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Abstract. Munn’s construction of a fundamental inverse semi-
group TE from a semilattice E provides an important tool in the
study of inverse semigroups. We present here a semigroup FE that
plays for a class of E-semiadequate semigroups the role that TE

plays for inverse semigroups. Every inverse semigroup with semi-
lattice of idempotents E is E-semiadequate. There are however
many interesting E-semiadequate semigroups that are not inverse;
we consider various such examples arising from Schützenberger
products.

1. Introduction

One of the significant early approaches to the structure theory of
inverse semigroups was via fundamental inverse semigroups, that is,
inverse semigroups having no non-trivial idempotent separating con-
gruences. Munn [M] showed how an important fundamental inverse
semigroup TE could be constructed from any semilattice E, via partial
isomorphisms of E. The Munn semigroup TE of E has semilattice of
idempotents isomorphic to E and is “maximal” in the sense that an
inverse semigroup S with semilattice of idempotents E is fundamental
if and only if it is isomorphic to a full subsemigroup of TE . Further, if
S is an inverse semigroup with semilattice of idempotents E then there
exists a homomorphism φ : S → TE whose kernel is µ, the maximum
idempotent separating congruence on S [M].

The founding work of Munn has been generalised in several direc-
tions. Dropping the condition of commutativity of idempotents leads
to the study of orthodox semigroups, that is, regular semigroups whose
idempotents form a subsemigroup. Semigroups of idempotents are
called bands. The Hall semigroup WB of a band B is an orthodox
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semigroup with band of idempotents isomorphic to B and properties
analogous to those described above for TE [Ha1]. Hall and Namboori-
pad took this still further to the case of regular semigroups in [Ha2]
and [N] respectively.

Another direction has been taken by Fountain in [F1], where he
considers adequate semigroups. The move from inverse to adequate
semigroups is obtained by retaining the commutativity of the idempo-
tents but weakening the condition of regularity. This is accomplished
via consideration of Green’s *-relations L∗ and R∗ where elements a, b
of a semigroup S are L∗-related if and only if they are L-related in an
oversemigroup of S; the relation R∗ is defined dually. In fact L∗ and
R∗ are equivalence relations [F1]. A semigroup S is abundant if each
L∗-class and each R∗-class of S contains an idempotent and adequate if,
in addition, the idempotents of S form a commutative subsemigroup.
In this case the L∗-class (R∗-class) of a ∈ S contains a unique idempo-
tent, denoted by a∗(a+, sometimes a†). If S is a regular semigroup then
L∗ = L and R∗ = R; clearly then a regular semigroup is abundant and
an inverse semigroup is adequate, with a∗ = a−1a and a+ = aa−1. In an
adequate semigroup there need not be a greatest idempotent separat-
ing congruence. However, on an inverse semigroup µ is also the largest
congruence contained in H. Defining H∗ to be L∗∩R∗ we may without
ambiguity denote by µ the largest congruence contained in H∗. In [F1]
Fountain shows that if S is an adequate semigroup with semilattice of
idempotents E, which in addition satisfies

ea = a(ea)∗ and ae = (ae)+a (A)

for all a ∈ S and for all idempotents e ∈ E, then there is a homomor-
phism φ : S → TE with kernel µ. Such a semigroup is called type A in
[F1] and more recently ample [G].

The work in this paper continues the approach of [F1]. First, we drop
the ‘ample’ condition (A), imposing a strictly weaker condition intro-
duced in [F2]. In a second direction we weaken the adequacy condition
and consider E-semiadequate semigroups, first defined by Lawson in
[L]. A semigroup S is E-semiadequate, where E is a semilattice of idem-

potents and a subsemigroup of S, if every L̃E-class and every R̃E-class
of S contains a (necessarily unique) idempotent of E. Here L̃E and

R̃E are generalisations of the relations L∗ and R∗, and are defined in
Section 2. If S is E-semiadequate then by a natural extension of our
previous notation, we denote by a∗ (a+) the idempotent of E in the

L̃E-class (R̃E-class) of a ∈ S. If E consists of all idempotents of S
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and S is adequate, then L∗ = L̃E and R∗ = R̃E so that no ambiguity
arises.

Our interest in this class of semigroups arose from considering the
Schützenberger product M ⋄ N of monoids M and N . The monoid
M ⋄N is not adequate unless M and N are both cancellative. However,
M ⋄N is E-semiadequate for a certain subset E of idempotents. If M
is left cancellative and N is right cancellative then E is the set of all
idempotents of M ⋄N and M ⋄N has a number of other properties; it
is an example of a weakly hedged monoid.

Lawson [L] establishes a strong connection between a class of E-
semiadequate semigroups and small ordered categories. In Theorem
4.24 of [L] he shows that a certain category of E-semiadequate semi-
groups and admissible homomorphisms is isomorphic to the category of
Ehresmann categories and strongly ordered functors. The semigroups
considered are called Ehresmann semigroups in [L]; in our terminol-
ogy they are E-semiadequate semigroups satisfying conditions (CR)
and (CL), defined in the next section. This paper concentrates on E-
fundamental E-semiadequate semigroups. We describe an analogue of
the Munn semigroup TE of a semilattice E. This semigroup, which we
denote by FE, plays the role for a class of E-semiadequate semigroups
that TE plays for inverse semigroups having semilattice of idempotents
E.

In Section 2 we define the class of semigroups under consideration,
weakly E-hedged semigroups. They are E-semiadequate semigroups
satisfying two conditions weaker than (A). Trivially, every monoid
is weakly {1}-hedged and it is not difficult to show that every inverse
monoid is weakly E-hedged where E is the semilattice of all its idem-
potents. As mentioned above, more interesting examples of weakly E-
hedged semigroups are obtained from the Schützenberger product of a
left cancellative monoid with a right cancellative monoid, discussed at
length in Section 3. Further examples of semigroups satisfying the cor-
responding one-sided conditions are provided by graph expansions of
monoid presentations of unipotent monoids. In Section 4 given a semi-
lattice E we construct an E-semiadequate semigroup, FE, containing
a semilattice of idempotents E isomorphic to E. The semigroup FE is
built using pairs of homomorphisms from E1 to E. The need to con-
sider pairs of homomorphisms arises from the fact that, unlike the case
for inverse semigroups, the endomorphisms of E1 obtained in a natu-
ral way from the elements of a weakly E-hedged semigroup S do not
come equipped with inverses on certain domains. That is, not unless
S satisfies condition (A). The Munn semigroup TE is embedded in FE
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via an injection π. Defining µE to be the largest congruence contained

in H̃E = L̃E ∩ R̃E, we show that µE is trivial on FE ; accordingly, we
say that FE is E-fundamental. If S is a weakly E-hedged semigroup
then there is a homomorphism θ : S → FE with ker θ = µE.

In line with the new terminology of [G], we call a weakly E-hedged
semigroup satisfying condition (A) weakly E-ample. The imposition of
(A) is enough for us to be able to dispense in this case with FE and
show there is a homomorphism φ : S → TE with ker φ = µE. This
result also occurs in work of El-Qallali and Fountain [EF], where they
consider U -semiabundant semigroups for a class of idempotents U (not
necessarily a semilattice) satisfying (CR), (CL) and the analogue of the
‘ample’ condition (A). We also show that φπ = θ, where π : TE → FE
and θ : S → FE are the homomorphisms mentioned above.

After this consideration of weakly E-ample semigroups in Section 5,
our final section is devoted to using the theory we have built to deduce
some facts concerning weakly E-hedged and weakly E-ample semi-
groups. In particular, a weakly E-hedged (weakly E-ample) semigroup
is E-fundamental if and only if it is E-isomorphic to a subsemigroup
of FE (TE).

2. E-semiadequate and weakly E-hedged semigroups

In this section we define the above classes of semigroups and state
a number of their elementary properties. Proofs are omitted where
they are virtually identical to those in [F1]. In the following section we
show how these ideas arise naturally from Schützenberger products of
monoids satisfying cancellation properties. We use the terminology and
notation of [Ho1]; in particular, the set of idempotents of a semigroup
S is denoted by E(S).

We begin with the following alternative description of L∗, which may
be found in [F1].

Lemma 2.1. Elements a, b of a semigroup S are L∗-related if and only
if for all x, y ∈ S1

ax = ay if and only if bx = by.

From Lemma 2.1 it follows that L∗ is an equivalence relation. It is
then easy to see that L∗ is a right congruence and dually, R∗ is a left
congruence.

Let E be a semilattice and a subsemigroup of S. We say that S
is right (left) E-adequate if every L∗-class (R∗-class) of S contains an
idempotent of E. If S is right (left) E-adequate the idempotent of E
in the L∗-class (R∗-class) of a ∈ S is unique and is denoted a∗ (a+). If
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S is right and left E-adequate then S is E-adequate. If E = E(S) then
here, as elsewhere, we may omit mention of E in these definitions.

Suppose now that S is right E-adequate and a ∈ S. From Lemma
2.1, aa∗ = a and if e ∈ E is such that ae = a then a∗e = a∗, so that
a∗ ≤ e in the semilattice E. Thus

aE = {e ∈ E : ae = a}

has minimum member a∗ and dually

Ea = {e ∈ E : ea = a}

has minimum member a+. These facts, together with a number of ex-
amples (see Section 3), lead us to consider E-semiadequate semigroups,
defined by Lawson in [L].

Let S be a semigroup such that E(S) contains a semilattice E. We
say that S is rightE-semiadequate if for each a ∈ S the set aE contains a
minimum member, which we denote by a∗. Note that for e ∈ E, e = e∗.

The relation L̃E is defined on S by the rule that for a, b ∈ S,

a L̃E b if and only if a∗ = b∗.

For any a ∈ S, (a∗)∗ = a∗ so that a L̃E a∗; clearly a∗ is the unique

idempotent of E that is L̃E-related to a. If S is right E-adequate then

L∗ = L̃E so that the notation a∗ is unambiguous. A left E-semiadequate
semigroup is defined dually; for an element a of such a semigroup S,

a+ denotes the minimum member of Ea. The relation R̃E is defined on
S by the rule that for a, b ∈ S,

a R̃E b if and only if a+ = b+.

If S is right and left E-semiadequate then S is said to beE-semiadequate.

This terminology and the relations L̃E and R̃E were introduced in [L],
with a slightly different approach. As commented in [L], these ideas
are inherent in an earlier paper of Batbedat and Fountain [BF].

If S is right E-semiadequate then for any a ∈ S there is a mapping
αa : E1 → E given by xαa = (xa)∗.

Lemma 2.2. Let S be a right E-semiadequate semigroup. Then
(1) for all a, b ∈ S, (ab)∗ ≤ b∗;
(2) for all a ∈ S the mapping αa : E1 → E is order preserving.

Proof (1) For a, b ∈ S we have (ab)b∗ = ab so that (ab)∗ ≤ b∗ by
definition of (ab)∗ as the minimum element in (ab)E .

(2) Let a ∈ S and x, y ∈ E1 with x ≤ y. Then using (1),

xαa = (xa)∗ = (xya)∗ ≤ (ya)∗ = yαa.
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The condition that a semigroup be right E-semiadequate can be very
weak. To make progress we require at least that the semigroup satisfies
condition (CR). We say that a right E-semiadequate semigroup satisfies

(CR) if L̃E is a right congruence. In view of earlier remarks this is
always true for a right E-adequate semigroup. Condition (CR) together
with its left-right dual (CL) are called the congruence condition [L].

Lemma 2.3. Let S be a right E-semiadequate semigroup satisfying
(CR).

(1) For all a, b ∈ S, (ab)∗ = (a∗b)∗.
(2) For all a ∈ S and e ∈ E, (ae)∗ = a∗e.
(3) For all a, b ∈ S, αab = αaαb.

Proof (1) and (2) follow from Proposition 3.7 of [L].
Using (CR) we have that for any a, b ∈ S and x ∈ E1

xαaαb = (xa)∗αb = ((xa)∗b)∗ L̃E (xa)∗b L̃E xab L̃E (xab)∗ = xαab

so that (3) holds.

If S is a left E-semiadequate semigroup then for any a ∈ S the map
βa : E1 → E is defined by xβa = (ax)+. The dual of Lemma 2.2
gives that for each a ∈ S, βa is order preserving and if condition (CL)
holds the dual of Lemma 2.3 gives that for all a, b ∈ S, βab = βbβa. We
denote by O1(E

1) the semigroup of order preserving maps α : E1 → E.
Combining the above results we may define a homomorphism θ from
an E-semiadequate semigroup S satisfying the congruence condition to
O1(E

1) ×O∗
1(E

1) by aθ = (αa, βa), for all a ∈ S. Here O∗
1(E

1) is the
dual semigroup of O1(E

1).
For an element e of a semilattice E we denote by ρe the homomor-

phism E1 → E induced by multiplication with e. If α, β are endo-
morphisms of E1 such that xα ≤ xβ for all x ∈ E1, then we write
α ≤ β.

Lemma 2.4. Let S be an E-semiadequate semigroup satisfying the
congruence condition. Then for all a ∈ S,

(1) a+αa = a∗ and a∗βa = a+;
(2) ρa+ ≤ αaβa and ρa∗ ≤ βaαa.

Proof (1) is immediate from the definitions of αa and βa. To prove
(2), suppose that x ∈ E1. Then

xa+(a(xa)∗)+ R̃E xa
+a(xa)∗ = xa(xa)∗ = xa R̃E xa

+

so that (xρa+)(xαaβa) = xρa+ and ρa+ ≤ αaβa. Dually, ρa∗ ≤ βaαa.

Let S be an E-semiadequate semigroup satisfying the congruence
condition. We recall from the introduction that µE denotes the largest



A MUNN TYPE REPRESENTATION 7

congruence contained in H̃E = L̃E ∩ R̃E . The congruence µE may
be described in an analogous manner to that given for adequate semi-
groups in [F1]; the proof is essentially the same as that in [F1]. Lemma
2.5 and Proposition 2.6 were also noted in [E].

Lemma 2.5. Let S be an E-semiadequate semigroup satisfying the
congruence condition. Then the congruence µE = ker θ, where

θ : S → O1(E
1) ×O∗

1(E
1)

is the homomorphism given by aθ = (αa, βa). Thus

µE = {(a, b) ∈ S × S : αa = αb and βa = βb}

= {(a, b) ∈ S × S : a H̃E b, αa|a+E = αb|a+E and βa|a∗E = βb|a∗E}.

Let E be a semilattice and a subsemigroup of T . We say that the
semigroup T is an E-semilattice of monoids if T is a semilattice E of
monoids Te, e ∈ E, such that for all e ∈ E, e is the identity of Te. A
standard argument gives that if T is an E-semilattice of monoids then T
is a strong semilattice of monoids determined by homomorphisms φe,f :
Te → Tf (e ≥ f) where for a ∈ Te, aφe,f = af . It is an easy exercise
to show that such a semigroup T is E-semiadequate and satisfies the
congruence condition. Further, E is central in T . The following shows
that the converse result is true.

Proposition 2.6. Let S be an E semiadequate semigroup satisfying the
congruence condition. Then the following conditions are equivalent:

(1) S/µE ∼= E;
(2) for all a ∈ S, a∗ = a+;

(3) L̃E = H̃E = R̃E;

(4) each H̃E-class contains a (unique) idempotent of E;
(5) E is central in S;
(6) S is an E-semilattice of monoids.

Proof Similar to that of Proposition 2.9 of [F1].

The main results of this paper are contained in Section 4, where
we give a ‘Munn type’ representation for a class of E-semiadequate
semigroups, namely the class of weakly E-hedged semigroups. A right
E-semiadequate semigroup is right weakly E-hedged if it satisfies cond-
tions (CR) and (HR).

(HR) For all x, y ∈ E1 and for all a ∈ S, (xya)∗ = (xa)∗(ya)∗.
In view of Lemma 2.2, condition (HR) can be replaced by

(HR)′ for all x, y ∈ E and for all a ∈ S, (xya)∗ = (xa)∗(ya)∗.
Condition (HR) and its dual (HL) were introduced for right (left) ade-
quate semigroups in [F2] where a right adequate semigroup satisfying
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(HR) is said to be right h-adequate; in this paper, such a semigroup is
called right hedged.

The next lemma follows immediately from the definitions.

Lemma 2.7. Let S be a right E-semiadequate semigroup. Then S
satisfies (HR) if and only if for each a ∈ S, αa : E1 → E is a homo-
morphism.

Left weakly E-hedged semigroups are defined dually and a semigroup
S is weakly E-hedged if it is both left and right weakly E-hedged. De-
noting by End1E

1 the semigroup of endomorphisms of E1 with image
contained in E, we may now restate Lemma 2.5 for weakly E-hedged
semigroups as follows.

Lemma 2.8. Let S be a weakly E-hedged semigroup. Then the con-
gruence µE = ker θ, where θ : S → End1E

1 × End∗
1E

1 is the homo-
morphism given by aθ = (αa, βa).

We end this section by considering the ‘ample’ or ‘type A’ condition
for E-semiadequate semigroups. Following the new terminology of [G]
we say that a right E-semiadequate semigroup S is weakly right E-
ample if S satisfies conditions (CR) and (AR).

(AR) For all a ∈ S and e ∈ E, ea = a(ea)∗.
Weakly left E-ample and weakly E-ample semigroups are defined us-
ing the now standard convention. If S is an inverse semigroup with
semilattice of idempotents E, then as mentioned in the introduction,

L = L∗ and R = R∗; from this section we also have that L∗ = L̃ and

R∗ = R̃. It is then easy to see that S is ample, hence certainly weakly
ample.

Weakly right E-ample semigroups are weakly right E-hedged, as we
now show.

Lemma 2.9. Let S be a weakly right E-ample semigroup. Then S
satisfies (HR) so that S is weakly right E-hedged.

Proof Let x, y ∈ E and a ∈ S. Then

xya = xa(ya)∗ = a(xa)∗(ya)∗

so that (xya)∗ = a∗(xa)∗(ya)∗ = (xa)∗(ya)∗, using Lemma 2.2.

In Section 3 we show that weakly right E-hedged semigroups need
not be weakly right E-ample. We remark that an E-semilattice of
monoids is weakly E-ample so that from Proposition 2.6, if S is an
E-semiadequate semigroup satisfying the congruence condition and E
is central in S, then S is weakly E-ample.
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3. Schützenberger products

Recall that the Schützenberger product M ⋄N of semigroups M and
N is the semigroup with underlying set

{

(
m P
0 n

)
: m ∈M,n ∈ N,P ⊆ M ×N}

and multiplication given by
(
m P
0 n

) (
m′ P ′

0 n′

)
=

(
mm′ mP ′ ∪ Pn′

0 nn′

)
.

Here mP = {m(x, y) : (x, y) ∈ P} and Pn = {(x, y)n : (x, y) ∈ P}.
The action of m ∈ M on the left of M × N is given by m(x, y) =
(mx, y); the action of n ∈ N on the right of M ×N is dual (see [MP]).
Throughout this section M and N will denote monoids so that M ⋄N
is a monoid with identity ( 1 ∅

0 1 ). We put

E = {

(
1 P
0 1

)
: P ⊆M ×N}.

It is easy to see that, as a submonoid of M ⋄N , E is a semilattice and E
is isomorphic to the semilattice of subsets of M ×N under union. We
will impose various cancellation conditions on M and N and show how
this gives examples of the various kinds of (left, right) E-semiadequate
semigroups introduced in the previous section.

Before stating our first result we list a number of facts concerning
the actions of M and N on M × N . With the exceptions of (6) and
(7) they are immediate; (6) and (7) are easily verifiable. For m ∈ M
and P ⊆ M ×N we denote by m−1P the set {(x, y) : m(x, y) ∈ P}.

For all m, a ∈M,P,Q ⊆M ×N and n ∈ N
(1) m(Pn) = (mP )n,
(2) m(P ∪Q) = mP ∪mQ,
(3) m−1(P ∪Q) = m−1P ∪m−1Q,
(4) (ma)P = m(aP ),
(5) m−1(a−1P ) = (am)−1P ,
(6) m(Pn−1) = (mP )n−1,
(7) if M is left cancellative then m−1(mP ) = P .

From (5) and (7) we have that ifM is left cancellative then (am)−1(aP ) =
m−1(a−1(aP )) = m−1P , for all a,m ∈M and P ⊆M ×N .

Lemma 3.1. The monoid M ⋄N is E-semiadequate and satisfies con-
ditions (HR) and (HL). The operations ∗ and + are given by

(
a P
0 b

)∗

=

(
1 a−1P
0 1

)
,

(
a P
0 b

)+

=

(
1 Pb−1

0 1

)
.
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Proof Given A = ( a P0 b ) ∈M ×N and F =
(

1 Q
0 1

)
∈ E we have

AF =

(
a aQ ∪ P
0 b

)
= A

if and only if Q ⊆ a−1P . It follows that A∗ exists and A∗ =
(

1 a−1P
0 1

)
;

dually, A+ exists and A+ =
(

1 Pb−1

0 1

)
. An easy argument involving facts

(2) and (3) and their duals gives that (HR) and (HL) hold.

The next lemma enables us to distinguish the monoids M for which
M ⋄N is weakly right E-hedged.

Lemma 3.2. The monoid M ⋄N satisfies (CR), that is, L̃E is a right
congruence, if and only if M is left cancellative.

Proof Suppose first that M is left cancellative. Let A = ( a P0 b ) , B =(
a′ P ′

0 b′

)
∈ M ⋄ N where A L̃E B and let C =

(
m Q
0 n

)
∈ M ⋄ N . From

Lemma 3.1, a−1P = (a′)−1P ′. We wish to show that AC L̃E BC,
which is equivalent to

(am)−1(aQ ∪ Pn) = (a′m)−1(a′Q ∪ P ′n).

Now using fact (3),

(am)−1(aQ ∪ Pn) = (am)−1(aQ) ∪ (am)−1(Pn).

By the comment following fact (7), (am)−1(aQ) = m−1Q and by (5)
and the dual of (6), (am)−1(Pn) = m−1(a−1(Pn)) = m−1((a−1P )n).
But a−1P = (a′)−1P ′ so that

(am)−1(aQ ∪ Pn) = m−1Q ∪m−1(((a′)−1P ′)n)

= · · · = (a′m)−1(a′Q ∪ P ′n).

Thus (CR) holds.
Conversely, suppose that M is not left cancellative. Choose a, x, y ∈

M with ax = ay but x 6= y. Put A = ( a ∅
0 1 ) , I = ( 1 ∅

0 1 ) and C =(
1 {(x,1)}
0 1

)
.

As a−1∅ = 1−1∅ we have A L̃E I. But AC =
(
a {(ax,1)}
0 1

)
and (y, 1) ∈

a−1{(ax, 1)} \ 1−1{(x, 1)} so that AC is not L̃E-related to IC = C.
Thus (CR) fails.

Corollary 3.3. The monoid M ⋄ N is weakly right E-hedged if and
only if M is left cancellative.

Recall that a semigroup S is unipotent if it contains exactly one
idempotent.

Lemma 3.4. The idempotents of M ⋄N form a semilattice if and only
if M and N are unipotent. Moreover, in this case, E(M ⋄N) = E.
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Proof If M and N are unipotent, then E(M ⋄N) is the semilattice
E. For the converse, suppose that e is a non-identity idempotent in N .
It is easy to check that

(
1 {(1,1),(1,e)}
0 e

)
and

(
1 {(1,e)}
0 e

)
are non-commuting

idempotents. A similar argument works for M .

Lemma 3.4 shows that (2) implies (1) in the next result. Following
the now standard pattern of terminology, a semigroup is right E-hedged
if it is right E-adequate and satisfies condition (HR).

Proposition 3.5. The following conditions are equivalent :
(1) M ⋄N is right E-hedged;
(2) M ⋄N is right hedged;
(3) M and N are left cancellative monoids.

Proof (1) ⇒ (3) If M ⋄ N is right E-hedged then, as noted in

Section 2, L̃E = L∗ so that L̃E is a right congruence. Lemma 3.2
gives that M is left cancellative. If p, q, r ∈ N with pq = pr, then
A =

(
1 ∅
0 p

)
, X =

(
1 ∅
0 q

)
and Y = ( 1 ∅

0 r ) are elements of M ⋄ N with
AX = AY . Since A L∗ A∗ we have A∗X = A∗Y . Now A∗ is the iden-
tity of M ⋄N so that X = Y and q = r. Thus N is left cancellative.

(3) ⇒ (2) As M and N are unipotent, E = E(M ⋄ N). Let A =
(m P

0 n ) ∈ M ⋄ N ; we must show that AL∗A∗ where A∗ =
(

1 m−1P
0 1

)
.

Since AA∗ = A it is enough to show that for any X, Y ∈ M ⋄ N , if

AX = AY then A∗X = A∗Y . Let X =
(
x Q
0 y

)
, Y =

(
x′ Q′

0 y′

)
be such

that AX = AY . Then
(
mx mQ ∪ Py
0 ny

)
=

(
mx′ mQ′ ∪ Py′

0 ny′

)

so that mx = mx′, mQ ∪ Py = mQ′ ∪ Py′ and ny = ny′. As M and
N are left cancellative we obtain x = x′ and y = y′. To show that
A∗X = A∗Y we must show that Q∪ (m−1P )y = Q′ ∪ (m−1P )y′. From
mQ∪Py = mQ′ ∪Py′ we have, using fact (7) and the dual of fact (6),
that

Q ∪ (m−1P )y = m−1(mQ) ∪m−1(Py) = m−1(mQ ∪ Py) =

m−1(mQ′ ∪ Py′) = · · · = Q′ ∪ (m−1P )y′

as required.

We now consider the conditions under which M ⋄N is weakly right
E-ample.

Proposition 3.6. The monoid M ⋄N is weakly right E-ample if and
only if M is a group.



12 JOHN FOUNTAIN, GRACINDA M.S. GOMES, AND VICTORIA GOULD

Proof Suppose first that M is a group. By Corollary 3.3 the monoid
M ⋄N is weakly right E-hedged, it remains to show that (AR) holds.

Using the fact that M is a group it is easy to check that for any
m ∈ M and P ⊆ M × N , m(m−1P ) = P. Let F = ( 1 P

0 1 ) ∈ E and
A =

(
m Q
0 n

)
∈M ⋄N . Then FA =

(
m Q∪Pn
0 n

)
so that

A(FA)∗ =

(
m Q
0 n

) (
1 m−1(Q ∪ Pn)
0 1

)
=

=

(
m m(m−1(Q ∪ Pn)) ∪Q
0 n

)
=

(
m Q ∪ Pn
0 n

)

so that A(FA)∗ = FA.
Conversely, if M ⋄ N is weakly right E-ample then M is left can-

cellative by Lemma 2.9 and Corollary 3.3. Suppose that M contains
an element a which lacks a right inverse. Put G =

(
1 {(a,1)}
0 1

)
∈ E

and B =
(
a2 {(1,1)}
0 1

)
∈ M ⋄ N . Now GB =

(
a2 {(1,1),(a,1)}
0 1

)
so that

(GB)∗ =
(

1 (a2)−1{(1,1),(a,1)}
0 1

)
. If (x, y) ∈ (a2)−1{(1, 1), (a, 1)} then

a2(x, y) = (1, 1) or (a, 1) so that a2x = 1 or a2x = a. Since M is left
cancellative, if a2x = a then ax = 1, so that in either case a has a right
inverse. Hence (a2)−1{(1, 1), (a, 1)} = ∅. Thus B(GB)∗ = B 6= GB,
contradicting the fact that M ⋄ N satisfies (AR). Thus every element
of M has a right inverse. Consequently, the monoid M is a group.

Propositions 3.5 and 3.6 yield

Corollary 3.7. The monoid M ⋄N is right E-ample if and only if M
is a group and N is left cancellative.

Of course, the left-right duals of Lemma 3.2, Corollary 3.3, Propo-
sitions 3.5 and 3.6 and Corollary 3.7 hold. In particular, we have the
equivalence of the first two conditions of the following result. That the
third condition follows from the first was noted by Margolis and Pin
[MP, Proposition 1.1].

Corollary 3.8. For monoids M and N the following conditions are
equivalent.

(1) M and N are groups.
(2) M ⋄N is weakly E-ample.
(3) M ⋄N is an inverse monoid.

4. The semigroup FE

Recall that an inverse semigroup is fundamental if the largest con-
gruence contained in H is trivial and an adequate semigroup is funda-
mental if the largest congruence contained in H∗ is trivial. Accordingly,
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we define an E-semiadequate semigroup to be E-fundamental if µE is
trivial.

The aim of this section is to construct from any given semilattice
E an E-fundamental weakly E-hedged semigroup FE that is maximal
in the sense that if S is any weakly E-hedged semigroup then there
is a homomorphism θ : S → FE with kernel µE. As we see below,
E(FE) 6= E and E(FE) is not a semilattice (unless E is trivial), so that
FE is not weakly hedged.

Let E be a semilattice and let FE be the subset of End1E
1 × End∗

1E
1

given by

FE = {(α, β) : ρ1β ≤ αβ, ρ1α ≤ βα}.

In particular, if (α, β) ∈ FE then

1α = 1ρ1α ≤ 1βα ≤ 1α

so that 1α = 1βα and dually, 1β = 1αβ. Thus α maps the maximum
element of im β to the maximum element of im α, and β maps the
maximum element of im α to the maximum element of im β.

Observe first that FE 6= ∅, since for any e ∈ E, e = (ρe, ρe) ∈ FE.
Denoting by ce the constant map E1 → E with image {e} we also
have that for any e, f ∈ E, (cf , ce) ∈ FE . Note (cf , ce) ∈ E(FE) and
(cf , ce)(ce, cf) 6= (ce, cf)(cf , ce) unless e = f . This also illustrates that
the image of α where (α, β) ∈ FE need not be a principal ideal.

Lemma 4.1. If (α, β) ∈ FE then ρ1βα = α and ρ1αβ = β.

Proof For all x ∈ E1,

x(ρ1βα) = (x · 1β)α = (xα)(1βα) = (xα)(1α) = xα

so that ρ1βα = α and dually, ρ1αβ = β.

Lemma 4.2. The set FE is a subsemigroup of End1E
1 × End∗

1E
1.

Proof Let (α, β), (γ, δ) ∈ FE . Then for any x ∈ E1,

x(αγ)(δβ) = (xα)(γδ)β ≥ ((xα)(1δ))β = (xαβ)(1δβ)

≥ (x · 1β)(1δβ) = x · 1δβ = xρ1δβ

so that (αγ)(δβ) ≥ ρ1δβ and dually, (δβ)(αγ) ≥ ρ1αγ .

We put E = {e : e ∈ E}; it is easy to see that e 7→ e is an isomor-
phism between E and E.

Lemma 4.3. The semigroup FE is E-semiadequate. If (α, β) ∈ FE
then

(α, β)∗ = (ρ1α, ρ1α) and (α, β)+ = (ρ1β , ρ1β).
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Proof If (α, β) ∈ FE, then using Lemma 4.1,

(α, β)(ρ1α, ρ1α) = (αρ1α, ρ1αβ) = (α, β).

Now for any e ∈ E, if (α, β)(ρe, ρe) = (α, β) then certainly αρe = α so
that 1α = 1(αρe) = (1α)ρe = (1α)e, giving 1α ≤ e. Thus 1α ≤ e and
(α, β)∗ exists and equals (ρ1α, ρ1α). Dually, (α, β)+ exists and equals
(ρ1β, ρ1β).

Lemma 4.4. The semigroup FE is weakly E-hedged.

Proof Let (α, β), (γ, δ) be L̃E-related elements of FE. By Lemma 4.3,
1α = 1γ. For any (ζ, ξ) ∈ FE we have (α, β)(ζ, ξ) = (αζ, ξβ) and

(γ, δ)(ζ, ξ) = (γζ, ξδ). Now 1αζ = 1γζ so that (α, β)(ζ, ξ) L̃E (γ, δ)(ζ, ξ)
and (CR) holds.

Still with (α, β) ∈ FE , let (ρe, ρe), (ρf , ρf) ∈ E. Then

((ρe, ρe)(ρf , ρf )(α, β))∗ = ((ρef , ρef )(α, β))∗ = (ρefα, βρef)
∗.

Now 1(ρefα) = (ef)α = eαfα so that

((ρe, ρe)(ρf , ρf)(α, β))∗ = (ρeαfα, ρeαfα) =

(ρeα, ρeα)(ρfα, ρfα) = ((ρe, ρe)(α, β))∗((ρf , ρf )(α, β))∗.

Thus (HR) holds. Together with the dual arguments this gives that
FE is weakly E-hedged.

Theorem 4.5. Let E be a semilattice. The semigroup FE is an E-
fundamental weakly E-hedged semigroup. If S is any weakly E-hedged
semigroup then there is a homomorphism θ : S → FE such that eθ = e
for all e ∈ E and ker θ = µE.

Proof Let (α, β), (γ, δ) be µE-related elements of FE . Certainly then
(α, β)∗ = (γ, δ)∗ so that by Lemma 4.3, 1α = 1γ. From Lemma 2.5,
α(α,β) = α(γ,δ) so that for any e ∈ E,

((ρe, ρe)(α, β))∗ = eα(α,β) = eα(γ,δ) = ((ρe, ρe)(γ, δ))
∗.

Again by Lemma 4.3, we have that for any e ∈ E, 1(ρeα) = 1(ρeγ)
so that eα = eγ. Together with 1α = 1γ this gives that α = γ.
The dual argument yields that β = δ so that µE is trivial and FE is
E-fundamental.

Let S be weakly E-hedged and let θ be the homomorphism defined
in Section 2. For any e ∈ E we have eθ = (αe, βe) = e. It only remains
to show that im θ ⊆ FE . Let a ∈ S so that aθ = (αa, βa). We have

1αa = (1a)∗ = a∗, 1βa = (a1)+ = a+.
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Using Lemma 2.4(2)

ρ1βa
= ρa+ ≤ αaβa and ρ1αa

= ρa∗ ≤ βaαa.

Hence (αa, βa) ∈ FE and im θ ⊆ FE as required.

We end this section by showing that for any semilattice E, the Munn
semigroup TE is embedded in FE . Recall that the elements of TE are
partial isomorphisms between principal ideals of E and the operation
in TE is composition of partial mappings. The idempotents of TE are
the identity maps on principal ideals of TE . For each e ∈ E we put

e = IeE so that E = {e : e ∈ E} ∼= E is the semilattice of idempotents
of TE.

The following lemma is straightforward to check.

Lemma 4.6. Let E be a semilattice. For (α, β) ∈ FE, put

α = α|(1β)E and β = β|(1α)E .

Then α : (1β)E → (1α)E and β : (1α)E → (1β)E are homomorphisms
such that

I(1β)E ≤ αβ, I(1α)E ≤ βα.

Conversely, if e, f ∈ E and γ : eE → fE, δ : fE → eE are homo-
morphisms such that

IeE ≤ γδ, IfE ≤ δγ,

then (ρeγ, ρfδ) ∈ FE.

Let E be a semilattice and let ψ ∈ TE , so that ψ : eE → fE is
an isomorphism of principal ideals eE and fE of E. By Lemma 4.6,
(ρeψ, ρfψ

−1) ∈ FE and we define π : TE → FE by ψπ = (ρeψ, ρfψ
−1).

Proposition 4.7. The function π : TE → FE is an embedding.

Proof Let ψ : eE → fE and ξ : gE → hE be isomorphisms in TE.
The composition of partial mappings ψ and ξ yields the isomorphism
ψξ between principal ideals (fg)ψ−1E and (fg)ξE. Thus

(ψξ)π = (ρ(fg)ψ−1ψξ, ρ(fg)ξ(ψξ)
−1)

and we must show that this is equal to

(ρeψ, ρfψ
−1)(ρgξ, ρhξ

−1) = (ρeψρgξ, ρhξ
−1ρfψ

−1).

Let x ∈ E1. Then

xρ(fg)ψ−1ψξ = (x(fg)ψ−1)ψξ = (xe(fg)ψ−1)ψξ =

= ((xe)ψfg)ξ = ((xe)ψg)ξ = xρeψρgξ.

Dually, ρ(fg)ξ(ψξ)
−1 = (ρhξ

−1)(ρfψ
−1) so that π is a homomorphism.
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To see that π is one-one, let ψ, ξ be as above and suppose that
ψπ = ξπ. Then (ρeψ, ρfψ

−1) = (ρgξ, ρhξ
−1), giving

e = fψ−1 = 1ρfψ
−1 = 1ρhξ

−1 = hξ−1 = g.

Now for all x ∈ E,

(ex)ψ = xρeψ = xρgξ = (xg)ξ = (ex)ξ

so that ψ = ξ as required.

As a consequence of Proposition 5.3, if S is an inverse semigroup
with semilattice of idempotents E, then φπ = θ, where φ : S → TE is
the standard homomorphism from S to TE and θ is the homomorphism
from S to FE given in Theorem 4.5.

5. Weakly E-ample semigroups

If S is a weakly E-hedged semigroup, then as shown in the previous
section, there is a homomorphism θ : S → FE with ker θ = µE. We also
know that for some classes of weakly E-hedged semigroups, namely
those that are inverse [M], ample [F1] or weakly ample [E], we can
dispense with consideration of pairs of endomorphisms of E1 and make
use of isomorphisms between principal ideals of E, in other words we
look at TE . This is essentially because the endomorphisms αa, βa of E1

arising from an element a of a weakly ample semigroup S are mutually
inverse when restricted to the domains a+E, a∗E respectively. The
corresponding result is true for weakly E-ample semigroups, as we now
show. At this point we recall some notation introduced in the previous
section: if S is weakly E-hedged and a ∈ S, so that (αa, βa) ∈ FE , put
αa = αa|(1βa)E and βa = βa|(1αa)E . Now 1αa = a∗ and 1βa = a+, so
that in view of Lemmas 2.2, 2.4 and their duals,

αa = αa|a+E : a+E → a∗E

and
βa = βa|a∗E : a∗E → a+E.

Lemma 5.1. Let S be a weakly E-hedged semigroup. Then the follow-
ing conditions are equivalent:

(1) S is weakly E-ample;
(2) for all a ∈ S, αa and βa are one-one;
(3) for all a ∈ S, αa and βa are inverse isomorphisms.

Proof Suppose first that S is weakly E-ample. Let x, y ∈ a+E and
suppose that xαa = yαa. Thus (xa)∗ = (ya)∗ and using the fact that
S satisfies condition (AR),

xa = a(xa)∗ = a(ya)∗ = ya.
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Now

xa+ R̃E xa = ya R̃E ya
+

so that xa+ = ya+ and as x, y ≤ a+ we deduce x = y. Hence αa is
one-one; the dual argument works for βa.

The proof of (2) implies (3) and (3) implies (1) is the same as that
given in Proposition 4.4 of [F1].

Our next result follows closely Proposition 4.5 of [F1]. As remarked
in the introduction, this also appears in [E] and [EF].

Proposition 5.2. [EF] Let S be a weakly E-ample semigroup. Define
φ : S → TE by aφ = αa. Then φ is a homomorphism onto a full
subsemigroup of TE with ker φ = µE and eφ = IeE = e for each e ∈ E.

Proof If a ∈ S then by Lemma 5.1

αa : a+E → a∗E and βa : a∗E → a+E

are inverse isomorphisms. Exactly as in [F1], if b ∈ S the domain of
αa αb is (ab)+E, that is, the domain of αab. Lemma 2.3 now gives that

φ is a homomorphism. Clearly eφ = ρe|eE = e, and so Eφ = E and im
φ is full.

Suppose now that a, b ∈ S and aφ = bφ so that αa = αb. Thus
αa and αb have the same domains a+E = b+E and the same images
a∗E = b∗E. Hence a+ = b+ and a∗ = b∗, giving that a H̃E b. We also
have that (αa)

−1 = (αb)
−1 and so βa = βb. From Lemma 2.5, aµEb so

that ker φ ⊆ µE. The opposite inclusion follows immediately from
the same lemma.

We now connect the two representations of a weakly E-ample semi-
group.

Proposition 5.3. Let S be a weakly E-ample semigroup. For the ho-
momorphisms θ : S → FE, π : TE → FE and φ : S → TE defined above,
we have φπ = θ.

Proof Let a ∈ S so that aφ = αa : a+E → a∗E. The prescription
for π given in Section 4 says that (aφ)π = (ρa+αa, ρa∗(αa)

−1) so that
by Lemma 5.1, (aφ)π = (ρa+αa, ρa∗βa). For any x ∈ E1,

xρa+αa = (xa+)αa = (xa+a)∗ = (xa)∗ = xαa

so that ρa+αa = αa and dually, ρa∗βa = βa. Hence aφπ = (αa, βa) = aθ
and φπ = θ as required.
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6. Some applications

The aim of this section is to apply the material developed in Sections
4 and 5 to deduce some facts concerning weakly E-hedged and weakly
E-ample semigroups.

Lemma 6.1. Let S be an E-semiadequate semigroup and let T be a
subsemigroup of S containing E. Then

(1) T is E-semiadequate;
(2) if S satisfies the congruence condition then so does T ;
(3) if S is weakly E-hedged then so is T ;
(4) if S is weakly E-ample then so is T ;
(5) if S satisfies the congruence condition and is E-fundamental,

then so is T .

Proof Note that the restriction of the relations L̃E and R̃E in S
to T are respectively the relations L̃E and R̃E in T . The first four
statements are then clear. It follows from Lemma 2.5 that if S satisfies
the congruence condition then the restriction of the congruence µE on
S to T is the congruence µE on T . Thus if S is also E-fundamental,
then so is T .

Let S be a weakly E-hedged semigroup. Since by definition µE is

contained in H̃E , µE is idempotent separating, so that the set of idem-
potents EµE = {eµE : e ∈ E} is a subsemilattice of S/µE isomorphic
to E.

Corollary 6.2. Let S be a weakly E-hedged semigroup. Then S/µE is
an EµE-fundamental weakly EµE-hedged semigroup. Further, if S is
weakly E-ample, then S/µE is weakly EµE-ample.

Proof Theorem 4.5 says there is a homomorphism θ : S → FE such
that eθ = e for all e ∈ E and ker θ = µE . Thus there is a one-
one homomorphism θ : S/µE → FE such that (eµE)θ = e. Also by
Theorem 4.5, FE is E-fundamental so that by Lemma 6.1, (S/µE)θ is
E-fundamental weakly E-hedged. Hence S/µE is an EµE-fundamental,
weakly EµE-hedged semigroup.

Suppose now that S is weakly E-ample. Using Proposition 5.2 in
place of Theorem 4.5, there is a one-one homomorphism φ : S/µE → TE
such that (eµE)φ = e for each e ∈ E. The inverse semigroup TE has

semilattice of idempotents E. Being inverse, TE is weakly (E)-ample.
The result now follows from Lemma 6.1.

In order to state our next two corollaries we introduce some useful
terminology. We say that a homomorphism (isomorphism) ν from a
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weakly E-hedged semigroup S to a subsemigroup of FE or TE is an
E-homomorphism (E-isomorphism) if eν = e or eν = e for each e ∈ E.

Corollary 6.3. A weakly E-hedged semigroup S is E-fundamental if
and only if it is E-isomorphic to a subsemigroup of FE.

Proof If S is E-fundamental, then µE is trivial on S, so that the
E-homomorphism θ given in Theorem 4.5 is an embedding.

Conversely, suppose that ν : S → FE is a one-one E-homomorphism.
As above, im ν is E-fundamental weakly E-hedged, so that S is E-
fundamental.

The proof of the following corollary is analogous to that of Corollary
6.3.

Corollary 6.4. A weakly E-ample semigroup S is E-fundamental if
and only if it is E-isomorphic to a subsemigroup of TE. Consequently,
if S is an E-fundamental weakly E-ample semigroup, then E = E(S).

Recall that a semilattice E is anti-uniform if eE ∼= fE implies e = f .
The definition of an E-semilattice of monoids is given in Section 2.
Corollary 6.5 is analogous to Corollary 4.9 of [F1], which is concerned
with ample semigroups.

Corollary 6.5. A semilattice E has the property that every weakly E-
ample semigroup is an E-semilattice of monoids if and only if E is
anti-uniform.

Proof If E is anti-uniform and S is weakly E-ample, then by Lemma
5.1, αa : a+E → a∗E is an isomorphism. Hence a+ = a∗ so that by
Proposition 2.6, S is an E-semilattice of monoids.

Conversely, suppose that E is not anti-uniform. As in Theorem V.5.2
of [Ho1], TE is not a semilattice of groups; neither then can TE be an

E-semilattice of monoids. But as previously remarked, TE is weakly

E-ample.

Imposing the condition that every weakly E-hedged semigroup is an
E-semilattice of monoids emerges as a much stronger restriction.

Corollary 6.6. A semilattice E has the property that every weakly E-
hedged semigroup is an E-semilattice of monoids if and only if E is
trivial.

Proof If E = {e} is trivial and S is weakly E-hedged, then S is a
monoid with identity e.

Conversely, suppose that every weakly E-hedged semigroup is an
E-semilattice of monoids. According to Proposition 2.6, if S is a
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weakly E-hedged semigroup, then a∗ = a+ for all a ∈ S. In particular,
(α, β)∗ = (α, β)+ for all (α, β) ∈ FE.

Let e, f ∈ E. As remarked at the beginning of Section 4, (cf , ce) ∈ FE
where ce(cf) is the constant map with image {e} ({f}). By Lemma
4.3,

(cf , ce)
∗ = (ρ1cf , ρ1cf ) = (ρf , ρf)

and
(cf , ce)

+ = (ρ1ce , ρ1ce) = (ρe, ρe)

so that (ρf , ρf ) = (ρe, ρe) and e = f . Thus E is trivial.

We end this paper by considering those semilattices E having the

property that H̃E is a congruence on every weakly E-ample (-hedged)
semigroup. Again there is a sharp split between the two cases.

Recall that a semilattice E is rigid if for each e ∈ E there is only one
automorphism of eE. Equivalently, there is at most one isomorphism
between eE and fE for each pair e, f ∈ E. Corollary 6.7 is analogous
to Corollary 4.10 of [F1].

Corollary 6.7. A semilattice E has the property that H̃E is a congru-
ence on every weakly E-ample semigroup if and only if E is rigid.

Proof If H̃E is a congruence on every weakly E-ample semigroup

then H̃
E

= H∗ = H is a congruence on TE. Thus TE is H-trivial and
it is well known that in this case E is rigid.

Conversely, suppose that E is rigid and S is a weakly E-ample semi-

group. If a, b ∈ S and a H̃E b then a∗ = b∗ and a+ = b+, so that αa, αb
are both isomorphisms between a+E and a∗E. Since E is rigid we have
that αa = αb. Consequently, βa = βb also and aµEb by Lemma 2.5.
Thus µE = H̃E and H̃E is a congruence on S.

Corollary 6.8. A semilattice E has the property that H̃E is a congru-
ence on every weakly E-hedged semigroup if and only if E is trivial.

Proof If E is trivial and S is weakly E-hedged, then H̃E is the
universal congruence on S.

Conversely, suppose that H̃E is a congruence on every weakly E-

hedged semigroup. Certainly then H̃E is a congruence on FE so that

µE = H̃E on FE and H̃E is the trivial congruence.
Let e ∈ E. Consider the endomorphisms ρe and ce of E1. Then

1ρe = 1ce = e and for any x ∈ E1,

xceρe = xρece = e ≥ xe = xρe.

Thus (ρe, ce) and (ce, ρe) are elements of FE. By Lemma 4.3, (ρe, ce) H̃E

(ce, ρe) so that (ρe, ce) = (ce, ρe). For any y ∈ eE, y = yρe = yce = e
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so that the ideal eE is trivial. As this is true for any e ∈ E it follows
that E is trivial.
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