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Abstract

Proper ample monoids are described by means of a certain category acted
upon on both sides by a cancellative monoid. Making use of this characterization,
we show that every ample monoid S has a proper ample cover, which can be taken
to be finite whenever S is finite.

Introduction

On an inverse monoid S, we define a unary operation + by a+ = a a−1 for a ∈ S

thus making S into a (2,1,0)-algebra. Similarly, there is a dual operation ∗ given by
a∗ = a−1a. Of course, S also has the unary operation −1, but this will not play a

significant role in the paper.
A left ample monoid can now be defined to be a monoid S with a unary operation

+ such that there is a +-embedding (that is, a (2,1,0)-algebra embedding) of S into an
inverse monoid. As usual, E(S) denotes the set of idempotents of S. It is immediate

from the definition that, in a left ample monoid, the idempotents commute with each
other, and so E(S) is a subsemilattice of S.
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Similarly, we say that a monoid S with a unary operation ∗ and a ∗-embedding into
an inverse monoid is a right ample monoid. An ample monoid is one which is both

left and right ample. We emphasise that the + and ∗-embeddings need not be into the
same inverse monoid.

It is clear that every inverse monoid is an ample monoid with the operations + and
∗ defined as above. Cancellative monoids and full submonoids of inverse monoids are

also ample.
On a left ample monoid S, there is a least congruence σ such that S/σ is a right

cancellative monoid. We say that S is left proper if for all elements a and b of S such
that a+ = b+ and a σ b, we have a = b. In the case of right ample monoids, there is the

dual notion of right proper, and if S is an ample monoid, then S/σ is cancellative and
S is said to be proper if it is both left and right proper.

It is well known that an inverse monoid is proper if and only if it is E-unitary (see,
for example, [6, Proposition 5.9.1]). Example 3 of [2] shows that the corresponding

statement does not hold for ample monoids.

In [4] we used techniques of Margolis and Pin [9] to describe proper left ample
monoids. In the present paper our first objective is to extend these methods so that

they can be applied to proper ample monoids. To do this we consider certain small
categories with actions on both the right and the left by cancellative monoids. We

introduce the formal definitions in Section 1 and use them in Section 2 to give a
structure theorem for proper [E-unitary] ample monoids.

Let S be an ample monoid. We say that a proper ample monoid P is a (proper) cover
of S if there is a map from P onto S which is simultaneously a

+-homomorphism and a ∗-homomorphism of monoids that maps E(P ) isomorphically
onto E(S).

In [7] Lawson showed that every ample monoid S has a proper ample cover P .
This is also a consequence of a more general result of Simmons [12]. However, the

constructions of Lawson and Simmons always yield an infinite monoid P , even when
S is finite. One purpose of the present paper is to show that finite ample monoids

have finite proper covers. In Section 3, we present a proof of Lawson’s result which

does yield a finite cover P whenever S is finite. We thus provide a unified proof for
the general and the finite cases. Our stronger result is crucial in [5], where we show

that a bountiful finite semigroup belongs to the pseudovariety A ∨ G if and only if
H ⊆ µ, where µ is the greatest congruence contained in the equivalence H ∗ (defined

in Section 1).

1 Preliminaries

For basic notation and terminology regarding monoids and semigroups, we follow [6].
We start by giving an alternative characterization of ampleness.

On a monoid S a relation R∗ is defined by the rule aR∗ b if and only if a and b are
R-related in an extension of S. The dual of R∗ is L ∗, and H ∗= R∗ ∩L ∗. From [10]

and [11], we have
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Lemma 1.1 On a monoid S, for a, b ∈ S, the following are equivalent:

a) aR∗ b;

b) for all x, y ∈ S, xa = ya if and only if xb = yb.

This condition simplifies when one element is idempotent.

Lemma 1.2 On a monoid S, for a ∈ S and e ∈ E(S), the following are equivalent:

a) aR∗ e;

b) ea = a and for all x, y ∈ S, xa = ya implies xe = ye.

We recall that R∗ is a left congruence and R is contained in R∗. If S is regular,

then R∗ = R. The R∗-class of an element a ∈ S is denoted by R∗

a. If E(S) is a
semilattice, then R∗

a can contain at most one idempotent. When such an idempotent

exists it is denoted by a+. Similar results hold for L ∗, and when there is a unique

idempotent in an L ∗-class L∗

a, it is denoted by a∗.
It follows from [2, Proposition 1.2] that

Theorem 1.3 A monoid S is ample if and only if, for all a ∈ S and e ∈ E,

a) every R∗-class R∗

a contains a (unique) idempotent a+;

a′) every L ∗-class L∗

a contains a (unique) idempotent a∗;

b) ae = (ae)+a;

b′) ea = a(ea)∗;

c) E(S) is a semilattice.

From [2, Lemma 1.3] and its dual, we conclude that, on an ample monoid S, there
is a minimum cancellative monoid congruence σ defined by, for all a, b ∈ S,

a σ b if and only if ae = be, for some e ∈ E(S)

if and only if ea = eb, for some e ∈ E(S).

An ample monoid is said to be left [right ] proper if σ ∩ R∗= ι [σ ∩ L ∗= ι].
We say that it is proper if it is both left and right proper. It is clear that these

definitions agree with those given in the introduction.
Observe that in an ample monoid any two idempotents are σ-related and E(S)

is contained in the identity of S/σ. Moreover, E(S) is a σ-class if and only if S is

E-unitary Also, we have that any proper ample monoid is E-unitary but the converse
is not true [2, Example 3].

We now extend the notion of ample to categories as we did in [3] for the left ample
(formerly left type-A) case.
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Let C be a (small) category with set of objects Obj C and set of morphisms Mor C .
For all u ∈ Obj C , the set of morphisms with domain [codomain] u is denoted by

Mor(u,−) [Mor(−, u)]. We use additive notation for composition of morphisms and
represent the identity at an object u by 0u. For each object u, the set Mor(u, u) is a

monoid with identity 0u called the local monoid at u.
On MorC , we define a relation R∗ as follows, for all p, q ∈ Mor C ,

(p, q) ∈ R
∗ if and only if [(for all s, t ∈ MorC ) s+ p = t+ p ⇔ s+ q = t+ q] ,

where we make the convention that writing s + p = t+ p implies that both s + p and
t+ p are defined. Dually we define a relation L ∗.

An element p ∈ MorC is said to be idempotent if p+ p is defined and p = p+ p. A
category is locally idempotent if every element of each local monoid is idempotent.

The following lemma is easily proved.

Lemma 1.4 Let C be a category, u ∈ Obj C and p, q ∈ MorC . Then

a) if p ∈ Mor(u,−) and (p, q) ∈ R∗, then q ∈ Mor(u,−);

b) if p is idempotent and p ∈ Mor(u, v), then u = v;

c) if p is idempotent, then

(p, q) ∈ R
∗ if and only if

{
q = p+ q , and

for all s, t ∈ MorC , s+ q = t+ q ⇒ s+ p = t+ p ;

d) R∗ is a left congruence on the partial semigroup MorC .

Clearly, the dual of Lemma 1.4 holds for L ∗.

A category C is said to be ample if, for all u ∈ Obj C , the set E(Mor(u, u)) forms

a semilattice; each R∗-class R∗

p contains an idempotent p+ which is necessarily unique;

each L ∗-class L∗

p contains an idempotent p∗ which is necessarily unique; and, for all
p, q ∈ Mor C ,

q + p+ = (q + p+)+ + q

and
p∗ + q = q + (p∗ + q)∗.

Thus a category is ample if and only if it is both left and right ample (or type-A)
[4]. Note that each local monoid of an ample category is ample, and also that in an

ample category, (p+)+ = p+ and (p∗)∗ = p∗ for each morphism p.
An ample category is said to be proper if, for all p, q ∈ Mor(u, v),

p+ = q+ ⇒ p = q (left proper)

and
p∗= q∗ ⇒ p = q (right proper).
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It follows immediately from the preceding paragraph that if an ample category is
proper, then it is locally idempotent, for if p is in a local monoid, then p+ is in the

same monoid and so p+ = p follows from (p+)+ = p+.
As in [4] we say that a monoid B acts on the right on a category C if there exist

maps Obj C ×B → Obj C and Mor C ×B → Mor C where we write xb for the result
of the action of the monoid element b on an object or morphism x, and the following

conditions are satisfied:

a) if p ∈ Mor(u, v), then pb ∈ Mor(ub, vb);

b) for all b, b1, b2 ∈ B, p, q ∈ Mor C , u ∈ Obj C ,

i) (p+ q)b = pb+ qb;

ii) (pb1)b2 = p(b1b2);

iii) p 1 = p ;

iv) 0ub = 0ub.

When B is right cancellative, we always assume that the action is right cancellative,
that is, it satisfies the following conditions:

c) for all p, q ∈ Mor C and b ∈ B,

pb = qb ⇒ p = q ;

d) for all u ∈ Obj C and b ∈ B, if q ∈ Mor(w, ub), then w = vb for some object v

and q = pb for some p ∈ Mor(v, u).

Dually, we can define the notion of a left action of a left cancellative monoid A on

a category C , and we always assume that such an action is left cancellative.
If monoidsA andB act on C simultaneously, we require the actions to be compatible,

that is, for all p ∈ Mor C , a ∈ A and b ∈ B,

(ap)b = a(pb).

In this case we denote (ap)b by apb.

If A and B are cancellative and C is ample, it follows from the proof of [12, Propo-
sition 25] or is easily proved directly that for all p ∈ MorC , a ∈ A and b ∈ B,

(ap)+ = ap+; (ap)∗ = ap∗; (pb)∗= p∗b and (pb)+ = p+b.

An ample category C acted upon on the left by a cancellative monoid A and
on the right by a cancellative monoid B is said to be an ample (A,B)-category if

Obj C = A×B and, for all (u, v) ∈ Obj C , a ∈ A and b ∈ B,

a(u, v) = (au, v) and (u, v)b = (u, vb).

We note that an ample (A,B)-category is locally idempotent if and only if M =
Mor((1, 1), (1, 1)) is a semilattice. For, if a ∈ A, b ∈ B and q ∈ Mor((a, b), (a, b)), then

(a, b) = a(1, 1)b so that q = apb for some p ∈ M . Hence q+q = apb+apb = a(p+p)b =

apb = q.
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2 Proper ample monoids

The approach in this section is a slight variation on that of Simmons [12] where he
obtains much more general results. For completeness, we give proofs of our structure

theorems for ample, E-unitary ample and proper ample monoids. Rather than using
the general notion of double semidirect product as in [12], we use the special case of

the ample (A,B)-categories introduced at the end of the preceding section.
We start by showing how to associate a monoid C(1,1) to an (A,B)-category. Given

an ample (A,B)-category C , let

C(1,1) = {(b, p, a) : b ∈ B, a ∈ A, p ∈ Mor((1, b), (a, 1))}

and, for (b, p, a), (d, q, c) ∈ C(1,1), define

(b, p, a) (d, q, c) = (bd, pd+ aq, ac).

Notice that this operation is well defined since if p and q are in Mor((1, b), (a, 1)) and

Mor((1, d), (c, 1)) respectively, then pd ∈ Mor((1, bd), (a, d)) and aq ∈ Mor((a, d), (ac, 1))
so that pd+ aq is defined and belongs to Mor((1, bd), (ac, 1)).

Theorem 2.1 Let A and B be cancellative monoids. If C is an ample (A,B)-category,
then C(1,1) is an ample monoid. Moreover, if C is locally idempotent, then C(1,1) is E-

unitary, and if C is proper, then so is C(1,1).

Proof: Throughout the proof, we denote Mor((1, 1), (1, 1)) by M .

First, it is routine to show that the binary operation defined on C(1,1) is associative
with identity element (1, 0(1,1), 1).

Since both A and B are cancellative monoids, we get

E(C(1,1)) = {(1, p, 1) : p ∈ E(M )}

and so it is clear that E(C(1,1)) is isomorphic to E(M ), which is a semilattice since C

is ample.
Given p ∈ Mor((1, b), (a, 1)) there exists a unique idempotent p+ in its R∗-class and

p+ ∈ Mor((1, b), (1, b)). As the action ofB on C is right cancellative and (1, b) = (1, 1)b,
there exists a unique p+

0 ∈ M such that p+ = p+
0 b. Again by the right cancellativity of

the action, p+
0 is also idempotent. Now

(1, p+
0 , 1) (b, p, a) = (b, p+

0 b+ p, a) = (b, p, a).

Suppose that, for some (d1, p1, c1) and (d2, p2, c2) ∈ Mor C ,

(d1, p1, c1) (b, p, a) = (d2, p2, c2) (b, p, a).

Then

(d1b, p1b+ c1p, c1a) = (d2b, p2b+ c2p, c2a)
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and so
d1b = d2b , c1a = c2a and p1b+ c1p = p2b+ c2p.

Since A and B are right cancellative, d1 = d2 and c1 = c2. Thus p1b+ c1p = p2b+ c1p.
Now

(c1p)
+ = c1p

+ and so p1b+ c1p
+ = p2b+ c1p

+.

But p+ = p+
0 b and the actions are compatible, so by the right cancellativity of the

action of B, we get

p1 + c1p
+
0 = p2 + c1p

+
0 .

Therefore
(d1, p1, c1) (1, p+

0 , 1) = (d2, p2, c2) (1, p+
0 , 1)

and so the idempotent (1, p+
0 , 1) is R∗-related to (b, p, a).

Next, for (1, r, 1) ∈ E(C(1,1)) and (b, p, a) ∈ C(1,1), we have

((b, p, a) (1, r, 1))+ (b, p, a) = (b, p+ ar, a)+ (b, p, a)

=
(
1, (p+ ar)+

0 , 1
)

(b, p, a)

=
(
b, (p+ ar)+

0 b+ p, a
)

=
(
b, (p+ ar)+ + p, a

)

= (b, p+ ar, a)

= (b, p, a) (1, r, 1).

Thus C(1,1) is left ample. The proof of the dual properties for L ∗ is similar. We
conclude that C(1,1) is an ample monoid.

Now suppose that C is locally idempotent and let (b, p, a), (1, q, 1) ∈ C(1,1) be such
that (b, p, a)(1, q, 1) is idempotent, that is, (b, p+ aq, a) is idempotent. Then b = 1 and

a = 1 so that p is in M . By assumption, p is idempotent and hence so is (b, p, a). Thus
C(1,1) is E-unitary.

It remains to show that C(1,1) is proper whenever C is proper. Suppose that
C is proper and that (b, p, a), (d, q, c) ∈ C(1,1) are σ-related and R∗-related. Then

(1, p+
0 , 1) = (1, q+

0 , 1), and so p+
0 = q+

0 .
On the other hand, there is an idempotent (1, r, 1) such that

(b, q, a) (1, r, 1) = (d, q, c) (1, r, 1).

Thus b = d and a = c. Hence p, q ∈ Mor((1, b), (a, 1)) and p+ = p+
0 b = q+

0 b = q+
0 d = q+.

As C is left proper, p = q. Therefore R∗ ∩ σ = ι in C(1,1).

Similarly, we can show that L ∗ ∩ σ = ι in C(1,1), and so C(1,1) is proper.

Our next task is to prove that any [proper, E-unitary] ample monoid is isomorphic
to a suitable monoid C(1,1).

Theorem 2.2 A monoid M with unary operations ∗ and + is ample if and only if
it is (2, 1, 1, 0)-isomorphic to a monoid C(1,1) associated to an ample (A,B)-category,

where A and B are cancellative monoids. Moreover, it is proper [E-unitary] if and only
if the (A,B)-category is proper [locally idempotent].
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Proof: In view of the previous theorem it remains to show the direct part.
Suppose that M is an ample monoid. Let σ be the least cancellative congruence on

M and put A=B =M/σ. We define the derived (A,B)-category D of the canonical
epimorphism θ : M→M/σ given by aθ = aσ as follows:

Obj D = A×B and, for (a1, b1), (a2, b2) ∈ A×B,

Mor ((a1, b1), (a2, b2)) = {((a1, b1), m, (a2, b2)) : a1(mθ) = a2, b1 = (mθ)b2}

with composition defined by

((a1, b1), m, (a2, b2)) + ((a2, b2), n, (a3, b3)) = ((a1, b1), mn, (a3, b3)) .

The action of A on the left is defined as follows:

for a ∈ A and ((a1, b1), m, (a2, b2)) ∈ Mor D ,

a ((a1, b1), m, (a2, b2)) = ((aa1, b1), m, (aa2, b2)) .

Similarly, we define the action of B on the right.

It is routine to prove that the composition is well defined and associative. Given
(a, b) in Obj D , we have 0(a,b) = ((a, b), 1M , (a, b)), where 1M is the identity of M .

Let (a, b) ∈ Obj D . Then, since E(M) is a semilattice, so is

E (Mor((a, b), (a, b))) = {((a, b), m, (a, b)) : m ∈ E(M)} .

To prove that D is left ample is also routine after noticing that for any

((a1, b1), m, (a2, b2)) ∈ Mor D

((a1, b1), m, (a2, b2))
+ =

(
(a1, b1), m

+, (a1, b1)
)
.

A dual argument shows that D is right ample, and thus D is ample.

To conclude that D is an (A,B)-category, it remains to analyse the properties of
the actions, but these are straightforward to verify.

Next we show that M and C(1,1) are isomorphic as (2, 1, 1, 0)-algebras.
Observe that

C(1,1) = {(b, ((1, b), m, (a, 1)) , a) : a ∈ A, b ∈ B, b = mθ = a}

= {(mθ, ((1, mθ), m, (mθ, 1)) , mθ) : m ∈M}

and define ψ : M → C(1,1) by putting

mψ = (mθ, ((1, mθ), m, (mθ, 1)) , mθ) .

Clearly ψ is both injective and onto. To prove that ψ is a monoid homomorphism

is straightforward.
To show that ψ respects the unary operation +, we consider m ∈ M and p =

((1, mθ), m, (mθ, 1)). Then

(mψ)+ = (mθ, ((1, mθ), m, (mθ, 1)) , mθ)+

= (1, p+
0 , 1),
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where p+ = ((1, mθ), m+, (1, mθ)) and p+
0 = ((1, 1), m+, (1, 1)). Hence (mψ)+ = m+ψ.

Similarly, one can show that ψ respects the operation ∗. Therefore ψ is a (2, 1, 1, 0)-

isomorphism, as required.
Suppose that M is E-unitary. Then E(M) is the identity of M/σ and, for any

object (a, b) of D ,

Mor ((a, b), (a, b)) = {((a, b), m, (a, b)) : mθ = 1}

= {((a, b), m, (a, b)) : m ∈ E(M)}

≃ E(M).

Thus D is locally idempotent.
As in [4, Theorem 2.2], we can show that D is left proper [and dually that it is

right proper], whenever M is left [right] proper.

3 Proper covers of ample monoids

This section is devoted to proving that any [finite] ample monoid has a [finite] proper

ample cover. We use relational morphisms to associate an ample (A,B)-category with
an ample monoid M in such a way that the proper ample monoid C(1,1) is a cover of

M .
Let M be an ample monoid. Recall that a [proper] ample monoid P is said to be a

[proper ] cover of M if there exists a (2, 1, 1, 0)-morphism θ from P onto M that sepa-
rates idempotents. We remark that the latter condition is equivalent to the restriction

of θ to E(P ) being an isomorphism onto E(M).
For any subset X of a left ample monoid T , we putX+ = {x+ : x ∈ X}. A relational

morphism τ :M −→◦ T of left ample monoids M and T is a relational morphism of
(2, 1, 0)-algebras, that is, τ maps M to P(T ) and, for all m,n ∈M , we have

(1) mτ 6= ∅,

(2) (mτ)+ ⊆ m+τ ,

(3) (mτ)(nτ) ⊆ (mn)τ ,

(4) 1T ∈ 1Mτ .

These conditions ensure that the graph of τ , which we denote by gr(τ), is a (2, 1)-
subalgebra of the direct product M × T , and that the projection of gr(τ) to M is

surjective. In particular, gr(τ) is a left ample submonoid of M × T . We also note that
if T is right cancellative, then 1T ∈ eτ for every idempotent e of M . For, eτ is not

empty, and if t ∈ eτ , then 1T = t+ ∈ (eτ)+ ⊆ eτ .
Given a relational morphism τ : M −→◦ T from a left ample monoid M to a right

cancellative monoid T , we say that τ is left proper if, for all m,n ∈M ,

mτ ∩ nτ 6= ∅ implies n+m = m+n.
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We remark that, as noted in [1], a left proper relational morphism τ : M −→◦ T is
idempotent pure in the sense that if 1T ∈ mτ , then m is idempotent.

For a right ample monoid M and a left cancellative monoid T , we have the dual
notion of a right proper relational morphism τ and such a τ is also idempotent pure.

In the following lemma, we give an alternative characterisation of a left proper
relational morphism which looks more like the definition of a left proper ample category.

Lemma 3.1 A relational morphism τ : M −→◦ T from a left ample monoid M to a
right cancellative monoid T is left proper if and only if

mτ ∩ nτ 6= ∅ and m+ = n+ imply m = n.

Proof: If τ is left proper, and if mτ ∩nτ 6= ∅ and m+ = n+, then m = m+m = n+m =
m+n = n+n = n.

Conversely, suppose that the condition of the lemma holds and that mτ ∩ nτ 6= ∅.
Since 1 ∈ eτ for any idempotent in M , we have

mτ ∩ nτ ⊆ (n+τ)(mτ) ∩ (m+τ)(nτ) ⊆ (n+mτ) ∩ (m+nτ)

so that the latter is nonempty. Now (n+m)+ = m+n+ = n+m+ = (m+n)+, and so the
condition gives n+m = m+n.

Now let M be an ample monoid, A, B be cancellative monoids, τ1 : M −→◦ A

be a relational morphism of right ample monoids, and τ2 : M −→◦ B be a relational

morphism of left ample monoids. We construct an ample (A,B)-category X = X(τ1,τ2).
Let Obj X = A×B. For (a1, b1), (a2, b2) ∈ A×B,

Mor ((a1, b1), (a2, b2)) = {((a1, b1), m, (a2, b2)) : a2 ∈ a1(mτ1), b1 ∈ (mτ2)b2} .

Composition is given as in the derived (A,B)-category of Section 2 as follows: for

((a1, b1), m, (a2, b2)), ((a2, b2), n, (a3, b3)) ∈ MorX ,

((a1, b1), m, (a2, b2)) + ((a2, b2), n, (a3, b3)) = ((a1, b1), mn, (a3, b3)) .

It is routine to check that the composition is well defined and associative. For any

idempotent e of M and elements a and b of A and B respectively, we have a = a1A ∈
a(eτ1) and b = 1Bb ∈ (eτ2)b, and it follows that

E (Mor ((a, b), (a, b))) = {((a, b), e, (a, b)) : e ∈ E(M)} .

It is obvious then that E(Mor((a, b), (a, b))) is isomorphic to the semilattice E(M).
Now let p = ((a1, b1), m, (a2, b2)) ∈ Mor X . Thenm∗, m+ ∈ E(M) and consequently,

((a1, b1), m
+, (a1, b1)) and ((a2, b2), m

∗, (a2, b2)) are idempotents of MorX . The proof
that the first is R∗-related to p, and the second is L ∗-related to p, follows as in the

case of the derived (A,B)-category D . Also, as with D , we prove that X is ample and
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define an action on the right [left] of D by B [A] as follows: for all (a1, b1) ∈ Obj X ,
a ∈ A, b ∈ B, ((a1, b1), m, (a2, b2)) ∈ Mor C ,

(a1, b1)b = (a1, b1b) and a(a1, b1) = (aa1, b1);

((a1, b1), m, (a2, b2)) b = ((a1, b1b), m, (a2, b2b)) ;

a ((a1, b1), m, (a2, b2)) = ((aa1, b1), m, (aa2, b2)) .

Notice that the actions are well defined. For example, the action of B is well defined

because if b1 ∈ (mτ2)b2, then b1b ∈ (mτ2)b2b.
It is routine to verify the properties of the actions and we conclude that X is an

ample (A,B)-category.
If τ1 is left proper and τ2 is right proper, then the (A,B)-category X is proper.

To show that X is left proper, suppose that p, q ∈ Mor((a1, b1), (a2, b2)) and p+ = q+.
Then p = ((a1, b2), m, (a2, b2)) and q = ((a1, b1), n, (a2, b2)), for some m,n ∈ M , and

m+ = n+. Now, a2 = a1x, for some x ∈ mτ1 and a2 = a1y, for some y ∈ nτ1. Since A is
cancellative, x = y and so mτ1 ∩ nτ1 6= ∅. As m+ = n+ and τ1 is left proper, it follows

by Lemma 3.1 that m = n. Thus p = q, as required. Similarly, X is right proper, and
so it is proper.

Theorem 3.2 Any [finite] ample monoid has a [finite] proper ample cover.

Proof: Let M be an ample monoid. Since M is left ample, it follows from [2, Proposi-

tion 1.2] that there is a +-embedding (of monoids) ρ : M → I (M) into the symmetric
inverse monoid on M which maps an element m of M to ρm where ρm : Mm+ →Mm

is given by xρm = xm.
Let X = M if M is finite, and if M is infinite, let X = M∪N where N is a set of the

same cardinality as M and disjoint from M . Then I (M) is an inverse subsemigroup
of I (X) and so we may regard ρ as a +-embedding (of semigroups) of M into I (X).

It follows from [8, Proposition 2.1.1] that, for every element ϕ of I (M) there is a unit
(that is, a bijection) α of I (X) such that ϕ 6 α where 6 is the natural partial order

on I (X).
Dually, as M is right ample, we have a ∗-embedding of semigroups λ :M → I (X)∗

mapping an element m of M to the partial bijection λm : m∗M → mM given by

λm(x) = mx.
Denote by G (X) the group of units of I (X), that is, the symmetric group on X

with the maps written on the right of their arguments. Its left-right dual G (X)∗ is the
group of units of I (X)∗.

Now let
Hρ = {α ∈ G (X) : ρm 6 α for some m ∈M}

and
Hλ = {α ∈ G (X)∗ : λm 6 α for some m ∈M} .

If α, β ∈ Hρ, then ρm 6 α and ρn 6 β, for some m,n ∈ M . Hence ρmn = ρm ρn 6

αβ and so αβ ∈ Hρ. Also IX ∈ Hρ since ρ1M
6 IX . Thus Hρ is a cancellative monoid,

and if M is finite, then Hρ is a group.
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Similarly, Hλ is a cancellative monoid which is a group if M is finite.
Next, we define relational morphisms τρ : M −→◦ Hρ and τλ : M −→◦ Hλ by

mτρ = {α ∈ Hρ : ρm 6 α} and mτλ = {α ∈ Hλ : λm 6 α}.

We show that τρ is a left proper relational morphism of left ample monoids. We have

already observed that for each m ∈ M there is a unit α of I (X) with ρm 6 α so
that α ∈ mτρ and mτρ is not empty. If e ∈ E(M), then ρe is idempotent in I (X), so

IX ∈ eτρ since IX is the greatest idempotent in I (X). In particular, IX ∈ 1Mτρ, and
(mτρ)

+ = {IX} ⊆ m+τρ for all m ∈M .

Let m,n ∈ M , α ∈ mτρ and β ∈ nτρ. Then ρm 6 α and ρn 6 β, and, as above,

ρmn 6 αβ so that αβ ∈ (mn)τρ. Thus (mτρ) (nτρ) ⊆ (mn)τρ.
Finally, suppose that m,n ∈M are such that mτρ ∩ nτρ 6= ∅. Let α ∈ mτρ ∩ nτρ so

that ρm 6 α and ρn 6 α. Then we have ρm = ρmρ
−1
m α = ρ+

mα and ρn = ρnρ
−1
n α = ρ+

nα.
Using the fact that ρ is a +-embedding, we have

ρm+n = ρm+ρn = ρ+
mρ

+
nα = ρ+

n ρ
+
mα = ρ+

n ρm = ρn+m

so that m+n = n+m since ρ is injective.

In an exactly similar way, τλ is a right proper relational morphism of right ample
monoids.

We now consider the (Hρ, Hλ)-category X = X(τρ,τλ) associated with the relational

morphisms τρ and τλ. We know that this is a proper ample category, and that the
associated monoid C(1,1) is a proper ample monoid. In fact, C(1,1) is a proper ample

cover of M .
Define the map θ : C(1,1) →M by

(b, ((1, b), m, (a, 1)), a) θ = m.

It is clear that θ is onto since, for any m ∈ M , there exist a ∈ mτρ and b ∈ mτλ
and so

p = ((1, b), m, (a, 1)) ∈ MorX , (b, p, a) ∈ C(1,1) and (b, p, a)θ = m.

Also θ maps the identity of C(1,1) to the identity of M .

Let γ1 = (b1, ((1, b1), m1, (a1, 1)), a1) and γ2 = (b2, ((1, b2), m2, (a2, 1)), a2) be arbi-
trary elements of C(1,1). Then

γ1γ2 = (b1b2, ((1, b1b2), m1m2, (a1a2, 1)) , a1a2)

and so

(γ1γ2)θ = m1m2 = (γ1θ) (γ2θ).

Now

γ+
1 θ =

(
1,

(
(1, 1), m+

1 , (1, 1)
)
, 1

)
θ = m+

1 = (γ1θ)
+

and similarly
γ∗1θ = (γ1θ)

∗.
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It remains to show that θ separates idempotents. But this is clear, since

E(C(1,1)) = {(1, ((1, 1), e, (1, 1)) , 1) : e ∈ E(M)} .

Therefore is a proper ample cover of M .

To conclude, we observe that if M is finite, then certainly Hρ and Hλ are finite,
and hence C(1,1) is finite.

We briefly consider semigroups as opposed to monoids. It is clear how to extend

the definitions of ample, proper and proper cover from monoids to semigroups. Thus
if S is an ample semigroup, we say that a proper ample semigroup Ŝ is a proper cover

of S if there is a (2, 1, 1)-morphism θ from Ŝ onto S that separates idempotents.

Corollary 3.3 Every ample semigroup has a proper ample cover.

Proof: Let S be an ample semigroup. The monoid S1 is also ample and by the last

theorem it has a proper cover T by means of a (2, 1, 1, 0)-morphism θ : T → S1. We can
show that Sθ−1 is a (2, 1, 1)-subalgebra of T and so it is also a proper ample semigroup

and it is a cover of S.
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