm can be sub�optimal� Rate monotonic assignment of priorities is sub�

optimal if tasks� deadlines are not equal to their period or tasks have non�zero

o�sets� The pessimism in the utilisation�based test indicates a need for better

timing analysis� There are three categories of timing analysis�

� Su�cient and Necessary � The analysis always indicates a schedulable so�

lution when the task set is schedulable� This category of timing analysis is

most desirable�

�� Su�cient and Not Necessary � If the analysis indicates a schedulable solu�

tion� then the task set is schedulable� However� there are cases when the

task set is schedulable contrary to the results of the analysis� This cate�

gory of analysis is acceptable in cases where the su�cient and necessary

analysis is considered infeasible� or is not available�

�� Not Su�cient and Necessary � The analysis indicates a schedulable solution

when the task set is in fact not schedulable� This form of analysis is

undesirable�

The original consideration of timing analysis� presented by Leung and White�

head ���� shows that if every instance of every task on a particular processor is

schedulable over the period �Maximum O�set of Any Task� ��Least Common

Multiple of the Task Periods Maximum O�set of Any Task
� then the task

set is schedulable� Audsley ���� improved the analysis so the duration became

�Maximum O�set of Any Task� Least Common Multiple of the Task Periods

�The brackets ����� indicate a range where the �rst value is included and the second value

is excluded� For example� ����� refers to the time t in the range � � t � ��

��

Maximum O�set of Any Task
� Later work by Lehoczky�s ���� presents busy pe�

riod analysis� which provides further reductions in the duration to be analysed�

This was achieved by only considering intervals when higher priority tasks are

queued� i�e� those that can cause interference�

Leung�s and Audsley�s analysis� frequently referred to as exact analysis� de�nitely

helps to reduce the pessimism of the utilisation based test and is classed as

su�cient and necessary� The problem with the analysis is that for task sets

featuring irregular periods� particularly co�primes� a result would be very di�cult

to obtain� This is because the value of least common multiple of task periods

becomes large� A large value for the least common multiple means that a large

number of task instances have to be checked�

����� Computationally Feasible Analysis for Tasks
 Worst�

Case Response Time

Harter ���� ��� presents the �rst work that attempts to solve the computational

complexity problems of the exact analysis� Harter developed timing analysis

that could be performed in pseudo�polynominal time to show whether the task

set is schedulable� i�e� all tasks meet their deadline� The timing analysis for each

individual processor is solved using equation 	���
 taken from ����� The analysis

is valid for task sets with a critical instant� Harter�s analysis assumes all tasks

have a �xed unique priority� zero o�set� and the deadlines are not greater than

the period�

Ri � Ci Ii Bi 	���

where i is a task in the set of tasks for a given node

Ri is the worst�case response time of task i

Ci is the worst�case execution time of task i

Bi is the blocking time of task i

Ii is the interference of task i

The blocking time� Bi� is the longest time that a lower priority task can prevent

the execution of the task being analysed when it is runnable� The blocking time

is dependent on the computational model that is being used� In an idealised

��

preemptive model� the blocking time should be zero� However� cases exist par�

ticularly with shared resources� where some blocking may need to be accounted

for�

The interference a task su�ers is the maximum utilisation from the critical instant

of its higher priority tasks before it executes for the �rst time� The interference

is calculated using equation 	���
� Therefore� the interference is the sum of the

utilisations over the duration of interest for all the higher priority tasks than task

i� The utilisation is the product of the number of times the task can execute and

its worst�case execution time� The number of times a higher priority task can

execute is found by rounding up the result of the time during which interference

may occur 	i�e� the response time of the task being analysed
 divided by the

period of the higher priority task�

Ii �
X

j�hp�i�

�
Ri

Tj

�
Cj 	���

where hp	i
 is the set of higher priority tasks than task i

Equation 	���
 is solved by forming a recurrence equation as shown in equation

	���
�

Rn��
i � Ci Bi

X
j�hp�i�

�
Rn
i

Tj

�
Cj 	���

with R�
i � Ci

which terminates when Rn��
i � Rn

i � or R
n��
i � Di�

where Di is the deadline of task i

The analysis in this section was also derived and published independently by

Joseph and Pandya as the Time Dilation Algorithm ���� ���� and by Audsley et

al �����

The worst�case response times calculated using Harter�s equations are based on

Liu and Layland�s model where there is a critical instant and all tasks execute

for their worst�case execution time� which is the worst�case situation� Audsley

���� shows how under certain conditions 	all tasks have zero o�set� tasks are

executed preemptively� and deadlines are less than or equal to their period
 the

test is su�cient and necessary� The equations verify the system is schedulable

in pseudo�polynomial time ��
��

��

����� Analysis for Tasks with Release Jitter

When implementing practical systems the ideal timing analysis model 	for exam�

ple no overheads
 in section ��
�� is not su�cient� which could lead to optimistic

results� One of the areas the model is de�cient is that it assumes tasks are al�

ways released at the correct time� In practice� tasks may su�er release jitter for a

number of reasons� including there being an imperfect task release mechanisms�

For example� a sporadic task modelled by a polling periodic task of rate T would

have release jitter of up to T units of time� This accounts for the worst�case

event arrival� i�e� just after the task has polled for the event� Tindell ���� ex�

panded the analysis to account for the extra interference caused by release jitter

by modifying equation 	���
 to form equation 	���
� The principal di�erence is

that for equation 	���
 the duration in which interference can occur is augmented

to allow for higher priority tasks being released later than ideal�

Ii �
X

j�hp�i�

�
Ri Jj
Tj

�
Cj 	���

where Jj is the release jitter of task j

When the analysis converges� Rn��
i � Rn

i � the worst�case response time is ex�

pressed as�

Ri � Rn��
i Ji 	���

����� Deadline Monotonic Priority Ordering

A limitation with rate monotonic scheduling is the fact there is no mechanism for

dealing with criticality� This can cause problems when tasks with long periods

need a high priority� Burns et al ���� provides a real example for a satellite

telemetry system� where the software to transfer data to and from the ground

station is only needed once a day� The execution of the software within a tight

window of opportunity is critical to the system�s e�ectiveness� With the rate

monotonic policy the telemetry task would have the lowest possible priority and

consequently miss its deadline� To solve the problem using the rate monotonic

approach requires the task to be given a much shorter period so that it has a

��

higher priority� and therefore the task can meet its deadline� However� the wasted

resources may cause other tasks to miss their deadline�

The solution to the problem of criticality is the deadline monotonic policy� where

task priorities are assigned relative to deadlines� The highest priority is given to

the task with the shortest deadline� The original work on the deadline monotonic

policy was published by Leung and Whitehead ��
�� The deadline monotonic

approach is analogous to the rate monotonic approach if all the tasks� deadlines

are equal to their period� Leung and Whitehead show the deadline monotonic

scheduling approach is optimal for task sets scheduled preemptively when for all

tasks� the o�sets are zero and their deadline is less than or equal to their period�

Using the deadline monotonic approach� the problem of scheduling the telemetry

task of the Olympus satellite is solved by giving the task an appropriate deadline�

This e�ectively gives the task a high enough priority to meet its deadline without

having to waste resources through unnecessarily increasing the task�s period�

There are two restrictions within this computational model that prevent it from

being applicable to some systems� The most important is the lack of support for

o�sets and to a lesser extent the fact that deadlines have to be less than or equal

to their period�

����� Timing Analysis for Arbitrary Release Times

In practical systems� it is frequently necessary to o�set the execution of tasks from

one another� O�sets are used within real systems so that actual requirements

and design derived requirements can be met� There are a number of reasons why

there is a wish to use o�sets in a system� including�

� Ensuring a particular action instigated by one task has been performed

before releasing another task� For example� task A may request data from

a hardware device� however� the data may not be available for a time X

milli�seconds later� Therefore� an associated task B is required to read

the data when it is available� this requires an appropriate separation to be

enforced�

�� The spreading of processor resource requirements through a given time

frame so that jitter is reduced�

��

�� Ensuring precedence relations are maintained by not allowing a task to be

released until another has completed its execution�

The existing analysis in equations 	���
�	���
 may still be applied if the o�sets

assigned to tasks are ignored� However� the results are pessimistic because the

analysis ignores the phasing of task execution�

Some work ���� ��� has already been performed on the timing analysis of task

sets featuring o�sets� Audsley ���� states the main problem with the analysis of

task sets that feature o�sets is determining the worst�case release time of each

task� i�e� the critical instant� In equations 	���
�	���
� the parameter a�ected by

tasks having o�sets is the interference� To determine a particular task�s critical

instant requires its interference to be known� Therefore� the challenge is to derive

an approximate measure of worst�case interference that is not computationally

complex whilst giving minimal pessimism� Audsley�s approach to �inexact� anal�

ysis is to provide functions that approximate the interference su�ered by a task

at any particular point in time� The interference calculated is at least the value

obtained through �exact� analysis� which ensures the test is not optimistic�

A problem with Audsley�s and Tindell�s approach is that the interference equa�

tions are complicated to follow and prove� which may make technology transfer

di�cult� It is felt that part of the reason so much complexity is introduced is

because the analysis tries to be truely general purpose� In practice the system

being considered may have a relatively uniform nature since its requirements

could be a legacy from cyclic scheduling� A challenge is to derive timing analysis

that keeps both pessimism and computational complexity low� An investigation

of alternative approaches to dealing with o�sets is dealt with in Chapter �� The

claim is that a simpli�ed form of analysis can be e�ective when analysing task

sets of the type commonly found in systems�

��

Related to the need for improved timing analysis is the fact the deadline mono�

tonic priority assignment is no longer optimal when there are o�sets� Audsley�s

thesis ���� provides an optimal approach to priority assignment� The approach

involves�

� performing schedulability analysis�

�� if the analysis shows a task is not schedulable� then swap priority levels

with the next highest priority task else �nish�

�� if all the possible priority orderings have not been exhausted or stalemate

has not been reached� then return to step
�

Whilst this approach is optimal� it relies on performing many iterations of the

timing analysis that is already considered too computationally complex� There�

fore� the timing analysis derived in Chapter � has to account for the need for a

practical priority assignment technique�

����� Task Attribute Assignment

An additional issue borne out of the characteristics of the system considered in

section ��
� is that tasks have to interact in the schedule� e�g� to form transac�

tions� The timing analysis and priority assignment discussed so far only consider

individual tasks� This e�ectively ignores potential interactions that are funda�

mental to the correct operation of the system� Two di�erent approaches to the

problem of uniprocessor task attribute assignment are presented by Gerber et

al ���� and Yerrabilli ����� Task attribute assignment is the process of assigning

attributes 	i�e� the period� o�set� priority or deadline
 to tasks so that the timing

requirements are met� There is also an approach to task attribute assignment

based on priority inheritance�

Gerber�s Approach

Gerber� Hong and Sabsena ���� have investigated the issue of how to deal with

transactions� They show how careful attention to the requirements of interme�

diate tasks within a transaction may lead to an increased likelihood of the task

set being schedulable� Their approach is to use heuristic algorithms to derive

��

a set of task attributes to meet the system�s requirements� The task attributes

calculated at this stage may feature non�zero o�sets and deadlines not equal

to period� A technique� referred to as Fourier elimination� is applied to try to

eliminate o�sets and make deadlines less than or equal to their period� The aim

of using Fourier elimination is to simplify the subsequent implementation and

analysis�

The technique whilst powerful� is di�cult to understand and justify� therefore

a more straightforward techniques would be of bene�t� However� the main bar�

rier to the adoption of their work is that the approach assumes all attributes

are changeable� This ignores the fact that intermediate tasks may have other

functions outside of the transaction� Therefore� changing the period is likely to

cause problems�

Yerrabilli�s Approach

An approach related to that of the previous approach has been developed by

Yerrabilli ����� Again� o�sets and deadlines are manipulated using a heuristic

algorithm so that transaction requirements are met� However� Yerrabilli makes

the distinction that tasks� periods are not free variables� Yerrabilli�s approach is

di�erent in that it emphasises the need to maximise scalability� In this context�

scalability refers to the ability to increase tasks� worst�case execution times whilst

still meeting the timing requirements�

The ability to scale the system is an important quality when assigning task

attributes� However� the shortcoming of Yerrabilli�s technique is that it is di�cult

to determine how the attributes actually meet the requirements� Analysis can be

derived that justi�es the requirements are met but the ability to understand how

the requirements are met is lost� This ability to understand how the requirements

are met is crucial during the certi�cation process when justifying correctness�

Priority Inheritance Approach

Control of task precedence is di�cult without the �exibility of altering interme�

diate task attributes� One solution is for the scheduler to control the order in

which tasks are executed so that precedence relationships are met� A mechanism

would have to ensure that only one of the tasks has permission to execute at a

time� A supervisor function� probably within the kernel� would have control of

which task� A problem with rate monotonic scheduling theory is ensuring that

��

higher priority tasks are not delayed more than necessary when they form part

of a precedence relationship� Lampson and Redell ���� identi�ed what is known

as the priority inversion problem where a higher priority task is blocked by a

lower priority task due to the need to conform to a precedence relationship�

The �rst solution suggested to the problem of priority inversion was the priority

inheritance protocol described by Rajkumar� Sha and Lehoczky ����� The priority

inheritance protocol means that a lower priority task can inherit the priority of

a higher priority task if it is necessary to prevent the higher priority task being

blocked� However� the analysis in section ��
 caters for cases where blocking may

exist� Clearly� when a lower priority task inherits a higher priority� then blocking

may be introduced that has to be allowed for in the analysis�

The problem with the priority inheritance protocol is that when a semaphore

is used within the software for synchronisation then deadlocks may occur� For

example� suppose that at time t
 job J� locks semaphore S� and enters its critical

section� At time t�� job J� attempts to make a nested access to lock semaphore

S
� However� job J
 a higher priority job� is ready at this time� Job J
 preempts

J� and locks semaphore S
� If job J
 tries to lock semaphore S�� then a deadlock

is formed�

A number of solutions have been suggested to the problem of deadlocks with

the priority inheritance protocol� The most common solution is based on the

priority ceiling protocol by Sha� Rajkumar and Lehoczky ���� ���� The priority

ceiling protocol only allows a task to enter its critical region if it can complete the

critical region� i�e� can lock all the necessary semaphores� The priority ceiling

protocol allows an executing task that is blocking a higher priority task to inherit

the priority of the higher priority task� The ceiling priority is the highest priority

task that can lock a particular semaphore�

The problem with the priority ceiling protocol is that a task can be blocked

while lower priority tasks complete their execution because the lower priority

already have locks on the necessary semaphores� This situation can lead to tasks

su�ering so much blocking that deadlines are missed� The tasks could su�er a

lot of blocking due to the priority being raised in a number of stages as resource

contentions are identi�ed� Each time the contention is identi�ed and the priority

raised overheads are incurred� Rajkumar� Sha and Lehoczky ���� developed the

��

semaphore control protocol to help minimise the amount of blocking that can

occur within the system while avoiding deadlocks� With this protocol� when a

task has locked a semaphore the task priority is immediately raised to the ceiling

priority� The ceiling priority is the highest priority of any of the tasks that can

lock the semaphore�

The semaphore control protocol reduces blocking by preventing tasks unneces�

sarily interfering with the task that has locked the semaphore when immediately

inheriting the ceiling priority would have prevented it� The timing analysis is

simpli�ed since a task may assume only two priorities � its own priority and the

ceiling priority� Timing analysis can be performed for the worst case� The worst

case is when all tasks other than the one being considered inherit their maxi�

mum priority� The drawback of the semaphore control protocol is the potential

for signi�cant pessimism within the timing analysis�

There are three problems with the approaches based on ceiling protocols� which

are� additional complexity is introduced into the kernel making the design and

certi�cation more di�cult� the timing analysis is pessimistic and the extra func�

tionality causes overheads at run�time�

Chapter � proposes a technique for task attribute assignment that caters for

transactions in an e�ective and understandable manner with the added bene�t

that the complexity is taken o��line� The technique examines how the correct

manipulation of deadlines leads to the task�s interaction being correctly con�

trolled�

����
 Timing Analysis of Tasks With Arbitrary Deadlines

Other analysis has addressed the need for timing analysis when tasks have ar�

bitrary deadlines ���� ���� i�e� the tasks� deadlines greater than their period�

The issue is that the analysis has to be expanded so that multiple instances of

the same task can be queued at the same time� The standard schedulability

analysis shown in equations 	���
�	���
 is expanded as shown in equations 	���
�

	���
� Equation 	���
 converges when wn��
i 	q
 � wn

i 	q
� A solution is found when

wi	q
 � 	q

Ti� This condition relates to a situation where no instance of the

�

task being considered is waiting to be executed�

Ri � maxq���������	wi	q
� qTi
 	���

wn��
i 	q
 � 	q

Ci Bi

X
j�hp�i�

�
wn
i 	q
 Jj
Tj

�
Cj 	���

where q is the particular instantiation of the task in the range �
����

wi	q
 is the worst�case response time of the qth instance of task i�and

wn
i 	q
 is the nth iteration of the calculation�

Equations 	���
 and 	���
 iterate for as many instances of a particular task as

it takes for latest instance of the task to converge with a worst�case response

time less than or equal to the task�s period� The analysis is stopped if any task�s

response time exceeds its deadline� When considering a particular instance� the

response time is calculated iteratively� If the response time is greater than or

equal to the task�s period� then another instance of the task is released� However�

the earlier instance of the task is always executed �rst� The latest instance of a

task completing before another instance is released means that no instances of

the task remain on the run queue� The actual worst�case response time is the

maximum response time of all the task�s instances before convergence is achieved�

����� Analysing Kernel Overheads

The analysis presented so far has assumed an ideal system where there are no

kernel overheads associated with task release� This section is to survey how the

kernel overheads can be analysed drawing on two principal references ���� �
��

Irrespective of the task release mechanism employed� there is a cost associated

with the context switches into and out of a task� Independent of how many

times a task is preempted� the task only su�ers two context switches � the one

into the task and the one out of the task� The reason is the context switches

associated with each preemption are analysed as part of the task causing the

preemption and not the task su�ering the preemption� Equation 	���
 presents

analysis for the context switches� The analysis basically increases each task�s

worst�case execution time to allow for context switches� Equation 	��
�
 is a

��

simpli�ed version that assumes the cost of a context switch is the same into and

out for all tasks�

C �
i �� Ci Cs in Cs out 	���

where Ci is the actual worst�case execution time of task i�

C �
i is the modi�ed worst�case execution time of task i allowing

for the context switches�

Cs in is the worst�case execution time of the context switch into

the task i� and

Cs out is the worst�case execution time of the context switch out

of the task i�

C �
i �� Ci �Cs 	��
�

where Cs is the worst�case execution time of a context switch into or out

of any task�

A commonly adopted way of releasing tasks is based on a regular clock tick�

When the clock tick arrives� tasks that are waiting to be released are released

and the highest priority task is executed� If the tasks are released using a clock

tick� then there are many ways in which the cost of the clock tick can be modelled�

However� there are two basic variants for the modelling� as a single task or as

multiple tasks�

� Single Task

A single task can be used to model the clock tick� The single task would

have a period the same as the clock tick and a worst�case execution time

that encapsulates the time taken to update the run queues� The task used

to update the run queue would be the highest priority in the system� and

could not be preempted so it su�ers no blocking�

The worst�case time to update the run queues is when all the tasks are

released at the same time� The principal problem with the single task ap�

proach is that it is clearly pessimistic because tasks are not always released

as often as the clock tick� However� the results can be improved using

��

equation 	��

 	taken from ��
�
 to provide a less pessimistic estimate for

the worst case time to update the run queues� Equation 	��

 allows for

the relationship between the tick period and the minimum period of the

set of tasks�

Cclock �MCfirst 	N �M
Csub 	��

where N represents the number of tasks in the system�

Tmin is the shortest period of all tasks�

Tclk is the period of the clock tick�

Cfirst is the cost of releasing the �rst task�

Csub is the cost of releasing the subsequent tasks� and

M �
l
Tmin
Tclk

m

�� Multiple Tasks

For every task in the system� an additional task is used to model the

updating of the run queue� Each additional task has the same iteration

rate as the actual task� and a worst�case execution time equivalent to the

worst�case overheads 	obtained via analysis
 for the release of the particular

task�

Tasks can also be released based on the value of a real�time clock� i�e� in a

time driven manner� At pre�de�ned points in a task�s execution� the task would

stop executing while the run queue is updated and the highest priority task is

executed�

The time driven model can be analysed by each task having its worst�case exe�

cution time augmented by an amount CCOOPi� where CCOOPi is the worst�case

time to determine a task is runnable and then release it� In practice� CCOOPi

is not a constant� Typically task information is stored in priority order and the

tasks are searched to determine the highest priority runnable task� Therefore�

CCOOPi could be expressed as shown in equation 	��
�
� Frequently the imple�

mentation is optimised to cut down the search time� leading to the execution

time in equation 	��
�
 being pessimistic� For example� if no tasks are released

while the current highest priority runnable task is executed� then the search can

be optimised� Instead of starting with the overall highest priority task� the search

��

can start with the next highest priority task after the task that has just �nished

executing� However� equation 	��
�
 still represents the worst case�

CCOOPi � pi��CSEARCH CRELEASE 	��
�

where CRELEASE is the worst�case time to release the next task�

CSEARCH is the worst�case time to determine a task isn�t runnable� and

pi is the priority of task i� the range is �
�N� with
 being the highest�

For reasons of simplicity� CCOOPi is often taken as a constant CCOOP to make

the analysis less complicated� The value chosen for CCOOP would have to be the

value of CCOOPi for the lowest priority task since it has the largest value� The

resultant worst�case execution task 	C �
i
 for a task released using the time driven

approach is given in equation 	��
�
�

C �
i �� Ci CCOOP 	��
�

������ Case Study � Olympus Attitude and Orbital Con�

trol System

There have been a number of attempts to put �xed priority scheduling into prac�

tice on real industrial systems� This section looks at one case study� which is the

Olympus Attitude and Orbital Control System 	AOCS
 ���� ���� The Olympus

satellite was launched in July
��� as the world�s largest and most powerful civil

three�axis�stabilised communications satellite� The AOCS sub�system exists to

acquire and maintain the desired spacecraft position and orientation�

A case study was commissioned to investigate the technical issues and bene�ts of

using �xed priority scheduling on a ground based demonstrator� The case study

is based on the normal mode of the AOCS system� which is the most complex

mode and is used for the greatest percentage of the satellite�s lifetime� The

application selected contains many typical features of real�time software� i�e�

� Periodic tasks

�� Sporadic tasks

�� Hard real�time tasks

��

�� Soft real�time tasks

�� Background tasks

�� Communications over a databus

One feature of real�time software that is not part of the case study is transactions�

which is considered to be a signi�cant exclusion� Comparative testing with the

original Olympus satellite equipment yielded the following conclusions�

� there was no signi�cant di�erence in the quality of control� and

�� the systems were judged to be equivalent in their signal responses and noise

magnitudes� except for one functional area�

The study did highlight some disadvantages of the technique that can lead to

increased cost� These are�

� overheads are increased by the run�time support system to support Ada

tasking� and

�� there is a need to invest in support tools and training to achieve the max�

imum bene�ts from the approach�

In addition� the papers on the case study did not consider the issues of reuse and

certi�cation when proposing a solution� These issues are considered fundamental

if the solution is to be accepted� The case study suggests the fact that the positive

bene�ts far outweigh the disadvantages� These include�

� a sound engineering approach with a mathematical basis that provides

more exact results with reduced e�ort�

�� �exible run�time scheduling allows changes to be made in the application

structure without the costly re�development of the cyclic scheduler� and

�� tool support enables the techniques to be used by engineers rather than

academic theoreticians�

��

��� Fixed Priority Scheduling of Distributed Sys�

tems

The purpose of this section is to survey the existing literature available on �xed

priority scheduling and timing analysis for distributed systems� Techniques util�

ising the existing uniprocessor timing analysis are of particular interest� The

reasons are�

� There may be a great deal of time� money and e�ort invested in the existing

theory and tools� It would be bene�cial to allow the tools to be reused�

�� Treating each processor individually eases the synthesis and maintenance

e�ort by facilitating a modular approach to design�

����� Release Jitter Based Approach to Distributed Schedul�

ing

The early work on an event�driven model for scheduling of distributed systems

was performed by Tindell and Clark ����� Their approach uses periodic tasks for

the �rst task in the transaction� Subsequent tasks or messages are triggered as

sporadic tasks when the preceding task has been completed� For the purpose of

the timing analysis� sporadic tasks are modelled as periodic tasks� with period

equal to their minimum inter�arrival time� To account for the variability of

sporadic task�s release� each task is given a release jitter equal to the worst�case

response time of the preceding task� 	It should be noted that the case where

two or more consecutive tasks of a transaction execute on the same processor is

di�erent� In this case the tasks would be released simultaneously and priorities

used to control the ordering of task execution� rather than releasing a later task

after an earlier task has completed executing�

Using the release jitter based approach� the system timing properties may be

accounted for at the uniprocessor level� The subsequent tasks�messages are

��

time

processor
1

processor

processor

processor

3

4

2

messages

t1

m1

m3

Key to Figure

Best Case Release Time Deadline

Represents the time within which execution may occur

m2

t2

t3

t4

Figure ��
� Diagram to Illustrate the Timing Analysis of a Transaction

modelled as periodic tasks with characteristics�

period � transaction period 	��
�

release jitter � worst�case response time

of the previous task or message

in the transaction 	��
�

The relationship between release jitter and completion time is illustrated in Fig�

ure ��
� Figure ��
 shows how for a particular transaction� messages are released

by tasks and tasks are released by messages� For example� the task t� is released

after the worst case arrival time of message m	� Therefore� the release jitter of

task t� is equal to the worst�case arrival time of message m	� Equation 	��
�

helps to show how the release jitter accounts for distributed transactions�

Jt�� � Rt 	��
�

where t refers to the tth task�message in the transaction� and

Rt is the worst�case response time of task t from the start of the transaction�

��

Equations 	���
 and 	���
 provide analysis that caters for release jitter� The trans�

action�s end�to�end deadline requirement is veri�ed by considering the worst�case

response time of the last task in the transaction� If the worst�case response time

is less than or equal to the end�to�end deadline of the transaction then the re�

quirement is met� Therefore� the uniprocessor schedulability analysis in section

��
 can be used to verify the system�s timing requirements�

Tindell and Clark ���� show how the timing analysis for arbitrary deadlines given

in equations 	���
 and 	���
 may be used in cases where the transaction�s deadline

is greater than the tasks� 	that form the transaction
 periods� Their approach

modi�es the tasks� 	that form the transaction
 deadlines to be equal to the

transaction deadline� Then� verifying the tasks� deadlines� using equations 	���

and 	���
� as met also veri�es the transaction�s deadline�

Harbour� Garcia and Guiterrez ���� demonstrate that the approach is pessimistic�

If a task�s release jitter is greater than its period� then multiple task instances

are assumed and the arbitrary deadline timing analysis presented in section ��
��

is used� In practice� multiple task instances do not exist since the tasks have

deadlines less than or equal to their period� Harbour�s approach is to maintain

the original task deadlines� Then� the veri�cation of transactions is dealt with

separately to the schedulability analysis of tasks�

Harbour et al�s approach requires the relevant instance of a task� with respect to

the transaction� to be determined so that the response time of the transaction

can be calculated� The relevant instance is chosen such that its release time is

greater than or equal to the worst�case response time of the preceding task in

the transaction� The advantage of Harbour et al�s approach is the analysis is

less pessimistic� The disadvantage is that extra analysis is required for verifying

transaction requirements are met� The veri�cation of transactions can be auto�

mated and the analysis is understandable� Therefore� Harbour et al�s approach

is a viable technique�

��

The advantage of the release jitter approach is the existing uniprocessor analysis

may be used� However� there are four principal disadvantages of the release jitter

approach� which are�

� The use of sporadic tasks in safety critical systems is frowned upon due

to the inherent di�culty in analysing their operation� i�e� the e�ect of

task release at arbitrary points in time� and the e�ect of omission and

commission failures in the release mechanism�

�� The use of sporadic tasks present an additional problem when implementing

distributed transactions� The computational model means the tasks later

in the transaction�s order have more release jitter� However� the output

jitter of a transaction is frequently important� The output jitter is equal

to the variation in the time of the output from the transaction� This is

often taken to be the variation in the completion time of the last task in

the transaction� The variation in the last task�s completion time is greater

than or equal to the last task�s release jitter� Therefore� the approach

described in this section is considered prohibitive for many applications�

�� The pessimism associated with this approach is considered prohibitive� The

release jitter increases with the number of tasks in the transaction� and

reaches a stage where the system is likely to be unschedulable�

�� The release jitter approach is not robust to change� Small changes on one

processor can easily lead to the system requiring re�veri�cation�

����� O�set Based Approach to Distributed Scheduling

An alternative approach to distributed timing analysis is based on the exact

analysis approach proposed by Leung and Whitehead ��
�� which is discussed in

section ��
��� Within the context of distributed systems� the exact analysis was

�rst presented as the Phase Modi�cation Protocol by Sun and Liu ����� The

approach serves as an ideal way of assessing the e�ectiveness of any approach

developed� The exact form of analysis takes the approach of showing every

individual release of each task on all the processors and all the messages on the

databus are schedulable�

��

The Phase Modi�cation Protocol approach provides both implementation and

veri�cation advantages over the release jitter approach� The Phase Modi�cation

Protocol approach uses only periodic tasks within the implementation� The

precedence constraints of the transactions are enforced using o�sets by giving

the task or message an o�set equivalent to the worst�case response time of its

predecessor�

The drawback of an o�set based approach is that the implementation requires the

use of a global time base� An additional bene�t of the approach is the correct

phasing of tasks removes the need for protocols� such as the priority ceiling

protocol� An appropriate phasing of tasks prevents two or more tasks trying to

access the same resource at the same time� Therefore� resource contention is

avoided and hence priority inheritance is not needed� The obvious disadvantage

is the maintenance of an appropriate phasing is di�cult for the same reason as

with cyclic scheduling� discussed in section ������

Figure ��
 can be again used to show how the time during which a task or message

may execute is controlled� For example� in the case of task t	 the duration of

allowed execution commences when message m
 has de�nitely arrived� i�e� Ot� �

Rm�� Message m	 is then scheduled for when task t	 has completed� i�e� Om� �

Rt�� By giving a task an o�set such that its dispatch 	or release for simplicity

is always greater than the worst�case response time of the event trigger 	in the

case of task t	 the worst�case arrival time of the message m

 then precedence

is maintained� even across a distributed system� Equation 	��
�
 shows how the

Phase Modi�cation Protocol accounts for the distributed transactions�

Ot�� � Rt 	��
�

where Ot�� is the o�set of task t
 from the critical instant

The Phase Modi�cation Protocol adopts this approach so the release jitter caused

by variable release times of sporadic tasks is removed� There are two drawbacks

associated with the Phase Modi�cation Protocol� Firstly� new analysis is re�

quired� which may be di�cult to understand and may have high computational

complexity� For realistic systems� the analysis can become intractable due to

the least common multiple of the periods being very large� particularly when

the tasks have periods that are co�primes� Secondly� the design and veri�cation

of the system�s timing aspects are not robust to change� i�e� a change to one

�

task�s worst�case response time leads to system wide change� A simple change

of functionality related to one processor may lead to changes in task attributes

throughout the system� as well as a complete re�analysis�

����� Task Attribute Assignment for Distributed Systems

A number of approaches have been proposed to the problem of task attribute

assignment for distributed systems� The aim of these techniques is to assign task

attributes based on heuristic methods rather than the results of timing analysis�

The problem of basing the task attributes on the results of timing analysis is a

lack of robustness to change�

One of the �rst papers that deals with the issue of task attribute assignment for

distributed systems was produced by Bettati and Liu ����� Their paper deals

with the scheduling of distributed systems using �ow shop scheduling� Flow

shop scheduling is where tasks are executed on a ��rst come �rst served� basis�

Bettati demonstrates how assigning local deadlines evenly across all tasks in

the transaction is a practical technique for meeting the timing requirements

whilst minimising the e�ect of change� The approach states that if a transaction

deadline is X� then each task is assigned a non�overlapping window of X�N

	where N is the number of tasks in the transaction
� Therefore� the third task

in the transaction would have an o�set of �X�N and a deadline of �X�N � The

approach was based on a simplifying assumption that all tasks have identical

worst�case execution times� If the assumption is true� then the approach is

optimal� Clearly� the assumption is not realistic�

Following on from Bettati�s work� Natale and Stankovic ���� produced an ap�

proach called �time�slicing�� which is intended for �xed priority scheduling and

does not make the simplifying assumption� Instead of uniformly sharing the avail�

able time across the tasks of the transaction� the time�slicing approach shares

the time so that each task has the same laxity� In this case� laxity is the di�er�

ence between a task�s execution time and its deadline� The aim of the technique

is to increase the chance of schedulability and increase the resilience to change�

Natale and Stankovic shows the technique to be optimal in the sense that the

laxity of each task is maximised�

��

Shin ���� demonstrates how time�slicing can be more e�ective if the size of ex�

ecution time slices are chosen in an adaptive manner� Shin uses a heuristic

approach based on tasks� computation time� The approach leads to an increase

in the likelihood of schedulability with an acceptable increase in computational

complexity�

An alternative approach is proposed by Harbour and Garcia ����� This is based

on a number of iterations of task attribute assignment and schedulability analysis

in order to derive a set of task attributes� Initially� task attributes are assigned

at a local processor level� Schedulability analysis is performed to determine

whether the requirements are met� Then� each task has its attributes changed

using a heuristic that is based on by how much a deadline is missed� The greater

the amount of time by which a deadline is missed� the more a task�s deadline

is increased before the task set is re�analysed� Harbour�s approach provides a

simple approach to choosing task attributes but has the drawback the solution

can take a long time to compute�

A great deal of work has been performed on search algorithms� such as simulated

annealing and genetic algorithms ���� ���� These approaches can provide solu�

tions to the scheduling problem� The drawbacks of using search algorithms are

that the searches can take a long time to complete� and the results are hard to

justify and explain because there is no clear reason for the results� The problem

with all the techniques is that when the system is changed a complete re�synthesis

is necessary� This necessitates a complete re�veri�cation� which makes the cost

of regression testing too great for practical purposes�

Chapter � examines the problems of distributed timing analysis in greater depth

so that improved timing analysis can be derived� Signi�cant amounts of simu�

lation are used for this purpose� The approach derived is based on the use of

o�sets to control precedence� The approach makes use of the timing analysis in

Chapter ��

��

��� The Time Triggered Architecture

This section discusses the work performed by the University of Vienna on the

Time Triggered Architecture� The purpose is to build an understanding of how

other work has addressed the needs of safety critical systems�

The MARS kernel is often considered the most appropriate published approach

for safety critical systems� The reason the MARS project is viewed as superior to

many of the other projects is that it is the only work speci�cally targeted at the

safety critical systems domain� Other approaches make compromises between

dependability� analysability and performance to obtain a general�purpose archi�

tecture� The MARS work has also paid a great deal of attention to providing a

complete picture� including� fault tolerance� dependability� timing analysis and

tool support� These issues are important to safety critical systems� To date� the

MARS work is still considered the most relevant to this thesis�

The Time Triggered Architecture 	TTA
 has evolved from the MARS kernel

project taking advantage of the lessons learnt� Therefore� this section brie�y

reviews the work of both of these projects� The TTA project is intended as a

complete process and system solution to the problems of designing embedded

distributed systems for the safety critical systems market� The best source of

information on the TTA work is a book by Kopetz �����

The MARS kernel has been developed for more than
� years with the intention

of developing an infrastructure to meet the system�s requirements 	including

certi�cation
 in a methodical tool assisted manner� The basic architecture for

TTA is the system is split into a number of clusters� Each cluster has autonomous

responsibility for a set of system requirements� Within a particular cluster� the

system has hard real�time requirements� However� data �ow between the clusters

does not have to be hard real�time� Therefore� our principal interest is the

scheduling and timing analysis within a cluster�

Task scheduling is performed using the cyclic scheduling technique� and message

scheduling using the Time Division Multiple Access 	TDMA
 technique� TDMA

is where a sequence of slots are executed repeatedly� Each slot is of known

size and occurs at a pre�de�ned time� A single message is assigned to each slot�

Therefore� cyclic scheduling and TDMA can be considered as similar� To prevent

the criticism related to synthesis and maintenance of cyclic scheduling discussed

��

in section ���� tool support ��
� is available� Unfortunately� the tool does not

allow for the need to minimise the amount of regression testing during change

control� which is a problem when using tool support for schedule synthesis�

A major part of the MARS design ethos is ensuring that the kernel and system

operates reliably� At a system level� all the components have at least two redun�

dant components� The processing nodes handle their redundancy by two nodes

transmitting their outputs and one node remaining silent� When the silent node

detects an error in one of the two other nodes it stops being silent� The errant

node is then silenced to provide error containment by a hardware inhibit of its

connection to the communications bus� The technique relies on a trusted voter

to identify faults� The voter is the means of comparing similar values produced

by di�erent sources to determine if an error has occurred�

To ensure that the communications data is su�ciently reliable� data is commu�

nicated twice across the network� The reason is that the probability of two data

items being corrupted is considerably less than the probability of a communica�

tions node failing� Therefore� when performing reliability calculations the e�ect

of node failure can be ignored and the calculations can concentrate on data cor�

ruption for which analysis already exists� In addition� the MARS kernel adopts

a communications protocol� referred to as a membership service ����� for deter�

mining whether any processing nodes have failed� In any distributed system� the

membership set may change over time because an active node departs from the

membership set 	e�g� node failure
 or an inactive node may join 	e�g� a node

that previously failed may have recovered or has been repaired
� The aim of

the protocol is to guarantee that within a time interval every active node has a

consistent knowledge about the membership set�

The viewpoint that the MARS and TTA work is the most relevant to safety

critical system is based on the completeness of the solution� Unlike other work�

detailed design of important dependability issues such as a fault tolerant clock

synchronisation� timely membership service� a recon�guration management� and

provision of fail silence in the temporal domain� has been performed� It is the

completeness that raises the con�dence in the approach taken� The principal

problem with the Time Triggered Architecture work is that it is based on a

cyclic scheduler�

��

��� Integrated Modular Avionics

The Integrated Modular Avionics 	IMA
 initiative is an attempt to solve many

of the problems currently faced by avionic systems ��� ���� The problems include�

obsolescence caused by components going out of production during the lifetime of

the system� and the large size of systems necessitating the design being split into

manageable independent parts� The IMA system architectures being considered

provide modularity and technology transparency in order to solve the problems�

Modularity is where the architecture provides facilities to control how di�erent

partitions of software communicate through de�ned interfaces� The main aims of

modularity are� to allow di�erent parts of the software to be written in isolation

but integrated with ease� to ease the problems of change by reducing the scope

of change� and to allow di�erent integrity levels of software to exist safely on

the same processor� The objective of technology transparency is to allow the

processor the software is executing on to be changed with the minimal of rework�

To achieve technology transparency� a portable code is required� such as provided

by Java byte�code ����� that can execute in a similar manner on a wide range of

platforms� The aim of technology transparency is to prevent obsolescence�

Fletcher et al ���� recognises how IMA provides a signi�cant number of technical

and certi�cation challenges� A key challenge is the scheduling and timing analysis

has to be abstract in nature so that the maximum reuse of the system and

certi�cation evidence occurs when the underlying platform is changed� Grigg and

Audsley ���� has proposed a solution based on reservation�based scheduling ����

that may provide a solution� However in the short term� �xed priority scheduling

is seen as the most likely candidate ����� There is little likelihood of cyclic

scheduling supporting technology transparency because it has low robustness to

change �����

��

��� Summary

This chapter has surveyed the existing work on �xed priority scheduling for both

uniprocessor and distributed systems� The chapter has also looked at the Time

Triggered Architecture work� which is currently considered to be the �state of

the art� for safety critical systems� The survey has also investigated how future

in�uences� such as IMA� may in�uence the scheduling approaches derived�

The survey highlighted a number of problems with the current approaches that

necessitate a change from cyclic scheduling and inhibit the use of the traditional

form of �xed priority scheduling� The chapters so far give an indication that �xed

priority scheduling� with some modi�cations� is suitable for use in the safety

critical systems domain� The remainder of the thesis is to assess how �xed

priority scheduling may be used� and justify the claim that it is an appropriate

technique�

��

��

Chapter �

The Transition from Cyclic

Executive Scheduling to Fixed

Priority Scheduling

There are four basic aims of this chapter�

� Section ��
 investigates whether �xed priority scheduling represents a so�

lution to the problems of cyclic scheduling that are highlighted in section

����

�� Section ��� considers the problems of �xed priority scheduling� for example

those found in the Olympus AOCS case study of section ��
�
� and in

Locke�s paper ���� and whether they can be solved�

�� Section ��� examines how the �xed priority scheduling technique may be

used to replace the cyclic scheduler in an existing system� The implica�

tions of any changes to the �standard� �xed priority scheduling model are

considered�

�� Finally� section ��� highlights the remaining work that is required for �xed

priority scheduling to form a complete solution�

��

��� Is the Fixed Priority Scheduling the Solu�

tion to the Problems of Cyclic Scheduling

In section ��� a number of problems with cyclic scheduling are raised� maintain�

ability� e�cient use of resources� and supporting future requirements� The prob�

lems of cyclic scheduling are derived from issues raised in a paper by Locke ��� and

through contact with industry� Locke�s paper describes the weaknesses of cyclic

scheduling and identi�es �xed priority scheduling technique as the smallest tech�

nological leap capable of solving the problems of cyclic scheduling� Locke�s view

that �xed priority scheduling is the �natural� progression from cyclic scheduling

is a commonly supported belief� Two supporting references for Locke�s view�

point are Stankovic ����� and Burns� Audsley and Tindell ����� however there are

many more� The claim is that �xed priority scheduling can solve the problems

of cyclic scheduling� To justify the claim� the three problems of cyclic scheduling

are considered in turn to examine how �xed priority scheduling may provide the

desired solution�

����� E	cient Use of Resources

Section ����
 describes the three basic reasons 	limited iteration rates� lack of

sporadic tasks� and the waste of resource at the end of a cycle
 why the cyclic

scheduler is considered to use resources ine�ciently� All the reasons are related

to the restricted computational model� The �xed priority scheduler eradicates

these problems because the computational model is not limited by the cyclic

arrangement and the non�static schedule� Also� the fact the schedule is not

arranged using a cyclic structure removes the need to reserve time at the end of

each cycle� which is wasted resource� The only time the processing resource is

unused in �xed priority scheduling is when the run queue is empty�

The lack of a cyclic structure and non�static ordering means that periodic tasks

can have any iteration rate� The non�static ordering also allows sporadic tasks

to be implemented� The increased �exibility of the computational model means

the actual requirements may be implemented� rather than those imposed by the

scheduler� This leads to a more e�cient use of resources and also the possibility

of a system that performs better�

��

����� Maintainability

Section ����� highlights how the maintenance problem of the cyclic scheduler

arises from the need to support task and transaction requirements� which leads

to di�cult synthesis and change control problem� There are four principal reasons

why �xed priority scheduling is easier to maintain than cyclic scheduling� ease

of synthesis� robustness to change� ease of veri�cation� and reduced regression

testing�

Ease of Synthesis

A �xed priority scheduler is easier to synthesise than the cyclic schedule� Garey

and Johnson ���� show the bin�packing problem of the cyclic executive scheduler

to be NP�complete� Whereas� Leung and Whitehead ��
� shows the problem of

synthesising �xed priority schedulers is pseudo�polynominally complex� A �xed

priority scheduler is easier to synthesise than a cyclic scheduler because synthe�

sising priorities is simply a matter of assigning a place in an order� However�

with a cyclic scheduler each task is assigned a number of places 	dependent on

the task�s iteration rate and the minor cycle rate
 in a number of minor cycles

	dependent on the minor and major cycle rates
 as well as having to order tasks

in each individual minor cycle�

Robustness to Change

The �xed priority scheduler is more robust to change than the cyclic scheduler�

The reason is that with a �xed priority scheduler all that matters is whether the

timing requirements are met� A change to the scheduler is only necessary if the

requirements are no longer met� Whereas with the cyclic scheduler the timing

requirements being met is not enough� A change to a task�s worst�case execution

time may lead to a minor cycle over�owing that also necessitates the schedule

to be changed� The extra condition to be upheld means that more changes to

the schedule occurs� particularly in a heavily loaded system� In addition� with

a �xed priority scheduler a failure to meet a deadline could be solved by simply

swapping two adjacent priorities� Whereas� a cyclic schedule has to be completely

re�synthesised� Therefore� the �xed priority scheduler is easier to change than

the cyclic scheduler�

�

Ease of Veri
cation

The veri�cation of a �xed priority scheduler tends to take less e�ort than a cyclic

scheduler� The reason is a �xed priority scheduler is veri�ed using analysis�

whereas a cyclic scheduler is often veri�ed through test� Test�based veri�cation

is why a static run�time ordering is important because the behaviour is determin�

istic� Analysis can be performed automatically in a short amount of time with

a minimum amount of e�ort� Test is considered to be a much more expensive

activity than analysis�

Reduced Regression Testing

Related to the previous point� with a �xed priority scheduler the veri�cation of

the system is not dependent on a static run�time ordering� Therefore when a

�xed priority scheduler changes� there is no need to repeat the functional testing

of the system� However when a cyclic scheduler is changed� all the system�s

data��ow is changed� Hence� the e�ort required to perform regression testing of

the functional requirements could be considerably increased�

����� Supporting Future Requirements of the System

Section ����� describes how the cyclic scheduler is likely to prohibit the future

systems that need to be developed� Consideration of IMA systems in section

��� and in reference ���� provides an example of where a cyclic scheduler is

inappropriate� The fact the �xed priority scheduler�s computation model is less

restricted than the cyclic scheduler makes it more appropriate for the types of

system that are likely to be needed�

An important part of this claim is related to the fact that systems are likely to

become more de�centralised in nature� De�centralising the system makes main�

tenance signi�cantly more complex� eventually leading to the cyclic scheduler

becoming practically infeasible� The problem of maintaining a set of minor cy�

cles on a single processor to meet task and transaction requirements is di�cult

enough� However� if there are many processors with a communications bus con�

necting them� then the complexity becomes even greater� The reason is that all

the schedules� including the one for the databus� must interact together to meet

the distributed transactions� A schedule change on one processor could cause all

��

the system�s schedules to need re�synthesis� The system being scheduled could

have to support many transactions� A move to IMA type systems involving

multi�company projects means it is important to actually partition the systems

engineering problem� which includes the scheduler�

Another reason the �xed priority scheduler is more suitable for future systems is

the computational model only has restrictions by design� this means the system

is better placed to support future needs� Any restrictions would probably arise

from the di�culty in certifying the general computational model� The restrictions

would be traded�o� against the needs of the system�

��� Solving the Problems of Fixed Priority Schedul�

ing

If �xed priority scheduling is capable of removing the problems of cyclic schedul�

ing� why has it not achieved widespread adoption�

The reason could be the fact cyclic scheduling has some advantages over �xed

priority scheduling� Locke ��� also highlights some disadvantages of �xed priority

scheduling� which are� it is frequently reliant on the Ada tasking model whose

characteristics are di�cult to predict� and the kernel overheads tend to be larger�

However� the main disadvantage of �xed priority scheduling is that the safety

critical systems domain is always sceptical and resistant to any change from

current practice�

����� Tasking Model

Locke ��� states the implementation of the Ada �� tasking model ���� is hard to

predict� The reason was originally highlighted by Sha and Goodenough ���� who

state that even though the Ada tasking model requires priorities to be speci�ed�

the entry rendezvous queue is exercised in First�In First�Out 	FIFO
 order� A

rendezvous is a means of achieving synchronous communication by the receiver

acknowledging that it is ready to receive a message and that it is the correct

recipient� Whilst it can be argued any scheduling model is predictable� after all

��

any computer �rmware is based on logic� FIFO makes it harder to analyse and

synthesise the schedule than even cyclic scheduling�

The disadvantage of the tasking model being di�cult to predict can simply be

overcome by the engineers implementing their own scheduler� However� Locke�s

��� observations were made with respect to the Ada �� version ���� of the Ada

language� The di�culties associated with the tasking model in Ada �� may be

avoided by using the Ada �� version of the language standard ��
� that includes

a revised tasking model as well as support for important scheduling paradigms�

These include priority inheritance implemented with priority ceiling protocols�

Despite the change� the SPARK subset of Ada �� ���� still precludes the use of

tasking models� An equally strong in�uence is the desire to make the minimum

changes deemed necessary from the SPARK version of Ada ��� However� an al�

ternative safe subset of Ada �� ���� proposed by the ISO WG ��s HRG committee

includes the use of a subset tasking�

Despite the updated tasking model of Ada ��� the use of bespoke schedulers is

again preferred� The main reason is the tasking model may not be used is that

the implementation may be over complex for a particular application and it is

part of the compiler� Therefore� there would e�ectively be a COTS software

product in the system� There are a number of reasons why a Commercial O��

The�Shelf 	COTS
 product is often not considered appropriate for safety critical

systems� The main reasons is that the product is rarely designed for the domain

so it cannot be trusted and it would not be cost e�ective to re�engineer the

product to the appropriate standard� Also� the product would carry a lot of

baggage 	i�e� functionality
 that is not needed� This increases kernel overheads

and the certi�cation e�ort ����� The latter point would make the criticism of

higher kernel overheads with �xed priority scheduling ��� more apparent�

For the reasons discussed in this section� this work is to assume a bespoke sched�

uler is produced� Part of the reason for this decision is that cyclic schedulers

are normally implemented in this manner� Therefore� the likelihood of changes

being necessary to the software of the tasks is reduced� In addition� the work

can then investigate how best to support the tasking model from the perspective

of the infrastructure�

��

����� Kernel Overheads

The overheads incurred with a �xed priority scheduler rather than a cyclic sched�

uler are generally increased� The reason is that all a cyclic scheduler has to do is

execute tasks in a de�ned order� However� a �xed priority scheduler has a great

deal more functionality� including releasing tasks after determining the tasks

are runnable� and searching for the highest priority runnable task that is then

dispatched�

To alleviate the problems of kernel overheads� there are two issues to be ad�

dressed� The �rst issue is how the kernel should be designed bearing in mind the

four criteria 	in particular the reuse criterion
 for successful technology trans�

fer de�ned in section
�� as well as the need to minimise overheads� The reuse

criterion is important because the existing hardware and software 	including ap�

plications
 should be used within the new infrastructure with a minimal amount

of rework� However� the ability to implement the system�s timing requirements

should not be forgotten� The second issue is how pessimism in the analysis of

overheads can be reduced� A fundamental part of the transition from cyclic

scheduler to �xed priority scheduler is the development of a kernel that can be

certi�ed� There are two main design aims for the kernel� the ability to reuse the

existing hardware architecture� and to allow the system�s timing requirements to

be met by having reasonable overheads and by having a responsive infrastruc�

ture� The overheads should be appropriate so that a powerful scheduling policy

is not handicapped by the kernel overheads being so large that the tasks become

unschedulable� A responsive infrastructure is one that releases tasks in su�cient

time for their deadlines to be met�

The majority of work on �xed priority scheduling assumes an ideal computational

model with no overheads and no failures� Therefore� there is a need to investigate

how best to implement and analyse the kernel� Chapter � is to investigate the

issues related to the kernel�

����� Predictability versus Determinism

One of the key di�erences between a cyclic scheduler and a �xed priority scheduler

is that a cyclic scheduler is deterministic� whereas a �xed priority scheduler is

��

predictable� The di�erence is a cyclic scheduler has a static task ordering and

a �xed priority scheduler has a dynamic task ordering� This causes signi�cant

impact in the area of veri�cation� As a consequence� a �xed priority scheduler has

to rely on analysis whereas a cyclic scheduler can rely on either test or analysis�

A positive aspect of this change is that analysis actually provides more accurate

	i�e� better
 results� However there are two problems� which are� any change of

the type of certi�cation evidence provided is a major step that needs justifying�

and the change also increases the number of paths when performing functional

testing� Any approach derived for the �xed priority scheduler has to address

these problems and signi�cant attention needs to be paid to justifying that the

change is safe�

��� How Can Fixed Priority Scheduling Sup�

port the Domain�s and Application�s Re�

quirements

The purpose of this section is to examine how �xed priority scheduling could be

used in a system that currently uses a cyclic scheduler� There are �ve parts to

the discussion� which are�

� establishing a task execution model�

�� determining whether Deadline Monotonic Priority Ordering 	DMPO
 is

optimal for the execution model�

�� establishing an appropriate task release model�

�� tailoring the timing analysis for the overall computational model� and

�� determining whether DMPO is optimal for the overall computational model�

These are dealt with in the following sub�sections�

��

����� The Choice of Execution Model

Most scheduling texts generally assume the �xed priority scheduling policy is

implemented using a preemptive �ow of control� and support is provided for both

periodic and sporadic tasks� Timing analysis is widely available� in many forms�

for the general model� Chapter � provides a survey of �xed priority scheduling�

including how it may be analysed� However� in many ways the veri�cation of the

timing characteristics is a relatively small job compared to that of verifying the

functional properties� Therefore� the wider implications of the actual scheduling

model are considered in this section�

The computational model of the cyclic scheduler is based on a non�preemptive

�ow of control� Non�preemptive scheduling is where a task is always executed

to completion� The principal di�erence between preemptive and non�preemptive

scheduling is a task�s execution can be preempted at any time by the release

of a higher priority task� This leads to a greatly increased number of possible

program paths� which means functional testing is more di�cult to fully achieve�

More importantly� data �ows and updates could be interrupted causing a task

to be preempted when a data calculation is only partly �nished� If data that is

in a transient state is used� then the e�ect could be di�cult to determine�

The transient state issue could be solved under a preemptive scheme by de�ning

critical sections of code and preventing preemption when execution enters the

critical sections� However� the application and the scheduler software would

become more complex� To make the transition from a non�preemptive to a

preemptive system requires the existing software design and implementation to

be thoroughly examined to determine where problems could occur� Some or all of

the software would have to be modi�ed or re�implemented to solve the problems�

An additional advantage of having a non�preemptive scheduler is that there is no

longer a need to preserve the context for a task when its execution is suspended

or �nishes�

The real bene�t of preemptive scheduling can only be obtained through a com�

pletely new design because of the chance given to re�allocate functionality to

tasks� For instance� section ��� highlights how the non�preemptive execution

of software in a cyclic scheduling framework leads to software being broken up

into small parts� By re�allocating functionality a more natural decomposition of

��

functionality to code can be obtained� leading to improved maintainability� A

potential problem of taking this strategy is that the reuse criterion for successful

technology transfer� introduced in section
��� is broken�

An additional barrier to be overcome is the culture of the industry� which gener�

ally uses test�based veri�cation� Despite the fact that �xed priority scheduling

provides analysis that is quicker and more e�ective� there is still a desire to test

systems� A particular concern is the need to test the system from a functional

perspective� Part of the reason a cyclic scheduler is currently used is the static or�

dering of tasks means the system is deterministic� With a preemptive scheduler�

there is clearly a signi�cant increase in the potential number of program paths

making complete path coverage less likely� Making the testing problem more

di�cult further reduces the likelihood of successful technology transfer� Section

��� also discusses how the certi�cation authorities are reluctant to allow any in�

terrupts because of the increased certi�cation e�ort that results� Therefore� the

use of non�preemptive scheduling is advocated�

In terms of timing analysis� the principal di�erence between preemptive and

non�preemptive scheduling is the degree of blocking su�ered� The blocking time

caused by lower priority tasks for the non�preemptive model is expressed in

equation 	��

� Equation 	��

 represents the maximum worst�case execution

time for the set of tasks with lower priorities than task i� In comparison� blocking

times with preemptive scheduling tend to be lower�

Bi � maxk�lp�i�	Ck
 	��

where lp	i
 is the set of lower priority tasks than task i

The overall equation for iteratively calculating task�s worst�case response times

with a non�preemptive scheduling model is represented in equation 	���
�

Rn��
i � Ci maxk�lp�i�	Ck

X
j�hp�i�

�
Rn
i

Tj

�
Cj 	���

with R�
i � Ci maxk�lp�i�	Ck

which terminates when Rn��
i � Rn

i � or R
n��
i � Di�

where Di is the deadline of task i

��

����� Optimality of the Deadline Monotonic Priority Or�

dering with Non�Preemptive Scheduling

Leung and Whitehead ��
� shows that the DMPO approach is optimal for the

preemptive computational model with the conditions that all tasks have zero

o�sets and deadlines less than or equal to their period� However� is DMPO

optimal with the restricted computational model of non�preemptive scheduling�

Theorem �� DMPO is optimal for non�preemptive scheduling�

Proof�

DMPO is optimal if for any task set� Q� that is schedulable by priority scheme�

W� is also schedulable by DMPO� The proof of optimality of DMPO involves

transforming the priorities of Q 	as assigned by W
 until the ordering is DMPO�

With each step of the transformation schedulability is preserved�

Let i and j be two tasks with adjacent priorities in Q� such that under W� Pi � Pj

and Di � Dj� Pi is the priority of task i� De�ne scheme W� to be identical to W

except that tasks i and j are swapped� Consider the conditions of schedulability

of Q under W�� with the reason given 	in italics
 why the condition is met�

� All tasks with priorities greater than Pi are una�ected by changes to lower

priority tasks�

The non�preemptive scheduling model ful�lls this constraint since the e�ect

on schedulability is related to lower priority tasks�

�� All tasks with priorities lower than Pj are una�ected since they experience

the same interference from tasks i and j irrespective of their priority order�

The set of tasks with priorities less than task j remains unchanged and

their impact remains the same� i�e� Bi � maxk�lp�i�	Ck
� Therefore� this

condition still holds�

�This proof is adapted from a proof in Burns and Wellings ��	
 that dealt with the preemp�

tive form of �xed priority scheduling�

��

�� Task j� which was schedulable under W� now has a higher priority� this

means it su�ers less interference and hence must be schedulable under W��

This condition is true for the non�preemptive computational model because

the higher priority tasks are not a�ected by the swapping of tasks� priorities�

The blocking time for task j� Bj� could be greatly increased if the value of

Ci is large� However� the increase in the blocking time Bj cannot be more

than the decrease in the interference Ij because under W task i would have

executed at least once�

All that is left is the need to show task i� which has had its priority lowered� is

still schedulable� Under W� it can be stated that Rj � Dj� Dj � Di and Di � Ti�

Therefore task i interferes only once during the execution of j� Once the tasks

have had their priorities switched� the new response time of task i becomes equal

to the old response time of task j� This is true because under both priority

orderings� Cj Ci amount of computation time has been completed with the

same level of interference from the higher priority tasks� Task j is released only

once during ��� Rj�� and hence interferes only once during the execution of task

i under W�� It follows that�

R�
i � Rj � Dj � Di 	���

Therefore it can be concluded that task i is schedulable after the change of

priorities� Priority scheme W� can now be transformed 	to W�
 by choosing

two more tasks that are in the wrong order according to DMPO and switching

them� Each task switch preserves schedulability� Eventually� there are no more

tasks to switch because the ordering is exactly that of DMPO and the task set is

schedulable� Hence� DMPO is optimal for the general non�preemptive scheduling

model� �

����� The Choice of Task Release Model

Section ����
 states the general �xed priority scheduling model assumes sporadic

tasks exist as well as periodic tasks� For similar reasons to the choice of non�

preemptive control �ow� the computational model that is primarily being consid�

ered is one featuring periodic tasks only� Sporadic tasks are excluded� not because

��

the timing analysis is hard but because the subsequent functional veri�cation is

made more di�cult by the tasks� release time being unpredictable� However�

most of the work to be presented is equally applicable to a computational model

using sporadic tasks� Where it is not applicable an explicit statement is made�

����� Improved Blocking Model

A drawback of using a non�preemptive scheduling model� instead of a preemp�

tive model� is that tasks tend to su�er greater blocking� In many systems� the

blocking time can be prohibitive� especially when it is considered that the lower

priority tasks are often the most computationally intensive� Therefore� an inves�

tigation is performed in this section with the aim of reducing any pessimism� The

discussion contained within this section is purely related to the computational

model that features just periodic tasks� Section ����� has already stated that the

computational model could consist entirely of periodic tasks� If sporadic tasks

are part of the task set� then the equations for blocking contained in equation

	��

 must be used�

It can be stated that for any tasks� which have�

� a common critical instance 	i�e� the tasks have the same o�set
 harmonic

iteration rates� and

�� the worst�case response time of the lower priority task is less than or equal

to the period of the higher priority task�

there is no blocking� Figure ��
 is used to help illustrate that blocking doesn�t

occur in this case� Figure ��
 presents the worst�case response time of two tasks

A and B� where task A has an update rate of X and zero o�set� and task B has

an update rate of �X and zero o�set� Figure ��
 shows every second release of

task A 	i�e the task that can be blocked
 is not blocked by task B� The reason

is task B has already completed when task A is re�released� The shaded boxes

represents the Worst�Case Response Time 	WCRT
 of a particular task release�

Due to the fact many systems are evolved from systems previously using the

�

cyclic scheduler� there are likely to be a large number of tasks with harmonic

iteration rates� The revised blocking model can be expressed by equation 	���
�

Bi � max�k	Ck ��
 	���

where � is one clock cycle� and

the tasks in the set of tasks that can cause blocking satisfy

the following two conditions�

� the task has a lower priority than task i� and

�� the task must either�

have a non�identical release time to task i� or

have a worst�case response time greater than the period of task i

A more formal representation of equation 	���
 is represented in equation 	���
�

This representation is only included for completeness�

k � lp	i
� �n � N j	Tk �� nTi � Ti �� nTk
 	Ok �� Oi 	Rk � Ti 	���

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

Task B

Task A WCRT

WCRT

KEY TO FIGURE -
The time during which a task can execute, i.e.
the best case release point until the worst case response time

WCRT

WCRT WCRT

Figure ��
� Illustration of Blocking Model Pessimism

To allow the improved blocking model to be proven correct� it is necessary to

show it is a su�cient test�

Theorem �� A lower priority task� t� cannot block a task if the lower priority

task is always released at the same time as the next instance of task t and it

always completes before the next instance of task t�

��

Proof

If a lower priority task 	task k
 is to cause blocking it must be executing when

the task 	task i
 being analysed is released� In this case� blocking can only be

avoided if the execution of the tasks i and k never overlaps� This can only be

guaranteed if task k is always released at the same time as task i� Therefore� the

period of task k must be an integer multiple of the period of task i� and task k

and i must have the same period� This condition is also represented by equation

	���
�

	Ti � nTk 	mTk � Ti
 � Ok � Oi� where n�m � N 	���

If task k is to cause blocking� then it must be able to execute when task i is

released� therefore the condition in equation 	���
 must be true�

i�e� Rk � Ti 	���

Therefore� for blocking not to occur the condition in equation 	���
 must hold�

i�e� Rk � Ti 	���

For blocking to occur� either of the conditions in equation 	���
 or 	���
 must

not arise�

�

Instead of the usual expression� Bi � max�k	Ck
� equation 	���
 uses the term

Bi � max�k	Ck ��
�

Observation �� The blocking time is one clock cycle less than the worst�case

execution time of the task� k� causing the blocking�

Argument

The reason the blocking time is one clock cycle less than the worst case execution

time of task k is illustrated in Figure ���� Figure ��� shows that both blocking

or interference cannot occur after a task has started executing� Therefore� it can

be stated that at least one clock cycle of task k must already have occurred�

This one clock cycle of task k does not contribute to the blocking su�ered by

task i� That is task k is always simultaneous released with task i� and task k

��

one

cycle

clock

Task Execution

point until which it is considered

one

clock

cycle

in the non-preemptive scheduling model

interference may occur in the
point until which it is considered

preemptive scheduling analysis modelinterference may occur in the
non-preemptive scheduling model

period during which the cannot be preempted

Figure ���� Task Executions to Illustrate the Edge E�ect

always completes before task i is re�released� Therefore� if the tasks execute for

a shorter time� the blocking still does not occur� Hence� the blocking model in

equation 	���
 is correct�

�

It should be noted that if the computational model does not feature o�sets� then

a simpli�ed version of equation 	���
 given in equation 	���
 can be used�

k � lp	i
� �n � N j	Tk �� nTi � Ti �� nTk
 	 Rk � Ti 	���

Table ��
 illustrates an example of how the improved blocking model increases

the chance of schedulability� In Table ��
� column Rold is the results of the

schedulability analysis with the old blocking model� whilst column Rnew is for

the new blocking model� The table clearly shows the worst�case response time

for Tasks A and B are reduced with the new approach�

��

Id T C D P Bold Rold Bnew Rnew

A �� � ��

�
� � �

B ��
� �� �
� �� �
�

C
��
�
�� � � �� � ��

Table ��
� Schedulability Results for the Improved Blocking Model

The columns In Table ��
 represents�

Id is the identi�er of the task

T is the period of the task

C is the worst�case execution time of the task

D is the deadline of the task

P is the priority of the task

Bold is the blocking time calculated using equation 	��

Bnew is the blocking time calculated using equation 	���

Rold is the worst�case response time calculated using the value of Bold

Rnew is the worst�case response time calculated using the value of Bnew

����� Improved Interference Model

If the schedulability analysis of section ��
 is used� then another area where

pessimism could be introduced is in the interference model� The purpose of this

section is to investigate where the pessimism arises and how it may be reduced�

The interference term� given in equation 	��
�
� is the maximum amount of time

higher priority tasks can execute before the task being analysed� The interference

is calculated using equation 	��

� Therefore� the interference is the sum of the

utilisations over the duration of interest of all the tasks with higher priority than

task i� The utilisation is the product of the number of times the task can execute

and its worst�case execution time� The number of times a higher priority task can

execute is found by rounding up the result of the time during which interference

may occur 	i�e� the response time of the task being analysed
 divided by the

period of the higher priority task� Therefore� the interference can be calculated

using equation 	��
�
�

��

I �
X

�j�hp�i�

	max� executions of taskj
Cj 	��
�

max� executions of taskj �

�
worst�case response timei

period of taskj

�
�

�
Ri

Tj

�
	��

Ii �
X

j�hp�i�

�
Ri

Tj

�
Cj 	��
�

where hp	i
 is the set of higher priority tasks than task i�

Equation 	��
�
 is clearly pessimistic� because the numerator of the interference

term assumes a preemptive model� In a non�preemptive model� a higher priority

task cannot commence execution if a lower priority task has begun executing�

Instead� the higher priority task must wait for the lower priority task to com�

plete� Therefore� the maximum number of executions of task j can be improved

as shown in equation 	��
�
� In this equation� the numerator is reduced by the

worst�case execution time of task i� which is the task whose interference is being

calculated� However� to prevent edge e�ects� where a task is released simul�

taneously as another is dispatched� then one clock cycle is added to prevent

anomalies�

max� executions of taskj �

�
Ri � Ci �

Tj

�
	��
�

Figure ��� is used to help illustrate the impact of edge e�ects� In Figure ��� the

boxes represent the worst�case response time of each task� Consider the time

indicated by the vertical dotted line� Figure ��� shows a higher priority task

	Task A
 being released as a lower priority task 	Task C
 becomes the highest

priority runnable task� Task C is the highest priority runnable task by virtue

of the previous highest priority task 	Task B
 completing execution� Without

the � term in equation 	��
�
� task C would be released� However in practice

task A should be released� Therefore� the results would have been optimistic�

With the � term� the correct worst�case execution sequence is maintained and

the analysis is a su�cient form of timing analysis� The � term discussed here is

the same as used in the improved blocking model�

��

Task A

Task B

Task C

Increasing
Priority

Time

Figure ���� Task Executions to Illustrate the Edge E�ect

Therefore� the revised interference equation is given in equation 	��
�
� The

reduced value for the numerator can be signi�cant if it means further instances

of the higher priority tasks are not released�

I �
X

j�hp�i�

�
Ri � Ci �

Tj

�
Cj 	��
�

����� Optimality of Deadline Monotonic Priority Order�

ing With The Restricted Computational Model

Section ����� shows that DMPO is optimal with the unrestricted computational

model for non�preemptive scheduling� However� the computational model has

been further restricted by only having periodic tasks� This has resulted in changes

to the analysis� Therefore� the optimality of DMPO needs to be re�assessed under

these conditions�

The change of computational model and associated analysis means the set of

tasks that can cause blocking is now dependent on tasks� response times� There�

fore� a change of priorities could cause more blocking� The following is an ex�

ample that demonstrates DMPO is not optimal with this computational model�

Consider the schedulability of the task set illustrated in Table ��� and ���� where

the tasks in Table ��� are ordered using DMPO and the tasks in Table ��� have

��

Id T D C B P R Met�

A � � � �
 � N

B
�
�
 � � � Y

C
�
� � � � � Y

Table ���� Schedulability Results with DMPO

Id T D C B P R Met�

A � � � �
 � Y

B
�
�
 � �

 Y

C
�
� � � � � Y

Table ���� Schedulability Results without DMPO

an alternative ordering� The columns have the same meaning as for Table ��
�

except for column Met� that represents whether the task is schedulable�

Table ��� shows the blocking caused by task C with DMPO leads to an unschedu�

lable solution� However� Table ��� shows that if the priorities of tasks B and C

are swapped� then the task set is schedulable� Hence� DMPO is sub�optimal

for a purely periodic non�preemptive computational model� However� it is still

optimal if the task set includes sporadic tasks�

It should be noted that in Table ���� the blocking time for task A is smaller� i�e�

� rather than � units� than the value calculated with equation 	���
� The reason

originates from performing exact analysis on the task set 	refer to section ��
��

for details
� The worst�case response of the tasks over the duration ��� Least

Common Multiple of the Task Periods
 for the priority orderings given in Tables

��� and ��� are illustrated in Figures ��� and ��� respectively�

In Figure ���� it is seen that the latest time task C can be dispatched is two clock

cycles before task A is released for the second time� Therefore� instead of the

blocking term being calculated based on Ck ��� it is calculated using Ck � ���

This leads to a further improvement� given in equation 	��
�
� Equation 	��
�

accounts for the reduced impact of task k by nature of its worst case dispatch

time�

Bi � max�k	Ck � jRk � Tij�
 	��
�

��

A 2

4

2

T=0 T=8

Deadline Missed
1Priority

Increasing
B

C

T=4
Time

Tasks

2

T=12 T=16

2

Least Common Multiple of Tasks’ Periods = 16

Figure ���� Worst�Case Task Execution for Deadline Monotonic Priority Order�

ing

A 2

T=0

Priority
Increasing

C

B

4

2

T=8

2

1

2

T=12 T=16

Least Common Multiple of Tasks’ Periods = 16

T=4

Tasks

Time

Figure ���� Worst�Case Task Execution for Another Priority Ordering

��

To support the four criteria for technology transfer� equations 	���
 and 	��
�

should only be used when necessary 	i�e� the task set�s requirements are otherwise

not met
 because the original equation 	��

 is easier to understand�

��� Work That Remains for Fixed Priority Schedul�

ing to Be a Complete Solution

Having considered the contents of chapters � and � as well as this chapter� it is

not immediately apparent that the current theory can adequately support the

system�s timing requirements� This section raises two principal issues� which are

the need to provide support for �xed priority scheduling in the infrastructure

and the need to assign attributes to tasks�

����� Infrastructure Support for Fixed Priority Schedul�

ing

An issue to be considered is how a �xed priority scheduler interacts with the

infrastructure of the system� The main parts of the infrastructure of interest are

the scheduling mechanism and the timing overrun detection mechanism� Chapter

� is to investigate how a �xed priority scheduler may interact with an existing

infrastructure left from a cyclic scheduling application� Part of this work is to

derive e�ective timing analysis� The solution derived must consider the four

criteria for successful technology transfer� particularly the reuse criterion�

����� The Need for Task Attribute Assignment

Most of the current scheduling work assumes a task has a well speci�ed period

and deadline that enables the system�s timing requirements to be met� However

in practice� one of the key roles of the system designer is to actually calculate

what the deadlines need to be� in order to meet the system�s timing requirements�

In particular� cyclic scheduler makes no use of deadlines whereas �xed priority

scheduling relies on the use of deadlines for the purposes of analysis and synthesis�

Therefore task deadlines need to be de�ned�

�

Many academic texts assume that if the task�s attributes are not known then

simply setting the task�s deadline to equal its period is su�cient� However� this

does not allow for the needs of transactions and tasks with jitter requirements�

Priority inheritance could be proposed as the solution to needing transactions�

Chapter � explains how priority inheritance is not an ideal technique for solving

the problem� Therefore� the challenge is to assign the task�s attributes so the

timing requirements in section ��
 can be met�

Chapter � investigates how the system�s timing requirements can be met based

on the infrastructure proposed in Chapter � and using the deadline monotonic

priority ordering� A perceived disadvantage of �xed priority scheduling is a lack

of determinism� For certi�cation purposes� it is useful for the developer to be

able to easily justify the requirements are met� Therefore� any approach derived

should support this need�

��� Summary

This chapter has achieved four aims� These are�

� how a �xed priority scheduler can solve the problems of the cyclic scheduler�

�� how the problems of a �xed priority scheduler can be mitigated against�

�� how an e�ective move to cyclic scheduling can be achieved� and

�� the work that is necessary to support the domain and application�

The chapter has also provided improvements to the �standard� schedulability

analysis� taken from section ��
� for a restricted computational model� The re�

stricted computational model is all tasks are periodic and executed non�preemptively�

The technique also compares favourably with the criteria for successful technol�

ogy transfer�

� Certi�cation � The approach provides analysis that guarantees the system�s

timing behaviour� Therefore� the results of the analysis can be used as part

of the certi�cation evidence of the system�

�� Reuse � The greatest advantage of using the proposed non�preemptive ap�

proach is the high�level of reuse that is a�orded� Any changes to the

software can be limited to the scheduler module alone� i�e� there is no need

to change any of the application software�

�� Understanding � The satisfaction of the criterion is demonstrated by the

fact the approach has been technology transferred to industry� where it has

been successfully applied ����� Further evidence is presented in the case

study in Chapter ��

�� Su�ciency � The approach facilitates better support for a more �exible

computational model than the cyclic scheduler� Therefore� the su�ciency

criterion is satis�ed�

The chapter has identi�ed two areas of work to support the uniprocessor solution

for a �xed priority scheduler� which are�

� how to modify the infrastructure left from a cyclic scheduler based system

for use with a �xed priority scheduler including the appropriate timing

analysis 	dealt with in Chapter �
� and

�� how to derive task attributes so that the timing requirements are met 	dealt

with in Chapter �
�

�

Chapter �

Infrastructure Choice and

Associated Timing Analysis

This chapter presents an investigation of how the existing infrastructure� left

over from the cyclic scheduler� may be utilised after a transition to �xed priority

scheduling� and how the resultant overheads are analysed� The starting position

for considering the transition is the model for the cyclic scheduler discussed in

section ���� When deciding what changes are to be made to the infrastructure�

the four criteria de�ned in section
�� 	certi�cation� su�ciency� understanding�

and reuse
 for successful technology transfer must be considered�

The aim of the work is to cause the minimum possible change to the way the sys�

tem operates� whilst still harnessing the advantages of �xed priority scheduling�

The chapter is split into two parts� which are� how the task release mechanism

should be implemented 	in section ��

� and how timing overruns should be de�

tected 	in section ���
� The two parts basically de�ne how the scheduler is to

work� Part of the work that is key to the �rst two parts is analysing the over�

heads of the scheduler� The analysis of a scheduler�s overheads is an area of work

that has received very little attention� The majority of academic work assumes

an ideal mechanism for handling tasks� where the highest priority task is always

executed� overheads are zero and faults do not occur�

�

��� Implementing and Analysing the Task Re�

lease Mechanism

The purpose of the task release mechanism is to release tasks in an e�ective

manner that allows the timing requirements to be met� This section investigates

how best to release tasks� There are three criteria considered� the need to reuse

as much of the system from the cyclic scheduler 	and its applications
 as possible�

the need to keep kernel overheads low� and the need for a responsive system� The

latter two criteria are derived from the su�ciency criterion of section
���

����� Tick Driven Task Release

Section ��� states that in the cyclic scheduler model there is a regular clock

tick that triggers a sequence of tasks corresponding to a particular minor cycle�

The �xed priority scheduler could be implemented using the available clock tick

resulting in virtually no change in the system operation� Each time a clock tick

occurred� a decision would be taken of whether tasks should be released� Between

ticks� runnable tasks would be dispatched in priority order� In a non�preemptive

scheduler� when the clock tick occurs the task executing could be interrupted to

allow the run queue to be updated� In this case� when the updating of the run

queue is �nished� the interrupted task is resumed�

Section ��
�� of the literature survey explains how the clock tick may be ac�

counted for in the analysis� Two approaches are presented� one based on a single

task and the other based on multiple tasks� There is a trade�o� between sim�

plicity and pessimism of the single and multiple task approaches� The multiple

task approach o�ers greater accuracy with respect to response times� However�

the multiple task approach requires more information to be obtained� It should

be noted that the key points made in this chapter are independent of the way

the overheads due to the clock tick are modelled�

The problem with the tick driven approach is that tasks not released at a har�

monic rate of the clock tick su�er from release jitter� These tasks can have a

release jitter as great as the period of the clock tick� since the task could be due

for release an instant after the current clock tick� Audsley ���� states that for a

�

periodic task the release jitter is given by equation 	��

� Equations 	���
 and

	���
 in section ��
 shows how release jitter is accounted for in the schedulability

analysis�

Ji � Tclk � gcd	Tclk� Ti
 	��

where gcd is the greatest common divisor� and

Tclk is the clock tick rate

If the release jitter becomes too great� then the task iteration rates or the clock

tick rate may have to be altered so that task deadlines can be met� However�

a signi�cant problem with cyclic scheduling caused by the in�exibility of the

computational model is having to change task rates to suit the infrastructure�

The option of altering task iteration rates so that the release jitter is reduced

e�ectively constrains the task�s iteration rates to harmonics of the clock tick rate�

If this strategy is adopted� then one of the bene�ts of �xed priority scheduling is

e�ectively lost�

The alternative is changing the clock tick period� To eliminate the e�ects of

release jitter would need the term gcd	Tclk� Ti
 in equation 	��

 to be equal to

Tclk for all tasks in the task set� Therefore� the condition in equation 	���
 would

have to be satis�ed�

�i � Tasks � gcd	Ti� Tclk
 � Tclk 	���

The problem with altering the clock tick period is the period becomes dependent

on tasks� periods� Therefore� the clock tick period would be prone to change and

could be quite small� The consequence of Tclk being small is that the overheads in

the system would be signi�cantly increased� Equation 	���
 gives the overheads

caused by the clock tick mechanism� The equation is based on equation 	��

�

It represents the worst�case execution time of the function performing the tick

driven release mechanism� multiplied by the number of times it is performed over

the duration of interest� i�e� the least common multiple of the tasks� periods�

The value of Tclk should be chosen so that the minimum value for the overhead

is obtained�

�

Uoverhead �
LCM	Tj

Tclk
	MCfirst 	!j �M
Csub
 	���

where Uoverhead is the utilisation due to the overhead of the clock tick�

Cfirst is the cost of releasing the �rst task�

Csub is the cost of releasing the subsequent tasks�

j is a task in the set of tasks to be executed�

Tclk is the clock tick rate� which is constrained by the condition

in equation 	���
� i�e� all tasks in the task set have a period

that is an integer multiple of the clock tick rate

!j is the number of tasks in the task set� and

LCM	Tj
 is the least common multiple of the periods of the

tasks in the task set

Observation �� The best value of the clock tick period is found by minimising

the utilisation of the clock overheads�

Argument

Solving equation 	���
 provides the value of Tclk such that the utilisation of the

clock overheads is minimised over the time the tasks take to repeat� i�e� the least

common multiple of the clock periods� Reducing the utilisation of the overheads

to a minimum is considered the best solution� but not optimal� The reason it is

not optimal is a particular phasing of tasks could mean minimal overheads are

needed during a particular time frame rather than in general�

�

����� Time Driven Release

An alternative approach to releasing tasks is the time driven approach� The

time driven approach releases tasks dependent on a real�time clock rather than

a regular clock tick� When a task �nishes executing� the clock is read to allow

the run queue to be updated with tasks that should be released� Only then is

the highest priority task dispatched�

�

For further discussion of the time driven release mechanism and its analysis� refer

to section ��
�� of the literature survey� The following section compares the tick

driven and time driven approaches�

����� Comparison of the Tick Driven and Time Driven

Task Release Mechanisms

The task release mechanism chosen can impact three principal areas� the hard�

ware architecture� kernel overheads and responsiveness�

� Hardware Architecture

The infrastructure of the system is a�ected by the scheduling policy� The

tick driven scheduler requires a hardware clock tick� whereas the time

driven scheduler requires a real�time clock� The advantage of the tick

driven approach is that a system previously based on a cyclic scheduler

already has hardware to generate a clock tick that can be reused� It should

be noted that an assumption is made that the clock tick rates available are

completely �exible� In practice it may not be� leading to design changes to

reduce release jitter� Therefore� the reuse advantage is reduced�

�� Kernel Overheads

Even though kernel overheads are normally relatively small in comparison

to the overall resource available� the overheads can still cause scheduling

problems� It is all too easy for the kernel to be implemented in an ine�cient

manner taking excessive resources� or to take valuable resources at critical

times� or for the worst�case 	theoretical
 analysis to be much greater than

the actual worst case� In general� the task release mechanism that makes

the most attempts to update the run queue has the largest kernel overheads�

The reason is that an overhead is incurred independent of whether a task is

released� This assumes both mechanisms have a similar overhead searching

for the highest priority runnable task and subsequently releasing the task

that is found� The assumption is quite realistic�

�� Responsiveness

The responsiveness 	i�e� the ability to meet deadlines
 is related to the re�

lease jitter and the blocking time� The time driven approach is considerably

�

more responsive� since tasks are released as soon as the currently executing

task is complete� The execution time of this task is already allowed for

in the analysis through either the blocking term or the interference term�

Therefore� no additional release jitter is introduced�

There are good and bad points associated with both methods discussed for re�

leasing tasks� Rather than try to decide which technique is best� it is easier to

say that neither approach is ideal in all circumstances and attempt to derive a

better solution�

����� A Hybrid Approach to Task Release

An alternative task release mechanism proposed is a hybrid of the tick driven and

time driven scheduling approaches� The hybrid approach releases the majority

of tasks based on a clock tick� with a few carefully selected tasks released in a

time driven manner� The tasks released by the time driven approach are those

whose rate is not a harmonic of the clock tick rate�

The bene�t of the hybrid approach is that it allows a compromise between kernel

overheads and task responsiveness with the minimum change to the task release

mechanism from the cyclic scheduler� The kernel overheads are reduced since

between clock ticks only those tasks requiring a quick response need to be checked

for release� Therefore each time a task �nishes executing� the kernel overheads

each time a task �nishes executing is reduced when compared with the time

driven approach� Responsiveness is improved because tasks not released at a

harmonic of the clock tick period do not su�er any unnecessary release jitter�

The actual clock tick period could be chosen to minimise the amount of over�

heads� The clock overheads are represented in equation 	���
� Equation 	���
 is

derived from equations 	���
 and 	��
�
 It should be remembered that in some

implementations the clock tick mechanism may not be re�programmable� or there

may be a limited selection of iteration rates available for the clock tick� The value

of Tclk that minimises the overheads is considered the best� However� it cannot

be claimed as optimal because a particular phasing of tasks could exist so that

�

Task T C D

A ���� ��� ����

J

���
���

���

B ����� ���� �����

C ����� ���� �����

D
�����
���
�����

E ������
��� ������

F
������ ����
������

Table ��
� Basic Task Set

it would be better to have the overheads occur at speci�c times rather than

minimise their magnitude�

Uoverhead � Overheads due to the tick driven release mechanism

Overheads due to the time driven release mechanism

Uoverhead �

�
LCM	Tl

Tclk
	MCfirst 	!j �M
Csub

�

LCM	Tl

Tk
CCOOP 	���

where CCOOP is the cost of releasing a task in a time driven fashion�

j is the set of tasks released in a tick driven manner�

k is the set of tasks released in a time driven manner�

l is the set of tasks� and

LCM	Tl
 is the least common multiple of the tasks� periods

����� An Example To Illustrate The Di�erent Forms of

Task Release Analysis

This section presents an example to demonstrate how the hybrid mechanism is

applied and its associated analysis� Table ��
 presents the task set that is to be

scheduled and analysed�

Initially� the system is analysed assuming a tick driven approach using a single

task to model clock overheads� The task set of Table ��
 is extended to include a

�

ID P T C D B J R Met�

clk
 ���� ���� ���� ���� � ���� Yes

A � ���� ��� ���� ���� � ���� Yes

J �

���
���

��� ���� ����
���� No

B � ����� ���� ����� � �
���� Yes

C � ����� ���� ����� � �
���� Yes

D �
�����
���
����� � �
���� Yes

E � ������
��� ������ � � ����� Yes

F �
������ ����
������ � � ����� Yes

Table ���� Analysis for a Tick Driven Scheduler� where Tclk � ����� with a Single

Task to Model Overheads

high priority task� task clk� that represents all the overheads due to the periodic

clock� According to the single task model� clk has the following characteristics

	based on the parameters Cfirst � ��� and Csub � ���
�

Tclk � Dclk � ����

� Cclk � Cfirst 	N �

�
Tmin
Tclk

�

Csub � ��� 	��

�
����

����

�

��� � ����	���

The results of the schedulability analysis are given in Table ���� which shows

task J misses its deadline� Another choice for the period of task clk could be

������ However� if this value is chosen then the release jitter for task J would be

����� Since the jitter would be equal to the deadline� then the task set is clearly

unschedulable� To eliminate release jitter� based on equation 	���
 the value of

Tclk would have to be ���� The fact that Tclk would be less than Cfirst means

the overheads use all the processors resources resulting in an unschedulable task

set�

The system is now analysed assuming tick driven scheduling using multiple tasks

to model clock overheads� in order to investigate whether better results are ob�

tained� The task set of Table ��
 is analysed with each task having its own task

to model clock overheads 	e�g� task A has an associated task clkA
�

The worst�case computation time of clkA is given by Cfirst � ���� All other

extra tasks 	clkB

clkF
 can only be released at the same time as task clkA

since their periods are multiples of TclkA� Hence� tasks clkB

clkF all have

��

ID P T C D B J R Met�

clkA
 ���� ��� ���� � � ��� Yes

clkJ �

��� ���

��� � ���� ���� Yes

clkB � ����� ��� ����� � �
��� Yes

clkC � ����� ��� ����� � �
��� Yes

clkD �
����� ���
����� � �
��� Yes

clkE � ������ ��� ������ � �
��� Yes

clkF �
������ ���
������ � � ���� Yes

A � ���� ��� ���� ���� � ���� No

J �

���
���

��� ���� ����
���� No

B
� ����� ���� ����� � � ���� Yes

C

 ����� ���� ����� � �
���� Yes

D
�
�����
���
����� � �
���� Yes

E
� ������
���
����� � �
���� Yes

F
�
������ ����
������ � �
���� Yes

Table ���� Analysis for a Tick Driven Scheduler� where Tclk � ����� with Multiple

Tasks to Model Overheads

computation times equal to Csub� The results of the analysis are given in Table

���� In this case� tasks A and J miss their deadlines� Therefore� the results

appear to be worse than with the single task model�

The analysis is repeated for the task set being scheduled using the time driven

approach� Initially� the computation times of the tasks 	as given in Table ��

are increased to account for the cost of updating the run queue using equation

	��
�
� It is assumed that Ccoop � Cfirst � ���� It should be noted there is no

release jitter with the time driven approach� Table ��� gives the results of the

analysis� which shows all the tasks meet their deadlines� The reason the time

driven approach produces better results is that the kernel overheads coincide with

when tasks are released� rather than all the overheads occurring at the critical

instant�

The hybrid approach is now considered� The clock rate is assumed to be �����

as left from the cyclic scheduler� To eliminate jitter� tasks A and J are scheduled

in a time driven fashion and the remainder of the tasks are tick driven� A single

task� clk� with the highest priority is used to account for all tick driven overheads�

�

ID P T C D B R Met�

A
 ����� ��� ����� ���� ���� Yes

J �

���
���

��� ���� ���� Yes

B � ����� ���� ����� � ���� Yes

C � ����� ���� ����� �
���� Yes

D �
�����
���
����� �
���� Yes

E � ������
��� ������ �
���� Yes

F �
������ ����
������ �
���� Yes

Table ���� Analysis for a Time Driven Scheduler

ID P T C D B R Met�

clk
 �����
��� ����� �
��� Yes

A � ���� ��� ���� ���� ���� Yes

J �

���
���

��� ���� ���� Yes

B � ����� ���� ����� �
���� Yes

C � ����� ���� ����� �
���� Yes

D �
�����
���
����� �
���� Yes

E � ������
��� ������ �
���� Yes

F �
������ ����
������ �
���� Yes

Table ���� Analysis for a Hybrid Scheduler� where Tclk � ����� with a Single

Task to Model Overheads

It has parameters�

Tclk � Dclk � �����

� Cclk � Cfirst 	N �

�
Tmin
Tclk

�

Csub � ��� 	��

�
�����

�����

�

��� �
���

	���

The computation times of tasks A and J are increased 	over their values in Table

��

 to include the overheads for time driven scheduling� i�e� Ccoop� The results

of the analysis are given in Table ���� which shows all the tasks are schedulable�

From Tables ��� and ���� it can be seen the response times of some tasks are

better with the hybrid approach than the time driven approach� The hybrid

��

release mechanism provides better worst�case response times than the time driven

approach when the period of the task in question is greater than the period of

the clock tick� Otherwise� the time driven approach provides the better response

times� The reason for this is� in general the hybrid scheduling approach causes

less overheads than the time driven approach� However� the hybrid approach

phases part of its overheads 	that associated with the task clk
 at the critical

instant� this causes more impact on the tasks with a shorter period than the

clock tick� Since the majority of tasks should tend to have a period greater than

the clock tick period� then this should not cause too great a problem� Therefore�

hybrid scheduling provides a useful alternative to time driven scheduling� This

is particularly the case where reuse from systems that previously used a cyclic

scheduler is important�

����� Summary

This section has clearly shown how the hybrid approach may be used to release

tasks e�ectively� The advantage of the hybrid approach over the tick driven ap�

proach is the �exibility to reduce the e�ects of jitter and minimise overheads�

whilst largely maintaining the existing clock tick architecture� Whilst it is recog�

nised that one example does not prove the strategy to be better� the overall

philosophy of reducing jitter and overheads can only enhance the schedulability

of any task set� The advantage of the hybrid approach over the time driven ap�

proach is that no change occurs in the way the majority of tasks are handled by

the infrastructure following the transition from cyclic to �xed priority scheduling�

Based on the four criteria for acceptability of change� the hybrid approach is

deemed successful�

� Reuse � The existing tick driven architecture is reused except where the

schedulability of the system dictates a change to a time driven approach

is necessary� Therefore� only the minimum amount of change is necessary

to the way in which tasks interact with the infrastructure� The key prob�

lem with the hybrid scheduling approach would arise if the system has no

real�time clock� This would mean some of the tasks would have to be re�

leased have a period that is not a multiple of the clock tick rate� In this

circumstance� the options to eliminate release jitter include�

��

	a
 alter the task�s period 	which leads to an in�exible computational

model
�

	b
 alter the clock tick rate 	which may not be possible or may a�ect other

tasks
� or

	c
 provide a real�time clock 	which means the infrastructure is no longer

completely reused
�

Clearly� none of these options are ideal� and the developer has to make the

decision based on the particular system�

�� Su�ciency � The amount of overheads is minimised and where necessary

release jitter is eliminated� which increases the chance of schedulability� No

arti�cial restrictions on iteration rates are enforced�

�� Certi�cation � Veri�cation is produced that gives a de�nitive statement

of whether the system is schedulable� which is important evidence for the

certi�cation case�

�� Understanding � Both the tick driven and time driven approaches are con�

sidered simple to understand� With the hybrid approach� the decision of

which tasks are released by each technique is straightforward� Only the

tasks with an iteration rate that is not a multiple of the clock tick rate are

released by the time driven approach�

��� Handling Timing Overruns

Section ����
 justi�es how a successful certi�cation argument needs to demon�

strate that timing overruns are detected within bounded time� Timing overruns

may be caused by faults within the system� or by the incorrect application of

analysis� The integrity of the timing overrun detection mechanism is particu�

larly important for safety critical systems� The mechanism has to deal with both

random and systematic failures�

With the cyclic scheduler� failures are detected by testing whether a task be�

longing to a minor cycle is executing when the clock tick arrives� which is an

indication that an error has occurred� The timing watchdog is also used to

��

detect systematic failures caused by the di�culty in synthesising the schedule

and the inexact methods used to estimate worst�case execution times� The im�

portance of detecting timing overruns in the cyclic scheduling model has lead

to high�integrity trusted watchdogs being developed� Section ��� provides an

overview of how timing watchdogs may work in the cyclic scheduling model�

One of the key advantages of �xed priority scheduling is viewed as the graceful

degradation of the system in the event of timing overruns ���� The e�ect of a

timing overrun is that some tasks may miss their deadline� Since higher priority

tasks always have the �rst chance to execute� it is likely that the lower priority

tasks are the ones that miss their deadline� Missed deadlines could be tolerated

in cases where only the less critical tasks are a�ected� In these cases� the system

is considered to degrade gracefully�

In safety critical systems rather than go to the e�ort of trying to establish what

type of faults can be allowed� a frequently taken strategy is to assume that any

fault has to be recoverable� A technique often adopted is to reset the particular

lane where the fault occurred and change the lane controlling the system� A

lane is considered to be the processor executing the software and the associated

peripheral hardware� including memory and timing watchdog� The strategy as�

sumes safety critical systems have active replication to support fault tolerance�

However� some bene�t could be obtained by allowing a lane to attempt fault

recovery without reseting� There are a number of recognised techniques of fault

recovery� including recovery blocks ���� and check�pointing �����

Independent of the fault tolerance strategy used� there is still a need to recognise

failures using a timing watchdog� The main requirement for the timing watchdog

is to identify timing overruns� enabling the functionality for fault tolerance to

assess what action is needed� There are two principal approaches for providing

protection against timing overruns� which are the tick driven approach and the

countdown timer approach�

����� Tick Driven Watchdog

The tick driven watchdog approach is where at a regular rate 	normally a multiple

of the clock tick rate
 a check is performed to ensure that the software is not

exceeding its time bounds� With a �xed priority scheduling approach� the check

��

could be based on ensuring that a su�cient number of tasks have been executed

between checks� The check would assess whether the sum of the worst�case

execution times of the tasks that have been executed between clock ticks is larger

than the period of the timing watchdog� An alternative method is to check that

all tasks that have to execute between clock ticks have done so � The tasks that

have to execute are those with a period and deadline� less than� or equal to the

clock tick rate� The response time of the tick driven watchdog to detectable

faults is twice the period of the timing watchdog� The reason is the failure may

not be detected the �rst time the timing watchdog executes but it will the second

time�

The overheads may be accounted for by creating a new task with period equal

to the clock tick and an appropriate worst�case execution time derived through

analysis� The clock tick has to interrupt a task�s execution in a preemptive

fashion� Otherwise� a failed task could continue to execute forever� If the timing

watchdog check has completed successfully� then the interrupted task resumes

immediately� The preemptive nature of the timing watchdog means it should

not be modelled as a conventional task according to a non�preemptive model�

Therefore� the schedulability analysis should allow for the interference of the

timing watchdog being preemptive as shown in equations 	���
 and 	���
�

Ri � Ci Bi Ii ITW 	���

ITW �

�
Ri

TTW

�
CTW 	���

where ITW is the interference due to the timing watchdog software� and

CTW is the worst�case execution time of the timing watchdog software�

����� Countdown Timer Watchdog

The countdown timer watchdog approach is where each time a task commences

execution� a countdown timer is started� The duration of the countdown timer is

greater than the worst�case execution time of any task in the task set� When the

task execution is complete� the countdown timer is restarted� If the countdown

timer reaches zero� then fault recovery is performed� It is assumed that if a

��

task executes for longer than its worst case execution time� then a failure has

occurred� Therefore� the response time to a fault is equal to the duration of the

countdown timer�

The overheads of the countdown timer approach may be accounted for by in�

creasing the worst�case execution time of all tasks as shown in equation 	���
�

Ci �� Ci CTW 	���

����� Comparison of the Timing Watchdog Approaches

The timing watchdog approaches can be assessed with respect to the same three

parameters as the task release mechanism� which are� hardware architecture�

kernel overheads� and responsiveness�

� Hardware Architecture � There is no clear answer to which approach is

better from a hardware architecture perspective� On the one hand� the

tick driven approach has the obvious advantage that the existing architec�

ture can be reused� which reduces the amount of rework� On the other

hand� the countdown timer approach has the advantage that it does not

use the existing architecture � this seems to be a contradiction� However�

the countdown timer approach only uses an interrupt when a fault has oc�

curred� If the countdown timer watchdog is combined with the time driven

task release mechanism� then it should be possible to remove all interrupts

from the system � at least in fault�free conditions� This can be a signi�cant

advantages for certi�cation because engineers often struggle to justify the

need for� and the safety of� interrupts in the system�

�� Kernel Overheads � Clearly� the countdown timer approach should cause

greater interference due to the fact the watchdog software is executed more

times� This assumes the two checks have a similar overhead each time they

are performed� However� the overhead of both approaches is likely to be

relatively small in relation to the system�s processing resource�

�� Responsiveness � The countdown timer approach is considered to be more

responsive for two reasons� Firstly� the countdown timer approach detects

an overrun within the bounded amount of time set by the duration of the

��

timer� Whereas the tick driven approach could take as long as two clock

periods to detect an overrun� Secondly� the countdown timer approach

has the obvious advantage that the speci�c task causing the overrun can

be identi�ed� which cannot be guaranteed with the tick driven approach�

Therefore� intelligent fault tolerance is only possible with the countdown

timer approach�

The choice of watchdog mechanism can also be considered with respect to the

four criteria for a successful transfer of technology�

� Reuse � Obviously making use of the existing tick driven watchdog mecha�

nism is better from the reuse perspective than having to develop and certify

a new timing watchdog mechanism�

�� Certi�cation � Both mechanisms satisfy the safety goal of detecting timing

overruns� The tick driven watchdog has the advantage that it is already

trusted� whereas the countdown timer watchdog has the advantage of bet�

ter fault identi�cation facilitating accurate diagnosis and correction� Also�

the removal of interrupts from the system makes certi�cation more straight�

forward�

�� Su�ciency � For systems where quicker or more accurate response to faults

is necessary to provide intelligent fault tolerance or maintenance� the count�

down timer driven approach is a clear winner�

�� Understanding � Both mechanisms can be considered simple to understand�

implement and change� The satisfaction of the criterion is demonstrated by

the fact the approach has been transferred to industry� where it has been

successfully applied ����� Further evidence is presented in the case study

in Chapter ��

��

��� Summary

This chapter has addressed two issues� how an infrastructure left over from a

cyclic scheduler can support �xed priority scheduling and how the e�ects of

the infrastructure can be analysed e�ectively� There are two primary parts to

the work� which are the consideration of the task release mechanism� and the

detection of timing overruns�

To improve the ability to meet the timing requirements of the system� i�e� the

su�ciency criterion� a hybrid scheduler is derived for task release� The hybrid

scheduler combines the best features of a tick driven and time driven task re�

lease� The hybrid scheduler allows the maximum reuse to be obtained� whilst

not restricting the system�s computational model�

The good and bad points of the timing watchdog mechanism are discussed leading

to a conclusion that the best technique depends on the system�s requirements� A

tick driven approach is better where reuse is paramount� However a countdown

timer approach may ease the certi�cation e�ort and also supports intelligent fault

management�

��

��

Chapter �

Task Attribute Assignment

The purpose of this chapter is to investigate the issues related to task attribute

assignment on an individual processor� The majority of work on �xed priority

scheduling makes the assumption that tasks have their attributes pre�assigned�

making priority assignment� trivial� In academic papers� the task attributes are

normally considered to be period and priority� However� in practice deadlines

and o�sets must also be considered�

A signi�cant challenge is to derive task attributes that meet the system�s timing

requirements in a way that can be understood by a non�specialist� An approach

is proposed for task attribute assignment that caters for all the likely timing

requirements of complex control systems imposed on the scheduler� In section

��
��� the timing requirements were summarised as�

� Task � period� deadline� jitter� separation

�� Transaction � precedence of tasks� period� deadline� jitter

A secondary aim is to try to ensure that only one set of analysis 	i�e� task

schedulability analysis
 veri�es all the timing characteristics of the system with

the bene�t of the that a separate veri�cation tool is not needed for transaction

timing requirements�

�Priority assignment is the process of assigning priorities so that the timing requirements

are met� Whereas� deadline assignment is the process of assigning priorities so that the timing

requirements are met� However� for this work it is assumed tasks� priorities are derived from

their deadlines using the DMPO � the shorter the deadline the higher the priority�

�

Calculation of

Task AttributesRequirements

Timing Task Schedulability

Analysis

Schedulability

Analysis Results

Worst-Case Execution Times
Tasks’

Attributes

Figure ��
� Diagram to Illustrate the Approach to Meeting the Timing Require�

ments

The approach to meeting the timing requirements 	and providing evidence that

they are met
 is illustrated in Figure ��
� There are basically two parts to this

approach� the �rst involves deriving the task attributes 	without knowledge of

the tasks� worst�case execution times
� and the second then uses the tasks� worst�

case execution times to verify that the timing requirements are met�

There are a number of parts to the chapter� Section ��
 derives analysis for prov�

ing transaction requirements are met based on the task set�s attributes� Section

��� investigates how transaction requirements may be met in a uniprocessor sys�

tems in two cases� The two cases are� when the transaction deadline is less than

or equal to the tasks� 	that form the transaction
 periods� and when transaction

deadline is greater than the tasks� periods� Section ��� investigates how a task�s

jitter requirement can be met� Section ��� investigates how tasks� separation

requirements can be met� Finally� section ��� combines the product of the earlier

sections to provide an overall approach to task attribute assignment�

	�� Calculating the Response Times of Trans�

actions

A prime driver for the task attribute assignment is to represent all the system�s

timing requirements as task attributes� i�e� if all the tasks� deadline are met

then all the system�s timing requirements are met� Independent of this aim� it

is still useful to have analysis available that allows transactions� requirements to

be veri�ed�

��

Task A

D = 50

T = 50

Task B

D = 100

T = 100

Task C

D = 50

T = 50

transaction deadline = 75
transaction period = 100

Figure ���� Timing Requirements for a Transaction

Observation �� To verify that transaction requirements are met� it is only nec�

essary to check the one instance of the transaction immediately after the critical

instant and only in the case where all tasks execute for their worst�case time�

Argument

Liu and Layland �
�� prove that the worst�case response times of tasks occur in

the �rst instance after the critical instant when all tasks execute at their max�

imum rate and for their maximum execution time� Similarly for a transaction�

the worst�case scenario is that the �rst instance of each task in the transaction

is delayed by the maximum amount possible� This causes the maximum amount

of interference to the latter tasks in the transaction� Consequently� the �nal task

completes after the longest possible duration from the release of the �rst task�

Therefore� the transaction has its worst�case response� E�ectively� this execu�

tion scenario for the transaction relates to the critical instant coinciding with

each instance of interest 	i�e� the one that plays a part in the completion of the

transaction
 for every task in the transaction�

�

Consider the timing requirements presented in Figure ���� Figure ��� illustrates

a task set consisting of three tasks 	A� B and C
� and a single transaction re�

quirement across all the tasks� The periods and deadlines of tasks A� B and

C are ���
�� and �� respectively� The transaction has a period of
�� with

a deadline of ��� Unless otherwise speci�ed� all the tasks are initially given a

deadline equal to their period� It is common for deadline requirements not to be

speci�ed� especially when the requirements are a legacy from a cyclic scheduled

system�

��

There are two phases to the calculation of the transaction�s response time� which

are� establishing the particular release of each task in the transaction� and the

completion time for the releases of interest� This is carried out by starting with

the �rst task and working through the tasks in the de�ned precedence order�

Equation 	��

 can be used for calculating the task instance that is relevant to

the transaction�

nt �

�
	nt�� �

Tt�� Rt�� � Rt Tt

Tt

�
	��

where t is the tth task 	assuming tasks are ordered according to precedence

in the transaction�

nt is the instance of the t
th task� where nt � N

n� is
� and

Rnt
t is the worst�case response time of the ntht instance of task t�

The worst�case response time of task t� Rnt
t � of the transaction�s critical instance

	i�e� time zero
 is given in equation 	���
�

Rnt
t � 	nt �

Tt Rt 	���

Theorem �� The value� Rnt
t � represents the worst�case response time of the t

th

task of the transaction� where the tasks are ordered as de�ned by the precedence

constraint�

Proof

Consider task t�
� which is the task in the transaction that precedes the task

whose instance is required� The worst�case response time of the nth instance of

the task t�
� Rnt��
t�� � can be represented by equation 	���
�

R
nt��
t�� � 	nt�� �

Tt�� Rt�� 	���

The next instance of task t must satisfy the condition in equation 	���
� i�e� the

response time of task t must be after task t�
� but the previous instance of task

t must be before task t�
�

	nt � �
Tt Rt � R
nt��
t�� � 	nt �

Tt Rt 	���

��

Therefore using equation 	���
�

	nt � �
Tt Rt � 	nt�� �

Tt�� Rt�� 	���

nt �
	nt�� �

Tt�� Rt�� � Rt �Tt

Tt
	���

and�

	nt �

Tt Rt � 	nt�� �

Tt�� Rt�� 	���

nt �
	nt�� �

Tt�� Rt�� � Rt Tt

Tt
	���

We can also state that

�i � All Tasks in the Transaction� ni �
 	���

The conditions in equations 	���
� 	���
 and 	���
 are clearly satis�ed by the

value of nt in equation 	��
�
�

nt �

�
	nt�� �

Tt�� Rt�� � Rt Tt

Tt

�
	��
�

�

Using an initial value of n� �
� the response time of each task in the transaction

can be calculated by starting with the �rst task and taking each task in turn�

Consider the example in Figure ����

n� �
 	��

R�
� � R� � �� 	��
�

n� �

�
R� � R� T�

T�

�
�

�
���
��
��

��

�
�
 	��
�

R�
� �
�� 	��
�

n� �

�
R�
� � R� T�

T�

�
�

�

��� �� ��

��

�
� � 	��
�

R�
� �
�� 	��
�

� The worst�case response time for the transaction is
���

Analysis for verifying transactions can be developed using this approach� How�

ever� preference would be given to a scheduling technique that eliminates the

need for bespoke analysis other than task schedulability analysis�

��

	�� Meeting Transaction Deadlines in Unipro�

cessor Systems

The basic requirement for a transaction is that a sequence of tasks are executed

in a speci�c order within a �xed amount of time� In general� the tasks of the

transaction are expected to have identical iteration rates and the transaction

deadline is expected to be less than or equal to its period� The reason is tasks of a

transaction are dependent on each other and therefore need to be executed at the

same rate� However� transactions may exist where the tasks do not execute at the

same rate� In this case� it is assumed the transaction repeats at a rate equivalent

to the least common multiple of the task periods� Through consultation with

systems engineers working on real systems� this assumption is deemed reasonable

and acceptable�

Section ��
 proposes that there are four types of requirements 	deadline� jit�

ter� separation and precedence
 to be handled by the task attribute assignment�

The attributes that can be manipulated are deadline� o�set and priority� Some

techniques� for example Gerber et al ����� have approached the problem by con�

sidering all the attributes of intermediate tasks as changeable� For some systems

or some domains� this type of approach is acceptable� However� the problem

with the approach is that it neglects highly complex systems where there are

many interactions� Changing a task�s characteristics may lead to one require�

ment being met but cause another to be broken� For these reasons� there are

two constraints placed on the approach� tasks� periods should not be altered and

deadlines can only be reduced� For this reason� the approach developed can be

described as unique�

The attributes to be controlled can be further simpli�ed by assigning priorities

from deadlines using the DMPO� i�e� the tasks with the shortest deadlines have

the highest priority� The requirements could be met just by setting task priori�

ties � in fact the run�time behaviour would be similar� However� the additional

analysis given in section ��
 would be required to prove that the transactions�

timing requirements are met� By manipulating task deadlines� the task attributes

themselves represent the system�s timing requirements� Consequently� the task

schedulability analysis also veri�es the system�s timing requirements�

��

Another reason for manipulating deadlines instead of priorities is the veri�cation

is easier to understand� It is easier to see that the system�s timing requirements

are met if it can be assumed the task is allowed to execute any time in its possible

window ��� Di�� Therefore� simply illustrating the worst�case execution of tasks

from the critical instant allows the system�s timing requirements to be veri�ed�

If the analysis of section ��
 is used� then just because tasks have a response

time less than or equal to their deadline does not mean the system�s timing

requirements are met�

The proposal is that the necessary timing requirements can be handled by just

setting deadlines and o�sets to appropriate values� The proposal is demonstrated

and proven through the course of this chapter� The system timing requirements

are veri�ed by simply proving the task�s o�sets are enforced in the scheduler and

using schedulability analysis to show the task�s deadlines are met�

The approach to meeting the transaction requirements is based on reducing the

task deadlines in a systematic manner so that the task deadlines are reduced by

the minimum possible� The technique is presented through a number of examples

building up towards a general�purpose algorithm� An assumption is made that

the sum of the worst�case execution times of the tasks is less than or equal to

the transaction�s deadline�

To demonstrate these approaches work� time�lines are produced as shown in

Figure ���� The purpose of the time�lines is to illustrate the worst�case response

times for tasks and transactions� The time�line depicts the worst�case situation

for both tasks and transactions� which is a critical instant for the tasks and

the tasks� response times being equal to their deadlines� In accordance with

Observation �� the time�lines present the tasks� execution from the release of the

�rst task of the transaction� The time�lines present enough instances of each

task until the required precedence ordering has been achieved� i�e� in the case of

the task set in Figure ��� task A executes followed by task B followed by task

C� It is not deemed necessary to present instances of each task after the instance

corresponding to the transaction� e�g� only one release of task A is shown� When

producing the time�lines� it is assumed that priorities are calculated using the

DMPO�

Each block in the time�lines represents the worst possible response time for the

task� which corresponds to the task being released as early as possible and com�

��

Task C

Task B

Task A

T = 100

end-to-end response time = 150

T= 50

Instance 1

Instance 1 Instance 2 Instance 3

Instance 1

T = 150

Figure ���� A Time�Line for the Transaction Illustrated in Figure ���

pleted as late as possible 	i�e� at its deadline
� The blocks in the time�lines do

not represent the actual execution of the tasks� When producing the time�lines�

which is e�ectively the same as analysing whether the transaction requirements

are met� the following steps are taken�

� Assume the �rst task in the transaction completes at its worst�case time�

i�e� at its deadline�

�� Find the appropriate instance of the next 	in terms of precedence
 task in

the transaction� An appropriate instance is one where the response time

of the task is greater than the completion time of the preceding task of the

transaction�

Rule
 If a task has a lower priority than the preceding task and an iden�

tical 	or later
 release time� then the current release can be considered�

Otherwise� the next release must be considered�

�� Assume the task completes at its worst�case time� i�e� at its deadline�

�� If the task is not the last of the transaction then return to step ��

�� Test whether the response time of the transaction meets its deadline�

��

����� Task Attribute Assignment When the Transaction

Deadline � Transaction Period

The purpose of this section is to propose a strategy for assigning task attributes

so that transaction requirements are met� in the simplest of cases this is when

the transactions� deadlines are less than or equal to their periods� The attribute

to be controlled is the tasks� deadlines�

An important consideration when trying to meet the transaction�s deadline is

the relationship between tasks� deadlines� Consider two tasks t�
 and t� task

t is always released at the same time as task t�
 and the tasks have deadlines

such that Dt�� � Dt� Under these conditions� task t always follows task t�

� i�e� nt � nt�� based on equation 	��
�
� The advantage of the deadlines

conforming to this relationship is that the worst�case response time of each task

in the transaction is kept to a minimum because the tasks are logically phased�

Considering equation 	���
� the response time of the transaction is minimised if

the value of ni 	where i � Tasks in the Transaction
 is kept as small as possible�

Therefore� the transaction deadline is more likely to be met� In addition� by

dealing with deadlines in this way it is easier to justify the precedence ordering

is met�

Observation �� If all the tasks in the transaction are executed in perfect prece�

dence �with the �rst task of the transaction being �rst to execute� and the response

time of the last task is less than or equal to the transaction�s deadline� then the

transaction�s deadline is met�

Argument

The response time of each task in the transaction is the same as that found

through the schedulability analysis equations if a condition is met� The condition

is if all the tasks of the transaction execute in perfect precedence with the �rst

task of the transaction being the �rst to execute� The reason is that for all the

tasks 	i
 in the transaction� ni �
 leading to R
ni
i being equal to Ri� Therefore�

it is only necessary to check that the worst�case response time of the last task in

the transaction is less than or equal to the transaction�s deadline�

�

��

Task C

Task B

Task A

T= 50

∆

∆

Instance 1

Instance 1

Instance 1

end-to-end response time = 50

Figure ���� A Time�Line for the Transaction in Figure ���

To demonstrate the approach to task attribute assignment� consider the timing

requirement illustrated in Figure ���� The time�line in Figure ��� indicates the

worst�case end�to�end response time for the task characteristics in Figure ��� is

��� which is outside our allowed band�

Tasks� deadlines are assigned starting with the last task in the transaction and

working backwards towards the �rst task� By reducing the deadline of tasks A

and B to ����� 	where � �
 clock cycle
 and ���� respectively� the worst�case

response time of the transaction becomes �� and the requirement is met� The

time�line in Figure ��� demonstrates the requirement is met�

An important constraint is that deadlines can only ever be decreased because in�

creasing the deadline could a�ect the ability to meet other requirements� There�

fore� if the original deadline of task A was less than �� � ��� then task A�s

deadline would not be increased to ������ However� the transaction would still

be met�

The same run�time e�ect as that of Figure ��� could be obtained simply by alter�

ing the priorities of the tasks so that task A has a higher priority than task B and

��

both have a higher priority than task C� However� the disadvantage of a priority

based approach is that extra analysis other than the task schedulability analysis

would be required� and yet the resultant priority ordering would be the same� In

addition� the constraint 	i�e� deadlines
 on the tasks are the same because the

technique in this section de�nes the maximum possible set of deadlines� If only

tasks� priorities are manipulated� then the tasks still have to meet the deadlines

calculated using the approach in this section�

Observation �� By giving each task in the transaction a deadline at least one

clock cycle less than its following task and the �nal task a deadline less than or

equal to the transaction�s deadline� the transaction�s requirement are met if the

tasks are schedulable�

Argument

If DMPO is used then� if the preceding task in the transaction has a larger

deadline than the next task being considered� then its deadline must be made

less in order to maintain the precedence ordering� Using DMPO� the deadline

only needs to be made one clock cycle less than the following task� With a

perfect precedence order� for the transaction to meet its deadline the last task

of the transaction must complete by the transaction�s deadline� Therefore� if

the deadline of the last task is initially greater than the transaction deadline�

then it has to be altered so it is equal to the transaction deadline� Hence�

the task attributes also represents the transaction requirements� leading to the

schedulability analysis verifying the transaction requirements as well as the task

requirements�

�

In fact� Observations � and � can be combined to give Observation �

Observation �� If the transaction�s deadline is less than or equal to the trans�

action�s period� then reducing tasks� deadlines by the minimum necessary �as

advocated by the technique in this section� to achieve perfect precedence is opti�

mal� A de�nition for optimal in this domain can be taken as an approach �nds

a solution when one exists�

�

Argument

Observation � argues that the transaction requirement is met if the priority or�

dering discussed in this section is used� From Observation �� it can also be

stated that the maximum deadlines for the tasks result and the minimum neces�

sary changes are made to the deadlines to achieve perfect precedence� Therefore

based on the fact that DMPO is optimal �
��� the method of assigning task

attributes to cater for transaction requirements is optimal�

�

It has been argued that the task assignment algorithm in this section is optimal in

the case where the transaction�s deadline is less than its period� However in our

experience� the computational model considered in this section is too restrictive

because transaction deadlines is often greater than their periods� The following

section is to relax this restriction�

����� Task Attribute Assignment For Arbitrary Transac�

tion Deadlines

The aim of this section is to develop an approach to task attribute assignment

for cases where transactions deadlines have an arbitrary value� Again� the aim

is to use deadline assignment instead of priority assignment to avoid the need to

separately analyse whether transaction requirements are met�

A transaction�s deadline could be dealt with using the approach in section ����
�

However� the ability to schedule the task set may be unnecessarily reduced by

making the deadlines less than needed� The reason is the transaction�s deadline

would be constrained so it has to be less than or equal to its period� A potential

solution to this problem is to increase the deadline of the last task in the trans�

action to the value of the deadline of the transaction� Then� the task deadlines

would be assigned so that precedence is achieved as described in section ����
�

The transaction�s deadlines would then be veri�ed using the schedulability anal�

ysis for arbitrary deadlines discussed in section ��
� There are two problems with

adopting this approach� which are� this form of timing analysis is pessimistic �����

and the tasks may have other constraints� e�g� other transactions� preventing the

deadlines being increased� Therefore� a more appropriate approach is sought�

��

D = 50

T = 50

Task A

transaction deadline = 150

Task B

D = 100

T = 100

Task C

D = 100

T = 100

Task D

T = 50

D = 50

transaction period = 100

Figure ���� Timing Requirements for a Transaction

T = 100T= 50

Instance 1

Instance 1

Instance 1 Instance 2 Instance 3

Task B

Task C

Task A Instance 1

Task D

T = 150

Instance 2

Instance 4 Instance 5

T = 200

end-to-end response time = 250

T = 250

Figure ���� A Time Line for the Transaction in Figure ���

A characteristic of the requirements is a task�s period could be longer than the

period of the task that follows it in the transaction� In this case� it may not

be necessary or possible to reduce all the deadlines so that perfect precedence

between the tasks of the transaction are maintained� For example� consider the

timing requirements in Figure ���� The requirements of the transaction are an

iteration rate of
�� and an end�to�end deadline of
��� The periods of tasks A�

B� C and D are ���
���
�� and �� respectively� In this case� task B cannot

always follow task A because task B has a slower update rate�

Figure ��� shows that without altering tasks� deadlines� the requirement is not

met because the transaction�s response time is ���� By the previous approach� in

section ����
� the transaction requirements could be met as shown in Figure ����

The task attributes illustrated in Figure ��� are sub�optimal because the timing

requirements could be met with larger deadlines as shown in Figure ���� Having

larger deadlines means the tasks have a lower priority� The bene�t of this is that

��

T= 50

end-to-end response time = 50

∆

Task D

Task C

∆
Task A

Instance 1

∆Task B

Instance 1

Instance 1

Instance 1

Figure ���� A Time Line for the Transaction in Figure ���

the impact of the change in deadlines on the rest of the system is minimised and

the tasks are more likely to be schedulable�

The task attributes of Figure ��� can be generated using Algorithm
� The

algorithm does not simply rely on the tasks� deadlines being reduced so that

perfect precedence is maintained� Instead� while the transaction requirement is

not met� the highest deadline is reduced by �� and if this causes any of the

preceding sequence of tasks in the transaction to have the same deadline� then

its deadline is also reduced by �� In the case of the task set in Figure ���� tasks

B and C have their deadlines repeatedly reduced until the transaction�s deadline

requirement is met�

The bene�t of the approach in Algorithm
 is that if the deadlines are larger�

then there is a greater chance of a schedulable solution� The algorithm also

contains a manipulation of the task deadlines are changing �ag� The use of this

�ag becomes apparent later in the chapter�

��

Algorithm �� � Algorithm for the Generalised Approach

for each task in the transaction

if the following task has an equivalent deadline then

reduce the task�s deadline by �

assign the value of false to the task deadlines are changing �ag

while the transaction deadline is not met

assign the value of true to the task deadlines are changing �ag

take the longest deadline and reduce it by �

for each task in the transaction

if the following task has an equivalent deadline then

reduce the task�s deadline by �

assign the value of false to the task deadlines are changing �ag

T = 100

end-to-end response time = 150

T= 50

∆Instance 1

Instance 1

Instance 1 Instance 2 Instance 3

Task B

Task C

Task A Instance 1

Task D

T = 150

Figure ���� A Time Line For the Transaction in Figure ���

��

D = 50

T = 50

Task A

transaction deadline = 145

Task B

D = 100

T = 100

Task C

D = 100

T = 100

Task D

T = 50

D = 50

transaction period = 100

Figure ���� Timing Requirements For a Transaction

T= 50

Task B

Task C

Task A

Task D

3∆

2∆

∆

Instance 1

Instance 1

Instance 1

Instance 1

end-to-end response time = 50

Figure ��
�� A Time Line for the Transaction in Figure ���

����� Optimality of the Approach

With any approach it is important to ascertain whether it is optimal� If it

is not optimal� then any de�ciencies should be highlighted so that appropriate

action can be taken where necessary� First impressions suggest that the approach

may be optimal because the deadlines of the tasks are the maximum possible

whilst still meeting the timing requirements� However� trying to prove optimality

is di�cult because of the e�ect of complex interactions with other tasks and

transactions�

Consider the transaction requirement in Figure ���� Figure ��
� presents the so�

lution derived using the approach in Algorithm
� whereas Figure ��

 presents

��

T = 100

end-to-end response time = 145

T= 50

δInstance 1

Instance 1

Instance 1 Instance 2 Instance 3

Task B

Task C

Task A Instance 1

Task D 5 5 5

T = 150

Figure ��

� A Time Line for the Transaction in Figure ���

an alternative solution� It is impossible to judge which of these is the better

solution without knowledge of all the tasks� execution times� priorities and dead�

lines� On the one hand� the task attributes in Figure ��
� cause more interference

through tasks B and C� While in Figure ��

� tasks B and C cause less interfer�

ence but the interference associated with task D is increased� Therefore� it can

be stated that the approach in Algorithm
 is not optimal�

In our experience using the task attribute assignment approach� no speci�c exam�

ples have been found where the issue raised in this section has caused problems�

Chapter � contains an example of how the technique is used to develop tasks�

attributes for a complex set of �real� system timing requirements� Where the

approach in Algorithm
 is insu�cient� then a solution could be based on the

optimal priority assignment technique given by Audsley ����� Audsley�s approach

involves methodically raising the priority of tasks that are unschedulable� until

the task set is schedulable or a solution is not deemed possible� However� Auds�

ley�s technique is not intended to deal with transaction requirements� Therefore�

Audsley�s approach would have to be extended to check all the system�s timing

requirements before making a decision whether to change priority� The advan�

tages of the approach in this section over an approach based on Audsley�s optimal

��

priority assignment algorithm are� the use of time�lines helps convince the en�

gineer of the approach�s correctness� and the approach has signi�cantly lower

computational complexity�

	�� Jitter

The purpose of this section is to explore how jitter requirements can be handled

by the manipulation of task attributes� An important constraint� and a frequent

criticism of �xed priority scheduling is related to the control of jitter� A con�

ventional model of �xed priority scheduling is said to su�er worse jitter than a

cyclic scheduler ���� The reason is the regular clock tick in the cyclic scheduler

causes the entire run queue to be regularly refreshed� Therefore� a task su�ers

less jitter than the length of one minor cycle� Whereas with the �xed priority

scheduler� tasks with large periods and deadlines can exist on the run queue for

a longer time� leading to greater variations in their completion time� Section ��

discusses how jitter requirements are important for restricting the variability in

the time when inputs and outputs are performed�

A prime driver for this work is to enable the schedulability analysis for tasks to

also verify the jitter requirements� Therefore for similar reasons to those given

in section ����
� the jitter requirement should be handled using deadlines rather

than priorities� If a task has a deadline equal to the jitter requirement� then

the requirement is met because the window of allowed execution is constrained

between the critical instance and the time allowed for the jitter requirement�

Using this approach would be pessimistic since there is a minimum processing

time for each task that adds no variability� i�e� the task�s execution time can

only vary between its best�case response time and its worst�case response time�

Therefore� the deadline can be calculated using equation 	��
�
�

Di � Ji BCRTi 	��
�

where BCRT i is the best case response time of task i�

The best case response times of tasks can be generated in two stages� Initially�

the value can be set to zero� this makes the task set harder to schedule since

the deadlines are lower� Later� the value can be evolved as more results from

��

analysis become available� The best case response times can be taken as the best

case execution time or calculated using either exact analysis techniques� or the

method proposed by Harbour� Garcia and Guiterrez �
����

Clearly it can be seen that having a deadline as de�ned in equation 	��
�
 con�

strains the variation of the task�s computation time so that the jitter requirement

is met� The fact that the choice of deadline controls the jitter means that the

standard schedulability test also veri�es the jitter requirement is met removing

the need for extra analysis� However� there are problems with the approach

based on equation 	��
�
� Two cases are illustrated�

Case �

Whilst the technique described in this section provides task attributes that re�

sult in the requirements being met� it is not optimal� The main problem is

that if many tasks have jitter requirements� then there may be an abnormally

large number of tasks with short deadlines� Short deadlines means the tasks

have to execute shortly after the critical instant� which could easily lead to an

unschedulable solution�

Solution for Case �

Phase the execution of tasks by spreading the execution using o�sets� However�

the use of o�sets to phase execution should be avoided� where possible� due to the

increased maintenance problems of having �slots�� The maintenance problems

of slots would be analogous to the problems of cyclic scheduling�

�

Case �

Another area of concern is related to transactions� where the transaction deadline

is less than or equal to its period� A realistic assumption is that any jitter re�

quirement imposed on the transaction invariably relates to the �rst and last task

in the transaction� since these tasks are the input and output of the transaction�

A jitter requirement placed on the last task in the transaction would lead to all

the preceding tasks having a shorter deadline� which could a�ect schedulability�

For example� consider the task set illustrated in Figure ��
�� which represents a

transaction requirement that includes a jitter requirement on the last task�

��

Task A

D = 50

T = 50

Task B

D = 50

T = 50

Task C

D = 50

T = 50
J = 5, BCRT=1

transaction deadline = 50
transaction period = 50

Figure ��
�� Timing Requirements For A Transaction

Task C

Task B

Task A

T=6

∆

∆

Instance 1

Instance 1

Instance 1

T=1

end-to-end response time = 6

Figure ��
�� Time�line For the Transaction in Figure ��
�

Using equation 	��
�
 to calculate the jitter requirement of task C results in a

deadline of �� Then applying the technique in Algorithm
 leads to tasks A and

B having a deadline of ���� and ���� The time�line in Figure ��
� illustrates

the execution of the tasks� The shaded area represents the allowed variation in

task C�s execution and the other time 	
 unit
 is the non�variant 	equal to task

C�s best case response time
 part of its execution� The problem with the solution

in Figure ��
� is that all the tasks have to execute within a tight deadline�

Solution for Case �

The solution to the problem is again the use of o�sets� It is proposed that the

solution demonstrated in Figure ��
� is often better than the solution demon�

��

Task C

Task B

Task A

T=44

∆

∆

Instance 1

Instance 1

Instance 1

T= 50

end-to-end response time = 50

Figure ��
�� Time Line for the Transaction in Figure ��
�

strated in Figure ��
�� The basis of the solution is to constrain the variation in

task C�s execution at the end of the allowed execution time of the transaction by

using an appropriate o�set� The o�set is calculated as shown in equation 	��
�
�

The allowed execution time for task C is equal to the deadline calculated using

equation 	��
�
� Precedence of the other tasks is enforced by making the other

tasks execute before task C is released� Therefore� task B is given a deadline

equal to the o�set of task C and then Algorithm
 is applied to the tasks pre�

ceding task C� The approach for choosing task B�s deadline and task C�s o�set

can be represented by Algorithm ��

o�set � transaction deadline�

time allowed in the execution window for task C

o�set � transaction deadline� 	JC BCRTC
 	��
�

�

It should be noted that if the transaction�s deadline is greater than its period�

then the problem in Case � does not arise because Algorithm
 does not unnec�

essarily enforce precedence in this case� Instead� the longest deadline is reduced

�

Algorithm �� � Algorithm for Dealing With Jitter

for each task �denoted i� in the system

if task i has a jitter requirement then

if task i is not the last task in the particular transaction then

Di � Ji BCRTi

else

if the transaction deadline � transaction period then

Di � Ji BCRTi

else

if Di � transaction deadline then

task deadline � transaction deadline

Oi � Di � 	Ji BCRTi�

for all preceding tasks �denoted j� in the transaction

if transaction deadline is not met then

if Dj � transaction deadline � �Ji BCRTi� then

Dj � transaction deadline � �Ji BCRTi�

until the requirements are met� Therefore� reducing task C�s deadline to meet its

jitter requirement does not necessarily lead to tasks A and B�s deadlines being

reduced to enforce the precedence�

The approach de�ned in Algorithm � cannot be described as optimal� If a large

number of tasks 	speci�cally ones that are not part of the particular transaction

are already phased to execute during the time interval �Oi� Di�� then the approach

may lead to an unschedulable solution� In this circumstance an approach based

entirely on equation 	��
�
 and Algorithm
 may increase the likelihood of a

schedulable solution� However� in practice this is unlikely to be the case�

There is no optimal approach published for dealing with jitter�

	�� Separation

The purpose of this section is to present a technique for assigning task attributes

so that separation requirements are handled� For two tasks with a separation

��

Algorithm �� � Algorithm that Accounts for Separation

for each task in the system

if the task �denoted i� is to be separated from an earlier task �denoted i�
� then

Oi � Si � Di��

if 	Oi Ci
 � Di then

Di�� �
Di�Si�Oi��

�

assign the value of true to the task deadlines are changing �ag

requirement 	Si
 between them� the requirement can be satis�ed by manipulating

the o�sets and deadlines of the two tasks� The technique gives the second of the

two tasks an o�set Si from the deadline of the earlier task� This is expressed in

equation 	��
�
�

Oi � Si Di�� 	��
�

where Si is the separation requirement between two tasks�

task i�
 precedes task i� and

Di�� is the deadline of task i�
�

If the resultant o�set is too great 	i�e� Oi Ci � Di
� then task i does not have

a chance to meet its deadline� In this case� an appropriate metric for altering

the deadline of the �rst task is required� An approach is presented in equation

	����
� The approach basically splits the available execution time between the

two tasks� This is achieved by making the relative deadline 	equal to the task�s

deadline minus its o�set
 of the preceding task equal to the relative deadline

of the current task� The condition in equation 	��
�
 still has to be satis�ed�

The approach developed is represented in Algorithm �� However� it should be

noted that manual intervention may still be deemed necessary� dependence on

the characteristics of the system�

Di�� �
Di � Si �Oi��

�
	����

��

Algorithm �� � Algorithm for Priority Assignment

initialise task deadlines are changing �ag to true

apply algorithm 	

while the task deadlines are changing �ag is true

assign the value of false to the task deadlines are changing �ag

for each transaction in the set of transactions

apply algorithm

apply algorithm �

apply priorities to the tasks by the deadline monotonic approach

perform schedulability analysis of the task set

	�� Overall Task Attribute Assignment

Combining the various techniques discussed in this chapter results in Algorithm

�� The algorithm works in the following steps�

� If a task does not already have a deadline� then it is assigned a deadline

equal to its period�

�� Tasks with a jitter requirement are assigned a deadline using Algorithm ��

�� For each transaction in the system use Algorithm
 to update task deadlines

to meet the transaction requirement�

�� Apply Algorithm � to deal with separation requirements�

�� If a complete run through all the transactions causes a change of deadline

to take place 	i�e� task deadlines are changing �ag is true
� then return to

step ��

�� Assign priorities using DMPO�

�� Check that each task�s deadline is met using the schedulability analysis�

The overall method for priority assignment is not considered to be optimal be�

cause of some particularly obscure events that are discussed in this chapter� For

��

example� the case in section ������ However� use has shown that the approach

is su�cient for the typical system timing requirements encountered as demon�

strated by the case study in Chapter ��

The only real problem encountered so far when using this approach has been

caused by impractical requirements related to circular arguments� For instance

consider the following two requirements� one requirement is task A has to pre�

cede task B and the other requirement is task B has to precede task A� Both

requirements can not be resolved by Algorithm
� In this case the algorithm

would never obtain a result� with the deadlines tending towards ��� The reason

is that if transactions� deadlines are less than their periods� then the requirement

can only be met if perfect precedence is achieved� To achieve perfect precedence�

the earlier task in the transaction would have its deadline reduced as shown in

Algorithm
� This process is repeated for both of the transactions until the tasks�

attributes converge� which will not happen� Clearly� there is no solution to this

requirement� therefore it can be stated the requirement should not be allowed to

exist� When implementing the algorithm� circularities should be recognised and

�agged to the user so that appropriate manual intervention can take place�

The ability of Algorithm � to deal with complex requirements is further demon�

strated with the case study in Chapter �� The case study is used to generate the

priorities for a complex set of realistic timing requirements�

The following is a comparison of the task attribute assignment approach in this

chapter with the four chosen criteria for successful technology transfer�

� Reuse � The reuse criterion is not really applicable because any technique

derived for �xed priority scheduling cannot be expected to work for the

cyclic scheduler� However� at least the approach means that only a single

tool is needed for analysis�

�� Certi�cation � The technique provides an approach where it can be deter�

mined by drawing time�lines of the worst�case execution from the critical

instant that the system�s timing requirements are met� Therefore� evidence

of correctness can be expressed in a manageable form�

�� Su�ciency � The approach places the minimum constraints possible on the

execution of tasks and hence it provides the greatest �exibility� Therefore�

��

the likelihood of being able to schedule the system is improved over a less

�exible approach�

�� Understanding � In our experience� engineers 	including the certi�cation

authorities
 have been able to understand and apply the technique in a

short time 	typically less than an hour
 even with little previous knowledge

of scheduling� The satisfaction of the criterion is demonstrated by the fact

the approach has been technology transferred ���� to industry� where it has

been successfully applied �

	�	 Contrast With Other Techniques

One of the other bene�ts of this priority assignment approach is that the need

for any form of priority inheritance is eliminated� The need for the priority

inheritance protocols is eliminated because the sharing of resources can be dealt

with at the priority level� Priority inheritance was borne out of the in�exibility

of the rate monotonic approach to deal with transactions in any other way�

Consider the task set in Figure ��� with task attributes assigned using the rate

monotonic approach� the response time of the system is the same as shown in

Figure ��� where the deadline is missed� To meet the transaction�s deadline when

there is no control over tasks� deadlines requires tasks A and B to inherit a higher

priority from task C� There are a number of mechanisms for inheriting priorities

reviewed in section ��
��� The priority inheritance would give a similar response

to the one shown in Figure ���� The problem with priority inheritance is that

it makes the design more complex and there are additional run�time overheads�

Another problem is that extra veri�cation� other than the schedulability analysis�

is required to show the transaction�s requirements are met�

Another technique that the approach can be compared with is that of Gerber ����

discussed in section ��
��� There are many di�erences between the techniques�

but two main ones exist� Firstly� with Gerber�s approach it is not straightforward

to demonstrate how the requirements are met� Secondly� Gerber�s approach

assumes that intermediate task attributes are completely �exible 	i�e� iteration

rates can be changed and deadlines increased
 � this ignores the in�uence of

other timing requirements� e�g� the interaction with other tasks and transactions�

��

Therefore for the domain of interest� the technique developed in this chapter has

many advantages�

	�� Summary

This chapter has addressed how attributes can be assigned to tasks that represent

the system�s timing requirements as priorities� o�sets and deadlines� The three

primary bene�ts of this work are�

� the standard schedulability analysis that assumes a critical instant can

verify all the system�s timing requirements�

�� the approach is easy to understand� and

�� the approach removes the need for complex mechanisms such as priority

inheritance�

The approach derived has the signi�cant advantage that enforcing tasks� prece�

dence rules is dealt with o��line� rather than the kernel having to enforce the

precedence rules at run�time� This makes the implementation easier to produce

and maintain� and it is easier to verify the precedence constraints are achieved�

In most cases the approach is su�cient� except for a few obscure cases� An

additional advantage is that our approach can be explained relatively straight

forwardly to engineers and regulators� which helps the technology transfer pro�

cess� The ease in which time�lines can be produced assists technology transfer

and helps when arguing correctness�

The techniques described in this section are illustrated in Chapter � as part of

a case study� The purpose of the case study is not only to demonstrate the

techniques further� but to show how they may be applied to a real system�

��

��

Chapter �

Case Study � The BR��� Engine

Controller

The purpose of this chapter is to present a case study that demonstrates how

the techniques described in Chapters � � � could be used for a real system�

The chapter is to demonstrate the techniques are �t for purpose� particularly in

relation to the four criteria for successful technology transfer� The criteria are�

reuse� certi�cation� understanding� and su�ciency�

The case study is based on work performed for Rolls�Royce that moved an air�

craft electronic engine controller application from using cyclic scheduling to �xed

priority scheduling ���� ���
�
�
���
���� The technical work was originally per�

formed by the author� however the work has since been adopted by Rolls�Royce�

The techniques have lead to a system scheduled with �xed priority scheduling to

be used and veri�ed on the actual engine� Discussions have taken place with the

certi�cation authorities about the use of the �xed priority scheduling technique

on a future aircraft � its use has been agreed �����

For con�dentiality reasons some of the details presented have been changed� e�g

task names� However� the example is still realistic� The discussion is divided

into a number of parts�

� The actual purpose of the electronic engine controller�

�� Technical details concerning the system as controlled by the cyclic sched�

uler�

��

�� Technical details of how the change to �xed priority scheduling was per�

formed� including the timing analysis� and

�� Process details of how the change to a �xed priority scheduler a�ect the

working practice within the organisation�

��� Purpose of the Electronic Engine Controller

System

Modern aircraft engines are �tted with an electronic engine controller� which is

essentially a computer that executes engine controller software� Before the use

of computers on aircraft� the control functionality would have been implemented

using hydro�mechanical components�

An overview of the operation of the system is given in Figure ��
� The electronic

engine controller uses sensors to monitor the engine condition 	e�g� fuel �ow

and other components to monitor the aircraft operation 	e�g� thrust request
�

The electronic engine controller controls the engine via the operation of actua�

tors� such as valves� ignitors and pumps� The electronic engine controller also

accepts pilot commands� and provides status information about the engine back

to the cockpit� The electronic engine controller is embedded and safety�critical�

normally featuring replicated components to provide fault tolerance�

A particular characteristic of electronic engine controllers is that transactions

are common place and fundamental to safe operation� The transactions consist

of reading data from a number of sensors� performing calculations based on

the available data and the output of results to the appropriate actuators� The

system also has tasks that provide functionality such as health monitoring and

maintenance� Other important factors are the implemented system is normally

uniprocessor and the processor�s resource is often heavily loaded�

��

Electronic Engine
Controller

&
Airframe

Cockpit

Engine

Control
Unit

SensorsActuators

Figure ��
� Overview of an Electronic Engine Control Unit

��� Technical Details of the System

The purpose of this section is to present enough details of how the system is

implemented using the cyclic scheduler in order to place the transition in context�

The section uses the discussion in Chapter � of the existing ways of implementing

a cyclic scheduler as a basis�

The basic infrastructure of the system is a periodic clock tick 	period � �����

� the time units are arbitrary
� The clock tick is used to signify the start of a

minor cycle and to control the timing watchdog 	implemented in hardware
� The

implementation features eight minor cycles per major cycle� The overhead is�

CTW �
��

where CTW is the worst�case execution time of the timing watchdog software�

The timing requirements and certain characteristics of the system are presented

in Figure ��� and Table ���� Figure ��� presents the transaction details for the

�

system� where the arrows represent the precedence ordering 	i�e� left to right in

the diagram
 between tasks and the transaction deadline is associated with the

last task 	i�e� the right�most
 and is contained in boxes surrounded by a dashed

line� It should be noted that only the tasks that are part of the transactions are

shown in Figure ���� The transaction deadlines are�

� All transactions that end with task P

 have a deadline of ������ The

exception is the transaction that features tasks P
�� P� and P

� where

the transaction deadline is ������

�� All transactions that end with task P�� have a deadline of
������

�� All transactions that end with task P�
 have a deadline of ������

The task details 	identi�er� jitter� and period
 are contained in boxes surrounded

by a solid line� For example� task P

 has a period of ������ and a jitter

requirement of
����� Where a jitter is not stated� no jitter requirement exists�

Table ��
 presents the timing characteristics for the tasks and has �ve columns�

The columns fall into two categories� timing requirements and task attributes�

The columns are�

Timing Requirements

Id is the identi�er

T is the period

D is the deadline � normally equal to the period

J is the jitter

Task Attribute

C is the worst�case execution time

From Figure ��� and Table ��
� it can be seen that the timing requirements are

not trivial� The processor utilisation is ������ without any overheads being

taken into account� This represents a tight timing margin� which makes the

synthesis of task attributes di�cult� The timing margin also makes the system

di�cult to maintain� A large bene�t of moving to a �xed priority scheduler is

��

ID T C D J
P�
 ����� ��� �����
����
P�� �����
�� �����
����
P� ����� ��
 �����
����
P
 ����� ��� ����� �
P� ����� ���� ����� �
P� ����� ��� ����� �
P� ����� � ����� �
P� ����� �� ����� �
P� �����
�
� ����� �
P� �����
��
 ����� �
P� ����� ��� ����� �
P
� �����
� ����� �
P
� �����
�� ����� �
P
� ����� ��� ����� �
P
� ����� �� ����� �
P
� �����
� ����� �
P
� ����� ��� ����� �
P
� ����� ��� ����� �
P
� �����
�� ����� �
P
� ����� �� ����� �
P�� ����� ��� ����� �
P�� ����� ��� ����� �
P�� �����
��� ����� �
P�� ����� �
� ����� �
P��
�����
���
����� �
P�� ����� �� ����� �
P�� ������ ��� ������ �
P�� ����� ��� ����� �
P�� ����� ��� ����� �
P�� ����� ��� ����� �
P�

����� ���
����� �
P�� ����� ��
 ����� �
P�� ����� ��� ����� �
P�� ����� ��
 ����� �
P�� ����� ��� ����� �
P�� ����� ��
 ����� �
P�� �����
��
 ����� �
P�� ����� ��� ����� �

��

ID T C D J
P�� ����� ��� ����� �
P�

�����
��
����� �
P�� ����� ��� ����� �
P�� �����
��� ����� �
P��
����� ���
����� �
P��
����� ��

����� �
P��
����� ���
����� �
P��
����� ��

����� �
P��
����� ���
����� �
P��
�����
��
����� �
P��
����� �
�
����� �
P�

����� ����
����� �
P��
����� ���
����� �
P��
����� ��
����� �
P��
����� ���
����� �
P��
����� �� ������ �
P�� ������ ��� ������ �
P�� ������ ��� ������ �
P�� ������
�� ������ �
P�� ������ � ������ �
P�� ������ ��� ������ �
P�
 ������ �� ������ �
P�� ������ ��� ������ �
P�� ������ ���� ������ �
P�� ������ ��� ������ �
P��
������ ����
������ �
P��
������ ����
������ �
P��
������ ����
������ �
P��
������ ����
������ �
P��
������ ����
������ �
P��
������ ����
������ �
P�

������ ����
������ �

Table ��
� Task Attributes

��

Transaction Deadlines
to P35 = 150000

Transaction Deadlines to
P21 = 75000

P15
T=25000

P28
T=50000

P29
T=50000

P38
T=50000

P3
T=25000

P11
T=25000

P41
T=100000

P43
T=50000

P27
T=200000

P25
T=200000

P32
T=50000

P26
T=50000

P30
T=50000

P33
T=50000

P45
T=100000

P24
T=50000

P35
T=50000

P29
T=50000

P31
T=50000

P44
T=100000

P21
T=25000

P39
T=50000

Transaction Deadlines
to P11= 75000

except for transaction
P15-P3-P11

where the deadline is 50000

Figure ���� Diagram to Illustrate the System�s Transactions Requirements

��

in the area of maintenance� However a greater bene�t may be the more �exible

scheduling model allowing valuable resources to be saved�

Consider the problem of implementing a cyclic scheduler for the system in this

case study� The di�culty in synthesising the scheduler means that most of the

tasks are split into small units of computation and some tasks into very small

units� The fact that the major cycle rate is ������� means that another scheme is

required to schedule the seven tasks 	P���P�

 with an update rate of
���������

One task executing every ������� units is used to sub�schedule the seven tasks�

Each of the tasks with an iteration rate of
�������� is dispatched every �fth time

the ������� sub�scheduling task is executed� The added complexity of having a

multi�level scheduler helps illustrate the need for a more �exible scheduling policy�

Rolls�Royce�s experience of the application suggests the task�s periods could also

be changed� Some tasks need to be executed more frequently� others less fre�

quently� However� the requirements have been produced assuming a cyclic sched�

uler is used and it is deemed appropriate not to alter their nature for the purpose

of this case study�

��� Technical Transition to Fixed Priority Schedul�

ing

The purpose of this section is to show how the timing requirements in Figure

��� and Table ��� can be implemented using the �xed priority scheduling theory

developed in the course of the thesis� This section is to examine the technical

issues while section ��� investigates the lifecycle issues� There are four parts to

the technical discussion� task attribute assignment� task release� timing watchdog

and schedulability analysis�

����� Task Attribute Assignment

Table ��� presents the results of task attribute assignment� The attributes are

calculated using Algorithm � described in Chapter �� There are three basic cat�

egories of columns� timing requirements� calculated task attributes and schedu�

lability analysis results� In addition� two tasks are synthesised to represent the

��

overheads� which are task TW for the timing watchdog and task clk for the clock

overhead� However� these are the product of the timing analysis for the �xed

priority scheduler and do not represent actual tasks� The columns of the table�

additional to those already de�ned for Table ��
 represent�

Calculated Task Attributes

D� is the calculated value for the deadline

O is the calculated value for the o�set

P is the priority� which is derived from the deadline D� using DMPO

Schedulability Analysis Results � values are considered later in section �����

R is the result of the schedulability analysis

R� is the worst�case response time allowing for any o�set� i�e� R� � R O

Met� indicates whether the timing requirement is met� i�e� R� � D�

C � represents the actual worst�case execution time of tasks including any overheads

Tasks P

� P�� and P�
 have non�zero o�sets to meet their jitter requirements�

For example� task P

 has a jitter requirement of
���� and an initial deadline

of ������ Due to the fact there is no information about the tasks� best case

execution times� then a value of zero is assumed for their best case response�

Using Algorithm �� task P

 has an available execution window � D�� � J�� �

����� �
���� �
����� Therefore task P� has its deadline modi�ed to D�
� �

����� and task P

 has its o�set modi�ed to O�� �
���� and its deadline

to D�
�� � ������ The deadlines are derived using Algorithm � that is given in

Chapter �� Clearly� if the tasks� deadlines are met� then the jitter requirements

are also met�

Many tasks have their attributes modi�ed so that transactions requirements are

met� Figure ��� is a modi�ed version of Figure ��� that illustrates the system�s

transactions� but also includes the modi�ed task attributes 	D for deadline� O

for o�set� and J for jitter in bold
� Consider the transaction involving tasks

P��� P��� P��� P� and P

 	in that order
� which has a transaction deadline

of ������ Figure ��� presents a time�line to illustrate the worst�case execution

before the deadlines are modi�ed� Clearly� the response time of the transaction is

��

ID T C C� D� D O P R R� Met�
TW ����� N�A
�� ����� ����� �

��
�� Y
clk ����� N�A ���� ����� ����� � � ���� ���� Y
P

 ����� ��
 ��
 ����� �����
���� � ��

 �
�

 Y
P�
 ����� ��� ��� ����� �����
���� �
�
�� ����� Y
P�� �����
�� ��� ����� ����� ����� �
���� ����� Y
P� ����� ��
 ��
 �����
���� � �
����
���� Y
P
 ����� ��� ��� ����� ����� � �

���

��� Y
P� ����� ���� ���� ����� ����� � �
��
�
��
� Y
P� ����� ��� ��� ����� ����� � �
����
���� Y
P� ����� � � ����� ����� �
�
����
���� Y
P� ����� �� �� ����� ����� �

����
���� Y
P� �����
�
�
�
� ����� ����� �
�
����
���� Y
P� �����
��

��
 ����� ����� �
�
����
���� Y
P� ����� ��� ��� ����� ����� �
�
����
���� Y
P
� �����
�
� ����� ����� �
�
����
���� Y
P
� �����
��
�� ����� ����� �
�
����
���� Y
P
� ����� ��� ��� ����� ����� �
�
����
���� Y
P
� ����� �� �� ����� ����� �
�
��
�
��
� Y
P
� �����
�
� ����� ����� �
�
����
���� Y
P
� ����� ��� ��� ����� ����� � ��
���

���
 Y
P
� ����� ��� ��� ����� ����� � �

��
�
��
� Y
P
� �����
��
�� ����� ����� � ��
����
���� Y
P
� ����� �� �� ����� ����� � ��
���

���
 Y
P�� ����� ��� ��� ����� ����� � ��
����
���� Y
P�� ����� ��� ��� ����� ����� � �� ����� ����� Y
P�� �����
���
��� ����� ����� � �� �
��� �
��� Y
P�� ����� �
� �
� ����� ����� � �� �
��� �
��� Y
P��
�����
���
��� �����
����� � �� ����� ����� Y
P�� ����� �� �� ����� ����� � �� ���

 ���

 Y
P�� ������ ��� ��� ����� ������ � �� ����� ����� Y
P�� ����� ��� ��� ����� ����� � �
 ��
�� ��
�� Y
P�� ����� ��� ��� ����� ����� � �� ����
 ����
 Y
P�� ����� ��� ��� ����� ����� � �� �
��� �
��� Y
P�

����� ��� ��� �����
����� � �� �
��� �
��� Y
P�� ����� ��
 ��
 ����� ����� � �� ��
�
 ��
�
 Y
P�� ����� ��� ��� ����� ����� � �� ����
 ����
 Y
P�� ����� ��
 ��
 ����� ����� � �� ����� ����� Y
P�� ����� ��� ��� ����� ����� � �� ����� ����� Y
P�� ����� ��
 ��
 ����� ����� � �� ����� ����� Y
P�� �����
��

��
 ����� ����� � �� ����� ����� Y
P�� ����� ��� ��� ����� ����� � �
 ���

 ���

 Y

��

ID T C C� D D� O P R R� Met�
P�� ����� ��� ��� ����� ����� � �� ����� ����� Y
P�

�����
��
�� �����
����� � �� ����� ����� Y
P�� ����� ��� ��� ����� ����� � �� ����� ����� Y
P�� �����
���
��� ����� ����� � �� ����� ����� Y
P��
����� ��� ��� �����
����� � �� �
��
 �
��
 Y
P��
����� ��
 ��

�����
����� � �� ����� ����� Y
P��
����� ��� ���
�����
����� � �� ����� ����� Y
P��
����� ��
 ��

�����
����� � �� ���
� ���
� Y
P��
����� ��� ���
�����
����� � �� ����� ����� Y
P��
�����
��
��
�����
����� � �
 ����� ����� Y
P��
����� �
� �
�
�����
����� � �� ���
� ���
� Y
P�

����� ���� ����
�����
����� � �� ���
� ���
� Y
P��
����� ��� ���
�����
����� � �� ����� ����� Y
P��
����� �� ��
�����
����� � �� ����� ����� Y
P��
����� ��� ���
�����
����� � �� ����� ����� Y
P��
����� �� �� ������ ������ � �� ����� ����� Y
P�� ������ ��� ��� ������ ������ � �� ����� ����� Y
P�� ������ ��� ��� ������ ������ � ��
�����
����� Y
P�� ������
��
�� ������ ������ � ��
�����
����� Y
P�� ������ � � ������ ������ � �

���
�
���
� Y
P�� ������ ��� ��� ������ ������ � ��
�����
����� Y
P�
 ������ �� �� ������ ������ � ��
�����
����� Y
P�� ������ ��� ��� ������ ������ � ��
�����
����� Y
P�� ������ ���� ���� ������ ������ � ��
���
�
���
� Y
P�� ������ ��� ��� ������ ������ � ��
�����
����� Y
P��
������ ���� ����
������
������ � ��
�����
����� Y
P��
������ ���� ����
������
������ � �� ������ ������ Y
P��
������ ���� ����
������
������ � �� ������ ������ Y
P��
������ ���� ����
������
������ � �� ������ ������ Y
P��
������ ���� ����
������
������ � �
 ������ ������ Y
P��
������ ���� ����
������
������ � �� ������ ������ Y
P�

������ ���� ����
������
������ � �� ����
� ����
� Y

Table ���� Task Attributes and Schedulability Analysis Results

��

Transaction Deadlines
to P35 = 150000

Transaction Deadlines to
P21 = 75000

P15
T=25000
D=25000

P28
T=50000
D=49999

P29
T=50000
D=49999

P38
T=50000
D=50000

P3
T=25000
D=12500

P11
T=25000
D=25000
J=12500
O=12500

P41
T=100000
D=50000

P43
T=50000
D=50000

P27
T=200000
D=49999

P25
T=200000
D=49998

P32
T=50000
D=49999

P26
T=50000
D=49998

P30
T=50000
D=49999

P33
T=50000
D=50000

P45
T=100000
D=100000

P24
T=50000
D=49997

P35
T=50000
D=50000
J=12500
O=37500

P29
T=50000
D=49998

P31
T=50000
D=49999

P44
T=100000
D=62500

P21
T=25000
D=25000
J=12500
O=12500

P39
T=50000
D=50000

Transaction Deadlines
to P11= 75000

except for transaction
P15-P3-P11

where the deadline is 50000

Figure ���� Diagram to Illustrate the Attributes of the Tasks in the Transactions

signi�cantly greater than required� The tasks P�� and P�� have their deadlines

reduced signi�cantly 	to ����� and ����� respectively
� The net result of the

deadline reduction is tasks P�� and P�� always precede task P�� 	which has

a deadline of �����
 so the end�to�end response of tasks P��� P�� and P�� is

������ The remaining tasks 	P� and P

 have an end�to�end response of �����

and periods of ������

Figure ��� presents a time�line to illustrate the worst�case execution after the

deadlines are modi�ed� Comparison of Figures ��� and ��� shows how the modi�

�ed task attributes leads to the requirement being met with a signi�cant reduc�

tion in response time� Figure ��� also shows how easy it is to demonstrate the

requirements are met� It should be noted that in Figures ��� and ��� the instance

of interest is represented by a shaded box�

The o�sets and deadlines for tasks P� and P

 are chosen so that task P

meets its deadline and P� precedes it� It should be noted that if P� had a

��

���
���
���

���
���
���

�
�
�
�

��������
��������
��������
��������

���������
���������
���������
���������

��
��
��

��
��
��

T= 200000

P25

P27

P3

P43

P11

end-to-end response time = 500000

T = 400000 T = 500000

Figure ���� A Time Line for the Transaction Involving Tasks P��� P��� P��� P�

and P

 before the Attributes are Modi�ed

�

��������
��������
��������
��������

�������
�������
�������
�������

��������
��������
��������

��������
��������
��������

��
��
��

��
��
��

���
���
���
���

T= 50000

P25

P27

P3

P43

P11

T = 62500
T = 75000

end-to-end response time = 75000

T= 25000

Figure ���� A Time Line for the Transaction Involving Tasks P��� P��� P��� P�

and P

 after the Attributes are Modi�ed

��

larger deadline� then the ordering between P� and P

 could not be guaranteed�

Therefore� the transaction response time is ������ i�e� the deadline is met�

This section has shown how complex system timing requirements can be broken

down into task attributes using the technique developed in Chapter ��

����� Task Release

The purpose of this section is to show how the speci�c tasks in Figure ��� and

Table ��� should be released using the details in section ��
 on how the hybrid

task release mechanism works and how it can be analysed as a basis� The hybrid

approach releases the majority of tasks based on a clock tick� with a few carefully

selected tasks released in a time driven manner� The tasks released by the time

driven approach are those whose rate is not a harmonic of the clock tick rate�

The system already has a ����� clock tick left over from the cyclic scheduler�

Therefore� from a reuse perspective as many tasks as possible are released using

the available clock tick� The overheads associated with the approach are�

Cfirst �
��

Csub � ��

CTW �
��

where Cfirst is the cost of releasing the �rst task�

Csub is the cost of releasing the subsequent tasks� and

CTW is the worst�case execution time of the timing watchdog software�

From Table ���� it can be seen that based on the tasks� periods� all the tasks

can be released with zero jitter� However� Table ��� shows that tasks P

� P�

and P�� have non�zero o�sets� which means the tasks would su�er release jitter

of
�����
���� and ����� respectively� Using the hybrid scheduling approach�

tasks P

� P�
 and P�� would be released in a time driven manner� whilst all

the other tasks would be released in a tick driven manner� The tasks P

� P�

and P�� would have their execution time increased by Cfirst to account for the

overheads of the time driven release� Column C� of Table ��� represents the

actual worst�case execution time of tasks that includes the overheads�

��

Table ��� also features a task� clk� The task� clk� is used to represent the clock

overheads of all tasks except P

� P�
 and P��� Task clk has the following

characteristics� Tclk � ����� and Cclk is calculated using equation 	��

 as

shown in equation 	��

�

Cclk �
�� 	���

�
�����

�����

�

�� � ���� 	��

This section has shown how system timing requirements can be supported with

the infrastructure available using the technique developed in Chapter �� In prac�

tice� the �exibility of the scheduling model could lead to the system engineers

wanting to release tasks at other rates� An engineering guess could be taken of the

likely changes� in fact Rolls�Royce has used the work in this thesis and changed

some of the requirements� However� if the new requirements were used� then

the ability to make direct comparisons between the cyclic scheduler and �xed

priority scheduler would be lost� Early experimentation with iteration rates has

indicated that adjusting tasks� periods can provide two bene�ts�

� When the period is increased� then resources are saved� The precise saving

depends on the actual application� However as an example� for the applica�

tion discussed in this chapter about ��� of the processor utilisation could

be saved�

�� In some cases where stability with the cyclic scheduler is marginal� the

tasks� periods were increased� and jitter requirements imposed� with signif�

icant improvement in the stability obtained�

����� Timing Watchdog

The purpose of this section is to present how timing overruns are detected� To

enable reuse� it is assumed the tick driven watchdog described in section ����
 is

used� The technique used to detect whether overruns have occurred is to check

that the expected tasks have executed between clock ticks� The expected tasks

are those with periods and deadlines less than or equal to the clock tick period�

The overheads due to the timing watchdog in Table ��� are represented by task

TW � which has characteristics of CTW �
�� and TTW � ������ Tasks clk and

TW have the highest priorities in the overall task set�

��

����� Implementation Details

This section is to discuss how the scheduler was implemented� A key fact about

the implementation is that a hybrid scheduler is to be used� The �xed priority

scheduler has two queues used for the controlled release and dispatch of tasks�

The run queue contains the tasks that are runnable� The delay queue contains

the tasks awaiting release� At the end of each task�s execution� the run queue is

updated and the highest priority task is executed�

Figure ��� illustrates how the task dispatch mechanism is implemented� A key

feature of the implementation is the search mechanism that is employed to �nd

the highest priority task� The search for the highest priority task is started from

the last task executed unless tasks have just been released� in which case the

search starts at the overall highest priority task� The reason for this approach is

that the search time should be reduced�

The method employed to release tasks from the delay queue to the run queue is

to de�ne a number of words each of which is N bits long 	where N is the number

of tasks
� Each task is allocated a position in the word based on its priority� i�e�

the highest priority task relates to the least signi�cant bit� A value of logic "
�

would mean a task is active 	i�e� runnable for the run queue� or releasable for

the delay queue
� and a logic "�� otherwise� Figure ��� illustrates the format of

the words�

The words de�ned are the run queue and delay queue words� Each delay queue

word represents the set of tasks that have identical release points rather than

a word for each task in order to reduce the number of operations the scheduler

must perform� Associated with each delay queue word 	in Figure ��� the word is

referred to as �TimeToRun�
 is an iteration rate and a word that indicates the

number of clock ticks before its task set is runnable again� When the task is due

to be released again� the run queue is OR�ed with the relevant delay queue word

to produce a new run queue word�

Figure ��� also shows how the run queue is updated upon a regular clock tick�

which is also used to trigger the timing watchdog� Many of the implementa�

tion decisions taken were in�uenced by the need to implement the system in

SPARK Ada ����� For instance� �xed sized arrays are used to represent the

��

Dispatch the

Search for the Highest

Current Search Position

Task That is Runnable

Highest Priority

Priority Task from the

the task will

voluntarily suspend itself

No

YesHas Any

Task Been

Released

At the end of execution,

Remove the

Task from the

Run Queue

?
Highest Priority Task

Search Position to the

Reset the Current

Check the Current Time

from the Real-Time Clock

of TimeToRun.

Modify the Value

Release Tasks with TimeToRun < 0

Clock Tick

Has The

Occurred?

Yes

Release the appropriate tasks

Figure ���� Operation of the Hybrid Scheduler

��

Task N

Value = 1

Runnable Not Runnable

Value = 0

Task N-1

Runnable

Value = 1

Task N-2

Not Runnable

Value = 0

Task 2 Task 1

Value = 1

Runnable

bit N bit N-1 bit N-2 bit 2 bit 1

Figure ���� Diagram to Illustrate the Word Format

queues whereas� in systems that are not deemed to be critical dynamic data

allocation to memory is often used�

����� Schedulability Analysis Results

Table ��� also presents the results from the schedulability analysis� The worst

case response time is presented in two columns� R is the result of the schedulabil�

ity analysis assuming a critical instant� and R� is a modi�ed value that accounts

for a task�s o�set� i�e� R� � R O� The tasks� response times in Table ��� are

less than their deadlines� which indicates that the task set is schedulable� This is

despite an overall processor utilisation of ������� which is almost the maximum

possible� Hence� it can be concluded the system�s timing requirements are met�

The time taken to derive the task attributes by hand was less than �ve minutes�

The schedulability analysis could have been performed in less than an hour� how�

ever an automatic tool was employed that repeated the task attribute assignment

and performed the schedulability analysis� The tool completed the job virtually

instantaneously� The ease in which the attribute assignment and subsequent

analysis may be performed manually is an indication that the understanding

criterion is met�

With respects to task attribute assignment� the case study has demonstrated

the technique in Chapter � is capable of calculating attributes for a real complex

system� This does not prove the su�ciency criterion is met� but suggests that it is

likely to be satis�ed� Rolls�Royce�s engineers have used the technique successfully

by hand� and have also produced a scheduler and tool ���� that is intended to

be compliant with DO�
��B ����� Hence� it can also be stated the certi�cation

criterion is met as well as the approach being considered understandable� The

key fact is that all the existing software and hardware� except the scheduler� is

reused � this is a strong indication that the approach meets one of its principle

��

objectives� However� the reuse criterion is not entirely met since any tools for

producing cyclic schedulers cannot be reused�

��� Details of the E
ect on the Process

Section ��� describes a typical process currently used in industry for designing

safety critical systems based on cyclic schedulers� The purpose of this section is

to consider how a move to �xed priority scheduling would a�ect the way in which

the system is produced� The consideration is based on the following stages of

the life�cycle�

� Requirements

�� Design

�� Implementation

�� Veri�cation

�� Certi�cation

����� Requirements

The general nature of the requirements captured is not altered because of a

change in scheduling regime� The reason is the requirements are dependent on

the application� the design and the domain� The scheduler is simply a means

to provide timeliness� The only requirements that do change is the functional

requirements for the scheduler itself that are expected to change� Experience

shows the change to a more �exible scheduling regime may cause an impact on

the requirements being written� The requirements need to be more stringent

whilst taking advantage of the improved �exibility of the scheduling model�

The requirements need to be more stringent because the static nature of the

current scheduler leads to many requirements being implicit rather than explicit

in the implementation� For example� a task may only work if it has low jitter

and so in a cyclic schedule it is always placed at the start of a minor cycle�

To implement the task successfully with �xed priority scheduling necessitates

��

the jitter constraint to be explicitly stated� Similarly� precedence requirements

or separation requirements may be implicit in the implementation of a cyclic

scheduler because of the static control �ow� With a �xed priority scheduler the

requirements need to be explicitly stated�

The increased �exibility of the scheduler causes problems because the engineers

have to determine what the real requirements are� Also� the existing requirements

are derived and speci�ed based on the knowledge that only harmonic iteration

rates of the clock tick are achievable� A good example is the tasks� periods that

are chosen� Engineers know that the rate for a particular task is not ������ but

they know that ����� works� Therefore� the existing requirements tend to be

largely historical� the reasoning for which may be poorly understood� This means

the system almost has to be re�engineered to establish what the real requirements

are� �New� requirements can be established through analysis� simulation and

testing�

The problems caused by having to establish the �real� set of requirements are�

� Changing the requirements a�ects reuse because the system�s basis is dif�

ferent� Therefore� a certain amount of re�veri�cation is necessary�

�� Part of the certi�cation argument is based on the con�dence that the timing

requirements have been used on generations of engine controller� Therefore�

an argument has to be produced that the change of requirements has a

positive e�ect rather than negative e�ect� i�e� the resulting system is at

least as safe�

�� A control system is complex and di�cult to analyse� therefore establishing

the �real� requirements may be di�cult� A great deal of e�ort and cost

cannot be committed unless real bene�ts are obtainable� It should be noted

that this is likely to be a one�o� cost�

�� Experience has shown that in practice engineers will decide the function�

ality should execute faster� particularly for outputs such as actuators �����

Therefore� more processing resource rather than less is liable to be de�

manded� Hence� a bene�t of �xed priority scheduling could easily be lost

	i�e� helping to reduce processor utilisation by providing greater �exibility

��

in the choice of tasks� periods
 even though a better control system may

result�

The single biggest impact of a change to a more �exible scheduling is the need to

re�assess what the requirements are� However� there are also considerable bene�ts

in doing this since the system should perform better and safer if the requirements

are correct� In addition� it should be possible to reduce the amount of testing

that is necessary� The reason is a great deal of testing is performed to check the

system�s operation even though the requirements may already be proven correct�

����� Design

The introduction of �xed priority scheduling has two implications for the de�

sign process� task attributes have to be assigned that meet the system�s timing

requirements and a new scheduler is needed� Chapter � already describes how

task attributes are assigned� and section ����
 further demonstrates the point�

To design a kernel requires the consideration of the top level requirements� these

are�

� the scheduler is non�preemptive�

�� some tasks are released in a tick driven manner and others in a time driven

manner� and

�� the software for the tick driven timing watchdog is to correctly determine

whether the system�s operation is proceeding as planned�

The scheduler should be designed in a manner consistent with safe programming

practices� such as those advocated by SPARK Ada ����� For instance all memory

usage must be decided before hand in a static fashion� which excludes the use of

pointers� Pointers are often used in the design of the scheduler� since the task

information must be stored dynamically because the number of tasks is unknown�

However in a safety critical system� the number of tasks must be known before

hand� Therefore� it is much easier to use static data structures in this case rather

than in a system that has a more dynamic nature�

��

����� Implementation

The change to a �xed priority scheduler causes two changes to the implemen�

tation stage of the life�cycle� These relate to the scheduler software and the

worst�case execution time of tasks� The scheduler implementation is to meet its

design taking into account the need to use a safe subset of a language� After

the implementation is produced� worst�case execution time analysis should be

performed as described in section ������

The worst�case execution time analysis is performed for two reasons� to allow

schedulability analysis to take place and to establish whether the execution bud�

gets are not exceeded� Execution budgets are often assigned during the require�

ments phase to help manage resource usage� The impact on worst�case execution

time analysis is that with �xed priority scheduling there is a greater emphasis

placed on analysis� In contrast� the veri�cation of a cyclic scheduler generally

relies on test� The use of analysis also means greater importance is attached to

having correct worst�case execution times�

����� Veri�cation

The single biggest change when adopting a �xed priority scheduler is that there

is no longer a static ordering of tasks� Section ����
 has already discussed how

a dynamic task ordering means more stringent requirements are necessary� The

problem caused for veri�cation is related to the fact the run�time ordering is no

longer deterministic� Therefore� the timing requirements cannot be veri�ed using

a test�based approach� To accommodate the change in scheduling policy� the

veri�cation strategy is changed so that the primary evidence of timing correctness

is obtained through the timing analysis� Next� a reduced amount 	relative to how

much was performed with the cyclic scheduler
 of test is used to provide extra

con�dence of the correctness of the system�s timing properties� Hence� it can be

stated the scheduling is at least as predictable with �xed priority scheduling�

When the change to �xed priority scheduling was raised with the Joint Air�

worthiness Authority 	JAA
� it was met with approval because analysis was

viewed as being better than testing ����� Determinism is only stipulated because

the current process is based on a test based philosophy� Therefore� the ability to

�

observe how the system operates is important� An argument can be used that

the worst�case is deterministic 	i�e� the schedule of task can be �laid out�
 even

though the typical cases are not� The production of time�lines demonstrates this

point� It can be stated that the worst�case �xed priority schedule is analogous

to that of the cyclic scheduler�

The functional veri�cation of the system should not be a�ected if all the necessary

timing requirements� such as precedence relations� are speci�ed� However� if all

the necessary requirements are not speci�ed� then anomalies may arise when the

task ordering changes� In terms of testing� there is a slight increase in the number

of paths through the software� however these are restricted to the module that

contains the scheduler� Therefore� there is a slight increase in the amount of

testing necessary� Part of the functional veri�cation of the system is to show

that the scheduler is correctly implemented� One of the tests includes showing

that periodic tasks are released at the correct rate with the speci�ed o�set�

����� Certi�cation

There are two distinct parts to the certi�cation stage of the life�cycle� These parts

are� structuring the safety argument to justify the system is safe and showing

that no additional hazards are introduced by the change� Structuring the safety

argument is considered to be out of the scope of this work� However� there is a

great deal of work on how the argument may be structured� an example of which

is found in �
����

The interesting challenge is to argue that no additional hazards are introduced�

i�e� the system is at least as safe as before the change� It can be stated that in

fault�free conditions the ability to guarantee the timing requirements are met is

increased through using analysis instead of test� Therefore� the problem becomes

a matter of showing the fault tolerance 	i�e� ability to deal with timing overruns

is at least as e�ective as with the cyclic scheduler� Also� the impact of any change

to the interface with the rest of the system has to be assessed�

To show that the fault tolerance� with respect to scheduling� is una�ected requires

a demonstration that timing overruns are detected at least as e�ciently as with

the cyclic scheduler� It is assumed that the fault recovery strategy initially

remains unchanged� Section ��� contains a discussion of the various techniques

��

	including their pros and cons
 for implementing a timing watchdog for a �xed

priority scheduler� The principal technique for fault recovery is to have a lane

change followed by a reset of the faults lane� Two main techniques are considered�

the tick driven watchdog and the countdown timer watchdog� The conclusion

is that either technique is at least as good at detecting timing overruns as the

timing watchdog of the cyclic scheduler�

There are two aspects to the interaction with the rest of the system� the time

ordering of tasks and their interface� The fact that tasks are executed in a

di�erent order has already been dealt with� The interface between the rest of

the system and the scheduler is una�ected because�

� there is no need to alter the way in which call�outs to tasks are handled�

i�e� exactly the same variables can be passed and the actual procedure calls

can be made in the same way� and

�� the scheduler interface to the timing watchdog� including event handling�

is the same�

The fact that the interface to the rest of the system is una�ected and the proof

of scheduling correctness is now based on mathematical evidence� this means the

certi�cation evidence derived is in fact improved� As already stated in section

������ when consulted the relevant certi�cation authority con�rmed this opinion�

��� Summary

The contributions of this chapter are to demonstrate�

� How the scheduling techniques described in Chapters � � � relate to a

change of scheduling policy in a real system� The work has shown that the

techniques are su�cient to handle the complexity and provide de�nitive

results whilst being comprehensible�

�� The impact on the process is the need for the actual �real� requirements

to be expressed that can then be guaranteed as being met through analy�

sis� Combined with improved certi�cation evidence through using analysis�

��

rather than test� the change adds a great deal of bene�ts to the �nal prod�

uct�

The chapter has helped to show the implications to the product and process life�

cycle of a change from a cyclic scheduler to a �xed priority scheduler for a real

system� The �xed priority scheduling technique has been used by Rolls�Royce

on the actual engine controller� During trials� no problems were found with the

engine controller after the change �����

��

Chapter �

Analysis of Task Sets That

Feature O	sets

The purpose of this chapter is to address the issue of timing analysis for task sets

that feature o�sets� The majority of the timing analysis published to date and

the contents of this thesis has assumed a critical instant� Liu and Layland �
��

state that for task sets that feature no o�sets there is a critical instant where all

tasks are simultaneously released� In these circumstances� there are a variety of

tests exist that are both su�cient and necessary�

However� in practical systems it is sometimes necessary to o�set the execution

of tasks from one another� For these cases� the test based on a critical instant is

pessimistic because the analysis does not account for the phasing of tasks ��
��

O�sets are used within real systems so that actual requirements and design�

derived requirements can be met� These include�

� Actual Requirement � Ensuring a particular action has been performed be�

fore releasing another task� For example� task A may request data from a

hardware device� however� the data may not be available until a later time�

Therefore� an associated task B is required to read the data� Hence the

task B would have to be o�set by an appropriate amount� The approach in

Algorithm � of Chapter � uses o�sets to enforce separation requirements�

�� Design�Derived Requirement �A�� The spreading of processor resource re�

quirements through a given time frame so that jitter can be reduced for a

��

speci�c task� To achieve a jitter requirement� a task�s deadline is reduced�

The e�ect of this change is the task may have a higher priority� which could

increase the interference on lower priority tasks� To prevent too great an

impact on other tasks� the task is phased to occur at an appropriate time�

The task attribute assignment approach in Chapter � uses o�sets as part of

Algorithm � for dealing with jitter requirements� The timing requirements

for tasks P

� P�
 and P�� in the case study of Chapter � presents an

example of this nature�

�� Design�Derived Requirement �B�� Ensuring precedence relations are main�

tained by not allowing a task to be released until another has completed

its execution� Section ����� has already shown how o�sets may be used

for enforcing precedence as part of a distributed scheduling mechanism�

Chapter � makes similar use of o�sets�

A useful observation is that all of these requirements are �exible in nature� For

example consider a separation requirement between two tasks� If the minimum

separation between the two tasks is always maintained and the second task meets

its required deadline� then the actual o�set does not matter� The approach taken

within this chapter utilises the �exibility available�

Section ��
�� of the literature survey describes existing approaches that have

been attempted to analyse tasks with non�zero o�sets� However� a number of

problems were found with these approaches� Therefore� this chapter is to inves�

tigate new techniques for solving the problem that are optimised 	in the context

of pessimism� understandable and computational complexity
 for the types of

application expected�

Section ��
 discusses the existing approach where task o�sets are ignored and

it is assumed there is a critical instant� Section ��� discusses the exact analysis

approach� where each individual task release is checked for schedulability for the

minimum period that the execution order takes to repeat� Section ��� presents

the new approach that entails forming a composite task with no o�set to repre�

sent the tasks with o�sets� Section ��� investigates how e�ective the composite

approach is when compared to the critical instance and exact approaches� Fi�

nally� section ��� investigates how further improvements to the composite model

may be provided�

��

��� Analysis of Task Sets That Feature O
sets

Assuming a Critical Instant

Simple analysis of task sets with o�sets can be carried out by e�ectively ignoring

the o�sets and assuming a single critical instant� Each task in the set of tasks is

transformed as illustrated in equations 	��

 and 	���
� The transformation has

no e�ect on tasks already having a zero o�set�

D�
i � Di �Oi 	��

where D�
i is the modi�ed value of task i�s o�set� and

Di is the original value of task i�s o�set

Oi � � 	���

The main problem with this approach is that the analysis is especially pessimistic

since the ability to balance resources is lost� Consider the �Design�Derived Re�

quirement 	A
� 	from the list at the start of the chapter
 where tasks with tight

jitter requirements have to be phased� The analysis would e�ectively ignore the

phasing� The task set characteristics outlined in Table ��
 are presented as an

example�

Id T O D C

A ����� � ���� ����

B ����� ����
����
���

C �����
����
����
���

D �����
���� �����
���

E ����� � ����� ����

F
����� �
�����
���

G ������ � ������
���

H
������ �
������ ����

Table ��
� Example task set

��

Table ��
 has �ve columns� where the columns represent�

Id is the identi�er of the task

T is the period of the task

O is the o�set of the task

D is the deadline of the task

C is the worst�case execution time of the task

Table ��� contains the results of the schedulability analysis using the approach

described in this section� The table illustrates that the resultant task set is not

schedulable because Task A misses its deadline� The columns of Table ��� are a

superset of those for Table ��
� The additional columns represent�

R is the worst�case response time of the task

Met� indicates whether the task is schedulable� i�e� R � D

The analysis in Table ��� is based on the timing analysis for a non�preemptive

scheduling model described in Chapter � and priorities assigned using the dead�

line monotonic priority ordering�

Id T O D P C R Met�

C ����� � ����

��� ���� Y

B ����� � ���� �
��� ���� Y

A ����� � ���� � ���� ���� N

D ����� � ���� �
��� ���� N

E ����� � ����� � ����

��� Y

F
����� �
����� �
���
���� Y

G ������ � ������ �
���
���� Y

H
������ �
������ � ����
���� Y

Table ���� Results of the Simple Analysis

Table ��� helps to show how the simple form of analysis can lead to pessimistic

results caused by the tasks with a period of ����� not having their resource

distributed over time� Tasks A and D fail to meet their deadline mainly due to

the interference caused by the higher priority tasks B and C� However� inspecting

��

the task set shows the tasks A� B� C and D should not interfere with each other

since their o�sets and deadlines mean their executions cannot overlap� Therefore�

more appropriate analysis should be found�

��� Exact Analysis

Section ��
�� of the literature survey �rst discusses exact analysis within this

document� The exact analysis takes the approach of showing every individual

release of a task is schedulable assuming all tasks execute for their worst�case

execution time� The original consideration of timing analysis� presented by Leung

and Whitehead ���� shows that if every instance of every task on a particular

processor is schedulable over the period �Maximum O�set of Any Task� ��Least

Common Multiple of the Task Periods Maximum O�set of Any Task
 then the

task set is schedulable� An instance of a task is de�ned as its release� execution

and completion� Audsley ���� improved the analysis so the duration became

�Maximum O�set of Any Task� Least Common Multiple of the Task Periods

Maximum O�set of Any Task
�

The exact analysis approach does not su�er the pessimism of any of the other

approaches� such as those discussed in section ��
�� and in section ��
� The

pessimism of the other approaches originates in two areas� Firstly� the analysis

assumes the task set has a single critical instant� which e�ectively removes the

phasing provided by having o�sets� Secondly� the blocking model for the timing

analysis is based on the critical instant� which introduces pessimism since it

is assumed every lower priority task can block the task being analysed� This

is clearly pessimistic because it relies on the assumption that the task being

analysed is runnable when any of the lower priority tasks is being run� There

are many cases where this is not true�

Table ��� presents the results of the schedulability analysis derived using exact

analysis for the task set in Table ��
� The results show the task set is schedulable

when analysed using the exact approach� In contrast� Table ��� demonstrates

the task set is unschedulable using the approach that ignores o�sets�

The problem with the exact analysis approach is that for task sets that feature

co�prime periods then the number of releases that require checking may become

��

prohibitively large� Table ��� gives the number of releases for the example task

set in Table ��
� However� if � tasks are added to the task set with iteration

rates of ����� and ������ then the number of releases to be checked becomes

	������
��
 	���
��
 	���
��
 � �������� The number of task instances

that need to be checked could become large� If it is considered that the task sets

typically contains upwards of �fty tasks� then the computational complexity may

result in a problem that is e�ectively infeasible�

Id T O D P C R Met�

C �����
����
����

���
���� Y

B ����� ����
���� �
���
���� Y

A ����� � ���� � ���� ���� Y

D �����
���� ����� �
���
���� Y

E ����� � ����� � ���� ���� Y

F
����� �
����� �
��� ���� Y

G ������ � ������ �
��� ���� Y

H
������ �
������ � ���� ���� Y

Table ���� Results of the Exact Analysis

Id T O Releases
�
� LCM�Ti�

Ti
� �������

Ti

�
A ����� � ��

B ����� ���� ��

C �����
���� ��

D �����
���� ��

E ����� � ��

F
����� �
�

G ������ � �

H
������ �

Overall
��

Table ���� Number of Task Releases to be Veri�ed

��

��� A Composite Approach

Experience in performing timing analysis of real industrial systems leads to the

observation that there is likely to be a pattern in the types of o�set used� The

use of o�sets is likely to be analogous to that of the cyclic scheduler� i�e� the

processing frame is split into manageable chunks with tasks allocated to the

di�erent partitions using o�sets� Table ��
 can be used to illustrate the type of

requirement that result� In Table ��
� tasks A� B� C and D have o�sets such that

their computation is spaced relatively evenly over the period of ����� units�

The purpose of this section is to investigate how a timing analysis approach

may be derived� The timing analysis is to be tailored for the type of timing

requirements expected and is intended to be easily understood�

���� De�ning the Composite Task

This section presents an approach based on the formation of composite tasks

that are used for analysis purposes only� i�e� the composite task does not

feature as part of the implementation at run�time� The motivation behind this

approach is that if a composite task with zero o�set can represent the tasks with

non�zero o�sets� then the analysis presented in section ��
 may be used� The

bene�t of the composite task approach is that the computational complexity

is kept su�ciently low� while allowing the resource to be spread through time�

However� one of the principal bene�ts of the technique is the fact the existing

analysis can be used with a limited amount of pre� and post�processing� There

are a number of bene�ts of being able to reuse the analysis� including the fact

exisiting tools and training can still be used as well as only a limited amount of

extra certi�cation evidence is needed�

The following is a number of steps to be followed to derive the composite task�

The steps are backed up by a threaded example 	presented in italics
 based on

the task set in Table ��
�

� A composite task is created for each period where there are tasks with

non�zero o�sets� To reduce pessimism one task is included in the set of

tasks used to form the composite task� The one task has zero o�set and

�

the same period as the rest of the tasks in the set� This one task can be

chosen from any that meet the criteria of zero o�set and the same period

as the other tasks in the set� If a task with the same period and zero o�set

does not exist� then just the tasks with non�zero o�sets are represented by

the composite task�

For the task set in Table ��
� there is a need for one composite task to

represent tasks B� C and D� These tasks have non�zero o�sets and the

same period of 	����� The composite task also represents task A that has

the same period as tasks B� C and D� and a zero o�set�

�� For each composite task� de�ne a set ST that consists of the tasks with

the same period and non�zero o�sets� and a maximum of one task 	if one

exists
 with the same period and zero o�set�

For the task set in Table ��
� the set ST consists of four tasks B� C and D

�by virtue of having the same period and non�zero o�set�� and task A �by

virtue of having the same period and zero o�set��

�� For each composite task� de�ne a set ST
 that consists of the tasks with

the same period and non�zero o�sets� If the composite task is to represent

a task with zero o�set� then an additional task is added to set ST
 with

the same period as the other tasks and an o�set equal to its period� The

additional task is intended to represent the second instance of the task with

zero o�set� In other words the set ST
 represents the instances of the tasks

in set ST in the time range 	�� period of the tasks in set ST��

For the task set in Table ��
� the set ST
 consists of four tasks B� C and D

as well as one other denoted as X� Task X has a period equal to the period

of tasks B� C and D �i�e� 	����� and an o�set equal to its period�

�� For each composite task� a worst�case execution time is assigned equal to

the maximum execution time of any task in the set ST�

For the task set in Table ��
� the composite task�s worst case execution time

is

CCOMP � maximumfCA� CB� CC� CDg

� maximumf�����
����
����
���g

CCOMP � ���� 	���

��

�� For each composite task� de�ne a set ST� which is an ordered version of

ST
� The ordering is in accordance with increasing value of o�set for the

tasks in set ST
�

For the task set in Table ��
� the set ST	 is de�ned as

	a
 task B �o�set is �	��� followed by

	b
 task C �o�set is
����� followed by

	c
 task D �o�set is
����� followed by

	d
 task X �o�set is 	������

i�e� ST	 � fB� C� D� Xg

�� For each composite task� de�ne a set ST� where the members are ordered

the same as set ST�� However� the value of the members is altered to be

equal to the o�set of the member in set ST� divided by the index 	in the

range
��N
 into the set ST��

For the task set in Table ��
� the set r is de�ned as

ST� � f OB

index of member B in set ST�
�

OC

index of member C in set ST�
�

OD

index of member D in set ST�
�

OX

index of member X in set ST�
g

�

�
����

�

����

�
�

����

�
�
�����

�

�

ST� � f����� ����� ����� ����g 	���

�� For each composite task� the task is given a period equal to the minimum

value of any member in the set ST��

For the task set in Table ��
� the period of the composite task is the mini�

mum of �	��� ����� ���� and �	��� Therefore� the period of the composite

task is �����

�� For each composite task� the task is given a deadline equal to the minimum

relative deadline for any task in the set ST� The minimum relative deadline

is classed as the task�s deadline minus the task�s o�set�

��

For the task set in Table ��
� the composite task�s deadline is equal to the

minimum of

	a
 DA � OA � ����

	b
 DB � OB � ����

	c
 DC �OC � ����

	d
 DD � OD � ����

� DCOMP � ����

�� Replace the tasks that form the composite task 	i�e� the members of set

ST
 with the composite task in the task set to be analysed�

For the task set in Table ��
� tasks A� B� C and D are replaced with the

task COMP � The resulting task set consists of the tasks COMP� E� F� G

and H�

�� Perform the �standard� schedulability analysis for the task set that includes

the composite task�

Table ��� illustrates the results of the schedulability analysis� The results

show that the task set is schedulable using the composite approach� Table

��� shows how tasks A� B� C and D are replaced by a single composite task

with characteristics of
 period of ����� deadline of ���� and worst�case

execution time of 	����

� For each task that is replaced by the composite task 	i�e� the tasks that are

members of set ST
� determine the task�s worst�case response time using

equation 	���
�

R � O RCOMP 	���

For the task set in Table ��
� the worst�case response times are

RA � OA RCOMP � � ���� � ����

RB � OB RCOMP � ���� ���� �
����

RC � OC RCOMP �
���� ���� �
����

RD � OD RCOMP �
���� ���� � ����� 	���

��

Id T O D P C R Met�

COMP ���� � ����
 ���� ���� Y

E ����� � ����� � ���� ���� Y

F
����� �
����� �
��� ���� Y

G ������ � ������ �
���
���� Y

H
������ �
������ � ����
���� Y

Table ���� Results of the Composite Analysis

���� Proof of Correctness

Obviously� with any new approach to timing analysis it is important to show that

it is a su�cient test� A su�cient test is where� if the test indicates that the system

meets its requirements� then it will in practice� However� if the results suggest the

system does not meet the requirement� then in practice the system may still do

so� In this respect the test can be considered as pessimistic� Tindell �
��� shows a

test is su�cient but not necessary when the interference experienced by all lower

priority tasks does not decrease when compared with another su�cient test�

Therefore� to prove that the composite analysis is su�cient when compared with

the �standard� schedulability analysis� the interference caused by the composite

task and the tasks that form it need to be compared�

Theorem �� The interference caused by the composite task experienced by all

lower priority tasks does not decrease compared to the interference caused by the

tasks that form the composite task�

Proof

The su�cient test to be used as a comparison is the exact analysis in section ����

Based on the de�nition of the composite task in section ����
� it can be stated

the composite task has a higher priority than any of the tasks formed from it�

Therefore� if it can be shown the condition in equation 	���
 is true� then the

test is su�cient� Equation 	���
 represents a statement that the maximum inter�

ference of the composite task is always greater than� or equal to the maximum

interference of the tasks from which it is created� The left hand side of equation

	���
 is the interference caused by the composite task at any time t� The time

t is with respect to a reference time when all periodic tasks with zero o�set are

��

simultaneously released� The right hand side of equation 	���
 is the interference

of the tasks that form the composite task at any time t�

�t �

�
t

TCOMP

�
CCOMP �

X
j�ST

����
�
t� Oj

Tk

�����
�

Cj 	���

where Tk is the period of the tasks that are members of set ST

The symbol jj� signi�es a limiting function that constrains the answer to the set

of non�negative numbers 	i�e� any negative input returns a value of zero� positive

numbers are unchanged
� Therefore� the combination of symbols jdej� means

that the answer is always a whole number and non�integer numbers are rounded

up�

Based on the de�nition of the composite task in section ����
� it can be stated that

CCOMP � Cj� Therefore� equation 	���
 can be simpli�ed to produce equation

	���
�

�t �

�
t

TCOMP

�
�
X
j�ST

����
�
t� Oj

Tk

�����
�

	���

Based on the de�nition of the composite task in section ����
� it can be stated

that the tasks from which the composite task is formed repeat their execution

every Tk units of time� Therefore� if it can be shown the condition in equation

	���
 is true over this duration� then it will always be true� This means that the

condition in equation 	���
 must be shown to be true�

xTk � t � xTk Tk� x � N �

�
t

TCOMP

�
�
X
j�ST

����
�
t� Oj

Tk

�����
�

	���

Based on the de�nition of the composite task�s period in section ����
� it can

be stated that iTCOMP is always less than the o�set of the corresponding task

in the set ST� � the �corresponding task� is the ith member of set ST when

the set ST is ordered according to increasing o�set� Therefore� it can be stated

that the composite task is always released before the �corresponding task� of the

original tasks� Hence� if it can be shown that N 	N being the number of tasks

forming the composite task�
 releases of the composite task always has a greater

interference 	for all time in the range xTk � t � xTk Tk
 than the tasks from

��

which the composite task is formed� then equation 	���
 is true� The left hand

side of equation 	���
 can be expressed as shown in equation 	��
�
�

�
t

TCOMP

�
�

����
�
t

Tk

�����
�

����
�
t� TCOMP

Tk

�����
�

����
�
t� �TCOMP

Tk

�����
�

����
�
t� 	N �

TCOMP

Tk

�����
�

	��
�

Or alternatively�

�
t

TCOMP

�
�

N��X
i��

����
�
t� iTCOMP

Tk

�����
�

	��

Therefore� equation 	���
 becomes

xTk � t � xTk Tk� x � N �
N��X
i��

����
�
t� iTCOMP

Tk

�����
�

�
X
j�ST

����
�
t� Oj

Tk

�����
�

	��
�

Based on the de�nition of the composite task in section ����
� equation 	��
�

can be stated� Therefore� the condition in equation 	��
�
 is true�

iTCOMP � Oj 	��
�

Therefore� the condition in equation 	���
 is true� Hence the composite task

causes greater interference than the tasks that form it�

�

Theorem �� The worst�case response time of the tasks in the task set� other

than the composite task� is not lower than before the composite task is formed�

Proof

An e�ect of the composite approach is that priorities within the system may

change� This means a lower priority task that previously causes blocking on a

particular task may not block� and visa versa� Theorem � has already shown the

composite task causes greater interference than the tasks that formed it� but what

about blocking� Based on the de�nition of the composite task in section ����
�

it can be stated the composite task has an equivalent or higher priority than the

��

tasks from which it is created� The reason is that the minimum deadline is used

and priorities are assigned using DMPO� Therefore� the set of lower priority tasks

with the composite approach is a superset of the lower priority tasks without the

composite approach� Hence the blocking and the interference are increased�

�

���� Selection of O�sets

The rigorous treatment of o�sets is a new area that allows scope to optimise the

chosen timing constraints� At present� it is known that there is a need for o�sets

within the system� however there is no de�nition to date of what they should be�

For example� consider a separation requirement speci�ed for two tasks� As long

as the minimum separation between the two tasks is maintained and the second

task meets its required deadline� then the size of the o�set may be increased�

Therefore� it is proposed that to some extent o�sets and deadlines are treated

as free variables� The aim would be to choose the values of o�sets to enforce the

necessary requirements as well as to optimise the schedulability analysis� This is

referred to as a �free variable� argument�

The approach that could be taken is to treat the tasks with o�sets in a similar

fashion to allocating tasks in the cyclic schedule� For N tasks 	each having a

period of T
 that require o�sets� the following o�sets would be assigned to tasks�

�� T
N
� �T
N
�

� �N���T

N

Based on the de�nition of the composite task in section ����
� the o�set chosen

with the free variable argument results in the largest period for the composite

task being obtained� Hence the likelihood of the task set being schedulable is

increased�

��

The free variable approach could result in tasks having greater o�sets than neces�

sary� however this could provide better results� A constraint over the assignment

of o�sets to tasks is that the o�sets should only ever be increased� In the event

that the o�set values provided are not su�cient 	i�e� the constraint could be

broken
 to map the timing requirements to tasks then in e�ect the number of

slots could be increased� Therefore� the choice of o�sets is as below� where M is

greater than N�

�� T
M
� �T
M
�

� �M���T

M

If the task set in Table ��
 is considered using the free variable argument with

M�N��� this would result in the tasks A� B� C and D having o�sets of �� �����

���� and
���� respectively� This would be invalid since the modi�ed value for

task C�s o�set would be less than the original� However� if M��� then the choice

of o�sets for tasks A� B� C and D that would be valid is ��
�����
���� and

����� respectively� Using the free variable argument� the period of the composite

task is equal to T
M
�

In many cases� the task deadlines may also be treated in a similar manner as

the o�sets� Consideration of the de�nition of the composite task in section ����
�

the choice of deadline for the composite task is maximised if a task�s deadline

is equal to the o�set of the task with the next largest o�set in the transaction�

For the example in Table ��
� deadlines for task A� B� C and D should be
�����

����� ����� and ������

��� Evidence of E
ectiveness

To understand whether the composite form of analysis is e�ective requires com�

parison with the exact approach� Analysis was attempted with task set charac�

teristics generated pseudo�randomly with a realistic range for the iteration rate

��� ms�
��� ms�� Due to the typical sizes of the least common multiple� which

in this case can be as large as
���Number of Tasks� the computational complexity

did not allow any form of comparison to be carried out� Therefore� the analysis

was rationalised to task set characteristics that could be feasibly expected and

computed�

��

The task set characteristics were�

� The iteration rates were �� ms� �� ms�
�� ms� ��� ms or
��� ms�

�� The worst�case execution time of the tasks are in the range 	�� ���� ms�

�� The o�sets were assigned either randomly within the range 	��task iteration

rate
 or using the free variable argument�

�� The deadlines were maximised so that�

	a
 Tasks without o�sets have a deadline equal to their period�

	b
 Tasks with o�sets have a deadline equal to the o�set of the next task

in the set ST	 de�ned in section ����
� In the case of the task with

the largest o�set at a particular iteration rate 	i�e� the last member

of set ST	
� the deadline is equal to the period of the task�

Figures ��
 and ��� give two comparisons of the three approaches 	inexact analysis

in section ��
� exact analysis in section ���� and composite analysis in section

���
 discussed in this chapter� The comparisons are� without the free variable

argument and with the free variable argument respectively� For the �gures� the

label �INEXACT� refers to analysis of task sets neglecting o�sets described in

section ��
� the label �COMP� refers to the results of the composite analysis and

the label �EXACT� refers to the results of the exact form of analysis� The y�axis

of both graphs give an e�ectiveness rating 	the evidence is gathered over
���

samples per data point
 that relates to the probability an approach will �nd a

solution�

The analysis was performed for a number of task set sizes and over a range of

resource bands� Each resource band covers a range of
�� processor utilisation�

the lower limit of a particular resource band is labeled on the x�axis� For an

example location on a line� if the x�axis has a value of ��� then the point relates

to a resource band ��������
� The graphs have a number of lines drawn that

correspond to the number of tasks within the set and the approach used� i�e�

�Tasks �� � COMP� represents composite analysis of task sets with twenty tasks�

The exact approach always gives a value for e�ectiveness of
� i�e�
��� of task

sets are found to be schedulable� The reason is the analysis is only performed

on schedulable tasks and schedulability is proven using the exact approach�

���

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

30 40 50 60 70 80 90

E
ffe

ct
iv

en
es

s

Resource Band

EXACT
Tasks 20 - COMP
Tasks 30 - COMP
Tasks 40 - COMP
Tasks 50 - COMP
Tasks 60 - COMP

Tasks 20 - INEXACT
Tasks 30 - INEXACT
Tasks 40 - INEXACT
Tasks 50 - INEXACT
Tasks 60 - INEXACT

Figure ��
� Comparison of the Approaches Without the Free Variable Argument

The results show three facts which are�

� The free variable argument leads to an improvement in schedulability�

�� For a resource range ��������
 the e�ectiveness of the composite o�set

analysis is above ���� However� the e�ectiveness falls at the higher levels

of resource in the range �����
���
�

�� The composite approach is signi�cantly more e�ective than the inexact

approach�

���� E�ectiveness of the Restricted Computational Model

The simulation study is repeated without the improved analysis for the restricted

computational model derived in sections ����� and ������ The aim is to high�

light the bene�ts of the improved analysis� Figure ��� shows the e�ectiveness of

the composite approach 	labeled COMP
 without the improved blocking model�

compared to the composite approach with the improved blocking model 	labeled

��

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

30 40 50 60 70 80 90

E
ffe

ct
iv

en
es

s

Resource Band

EXACT
Tasks 20 - COMP
Tasks 30 - COMP
Tasks 40 - COMP
Tasks 50 - COMP
Tasks 60 - COMP

Tasks 20 - INEXACT
Tasks 30 - INEXACT
Tasks 40 - INEXACT
Tasks 50 - INEXACT
Tasks 60 - INEXACT

Figure ���� Comparison of the Approaches with the Free Variable Argument

IMPR� MODEL
� The results were generated under the same conditions as those

for section ���� The results show an improvement in the e�ectiveness obtained

over a range of task set sizes� However� the greatest bene�t is illustrated in Fig�

ure ��� with resource levels greater than� or equal to ���� again over a range of

task set sizes� E�ectiveness is up to ��� better with the improved schedulability

analysis� When the resource level is less than ���� the impact of blocking caused

by the non�preemptive scheduler tends to be less important�

���

0.9

0.92

0.94

0.96

0.98

1

1.02

20 25 30 35 40 45 50 55 60

E
ffe

ct
iv

en
es

s

Number of Tasks

EXACT
COMP

IMPR. MODEL

Figure ���� Comparison of the Composite Approach With�Without the New

Blocking Model� Resource Range �����
����

��� Further Improvement to the Composite O
�

set Analysis

This section considers the composite o�set analysis� and the pessimism it in�

troduces� There are a number of sources of pessimism within the analysis due

to the less than ideal attributes 	DCOMP � TCOMP � CCOMP
 calculated for the

composite task� The use of the free variable argument e�ectively improves the

values of DCOMP and TCOMP � However� CCOMP can still be a particularly severe

source of pessimism�

Control loops� where there are three tasks� provide a good example of where

pessimism may arise� The �rst and last tasks would deal with the sensor and

actuator respectively� These tasks are likely to have a comparatively small worst�

case execution time� The second task would deal with data calculations and

would invariably have a larger worst�case execution time than the other two

tasks� According to the approach in section ����
� the composite task�s worst�

���

0.7

0.75

0.8

0.85

0.9

0.95

1

20 25 30 35 40 45 50 55 60

E
ffe

ct
iv

en
es

s

Number of Tasks

EXACT
COMP

IMPR. MODEL

Figure ���� Comparison of the Composite Approach With�Without the New

Blocking Model� Resource Range �����
����

case execution time is equal to the worst case execution time of the second task

in the transaction� When the composite task is representing the �rst and third

tasks� there is a large amount of pessimism with the composite approach�

The amount of pessimism can be substantially reduced by varying the value of

CCOMP with time� For each composite task� a set ST� is de�ned which is an

ordered version of the worst�case execution times of the tasks in set ST� The

set ST is de�ned in section ����
� The ordering is in accordance with decreasing

value of worst�case execution time�

For the task set in Table ��
� the set ST� is de�ned as an ordered version of the

worst case execution times of tasks A� B� C and D� Therefore� ST� is an ordered

version of f	����
����
����
���g� Clearly� these worst�case execution times

are already in descending order as required� Hence ST� is f	����
����
����

���g�

���

Equation 	��
�
 can be used for calculating the worst�case execution time of the

composite task for any response time Ri�

CCOMP �

P
�l	l�ST�

l
Ri�Ol
Tl

m
ST�	!l
l

Ri
TCOMP

m 	��
�

where ST� 	!l
 represents the lth member of ST�� and

!l is the index into the set ST� in the range �
�Number of Tasks in Set ST��

Equation 	��
�
 provides the composite task�s worst�case execution time by work�

ing out the interference of the tasks that form the composite task� The result is

then divided by the maximum number of times the composite task can execute�

The interference calculation is based on the tasks that form the composite task

executing in the order of descending worst�case execution time� This task order�

ing is assumed in order to ensure the worst possible interference is obtained to

guarantee the test is su�cient� Equation 	��
�
 represents the value of CCOMP �

which is the worst�case average for the computation time of the tasks that form

the composite task over the period of interest�

Observation 	� The worst�case execution time of the composite task can be

varied with time by using the worst�case execution times of the tasks that form

the composite task cyclically in descending order�

Argument

Each task that forms the composite task can only execute once in the period from

the critical instant� to a point in time that is the least common multiple of the

tasks� periods later 	i�e� time in the range �critical instant� critical instant period

of the tasks that forms the composite task

� If the task execution order is sorted

in accordance with descending worst�case execution time� then this is the worst�

case situation because the greatest interference is caused to other tasks�

The tasks� worst�case execution times are not used cyclically in the order de�ned

in set ST� starting with the task that has the maximum worst�case execution

time� The reason is worse interference could be caused dependent on the tasks�

worst�case execution times that follow the task with the maximum worst�case

execution time� For example� if the tasks that form the composite task have

���

worst�case execution times as follows� �� ���
�
�
�
�� and
�� Then� the worst�

case sequence of tasks could start with the task that has an execution time of
�

	i�e� the sequence would be
��
�� �� ���
�
�

 rather than the task with the

maximum worst�case execution time 	i�e� the sequence would be ���
�
�
�
��

�� �
�

�

To illustrate how equation 	��
�
 works� an example is provided� The task set

in Table ��
 with a current value of Ri of ������ In this case the higher priority

tasks 	the set j
 than the task priority analysed is the composite task� The exam�

ple shows how the worst�case execution time used in the schedulability analysis

equations is e�ectively reduced from ���� to
���� which is an improvement of

���

ICOMP �
X

�l	l�ST�

�
Ri �Ol

Tl

�
ST�	!l

�
X

�l	l�ftasks A
 B
 C
 Dg

�
Ri �Ol

Tl

�
ST�	!l

�

�
Ri �OA

TA

�
ST�	

�
Ri � OB

TB

�
ST�	�

�
Ri �OC

TC

�
ST�	�

�
Ri � OD

TD

�
ST�	�

�

�
������ �

�����

�
����

�
������ ����

�����

�

���

�
������
����

�����

�

���

�
������
����

�����

�

���

CCOMP �
����l
Ri

TCOMP

m

�
����	
�����
����

�

����

�
� CCOMP �
��� 	��
�

To show the e�ectiveness of the approach the same simulation conditions are

used in section ���� except the worst�case execution times are altered� Instead

the simulation is performed for transactions always having three tasks� the �rst

���

and last task having a worst�case execution time in the range �
����� and the

second task having a worst�case execution time in the range �
�������

Figure ��� shows the e�ectiveness of the composite approach 	labeled COMP

without the improvement compared to the composite approach with the improve�

ment 	labeled IMPR� MODEL
� For comparison purposes� results are provided

for the analysis where o�sets are ignored 	labeled IGNORE OFFSETS
� The two

numbers 	X�Y
 at the end of each label 	e�g� COMP X Y
 indicate the resource

range 	i�e� the resource utilisation of the task sets is in the range �X��Y�

 for

the task sets�

0

0.2

0.4

0.6

0.8

1

1.2

1.4

20 25 30 35 40 45 50

E
ffe

ct
iv

en
es

s

Number of Tasks

EXACT
COMP_0_50

IMPR. MODEL_0_50
IGNORE OFFSETS_0_50

COMP_50_100
IMPR. MODEL_50_100

IGNORE OFFSETS_50_100

Figure ���� Comparison of the Approaches

Figure ��� shows that in this scenario the original composite approach is not

always e�ective compared to the approach that simply ignores o�sets� However�

the modi�ed composite approach performs much more e�ectively 	up to ���

more e�ective
 than either of the other two approaches�

���

��	 Summary

This chapter has attempted to derive an appropriate approach to timing analysis

for task sets that feature o�sets� The technique developed compares favourably

with the criteria for successful technology transfer�

� Certi�cation � The approach provides analysis that guarantees the system�s

timing behaviour� Therefore� the results of the analysis can be used as part

of the certi�cation evidence of the system�

�� Reuse � The �standard� schedulability analysis de�ned in earlier chapters

is reused� The only changes necessary is a limited amount of pre� and

post�processing� The processing is to establish the o�sets of the tasks and

messages� and then check for convergence�

�� Su�ciency � The approach does not place restrictions on the computational

model� Therefore� the su�ciency criterion is satis�ed� The reduced pes�

simism compared to the inexact approaches increases the likelihood that

the timing requirements are met� It should be noted that the appropriate

selection of o�set requirements increases the likelihood of the system being

schedulable�

�� Understanding � The approach is considered understandable as demon�

strated by the fact it has been technology transferred to Rolls�Royce ����

and the Guards project� The GUARDS project is an ESPRIT funded

project that addresses the development of architectures� methods� tech�

niques� and tools to support the design� implementation and validation of

critical real�time systems�

An additional bene�t is computational complexity is reduced compared to exact

analysis�

���

Chapter

Transition from Uniprocessor to

Distributed System

Work on the hardware aspects of the system has shown the bene�t 	a saving

in cost and weight
 of a transition from a uniprocessor to a distributed system�

This transition can reduce the amount of cabling between the processor units and

sensors�actuators ���� Another advantage of the transition is that there should

be an increase in the available processing resource within the system�

The production and veri�cation of distributed real�time systems is very complex�

particularly for safety critical systems with the need to certify the product� There

are a number of technical issues associated with distributed systems� These issues

include� allocation �
���� task attribute assignment �
���� increasing robustness to

change ����� and timing analysis �
���� This chapter concentrates on the last three

of these issues� making the assumption that the allocation of functionality to

processors is largely based on the physical position of devices� The real challenge

with distributed scheduling is the e�cient implementation and veri�cation of

transactions involving more than one processor� This is because of the con�icting

requirements imposed on the di�erent components�

The work in this chapter is intended to build on the work performed for unipro�

cessor systems in Chapters �� �� � and � so that a smooth transition can be

attained� The bene�ts of this strategy are the ability to reuse the investment in

existing tools and the education of sta� as well as providing the ability to break

the system up into smaller parts�

���

The structure of the chapter is as follows� Section ��
 shows how the compos�

ite o�set analysis of Chapter � may be used as part of a distributed approach�

Section ��� presents an example of how the distributed analysis based on compos�

ite o�set analysis may be applied to a system�s timing requirements� following

a transition from a uniprocessor to a distributed system� Finally� section ���

presents evidence of e�ectiveness for the composite o�set analysis compared to

the Phase Modi�cation Protocol analysis and the release jitter based approaches

described in section ����

��� The Composite O
set Analysis

Section ��� of the literature survey provides background on previous approaches

	Release Jitter and Phase Modi�cation Protocol
 that have been developed for

the problem of distributed scheduling and timing analysis� Section ��� highlights

a number of problems� In brief� the problems are�

� the release jitter approach is based on an event�driven system� which is

considered di�cult to certify and the pessimism is too great�

�� the exact analysis has high computational complexity� and

�� for both approaches is a lack of robustness to change� i�e� a change on one

processor has a system�wide impact�

�
�

Watchdog

Clock

Watchdog

Clock

Processing

Device

Local

Memory

Watchdog

Clock

Processing

Device

Local

Memory

Processing

Device

Memory

Local

Processing

Layer

Layer

Memory

Databus

Layer

Figure ��
� Basic Architectural Structure

The system architecture being considered is general� The architecture in Figure

��
 illustrates the main points� which are�

� The processors may be physically separated by a signi�cant distance� There�

fore it is assumed communication between processors is performed using a

databus rather than via a back�plane�

�� All processors communicate via a fully interconnected �xed priority databus�

i�e� messages are routed between processors via one bus without the need

for gateways and multiple�hops�

�� The architecture is based on multiple versions of the infrastructure 	i�e�

processor� timing watchdog� real�time clock and local memory
 discussed

in chapters �� � and ��

�� It is assumed a mechanism for providing a global�time base is available�

The aim of this section is to develop an approach to scheduling and timing

analysis based on the composite o�set analysis developed in Chapter ��

�

����� Computational Model

The computational model developed is intended to address many of the draw�

backs of the release jitter and exact analysis� whilst harnessing the advantages�

The computational model is proposed with the following goals in mind�

� increase the robustness to change�

�� sporadic tasks are not utilised�

�� existing uniprocessor scheduling techniques from Chapters ��� can be reused�

�� low computational complexity� and

�� less pessimism than the release jitter approach�

The implementation aspects of our approach are the same as the Phase Modi��

cation Protocol discussed in section ����� and ����� i�e� o�sets are used to enforce

precedence� In brief� a task in the transaction is given an o�set that is greater

than or equal to the response time of the preceding task 	or message that deliv�

ers data from the preceding task in the case where the tasks exist on di�erent

processors
 in the transaction� This strategy achieves precedence between tasks

irrespective of whether the tasks exist on the same processor or di�erent proces�

sors� However� in an implementation model based on o�sets a global time base

is necessary�

Figure ��� shows an execution sequence of a number of tasks that form a trans�

action across a distributed system� and the messages that communicate data

between tasks� Figure ��� can be used to show how the time during which a task

or message may execute is controlled� For example� in the case of task t	 the du�

ration of allowed execution commences when message m
 has de�nitely arrived�

i�e� Ot� � Rm�� Message m	 is then scheduled for when task t	 has completed�

i�e� Om� � Rt�� and so on� By giving a task an o�set such that its dispatch

	or release for simplicity
 is always greater than the worst�case response time of

the event trigger 	i�e� the worst�case arrival time of the message
� precedence is

maintained even across a distributed system�

Controlling precedence using o�sets means that timing analysis is required for

task sets where tasks have o�sets� It is proposed that the timing analysis devel�

oped in Chapter � is used�

�
�

time

processor
1

processor

processor

processor

3

4

2

messages

t1

m1

m3

Key to Figure

Best Case Release Time Deadline

Represents the time within which execution may occur

m2

t2

t3

t4

Figure ���� Diagram to Illustrate the Timing Analysis of a Transaction

����� Use of The Free Variable Argument

Chapter � highlights potential pessimism in the composite analysis when the

value of the tasks� o�sets are small� The de�nition of a composite task in section

����
 means that if one of the values for the o�sets is small� then the period of the

composite task is also small� This causes problems when schedulability analysis

is performed because of the interference term in equation 	��
�
� The reason is

that the composite task would have a higher priority and a smaller period� which

causes more interference�

A potential solution is seen as the free variable argument introduced in section

������ The approach taken is to split the o�set tasks up in a similar fashion to

allocating tasks in the cyclic scheduler� The N tasks in the transaction 	each

having a period of T
 are assigned the o�sets given below so that the tasks

execute in the required order�

�� TD
N
� �TD

N
�

� �N���TD

N
�

For example� theMth task has an o�set of M��
N

TD� where TD is the transaction�s

end�to�end deadline� In e�ect adopting this approach means that the free variable

�
�

argument is used at two levels� across the system for distributed transactions and

on the individual processor�

The following equation is suggested for applying the free variable argument�

slot time �
t

no� of tasks in the transaction
TD 	��

where t is an index to the t th task in the transaction

The value of slot time is calculated with equation 	��

 represents the start

time of a slot allocated to a particular task within a transaction� with each task

having its own slot� The slots are ordered in accordance with precedence over

the available response time of the transaction� The free variable argument is

applied as shown in Algorithm � so that an o�set is assigned that ensures the

task executes after its allocated slot time and the preceding task�message has

completed� Algorithm � satis�es the constraint that o�sets are never decreased�

Algorithm �� � Algorithm for determining a task�s o�sets

if �the WCRT of the preceding task�message � slot time�

o�set � slot time

else

o�set � WCRT of the preceding task�message

An observation concerning the use of o�sets and the associated slot times is

the analogy with the TDMA 	Time Division Multiple Access
 communications

model� TDMA is a commonly used communications model� where each message

is allocated a �xed slot in a round robin scheduler� ARINC ��� �
�� represents

an example of a communications model that can provide TDMA�

The di�erence between the model de�ned in this chapter and the TDMA model

is that whilst messages are assigned slots� many messages may have the same

or overlapping slots� In these cases� arbitration is provided by the priorities�

Therefore� the problems of maintainability that are traditionally associated with

the cyclic scheduler do not arise� The approach in this section could equally be

applied to a system where tasks are scheduled with the �xed priority technique�

and messages using the TDMA approach� There are two bene�ts associated with

�
�

Processor
1

Processor
2 Task B

Task A

WCRT = R

Offset = O

A

B

Figure ���� Phasing of Tasks on Di�erent Processors

this observation� These are� the evolution of technology has taken a smaller step

resulting in a less steep learning curve� and there is a high probability that

certi�cation evidence may be reused� Again� this helps increase the likelihood of

acceptance during the technology transfer exercise�

����� Robustness to Change

One of the perceived bene�ts of the free variable argument is the robustness to

change� which enhances maintainability by saving veri�cation time� The reason

is within de�ned bounds a change on one processor does not necessitate a system

wide re�veri�cation�

Figure ��� illustrates how the timing characteristics of processor
 may be mod�

i�ed until RA � OB� without a�ecting the scheduling of processor �� since

DA � OB� Therefore� if the software on one processor is modi�ed� then only

that processor needs to be re�analysed as long as the timing requirements are

met� When the timing requirements are no longer met� the timing analysis and

task attribute assignment for the system is repeated� Therefore� the approach

represents a partial move towards the integration of task attribute assignment

and timing analysis� which helps meet our reduction in pessimism and robust

analysis objectives�

In contrast� both the release jitter and exact approaches have the release time of

a task in the transaction as always being equal to the preceding task�s completion

�
�

time� This means any change could have system wide repercussions� It should

be noted that the cost of the occasional system wide change is comparable to the

release jitter approach after any change� 	and signi�cantly less than the exact

approach
 since the steps that need to be taken are the same�

There are a number of envisaged bene�ts of the free variable argument� includ�

ing� resources are spread through time� and the value of each o�set can never be

too small� For the purpose of this work� the free variable argument is applied for

analysis reasons only� However� real gains may be achieved by actually manip�

ulating the requirements to achieve lower pessimism and better scalability� The

advantages of the composite o�set approach are listed at the beginning of this

section� However� there is the obvious disadvantage that some pessimism still

exists�

��� Explanation of the Distributed Systems Tim�

ing Analysis Using the Composite O
set

Analysis

The purpose of this section is to present an example set of system timing re�

quirements so that the e�ect of a transition from a uniprocessor to a distributed

system may be understood with respect to the timing analysis approach � release

jitter� exact analysis and composite o�set�

����� System Characteristics

The set of requirements to be used as an example is illustrated by the task set

in Table ��
 and the transactions in Table ����

The columns of Table ��� represent�

Id is the name given to tasks and transactions

C is the worst�case execution time of the task

T is the period of the task

D is the deadline of the task after the transition

�
�

Id T D C

�� ������ ������ ����

�
 ����� ����� ����

�� ������ ������ ���

�� ����� �����
���

� ������ ������ ����

 ����� ����� ��
�

� ������ ������
���

� ������ ������
���

�� ������ ������
���

�
 ����� ����� ����

�� ������ ������ ����

�� ������ ������ ����

Table ��
� Task Set�s Characteristics

Transaction
st �nd �rd Transaction

Id Task Task Task Deadline

A �

 �
 �����

B �� ��
� ������

Table ���� Transaction Characteristics

Tables ��
 and ��� provide both the system�s timing characteristics� The system�s

timing characteristics are de�ned in columns Id� T� D and C of Table ��
� In

addition� the system�s timing requirements includes two transactions given in

Table ���� Each transaction is given an identi�er� a precedence order 	i�e�
st

task followed by �nd task followed by �rd task
� and an end�to�end deadline

requirement� For example� transaction A refers to a transaction requirement

that task �
 is followed by task

 followed by Task �
 that should be complete

within a time of ������

Table ��� contains the results of the schedulability analysis for the single processor

case� Column RS is the worst�case response time for the single processor case�

The results were obtained assuming attributes are assigned using the approach

in Chapter �� The results in column RS indicate that the timing requirements

are met since �tasks � RS � D�

�
�

Id T D C RS

�� ������ ������ ���� �����

�
 ����� ����� ���� ����

�� ������ ������ ���
����

�� ����� �����
���
�
��

� ������ ������ ���� �����

 ����� ����� ��
�
����

� ������ ������
���
����

� ������ ������
��� �����

�� ������ ������
��� �����

�
 ����� ����� ����
���

�� ������ ������ ���� �
��

�� ������ ������ ���� �����

Table ���� Task Set�s Characteristics and Schedulability Analysis Results

����� Making the Transition to a Distributed System

A simple architecture is given in Figure ��
 that provides the basic architecture

required to support the transition� Table ��� and Table ��� provides the schedul�

ing information and results for a transition from a uniprocessor to a distributed

system� The architecture features three processors that are fully interconnected

by a common databus�

Table ��� provides additional scheduling information to support this transition�

Column N identi�es the processor to which each task has been allocated after

the migration to a distributed system� In column N � the symbol M signi�es a

message on the databus� The identi�ers for the messages are also pre�xed with

an M � The additional schedulability analysis results columns of Table ��� over

Table ��� represent�

RJ is the worst�case response time if the tasks are executed on � processors

and analysed using the release jitter approach

RE is the worst�case response time if the tasks are executed on � processors

and analysed using the exact analysis approach

RC is the worst�case response time if the tasks are executed on � processors

and analysed using the composite o�set approach

�
�

Id N T D C RS RJ RE RC

�� � ������ ������ ���� �����
�

� ���� ����

�
 � ����� ����� ���� ���� ��
��
�
�� ����

�� � ������ ������ ���
����
���� ���� ����

�� � ����� �����
���
�
��
����
��� ����

�
 ������ ������ ���� ����� ����� �
��� �����

 ����� ����� ��
�
����
���� ����
�
��

�
 ������ ������
���
���� ����
��� ����

�
 ������ ������
��� ����� ���� ���� ����

�� � ������ ������
��� ����� �����
���� �����

�
 � ����� ����� ����
���
 ��
� ���� ��
�

�� � ������ ������ ���� �
��

����
�
��
����

�� � ������ ������ ���� �����
��
� ����
����

M
� M ������ ������

� N�A

���
����
����

M

 M ����� ����� ��� N�A
���� �
��
���

M�� M ������ ������ ��� N�A �
���
���
 ����

M�
 M ����� ����� �
� N�A
���� �
��
����

Table ���� Task Set�s Characteristics and Schedulability Analysis Results

Table ��� provides information on how the transaction is implemented on the

distributed architecture� Whereas Table ��� provided the precedence constraints

for just tasks� Table ��� also includes the relevant messages for transferring data�

For example� message M

 carries data between task �
 and task

� and message

M�
 carries data between task

 and task �
�

When� the schedulability analysis is performed using the exact analysis approach�

the results show that after the transition to a distributed architecture the sys�

tem�s timing requirements are still schedulable�

Transaction
st
st �nd �nd �rd Transaction

Id Task Message Task Message Task Deadline

A �
 M

 M�
 �
 �����

B �� M
� �� M��
� ������

Table ���� Transaction Characteristics

�
�

Next� the release jitter approach is used to analyse the system� the results are

given in column RJ � This time the results indicate that task �
 of the system is

no longer schedulable� The analysis is terminated as soon as this task failed its

requirements� i�e� its response time exceeds its deadline� Therefore� the worst�

case response times for the other tasks are not their �nal values� The �nal values

would almost certainly be larger� and more tasks may miss their deadline� The

results of the exact analysis clearly show that the release jitter approach has a

great deal of pessimism� In fact� the results imply that splitting the functionality

over a number of processors instead of one can reduce the likelihood of the system

being schedulable� Increasing the system�s resources and timing margin suggests

that the system should become more schedulable� This assumes the databus

does not cause too great an overhead� which in this case it doesn�t�

With the composite approach� the results 	given in column RC
 are pessimistic

in comparison to the exact approach� however the system is still schedulable� i�e�

�tasks � RC � D� The example shows that the composite approach provides

a useful alternative to the exact approach in cases where the computational

complexity of the exact approach is prohibitive and pessimism is less of an issue�

����� Explanation of the Composite Approach

Table ��� helps to explain how the composite approach works� The columns of

Table ��� have the same meaning as for Table ���� There are additional columns

for� R refers to the worst�case response time of each task calculated by the

composite free variable approach� P refers to the priority of the task�message and

Met� refers to whether the task�message meets its deadline� i�e� �tasks�� RC �

D�

In Table ��� there are a number of tasks whose Id is of the form CXXXXX� which

refers to a composite task representing tasks with period XXXXX� For instance

in the case of the task C����� on node �� this task represents the original tasks

�
 and �� from Table ���� Task �
 inherits a non�zero o�set from message M	

because task �
 follows message M	
 in transaction A� Task �� maintains a

zero o�set because it is not part of a transaction� Table ��� shows the task set�s

characteristics that lead to the results in Table ����

���

Id N T C D R P Met�

C����� �
���� ���� ��
� ����
 Y

�� � ������ ��� ������ ���� � Y

�� � ������ ���� ������ ���� � Y

C�����

���� ��
�
���� ����
 Y

�
 ������
��� ������ ���� � Y

C������
 ������ ���� ������ ���� � Y

�
 ������
��� ������ ���� � Y

�
 � ����� ���� ����� ��
�
 Y

C������ � ������ ���� ������
���
 � Y

�� � ������ ���� ������
���� � Y

�� � ������ ���� ������
���� � Y

C����� M ���� ��� ���� �
�
 Y

C������ M ��
��� ��� ��
��� �
� � Y

Table ���� Schedulability Analysis Results with the Composite Approach

There are a number of steps between Table ��� from Table ���� these are illus�

trated below�

� Task �
 has an o�set of
���
� which is equivalent to the worst�case re�

sponse time of message

�

�� Task �
 and �� are combined into a composite task with characteristics�

T � minfO��

�
� T��

�
g � minf
���
� �����

�
g �
����

D � minf	D���O��
� 	D���O��
g � minf������
���

� 	�������
g �

��
�

C � maxfC��� C��g � ����

�� Schedulability analysis is performed to calculate the response times�

�� The worst�case response time of task �
 is calculated using equation 	���
�

R�� � O�� RC����� �
���
 ���� � ����

�� The worst�case response time of task �� is calculated using equation 	���
�

R�� � O�� RC����� � � ���� � ����

��

Id N T D C O R

�� � ������ ������ ���� � ����

�
 � ����� ����� ����
���
 ����

�� � ������ ������ ��� � ����

�� � ����� �����
��� � ����

�
 ������ ������ ���� ����
 �����

 ����� ����� ��
�
����
�
��

�
 ������ ������
��� � ����

�
 ������ ������
��� � ����

�� � ������ ������
���
���� �����

�
 � ����� ����� ���� � ��
�

�� � ������ ������ ���� �
����

�� � ������ ������ ���� �
����

M
� M ������ ������

�
�

�
����

M

 M ����� ����� ��� ��
�
���

M�� M ������ ������ ��� ����� ����

M�
 M ����� ����� �
�
�
��
����

Table ���� Results Generated Using the Composite Approach

The use of the free variable argument can be demonstrated by considering task

	� that forms task C�	���� using the composite approach� The o�set of task 	�

is
����� Without the free variable argument the period of the composite task

would be
����� and with the free variable argument it is ������� The resulting

periods illustrate the bene�t of the free variable argument that the interference

on other tasks is considerably reduced� The interference is reduced because the

composite task�s period and deadline is increased� leading to a reduced priority

and an increased chance of schedulability�

���

��� Simulation to Demonstrate the Relative Ef�

fectiveness of the Di
erent Computational

Models

Simulation studies are an e�ective way to understand the behaviour of large

complex systems as demonstrated in Chapter �� This section presents a simu�

lation based investigation considered appropriate and realistic� and the results

obtained�

Simulations have been performed with purely pseudo�random task set character�

istics with a realistic range for the iteration rate of ����
����� Due to the typical

sizes of the least common multiple 	which can be as large as
���Number of Tasks
�

the computational complexity did not allow any form of comparison to be car�

ried out� Therefore� the analysis was rationalised to task set characteristics that

could be expected and feasibly computed�

The system characteristics were�

� The iteration rates were ��� ��� ���
���
��� ���
����

�� The worst�case execution time of tasks are in the range 	�������

�� The worst�case communication time of messages are in the range 	��������

�� The number of nodes is in the range of ������

�� The number of tasks 	N
 is in the range �
������

�� A number of transactions in the range �
�N �� A transactions has a number

of tasks� equal to the number of nodes� each task executing on a di�erent

processor� The transaction deadline is equal to its period�

�� A value for e�ectiveness is produced over a
��� samples� E�ectiveness is

the percentage of task sets calculated as schedulable� compared to exact

analysis�

The simulation results for
�� �� and �� tasks per processor are presented in

the graphs contained in Figures ���� ��� and ��� respectively� For each analysis

���

0

20

40

60

80

100

120

140

2 3 4 5 6

E
ffe

ct
iv

en
es

s
(%

)

No. of Nodes

RJ[0,50]
RJ[50,100]
Free[0,50]

Free[50,100]
Comp[0,50]

Comp[50,100]

Figure ���� Comparison of the Simulation Results for
� Tasks

technique there are two lines� one of the lines is the results for resources in the

range �������� and the other the results for resources in the range �����
�����

The results clearly show the straight forward composite approach is the worst

because virtually all the task sets were found to be unschedulable� The straight

forward composite approach relates to the composite approach without the free

variable argument being applied�

When the free variable argument is applied then there is generally less pessimism

than the release jitter approach� In particular� when the resource level is higher

	i�e� in the range �����
����
 the composite o�set analysis with free variable

argument performs up to
�� better than the non�free variable argument� The

improvement provided with the composite o�set approach is signi�cant on top

of the other bene�ts� Therefore� the composite o�set analysis with free variable

argument is viewed as a viable solution for distributed timing analysis�

The release jitter approach only performs better when the resource level is small�

The better performance is a consequence of the tasks� response times being

smaller� which leads to the o�set or release jitter 	the relevant one is depen�

���

0

20

40

60

80

100

120

140

2 3 4 5 6

E
ffe

ct
iv

en
es

s
(%

)

No. of Nodes

RJ[0,50]
RJ[50,100]
Free[0,50]

Free[50,100]
Comp[0,50]

Comp[50,100]

Figure ���� Comparison of the Simulation Results for �� Tasks

0

20

40

60

80

100

120

140

2 3 4 5 6

E
ffe

ct
iv

en
es

s
(%

)

No. of Nodes

RJ[0,50]
RJ[50,100]
Free[0,50]

Free[50,100]
Comp[0,50]

Comp[50,100]

Figure ���� Comparison of the Simulation Results for �� Tasks

���

dent on the technique being used to enforce precedence
 being small� When the

o�set or release release jitter is small� the release jitter analysis has less pessimism

than the composite o�set analysis�

��� Summary

This chapter has attempted to achieve a number of goals� which were� to inves�

tigate the transition from uniprocessor to distributed systems timing� and how

to reduce pessimism by combining task attribute assignment and timing analysis

without signi�cantly increasing computational complexity�

The chapter shows how the existing uniprocessor timing analysis may be used

for distributed systems� However� the previous approaches based on sporadic

tasks introduce too much pessimism and may be di�cult to certify� An example

is presented that represents a transition from executing the functionality on

a single processor to executing the functionality on three processors� Each of

the three processors is equivalent to the original single processor� The three

processors are fully interconnected via a databus� The set is schedulable on a

single processor system� but not on a three processor system analysed using the

release jitter approach� This shows how making the transition to a distributed

system does not necessarily make the system more schedulable even though the

processor resource available is increased�

A new approach is derived using o�sets to realistically spread the resource usage

through time and to help remove pessimism caused by unnecessary clashes� To

solve the computational complexity issues usually found with o�set analysis� the

composite o�set analysis from Chapter � is used� However� with the composite

approach there is still a large amount of pessimism� Therefore� a free variable

argument is applied to the selection of o�sets in order to better integrate task

attribute assignment and the timing analysis� The combination of using o�sets to

model system interaction� and a composite analysis achieved signi�cantly better

e�ectiveness than other tractable approaches� Further bene�ts include� the free

variable argument gives properties that are non�holistic within de�ned bounds�

and the use of o�sets is analogous to a TDMA based system� which should aid

reuse�

���

The technique developed compares favourably with the criteria for successful

technology transfer�

� Certi�cation � The approach provides analysis that guarantees the system�s

timing behaviour� Therefore� the results of the analysis can be used as part

of the certi�cation evidence of the system�

�� Reuse � The �standard� schedulability analysis de�ned in earlier chapters

is reused� The only changes necessary is a limited amount of pre� and

post�processing� The processing is to establish the o�sets of the tasks and

messages� and then check for convergence�

�� Understanding � The approach is considered understandable as demon�

strated by the example� In addition� the approach has been accepted by

Rolls�Royce and is being considered for use on future projects �����

�� Su�ciency � The approach does not place restrictions on the computational

model� and it provides a lower level of pessimism than the release jitter

approach� Therefore� it can be argued the su�ciency criterion is satis�ed�

���

���

Chapter ��

Conclusions and Further Work

The purpose of this chapter is to summarise and evaluate the work of this thesis

and its contributions� as well as providing insight into further work that could

be performed� The principal aims of the thesis are to augment current work

on scheduling and timing analysis so that it is valid for use in real industrial

safety critical hard real�time systems� In particular� two transitions are sup�

ported� These are� from cyclic scheduling to �xed priority scheduling� and from

uniprocessor to distributed systems�

The �rst part of the thesis is to establish a base�line for the work to take place�

This involved establishing the characteristics of current systems and how they

are developed� which is dealt with in Chapter �� Also� a survey was performed

to examine the relevance of existing work� the results of which are in Chapter ��

To support the �rst transition� an investigation is required of how existing infras�

tructures can be reused e�ectively� appropriate timing analysis derived and task

attributes assigned� To support the second transition� an approach for handling

distributed transactions is sought that takes advantage of the work performed

for the �rst transition� To guide the investigation that is undertaken� four cri�

teria for successful technology transfer are de�ned� certi�cation� understanding�

su�ciency and reuse� The criteria are used to judge whether proposed solutions

are successful�

Chapter � of the work contrasts the requirements of the system to be developed

with the existing theory available to determine where attention is needed� A

number of areas of work are identi�ed� As part of Chapter �� a scheduling

���

approach based on only periodic tasks executing non�preemptively is chosen�

This approach maximises the reuse of the existing system and documentation�

which reduces the cost of change and eases the future certi�cation� The work

revisits the existing schedulability analysis and provides signi�cant reductions in

the pessimism contained in the analysis�

Chapter � of the work presents a way of implementing task scheduling that takes

advantage of two existing mechanisms� which are� tick driven and time driven

scheduling� The �hybrid� approach is intended to provide the best compromise

between reuse and su�ciency� The technique uses the clock tick from the cyclic

scheduler to release tasks in cases when the task�s period is an integer multiple of

the clock tick rate� Remaining tasks are then released in a time driven manner�

The approach is novel even though it is based on existing work� The advantages

are that� the minimum possible change is made to the way tasks are released� no

restrictions are placed on the timing requirements� and tasks are released with

no jitter� Having no release jitter increases the likelihood of meeting the timing

requirements� The contribution of this chapter is a philosophy for producing

an infrastructure that is tailored to the requirements whilst recognising the im�

portance of reuse� The approach provides the best possibility of achieving the

system�s timing requirements at the same time as minimising the changes to the

system�

Chapter � presents an algorithm for assigning attributes to tasks so that timing

requirements are met� The technique is intended for requirements existing on

a single processor system� The requirements that are satis�ed 	where possible

by the task attribute assignment process are� task�s jitter� task�s separation and

transaction�s deadline� The task attributes manipulated are o�sets and deadlines�

The approach is a novel contribution for a number of reasons� These are� the

resulting task attributes make it relatively easy to determine by inspection that

the timing requirements are met� and the assignment preserves the attributes

imposed by other constraints� The latter point is considered the most important�

Most existing approaches to task attribute assignment su�er from the problem

that all attributes are considered to be �exible� However� experience has shown

that tasks� periods should not be manipulated and tasks� deadlines should never

be increased� Otherwise� existing constraints that have previously been satis�ed

may be broken� Most existing techniques do not place these restrictions on the

���

task attribute assignment� and hence are deemed unsuitable�

Chapter � uses a realistic case study of an aircraft engine control system to

prove the techniques developed in Chapters � � � are su�cient� As part of the

evaluation� a scheduler was produced and actually used to control an aircraft

engine� The evaluation showed how the scheduler controlled the engine with an

equivalent or improved stability� Also� the analysis provided better evidence for

certi�cation than by previous methods based on cyclic scheduling� Therefore�

the approach was deemed to be successful and is awaiting an actual project to

use it� The key �nding of the case study is the high level of reuse obtained� the

only changes made to the system were in the scheduler module� i�e� the rest of

the software and hardware were unchanged�

As a consequence of the case study� the e�ects of the transition to �xed priority

scheduling on the typical process life�cycle are investigated� Part of the case

study included the use of the techniques by Rolls�Royce� Part of this use involved

teaching engineers with no specialist knowledge of scheduling and timing analysis

to apply the techniques� It was found that the engineers could understand and

use the techniques on complex �real� examples within about an hour� which

is a strong indication that the techniques were suitable� A number of issues�

such as the need for more stringent requirements� were highlighted� A key issue

is the ability to certify the approach� This was considered in enough detail to

show the necessary evidence can be gathered� Part of the necessary evidence is�

the approach is at least as safe as the existing approaches� and no additional

hazards are introduced to the system as a whole� Other work by the author and

colleagues ����
�
�
��� deals with the issue of certi�cation of the approach�

Chapter � investigates how timing analysis may be performed for task sets where

tasks have o�sets� The approach is based on forming a composite task� for anal�

ysis purposes only� that has zero o�sets and can replace the tasks with non�zero

o�sets� The approach is supplemented with a free variable argument that in�

creases the value of task�s o�sets so that the analysis is less pessimistic� The free

variable argument assigns regularly spaced slots to each task� The work has a

number of aims� which are� to reuse the existing analysis� to provide an under�

standable technique� to have pseudo�polynominal computational complexity� and

to achieve low pessimism� In this respect the approach can be considered novel�

Part of this work investigated how the existing uniprocessor timing analysis can

��

be improved for the speci�c computational model being used� One of the princi�

pal bene�ts of the technique is the fact the existing schedulability analysis can be

used with a limited amount of pre� and post�processing� There are a number of

bene�ts of being able to reuse the analysis� including the fact existing tools and

training can still be used as well as only a limited amount of extra certi�cation

evidence is needed�

Chapter � investigates how the scheduling and timing analysis derived in Chap�

ters � � � can be used for distributed scheduling so that the maximum reuse

of infrastructure and timing analysis may be attained� An approach is derived

that makes use of o�sets to control precedence in distributed transactions� Task

attributes are derived that represent all the system�s timing requirements� includ�

ing the distributed ones� This allows veri�cation to be performed an individual

processor at a time� The timing analysis makes use of the o�set analysis de�

veloped in Chapter �� The approach developed is novel and achieves a number

of goals� The goals are� robustness to change is improved� high levels of reuse

can be attained� and pessimism is reduced compared to existing published work�

Other work that the author has contributed to �
��� has addressed the certi��

cation issues� Again� one of the principal bene�ts is the reuse of existing tools

and training from the �standard� uniprocessor schedulability analysis with only

a relatively small amount of pre� and post�processing�

���� Future Work

There are a number of areas in which further work could be performed� These

are�

� Investigate how the pessimism in the o�set analysis can be improved by

using other techniques 	such as exact analysis or analysis that assumes a

critical instant
 than the composite analysis� where it is deemed preferable�

The investigation would consider the conditions needed for the schedulabil�

ity analysis where other analysis� would be better and when it is absolutely

necessary to adopt exact analysis� An approach could be derived with lower

pessimism that the composite approach with only a small increase in the

average computational complexity�

���

�� In the context of distributed scheduling� the free variable uses �linear�

time�slicing of the transaction�s execution window when assigning the indi�

vidual tasks� execution window� An investigation could be performed that

looked at more �exible free variable arguments for cases when the existing

mechanism results in an unschedulable solution� For each task in the trans�

action� a new execution window could be chosen based on the current laxity

of the tasks in the transaction� Search mechanisms could be employed to

�nd the best set of task attributes � best being schedulable with greatest

robustness to change�

�� Investigation of an optimised free variable argument that selects the value

for tasks� o�sets in an iterative or intelligent manner rather than a simple

linear equation� One way this could be achieved is to use a branch and

bound search over the range of values of the o�sets �minimum possible

o�set� maximum possible o�set�� and choose the �best� value� Best is

judged by the likelihood a schedulable system is obtained� with secondary

criteria of reduced computational complexity and robustness to change�

�� Examine how best to deal with distributed transactions that have arbitrary

deadlines� Preliminary inspections has shown the current technique using

o�sets and composite analysis already supports distributed transactions

with arbitrary deadlines� However� work is required to justify the statement

and also to investigate the e�ectiveness attained�

���� Final Comment

In chapter
� the following contention is made aimed at supporting the devel�

opment and veri�cation of schedulers for industrial safety critical hard real�time

systems�

The proposed simpli�ed version of �xed priority scheduling will ease the problem

of meeting timing requirements now� and for the immediate future for industrial

safety critical embedded systems�

To support this contention� four criteria were formed to guide the solutions so

that successful technology transfer may be achieved� The criteria are� certi�ca�

tion� su�ciency� understanding and reuse� Throughout all the work these criteria

���

have guided the solutions that were derived� and wherever possible these criteria

are met� The following is a brief summary of how the approaches presented relate

to the four criteria�

� Certi�cation � The timing analysis provides valuable evidence that can be

used during the certi�cation of the system and it can be argued that the

changes made to the infrastructure do not lower the system�s integrity�

The approaches derived have been presented to the relevant certi�cation

authorities and their use has been approved on a future aircraft engine�

�� Su�ciency � The approaches allows tasks to be released e�ciently 	with

reasonable overheads
� e�ectively 	with no jitter
 and �exibly 	with no

restrictions of the task attributes� i�e� a small selection of possible iteration

rates
�

�� Understanding � The success of the work is reinforced by the fact the tech�

niques have been transferred to industry� Rolls�Royce have themselves

evaluated the techniques on an aircraft engine and have decided to use

them on the next suitable project� During the evaluation� it was found

that the engineers could understand and use the techniques on complex

�real� examples within about an hour� which is a strong indication that

the techniques were suitable� The distributed scheduling techniques is also

being evaluated for a current Department of Trade and Industry funded

industrial research project� and a Ministry Of Defence funded industrial

research project�

�� Reuse � When the approaches were used by Rolls�Royce the only changes

that were necessary to the system were to the software module for the

scheduler 	i�e� none of the applications or the actual hardware had to be

altered
� In addition� tools had to be produced for task attribute assign�

ment and schedulability analysis� Their use of the approach demonstrates

the high level of reuse that can be attained�

From the list above� it can be seen that the work has largely met its objectives�

���

Bibliography

�
� �Military Standard ���C� System Safety Program Requirements�� tech�

rep�� US Department of Defence� January
����

��� A� Burns and J� A� McDermid� �Real�time safety�critical systems� analysis

and synthesis�� Software Engineering Journal� vol� �� pp� ���#�
� Nov�

���� Softw� Eng� J� 	UK
�

��� S� G� Hutchesson� �Multi�integrity level software on uni�processor sys�

tems�� Master�s thesis� Department of Computer Science� University of

York�
����

��� D� Turner� �Customer needs for future controls�� in The Design and Con�

trol of the Next Generation of Civil and Military Engines
 Do Variable

Cycle Engines Have a Role� pp�
�
#
�
�� November
����

��� H� Thompson� �Application of COTS technologies to aerospace gas turbine

engine control�� in IEE Colloquium on COTS and Safety Critical Systems�

no� Digest Number� ����
�� January
����

��� C� Locke� �Software architecture for hard real�time applications� cyclic

executives vs� �xed priority executives�� Real�Time Systems� vol� �� pp� ��#

��� March
���� Real�Time Syst� 	Netherlands
�

��� Y� Yeh� �Dependability of the ��� primary �ight control system�� �th IFIP

Working Conference on Dependable Computing for Critical Applications�

����

��� R� Edwards and G� Parr� �Key issues in integrated modular avionics �

IAWG viewpoint�� in ERA Avionics Conference� pp� ��
#��
��
����

���

��� ARINC ���
 Avionics Application Software Standard Interface �Draft
���

Airlines Electronic Engineering Committee 	AEEC
� June
�th�
����

�
�� C� L� Liu and J� W� Layland� �Scheduling algorithms for multiprogramming

in a hard real�time environment�� J� ACM� vol� ��� no�
� pp� ��#�
�
����

�

� T� Baker� �Task�based scheduling of real�time processes�� The Journal of

Real�Time Systems� vol� �� no�
� pp� ��#
���
��
�

�
�� T� Carpenter� K� Driscoll� K� Hoyme� and J� Carcio�ni� �ARINC ���

scheduling problem�� IEEE Real�Time Systems Symposium�
����

�
�� L� Randazeese� �The overall incidence of transfer has been limited�� IEEE

Transactions on Engineering Management� vol� ��� pp� ���#��
� November

����

�
�� R� Bloeden� �Making university � industry collaborative research succeed��

Research Technology Management� vol� ��� no� �� pp� ��#���
����

�
�� R� Dorf� �Models for technology transfer from universities and research

laboratories�� Technology Management� no�
� pp� ���#�
��
����

�
�� M� Torngren� �Fundamentals of implementing real�time control appli�

cations in distributed computer systems�� Real�Time Systems� vol�
��

pp� �
�#���� May
����

�
�� C� Locke and J� Goodenough� �Generic avionics software speci�cation��

Tech� Rep� CMU�SEI����TR��� Software Engineering Institute�
����

�
�� K� Wika and J� Knight� �On the enforcement of software safety policies��

in
�th Annual IEEE Conference on Computer Assurance� June
����

�
�� D� N� Burghes and A� Graham� Introduction to control theory� including

optimal control� Wiley�
����

���� D� Thompson� The Oxford Quick Reference Dictionary� Oxford University

Press�
����

��
� R� Luck� Observability and delay compensation of integrated communication

and control systems� PhD thesis� Department of Mechanical Engineering�

Pennslyvannia State University� USA�
����

���

���� A� G� Shutler and H� Betteridge� �De�nition� design and implementation of

control laws for variable cycle gas turbine aircraft engines�� in The Design

and Control of the Next Generation of Civil and Military Engines
 Do

Variable Cycle Engines Have a Role� November
����

���� A� Ray and Y� Helevi� �Integrated communication and control systems�

Part
 � analysis� and part � � design considerations�� ASME Journal of Dy�

namic Systems� Measurements and Control� pp� ���#��
� December
����

���� B� Wittenmark� J� Nilsson� and M� Torngren� �Timing problems in real�

time control systems� Problem formulation�� in Proceedings of the Ameri�

can Control Conference�
����

���� J� Rushby� �Kernel for safety��� in Safe � Secure Computing Systems

	A� T�� ed�
�
����

���� United Kingdom Ministry of Defence� Defence Standard �����
 Require�

ments for Safety�Related Software in Defence Equipment� July
����

���� J� A� McDermid and L� M� Barroca� �Formal methods� Use and rele�

vance for the development of safety critical systems�� Computer Journal�

vol� ��	�
�
����

���� A� Burns� A� J� Wellings� C� Bailey� and E� Fyfe� �The olympus attitude

and orbital control system� a case study in hard real�time system design

and implementation�� pp� ���#���� Springer Verlag�
����

���� A� Burns and A� Wellings� �Safety kernels � speci�cation and implementa�

tion�� The Design and Development of Safety Kernels� vol� York Software

Engineering for the Health and Safety Executive Nuclear Research Pro�

gramme�
����

���� C� Locke� Best�E�ort Decision Making for Real�Time Scheduling� PhD

thesis� Computer Science Department� Carnegie Mellon University� USA�

����

��
� A� Tannenbaum� Computer networks� Prentice Hall� � ed��
����

���� United Kingdom Ministry of Defence� Defence Standard ����� �Issue 	�

Safety Management Requirements for Defence Systems� December
����

���

���� RTCA Inc�� �Software considerations in airborne systems and equipment

certi�cation�� DO�
��B�ED�
�B� December
����

���� M� of Defence� �The procurement of safety critical software in defence

equipment�interim defence standard� def�stan ������� tech� rep�� April
��
�

���� Y� Papadopoulos and J� A� McDermid� �The potential for a generic ap�

proach to the certi�cation of safety critical systems in the transportation

sector�� in Reliability Engineering and System Safety� vol� ��� pp� ��#���

Elsevier� January
����

���� I� J� Bate� A� Burns� J� A� McDermid� and A� J� Vickers� �Towards a �xed

priority scheduler for an aircraft application�� in �th Euromicro Workshop

on Real�Time Systems� 	L�Aqulia� Italy
� pp� ��#��� June
����

���� J� A� McDermid� Software Engineer�s Reference Book� Butterworth Heine�

mann�
��
�

���� I� Sommeville� Software Engineering� Addison Wesley� �th ed��
����

���� G� Booch and D� Bryan� Software Engineering with Ada� Benjamin Cum�

mins� �rd ed��
����

���� B� Carre� �SPARK� the SPADE Ada kernel 	edition ��

�� tech� rep�� Pro�

gram Validation Limited�
����

��
� P� Puschner and C� Koza� �Calculating the maximum time of real�time

programs�� Real�Time Systems� vol�
� no� �� pp�
��#
���
����

���� C� Park� �Predicting program execution times by analyzing static and dy�

namic program paths�� Real�Time Systems� vol� �� no�
� pp� �
#���
����

���� C� Park and A� Shaw� �A source level tool for predicting deterministic exe�

cution times of programs�� Tech� Rep� ��������� Department of Computer

Science and Engineering� University of Washington� USA�
����

���� N� Leveson� Safeware
 System Safety and Computers� Addison Wesley�

����

���� M� Garey and D� Johnson� �Computers and intractability��
����

���

���� A� Burns� N� Hayes� and M� Richardson� �Generating feasible cyclic sched�

ules�� Control Engineering Practice� vol� �� no� �� pp�
�
#
���
����

���� L� Sha� J� Lui� and J� Goodenough� �Real�time scheduling theory and ada��

Computer� vol� ��� pp� ��#��� April
���� Computer 	USA
�

���� G� Carlow� �Architecture of the space shuttle primary avionics software

system�� Communications ACM� vol� ��� pp� ���#��� Sept�
���� Commun�

ACM 	USA
�

���� O� Serling� �Scheduling of time critical processes�� in Proceedings AFIPS

Spring Computing Conference�
����

���� J� Lehoczky� L� Sha� and Y� Ding� �The rate�monotonic scheduling algo�

rithm� Exact characterization and average case behaviour�� in Proceedings

IEEE Real�Time Systems Symposium� pp�
��#
�
�
����

��
� N� Audsley� A� Burns� R� Davis� K� Tindell� and A� Wellings� �Fixed prior�

ity pre�emptive scheduling� an historical perspective�� Real�Time Systems�

vol� �� pp�
��#��� March�May
���� Real�Time Syst� 	Netherlands
�

���� D� Katcher� H� Arakawa� and J� Strosnider� �Engineering and analysis

of �xed priority schedulers�� IEEE Trans� Software Engineering� vol�
��

pp� ���#��� Sept�
���� IEEE Trans� Softw� Eng� 	USA
�

���� J� Y� T� Leung� �A note on preemptive scheduling of periodic real�time

tasks�� Information processing Letters� vol�

� November
����

���� N� C� Audsley� Flexible Scheduling of Hard Real�Time Systems� PhD thesis�

Department of Computer Science� University of York� December
����

���� J� Lehoczky� �Fixed priority scheduling of periodic task sets with arbitrary

deadlines�� in Proceeeding of the Real�Time Systems Symposium� pp� ��
#

���� December
����

���� J� Harter� �Response times in level�structured systems�� Tech� Rep� CU�

CS�������� Department of Computer Science� University of Colorado� USA�

����

���

���� P� Harter� �Response times in level�structured systems�� ACM Trans� Com�

puter Systems� vol� � A��� pp� ���#���� Aug�
���� ACM Trans� Comput�

Syst� 	USA
�

���� M� Joseph� �On a problem in real�time computing�� Information Processing

Letters� vol� ��� no� �� pp�
��#
���
����

���� M� Joseph and P� Pandya� �Finding response times in a real�time system��

Computer Journal� vol� �� A��� pp� ���#�� Oct�
���� Comput� J� 	UK
�

���� N� Audsley� A� Burns� M� Richardson� and A� Wellings� �Hard real�time

scheduling� The deadline monotonic approach�� in Proceedings of the �th

IEEE Workshop on Real�Time Operating Systems and Software� pp�
��#

���
��
�

��
� J� Leung and J� Whitehead� �On the complexity of �xed�priority scheduling

of periodic� real�time tasks�� Performance Evaluation �Netherland�� vol� ��

no� �� pp� ���#����
����

���� K� Tindell� Holistic Scheduling Analysis for Distributed Hard Real�Time

Systems� No� YCS
��� Department of Computer Science� University of

York�
����

���� R� Gerber� S� Hong� and M� Sabsena� �Guaranteeing end�to�end timing

constraints by calibrating intermediate processes�� IEEE Real�Time Sys�

tems Symposium�
����

���� R� Yerraballi� Scalability in Real�Time Systems� PhD thesis� Computer

Science Department� Old Dominion University� August
����

���� B� Lampson and D� Redell� �Experience with processes and monitors in

mesa�� Communications ACM� vol� ��� pp�
��#
�� Feb�
���� Commun�

ACM 	USA
�

���� R� Rajkumar� L� Sha� and J� Lehoczky� �Real�time synchronisation proto�

cols for multiprocessors�� IEEE Real�Time Systems Symposium� pp� ���#

����
����

���

���� L� Sha� R� Rajkumar� and J� Lehoczky� �Priority inheritance protocols� an

approach to real�time synchronization�� IEEE Trans� Computers� vol� ���

pp�

��#��� Sept�
���� IEEE Trans� Comput� 	USA
�

���� R� Rajkumar� L� Sha� J� Lehoczky� and K� Ramamritham� �An optimal pri�

ority inheritance protocol for real�time synchronisation�� Tech� Rep� Coins

Technical Report ������
����

���� J� A� Clark and K� Tindell� �Holistic schedulability analysis for distributed

hard real time systems�� Microprocessing � Microprogramming� vol� ���

pp�

�#
��� April
����

���� J� Gutierrez� J� Garcia� and M� Harbour� �On the schedulability analysis for

distributed real�time systems�� in �th Euromicro Workshop on Real�Time

Systems� pp�
��#
���
����

��
� A� Burns� K� Tindell� and A� Wellings� �E�ective analysis for engineer�

ing real�time �xed priority schedulers�� IEEE Transactions on Software

Engineering� vol� �
� pp� ���#���� May
����

���� A� Burns� A� J� Wellings� and E� Fyfe� The Olympus Attitude and Orbital

Control System� A Case Study in Hard Real�time System Design and Im�

plementation YCS
��� Dept of Computer Science� University of York C�

Bailey British Aerospace Space Systems Ltd� January
����

���� J� Sun and J� Liu� �Synchronization protocols in distributed real�time sys�

tems�� in In The
�th International Conference on Distributed Computing

Systems� May
����

���� R� Bettati and J��S� Liu� �End�to�end scheduling to meet deadlines in dis�

tributed systems�� in Proceedings of the IEEE International Conference on

Distributed Computing Systems� pp� ���#���� June
����

���� M� Di Natale and J� Stankovic� �Dynamic end�to�end guarantees in dis�

tributed real�time systems�� in Proceedings of the IEEE Real�Time Systems

Symposium� pp� �
�#���� December
����

���� K� G� Shin and J� Jonsson� �Robust adaptive metrics for deadline assign�

ment in distributed hard real�time systems�� Submitted to IEEE Transac�

tions on Computers�
����

��

���� J� Garcia and M� Harbour� �Optimized priority assignment for tasks and

messages in distributed real�time systems�� IEEE Parallel and Distributed

Systems� pp�
��#
�
�
����

���� E� H� L� Aarts and J� H� M� Korst� Simulated Annealing and Boltzmann

Machines� Chichester� U�K�� John Wiley and Sons�
��� techniques�

���� K� Whitely� �A genetic algorithm tutorial�� Tech� Rep� CS����
���
����

���� H� Kopetz� Real�Time Systems� Design Principles for Distributed Embedded

Applications� Kluwer Academic Publications�
����

��
� H� Kopetz� R� Zainlinger� G� Fohler� H� Kantz� P� Puschner� and W� Schutz�

�The design of real�time systems� from speci�cation to implementation and

veri�cation�� Software Engineering Journal� vol� �� pp� ��#��� May
��
�

Softw� Eng� J� 	UK
�

���� H� Kopetz� G� Grunsteidl� and J� Reisinger� �Fault tolerant membership

service in a synchronous distributed real�time systems�� Tech� Rep� �����

Institut fur Technische Informatik� Technische Univeristat Wien� February

����

���� R� A� Edwards� �ASAAC phase I harmonized concept summary�� in Pro�

ceedings ERA Avionics Conference and Exhibition� 	London� UK
�
����

���� J� Gosling� B� Joy� and G� Steel� The Java Language Speci�cation� Addison�

Wesley�
����

���� M� Fletcher� A� Wake� and J� Bradley� �Integrated modular avionics and

certi�cation � an ima design team�s view�� in Seminar on Certi�cation of

Ground�Air Systems� The Institute of Electrical Engineers� February
����

���� A� Grigg and N� C� Audsley� �Towards the timing analysis of integrated

modular avionics systems�� Proceedings ERA Avionics Conference and Ex�

hibition�
����

���� K� G� Shin and Y��C� Chang� �A reservation based algorithm for schedul�

ing both periodic and aperiodic real�time tasks�� IEEE Transactions on

Computers� vol� ��� pp�
���#
��
� December
����

���

���� J� Stankovic� �Real�time computer systems� The next generation�� Tech�

Rep� Coins Technical Report Number ������
����

���� N� C� Audsley� K� W� Tindell� and A� Burns� �The end of the road for static

cyclic scheduling�� Proceedings of �th Euromicro Workshop on Real�Time

Systems� pp� ��#�
�
����

���� US Department of Defence� Reference Manual for the Ada Programming

Language�
���� ANSI�MUL�STD
�
��

��
� Ada �� Language Reference Manual� Intermetrics Inc��
���� ISO�IEC

�����
����

���� J� Barnes� High Integrity Ada
 The SPARK Approach� Addison�Wesley�

����

���� ISO WG�� Guidance for the Use of the Ada Programming Language in

High Integrity Systems� ��� ed�� September
����

���� J� A� McDermid� �COTS� The expensive solution��� in IEE Colloquium on

COTS and Safety Critical Systems� no� Digest Number� ����
�� January

����

���� A� Burns and A� J� Wellings� Real�Time Systems and Programming Lan�

guages� Addison Wesley� �nd ed��
����

���� S� Hutchesson and N� Hayes� �Technology transfer and certi�cation issues

in safety critical real�time systems�� in Digest of the IEE Colloquium on

Real�Time Systems� no� ������� April
����

���� R� Campbell and B� Randell� �Error recovery in asynchronous systems��

IEEE Trans� Software Engineering� vol� vol�SE�
�� no�� A��� pp� �

#���

Aug�
���� IEEE Trans� Softw� Eng� 	USA
�

���� A� Bertossi and L� Mancini� �Scheduling algorithms for fault�tolerance in

hard�real�time systems�� Real�Time Systems� vol� �� pp� ���#��� Nov�
����

Real�Time Syst� 	Netherlands
�

���� R� Gerber� S� Hong� and M� Saksena� �Guaranteeing real�time require�

ments with resource�based calibration of periodic processes�� IEEE Trans�

���

Software Engineering� vol� �
� pp� ���#��� July
���� IEEE Trans� Softw�

Eng� 	USA
�

�
��� J� Gutierrez� J� Garcia� and M� Harbour� �Best�case analysis for improving

the worst�case schedulability test for distributed hard real�time systems��

in
�th Euromicro Workshop on Real�Time Systems� pp� ��#���
����

�
�
� N� C� Audsley� I� J� Bate� and A� Burns� �Putting �xed priority scheduling

into engineering practice for safety critical applications�� in Proceedings of

the Real�Time Technology and Applications Symposium� pp� �#
�� IEEE

Technical Committee on Real�Time Systems�
����

�
��� I� Bate and A� Burns� �Flexible scheduling for engine controllers�� Tech�

Rep� UK Patent Application Number ��
������ and US Patent Application

Number ���������� The Patent O�ce� May
����

�
��� N� Audsley� I� Bate� and A� Burns� �Flexible scheduling theory for advanced

engine controllers�� in IEE Colloquia on Hybrid Control for Real�Time

Systems� Institute of Electrical Engineers� December
����

�
��� S� Wilson� J� A� McDermid� P� Fenelon� and P� Kirkham� �No more spine�

less safety cases� A structured method and comprehensive tool support���

in 	nd International Conference on Control and Instrumentation in Nu�

clear Installations� Institution of Nuclear Engineers� April
����

�
��� K� Tindell� Fixed Priority Scheduling of Hard Real�Time Systems� PhD

thesis� Department of Computer Science� University of York�
����

�
��� Y� Oh and S� Son� �A processor�e�cient scheme for supporting fault�

tolerance in rate�monotonic scheduling�� Tech� Rep� CS������� Department

of Computer Science� University of Virginia�
����

�
��� G� Fohler and C� Koza� �Heuristic scheduling for distributed real�time sys�

tems�� Tech� Rep� Research Report No� �� Institut fur technische Infor�

matik� Technische Universtate Wien� Austria�
����

�
��� J� Knight� A� Cass� A� Fernandez� and K� Wika� �Fixed priority schedul�

ing of periodic tasks on multiprocessor systems�� Tech� Rep� CS�������

Department of Computer Science� University of Virginia�
����

���

�
��� I� J� Bate� A� Burns� T� P� Kelly� and J� A� McDermid� �Building a prelim�

inary safety case� An example from aerospace�� in Proceedings of the
���

Australian Workshop on Industrial Experience with Safety Critical Systems

and Software� October
����

���

