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Abstract. The structure of the endomorphism monoid of a stable basis algebra A is
described. It is shown to be an abundant monoid; the subsemigroup of endomorphisms of
finite rank has a regular semigroup of left quotients.
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−285. The authors are grateful to Professor George Bergman for correcting their original
definition of ‘constant subalgebra’.

1. Introduction

The basis algebras of [11] generalise independence algebras (see [24], [14] and [3]). They
stand in relation to independence algebras roughly as free modules over left Ore integral
domains do to vector spaces. From the universal algebra perspective, basis algebras arise
from the study of the interactions of various notions of independence and relative freeness,
and this point of view is explored in some detail in our earlier paper [11]. In this paper we
study endomorphisms of stable basis algebras, concentrating on describing the structure of
the endomorphism monoid of such an algebra A. When A is an independence algebra, the
endomorphism monoid is regular with a particularly nice structure and one can use the
structure, for example, to describe the idempotent generated submonoid. In [7], the struc-
ture of the multiplicative monoid of n×n integer matrices was used to find the submonoid
generated by the idempotents, rediscovering a result of Laffey [19]. The approach of [7] was
extended in [25] to the endomorphism monoid of free modules of finite rank over Hermite
domains. Our aim is to find a common framework for these results, the first step being the
analysis of the endomorphism monoid of a stable basis algebra. This is accomplished in the
present paper; in a subsequent paper [12], we use the results obtained here to investigate
the idempotent generated submonoid of such an endomorphism monoid.

In Section 2 we give a brief summary of the basic definitions and results connected with
basis algebras. A fuller account can be found in [11]. We also prove some technical results
needed for this paper. In particular we note that associated with each subalgebra of a basis
algebra is a cardinal number called the rank of the subalgebra.

Central to the description of the endomorphisms of a stable basis algebra is the notion
of abundant semigroup. This is the semigroup theory analogue of a PP ring, that is,
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a ring with identity in which every principal one-sided ideal is projective. Indeed, the
multiplicative semigroups of PP rings provide examples of abundant semigroups (see [22,
Corollary I.3.4]), and one can characterise abundant monoids as those monoids in which
each principal one-sided ideal is a projective act. For practical purposes, however, it is
more useful to define abundant semigroups in terms of some generalisations of Green’s
relations L and R, namely the relations L ∗ and R∗. On a semigroup S, the relation
L ∗ is defined by the rule that aL ∗b if and only if the elements a, b of S are related by
Green’s relation L in some oversemigroup of S. The relation R∗ is defined dually. A
semigroup in which each L ∗-class and each R∗-class contains an idempotent is said to be
abundant. All the relevant definitions and results about abundant semigroups are collected
together for easy reference in Section 3. In Section 4 we examine the L ∗-classes and the
R∗-classes of the endomorphism monoid EndA of a basis algebra A. In one of the main
results of the paper (Theorem 4.9), we show that the endomorphism monoid of a basis
algebra A is abundant if and only if A is stable. Moreover, when this is the case, EndA
enjoys additional properties similar to those of regular semigroups.

We can say more about the subsemigroup Endf A of endomorphisms of finite rank,
where the rank of an endomorphism is the rank of its image. Here we use the notion of a
semigroup of left quotients [15], another concept inspired by a well known idea from ring
theory, namely the classical ring of left quotients [2]. In many cases, but not all, these
rings do provide examples of semigroups of left quotients [8]. In a ring Q of left quotients
of a ring R, the idea is that every non zero divisor in R has an inverse in Q and that
every element of Q is a left fraction of elements of R. In the semigroup case, for Q to be
a semigroup of left quotients of a semigroup S, we want every element of Q to be a left
fraction of elements of S, and we also want every element of S which could be in a subgroup
of an oversemigroup to be in a subgroup of Q. The semigroup Endf A is abundant and
using results of [16], we can show that it has a regular semigroup of left quotients. Details
about semigroups of left quotients [15], and the required results from [16] are given in
Section 5, and the necessary analysis for applying these results to Endf A is in Section 6.

A ∗-ideal of a semigroup is an ideal which is L ∗-saturated and R∗-saturated. In the final
section, we show that the ∗-ideals of EndA, where A is a stable basis algebra, are precisely
the subsets Tκ where κ is a cardinal number and Tκ is the set of all endomorphisms of rank
less than κ. For a positive integer n, the Rees quotient Tn/Tn−1 is a primitive abundant
semigroup, and is isomorphic to a Rees matrix semigroup over a cancellative left Ore
monoid. We give an explicit construction of an appropriate Rees matrix semigroup.

2. Basis Algebras

To make the paper as self contained as possible, we give a brief account of some basic
ideas from [10] about independence, and introduce various classes of algebras culminating
in stable basis algebras. For the fundamental concepts of universal algebra we refer the
reader to [4], [17] or [23]. However, there are substantial differences in terminology and
notation in these books. In the interest of clarity we begin by describing that adopted in
this paper. By an algebra A we mean an algebra in the sense of universal algebra. Thus A
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comes equipped with a set (which may be empty) of basic operations all of which we assume
to have finite arity. We permit 0 as an arity and refer to the images of nullary operations
as constants. The operations on A derived from the basic operations and projections by
composition are called term operations. It is convenient to allow ∅ to be a subalgebra in the
case where A has no constants. Thus 〈∅〉, the least subalgebra of A, is empty if and only
if A has no constants. On the other hand, if A has constants, then 〈∅〉 is the subalgebra of
A they generate. We say that a subalgebra B of A is nonconstant if B 6= 〈∅〉, and refer to
〈∅〉 as the constant subalgebra. It is worth noting that cα = c for every endomorphism α of
A and every element c in the constant subalgebra. The definition of constant subablgebra
has been modified since [11] was published. Further references in this article will be made
to the revised version [10] of [11].

The key to many properties of the algebras we consider here is the interrelated behaviour
of two closure operators. For the very special case of independence algebras, these closure
operators coincide, but in general they are distinct.

Recall that a closure operator C on a set A is a function C : P(A) → P(A), where P(A)
is the set of all subsets of A, such that for all X, Y ∈ P(A),

(1) X ⊆ C(X);
(2) if X ⊆ Y , then C(X) ⊆ C(Y );
(3) C(C(X)) = C(X).

A subset of A of the form C(X) is said to be closed.
A closure operator C is algebraic if for all X ∈ P(A),

C(X) =
⋃

{C(Y ) : Y ⊆ X, Y is finite}.

The canonical example of an algebraic closure operator is the subalgebra operator on an
algebra A which associates the subalgebra 〈X〉 to each subset X of A.

If A is a set with closure operator C, then a subset X of A is C-independent if for all
x ∈ X,

x /∈ C(X \ {x}).

The exchange property (EP) for a closure operator C on a set A is defined as follows:
(EP) for all x, y ∈ A and X ⊆ A,

if x ∈ C(X ∪ {y}) and x /∈ C(X), then y ∈ C(X ∪ {x}).

Algebraic closure operators which satisfy the exchange property are intimately connected
with abstract dependence relations, and we now restate several fundamental results from [4,
Section VII.2] in terms of algebraic closure operators. The first comes from the proof of
Proposition VII.2.1 in [4] (see also [23, p.50 Exercise 6(a)]).

Lemma 2.1. Let C be an algebraic closure operator on a set A. Then the following
conditions are equivalent:

(1) C satisfies the exchange property,
(2) if X is a C-independent subset of A and y /∈ C(X), then X∪{y} is C-independent.
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Lemma 2.2. [4, Lemma VII.2.2] Let C be an algebraic closure operator satisfying (EP)
on a set A and let Y ⊆ X ⊆ A. Then the following conditions are equivalent:

(1) Y is a maximal C-independent subset of X,
(2) Y is C-independent and C(Y ) = C(X),
(3) Y is minimal with respect to C(Y ) = C(X).

If C is an algebraic closure operator on a set A, then it is easy to see that the union of a
chain of C-independent sets is C-independent. Since ∅ is clearly C-independent, a Zorn’s
lemma argument gives that, for any subset X of A, there is a maximal C-independent
subset of X.

Writing a slightly generalised version of Theorem VII.2.4 of [4] in terms of closure oper-
ators (see also [23, p.50 Exercise 6(b)]) we have the following result.

Theorem 2.3. Let C be an algebraic closure operator satisfying (EP) on a set A, and
let X ⊆ Y ⊆ A. If X is C-independent, then there is a C-independent subset Z with
X ⊆ Z ⊆ Y and C(Z) = C(Y ). Moreover, if Z and Z ′ are C-independent subsets of Y
with C(Z) = C(Z ′) = C(Y ), then they have the same cardinality.

In view of Lemma 2.2, a C-independent subset Z with Z ⊆ Y and C(Z) = C(Y ) is a
maximal C-independent subset of Y . Such a maximal C-independent subset is often called
a C-basis of Y , but we reserve the term “basis” for a free basis. In view of Lemma 2.2
and Theorem 2.3, we can define the C-rank of Y to be the cardinality of any maximal
C-independent subset of Y . The following corollary is a straightforward consequence of
Lemma 2.2 and Theorem 2.3.

Corollary 2.4. Let C be an algebraic closure operator satisfying (EP) on a set A. If X
and Y are subsets of A with X ⊆ Y , then

(1) C-rank(X) 6 C-rank(Y ),
(2) C-rank(X) = C-rank(C(X)).

We explain the what is meant by independence algebra A later in the section when we
have discussed A-freeness, but we mention now that one of the defining properties of such
algebras is that the subalgebra operator satisfies (EP). This paper is concerned with wider
classes of algebras satisfying corresponding conditions for a second closure operator, which
we now describe.

For an element a of an algebra A and a subset X of A we say that a depends on X and
write a ≺ X if

a ∈ 〈∅〉 or 〈a〉 ∩ 〈X〉 6= 〈∅〉.

For subsets X, Y of A we say that Y depends on X, and write Y ≺ X, if y ≺ X for every
y ∈ Y . Notice that for all a ∈ A and subsets X of A,

a ≺ ∅ if and only if a ∈ 〈∅〉;

a ≺ X if and only if a ≺ 〈X〉

and
c ≺ X for any c ∈ 〈∅〉.
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From the relation ≺ we obtain a second closure operator on an algebra A which is crucial
to our work.

For any subset X of an algebra A we let

PC(X) = {a ∈ A : a ≺ X}.

It is easy to see that 〈X〉 ⊆ PC(X), and PC(X) = PC(〈X〉). From [10, Theorem 1.6] we
have the following.

Lemma 2.5. Let A be an algebra such that for all a ∈ A and X, Y ⊆ A,

(T) if a ≺ X and X ≺ Y then a ≺ Y.

Then PC : P(A) → P(A) is an algebraic closure operator.
Further, PC(X) is a subalgebra of A for any subset X of A.

An algebra A is a weak exchange algebra if A satisfies (T) and the closure operator PC
satisfies (EP). The latter condition is called the weak exchange property (WEP) and says
that for all x, y ∈ A and X ∈ P(A), if

〈x〉 ∩ 〈X ∪ {y}〉 6= 〈∅〉 and 〈x〉 ∩ 〈X〉 = 〈∅〉,

then
〈y〉 ∩ 〈X ∪ {x}〉 6= 〈∅〉.

If an algebra A satisfies (EP) for the subalgebra operator, then by Lemma 1.8 of [10], (T)
holds and moreover, PC(X) = 〈X〉 for all X ∈ P(A), so that independence algebras are
weak exchange algebras. Examples of weak exchange algebras which are not independence
algebras are given in [10].

On a weak exchange algebra A we have two notions of independence, one arising from the
subalgebra operator and the other from the operator PC. A subset X of A is independent
if it is independent with respect to the subalgebra operator, and directly independent if it
is independent with respect to PC. As remarked in [10], every directly independent subset
is independent.

If A is a weak exchange algebra, then by Theorem 2.3, we can define the rank of a subset
X of A with respect to PC; it is the cardinality of any maximal directly independent subset
of X. If A also satisfies (EP) with respect to the subalgebra operator, we can also define the
rank of X (with respect to this operator) as the cardinality of any maximal independent
subset of X. However, it follows from Lemma 1.8 of [10], that these two ranks are equal,
and so there is no ambiguity when we refer to the rank of X with respect to PC as simply
the rank of X.

Notice that a subalgebra of a weak exchange algebra is a weak exchange algebra, and
the notion of direct independence is independent of the subalgebra under consideration.
From [10] we have the following.

Proposition 2.6. Let X be a subset of a weak exchange algebra A. Then

(1) rank(〈X〉) = rank(X) 6 |X| ,
(2) if X is finite and rank(〈X〉) = |X|, then X is directly independent,
(3) if B is a subalgebra of A, then rankB 6 rankA.
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We say that a subset X of an algebra A is pure, or (if there is any danger of ambiguity)
pure in A, if for each element a of A,

a ≺ X implies that a ∈ X,

or equivalently,
X = PC(X).

Note that 〈∅〉 is always pure, and for an algebra A satisfying (T), the pure subsets are
precisely the closed sets of the closure operator PC.

From Lemma 2.2, we deduce

Corollary 2.7. A directly independent subset X of a weak exchange algebra A is maximal
directly independent (equivalently, a PC-basis), if and only if y ≺ X for all y ∈ A.

The following elementary lemma will be useful.

Lemma 2.8. Let X be a directly independent subset of a weak exchange algebra A, and
for each x ∈ X, let tx be a unary term operation such that tx(x) /∈ 〈∅〉. Then the elements
tx(x) (x ∈ X) are distinct, and the set {tx(x) : x ∈ X} is directly independent.

Proof. If x, y ∈ X and tx(x) = ty(y), then 〈x〉∩ 〈y〉 6= 〈∅〉 so that x = y, since X is directly
independent.

If 〈tx(x)〉 ∩ 〈{ty(y) : y ∈ X \ {x}}〉 6= 〈∅〉, then, clearly, 〈x〉 ∩ 〈X \ {x}〉 6= 〈∅〉, a
contradiction. �

Corollary 2.9. Let A be a weak exchange algebra. If B and D are subalgebras of A with
PC(B) = PC(D), then PC(B ∩D) = PC(B).

Proof. Let X and Y be PC-bases of B and D respectively. From Lemma 2.2, PC(B) =
PC(X) and PC(D) = PC(Y ) so that in particular, Y ≺ X. Hence, if y ∈ Y , then
〈y〉 ∩ 〈X〉 6= 〈∅〉. Therefore, there is a term operation ty such that ty(y) ∈ 〈X〉 and ty(y)
is not in 〈∅〉. By Lemma 2.8, the set U = {ty(y) : y ∈ Y } is directly independent, and
ty(y) 6= tz(z) for y, z ∈ Y with y 6= z. Note that U ⊆ B ∩ D and that Y ≺ U so that
PC(D) ≺ U by condition (T). Thus PC(D) ⊆ PC(U) and since PC is a closure operator,

PC(U) ⊆ PC(B ∩D) ⊆ PC(D) ⊆ PC(U).

Hence PC(B ∩D) = PC(B). �

A third property related to notions of independence is that of being A-free. A subset X
of A is A-free if every function from X to A can be extended to a morphism from 〈X〉 to
A. If A = 〈X〉 for some A-free set X, then A is relatively free.

An algebra A is an independence algebra if the subalgebra operator satisfies (EP) and any
independent subset of A is A-free. This paper is concerned with weak exchange algebras
satisfying corresponding conditions for the closure operator PC.

Following [10] we say that an algebra A is a weak independence algebra if it is a weak
exchange algebra such that every directly independent subset is A-free. We will see that
for a special class of weak independence algebras that we now describe, the A-free subsets
in A are precisely the directly independent subsets.
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A useful fact about unary term operations on a weak independence algebra is given in
the following result from [10, Proposition 5.2].

Proposition 2.10. If A is a nonconstant weak independence algebra such that ∅ 6= 〈∅〉,
then, for a unary term operation t, the following are equivalent:

(1) t = κc for some c ∈ A,
(2) t(a) ∈ 〈∅〉 for all a ∈ A,
(3) t(x) ∈ 〈∅〉 for some x ∈ A�〈∅〉.

Let A be an algebra and let T1 be the set of all unary term operations on A. Clearly, T1

is a monoid under composition of functions. We let

TC = {κc : c ∈ 〈∅〉}

so that if A has no constants, then TC = ∅. In [10], Proposition 2.10 is used to show that
if A is a nonconstant weak independence algebra, then T ∗

1 = T1 \TC is a right cancellative,
left Ore submonoid of the monoid of all unary term operations on A.

We say that a nonconstant weak independence algebra A is torsion-free if for any t ∈ T ∗
1

and elements a, b ∈ A,
if t(a) = t(b), then a = b.

We declare a constant algebra to be torsion-free.
It is noted in [10] that if A is a nonconstant torsion-free weak independence algebra,

then the monoid T ∗
1 is cancellative.

By [10, Lemma 5.6] we have that, in a nonconstant torsion-free weak independence
algebra A, the A-free subsets are precisely the directly independent subsets. Certainly,
subalgebras of weak independence algebras have the same property. We need the following
results from [10].

Lemma 2.11. [10, Corollary 5.8] Let B be a nonconstant subalgebra of a torsion-free weak
independence algebra A. Then B-free subsets of B are A-free.

Lemma 2.12. [10, Lemma 4.3] Let X be a directly independent subset of a weak indepen-
dence algebra A, and let α :X → A be one-one. If Xα is directly independent, then the
morphism α :〈X〉 → A which extends α is one-one.

Corollary 2.13. [10, Corollary 4.4] Let A be a weak independence algebra. If X and Y
are directly independent subsets of A of the same cardinality, then the subalgebras 〈X〉 and
〈Y 〉 are isomorphic.

Proposition 2.14. [10, Proposition 4.2] Let B be a subalgebra of a weak independence
algebra A and θ :B → A be a morphism. Then

(1) if θ is one-one and X ⊆ B is directly independent, then Xθ is directly independent;
(2) if Y is a directly independent subset of Bθ and Z ⊆ B is such that Zθ = Y and θ

is one-one on Z, then Z is directly independent.

Corollary 2.15. Isomorphic subalgebras of a weak independence algebra have the same
rank.
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The following remark, stated as a lemma, will also be useful.

Lemma 2.16. Let B be a subalgebra of a weak independence algebra A and θ :B → A be
a one-one morphism. Let b ∈ B and Y ⊆ B. If b ≺ Y , then bθ ≺ Y θ.

Let A be an algebra. A basis of A is an A-free set X ⊆ A \ 〈∅〉 such that X generates A.
From the definition of torsion-free weak independence algebra and [10, Lemma 5.6], a basis
in such an algebra A is the same thing as a generating set which is directly independent.
Moreover, from Corollary 2.7, a basis is certainly a PC-basis. We remark that 〈∅〉 has
unique basis ∅. In general, not all subalgebras of A will have a basis, but by Proposition 2.6,
if Y is a set of generators for a subalgebra B, then the rank of B is at most |Y |. If Y is
actually a basis of B, then the rank of B is |Y |.

From [10] we have

Proposition 2.17. Let A be a torsion-free weak independence algebra with basis X. If Y
is a subset of X, then 〈Y 〉 is pure.

We now define a basis algebra to be a torsion-free weak independence algebra A which
satisfies the following condition:

(PEP): if P,Q are pure subalgebras in A with P ⊆ Q, and X is a basis for P , then
there is a basis Y for Q with X ⊆ Y .

Condition (PEP) may be regarded as a converse to Proposition 2.17.
Since 〈∅〉 is a pure subalgebra of A with basis ∅, it follows that if P is a pure subalgebra

of A, then it has a basis, that is, it is relatively free. In fact, by [10, Proposition 8.2], P is
itself a basis algebra. We emphasise that, as A is certainly pure, it is itself relatively free.

Lemma 2.18. [10, Proposition 8.2] Let B be a subalgebra of a basis algebra A. If B has
a basis, then B is isomorphic to PC(B), and B is a basis algebra.

Let κ be a cardinal. A basis algebra A is κ-free if every subalgebra of A having a
generating set of cardinality at most κ is relatively free, that is, has a basis. We say that
A is stable if it is κ-free for κ = rankA.

A basis algebra is semihereditary if every finitely generated subalgebra is a basis algebra
and hereditary if every subalgebra is a basis algebra. In the examples below, we see that
not every semihereditary basis algebra is hereditary.

From Lemma 2.18, a basis algebra is (semi)hereditary if and only if every (finitely gen-
erated) subalgebra has a basis.

We conclude this section by recalling the three main known examples of basis algebras.
First, we have free modules of finite rank over a Bezout domain where a Bezout domain

is an integral domain in which every finitely generated one-sided ideal is principal. Such
rings can also be characterised as domains R such that for every matrix A over R, there are
invertible matrices P,Q over R with PA and AQ being upper triangular. An example of a
commutative Bezout domain which has some nonfinitely generated ideals is the subring of
Q[x] consisting all polynomials with integer constant term. From [10], finitely generated
free modules over a Bezout domain are semihereditary basis algebras, and if the domain
R is a principal ideal domain, then such modules are hereditary basis algebras.
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The endomorphism monoid of a free module of rank n over any ring R is, of course, just
the multiplicative monoid of all n× n matrices over R. In [7] the first author investigated
the structure of such monoids; the results therein motivate this paper.

Recall that for a monoid T , a (left) T -act is a set A on which T acts unitarily, that is,
for all t ∈ T and all a ∈ A, there is a uniquely defined element ta of A and

(1) 1a = a for all a ∈ A,
(2) (st)a = s(ta) for all a ∈ A and s, t ∈ T .

The free T -act FX with free generating set X is the disjoint union
∐

x∈X Tx where
each Tx is isomorphic to the left T -act T via an isomorphism which takes x to 1. (This
can also be viewed as the set T × X with T -action t(s, x) = (ts, x) for s, t ∈ T and
x ∈ X.) The monoid of endomorphisms of FX can be described as a wreath product (see
[21, Construction II.7.6 and Theorem II.7.7]). The monoid of all self-maps (acting on the
right of their arguments) of a non-empty set X is denoted by T (X). For a monoid T
and non-empty set X, we denote by W (TX) the monoid with universe TX × T (X) and
multiplication given by

(f, α)(g, β) = (fαg, αβ)

where x(fαg) = (xf)((xα)g) for each x ∈ X. The identity element of W (TX) is (c1, IX)
where c1 is the constant function from X to T with value 1. It is straightforward to
verify that the mapping which associates with the endomorphism θ the element (fθ, αθ)
determined by (1, x)θ = (xfθ, xαθ) is a monoid isomorphism.

A free T -act on X is a semihereditary basis algebra when X is finite and T is a can-
cellative monoid in which every finitely generated left ideal is principal; it is hereditary if
every left ideal is principal.

Independence algebras provide our third class of basis algebras. Recall that an inde-
pendence algebra is an algebra A for which the subalgebra operator satisfies the exchange
property and in which every independent generating set is A-free. It is pointed out in [10]
that every independence algebra is a hereditary basis algebra. The structure of the endo-
morphism monoid of an independence algebra is described in [14].

3. Abundant Semigroups

We recall the concepts and results of semigroup theory that are related to abundant
semigroups and which we need to describe the structure of an endomorphism monoid of a
basis algebra. As far as possible, we follow the notation and terminology of [18].

We have already introduced the notation T (X) for the monoid of all self-maps of X
written on the right of their arguments. When the mappings are written on the left of
their arguments we use the notation T ∗(X). For a semigroup S we define S1 to be the
smallest monoid containing S so that if S is a monoid, S = S1 and otherwise, S1 = S∪{1}.
The right regular representation of S is the embedding ρ : S → T (S1) given by aρ = ρa

where xρa = xa. Similarly, one has the left regular representation λ : S → T ∗(S1) where
aλ = λa is left multiplication by a.

We define reflexive, transitive relations 6R∗ and 6L ∗ on a semigroup S as follows. Let
a, b ∈ S. Then a 6R∗ b if Ker ρb ⊆ Ker ρa, and a 6L ∗ b if Kerλb ⊆ Ker λa. Thus a 6R∗ b
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means that for all x, y ∈ S1,

xb = yb implies that xa = ya,

and similarly for 6L ∗ .
The equivalence relations induced by 6R∗ and 6L ∗ are denoted by R∗ and L ∗ respec-

tively, so that aR∗b if and only if Ker ρa = Ker ρb, and aL ∗b if and only if Kerλa = Kerλb.
Thus aR∗b means that for all x, y ∈ S1,

xa = ya if and only if xb = yb.

We remark that the relation 6R∗ is left compatible with multiplication so that R∗ is a
left congruence on S; similarly, 6L ∗ is right compatible, and L ∗ is a right congruence on
S.

We define the relations H ∗ and D∗ by putting H ∗ = R∗ ∩ L ∗ and D∗ = R∗ ∨ L ∗.
The following easy result is useful and will be used without further reference.

Lemma 3.1. If e is an idempotent of a semigroup S and if b ∈ S is such that b 6R∗ e,
then eb = b. In particular, e acts as a left identity within its R∗-class.

Proof. Since ee = 1e, we have eb = 1b = b. �

There is, of course, a dual result for 6L ∗ .
A semigroup S is abundant if each R∗-class and each L ∗-class contains an idempotent.

For more details about the relations L ∗, R∗, H ∗ and D∗ and abundant semigroups we
refer the reader to [6].

Green’s relations R and L on a semigroup S are the equivalence relations associated
with the reflexive, transitive relations 6R and 6L respectively, where for elements a, b of
S,

a 6R b if and only if aS1 ⊆ bS1,

and dually,
a 6L b if and only if S1a ⊆ S1b.

Thus
aRb if and only if aS1 = bS1,

and
aL b if and only if S1a = S1b.

Notice that aRb if and only if there are elements x, y of S1 such that ax = b and by = a,
and similarly for L . The relation D is the join of L and R, and since L and R commute
(see [18, Proposition 2.1.3]), we have D = R ◦ L = L ◦ R.

It is not difficult to show that, for any semigroup, we have 6R ⊆ 6R∗ and 6L ⊆ 6L ∗

so that R ⊆ R∗ and L ⊆ L ∗. In fact, we have the following characterisation of 6R∗ from
[20].

Lemma 3.2. Let a, b be elements of a semigroup S. Then a 6R∗ b if and only if there is an
oversemigroup T of S in which a 6R b; and aR∗b if and only if there is an oversemigroup
T of S in which aRb.
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There are, of course, corresponding dual results characterising 6L ∗ and L ∗.
An element a of a semigroup S is regular if there is an element b in S such that aba = a,

and S is regular if all its elements are regular. For regular elements of S, we have aRb if
and only if aR∗b, and aL b if and only if aL ∗b. Thus, on a regular semigroup, L = L ∗

and R = R∗. It follows that every regular semigroup is abundant because it is well known
that, in a regular semigroup, each R-class and each L -class contains an idempotent (see
[18, Proposition 2.3.2]).

The standard notation for the R-class (or R∗-class) containing an element a is Ra (or
R∗

a), and there is corresponding notation for the classes of the other equivalence relations
we have introduced.

In a non-regular abundant semigroup S, the relationship between the idempotents in R∗
a

and those in L∗
a for a given a ∈ S need not be as strong as it is in a regular semigroup. In

view of this, El Qallali and Fountain [5] introduced the notion of an idempotent connected
(IC) abundant semigroup. Using [1, Lemma 2.3], we can define this concept as follows:
An abundant semigroup S is idempotent connected if for each element a of S and each
idempotent e (resp. f) with e 6L ∗ a (resp. f 6R∗ a), there is an element b ∈ S (resp.
c ∈ S) such that ae = ba (resp. fa = ac). More details about IC abundant semigroups
can be found in [1], [5] and [22]. For our purposes here, all that is needed is the following
lemma which combines [7, Lemma 2.4] and [22, Proposition II.2.6], and which underlies
our description of the structure of the endomorphism monoid of a basis algebra.

Lemma 3.3. If S is a semigroup in which every H ∗-class contains a regular element,
then D∗ = R∗ ◦ L ∗ = L ∗ ◦ R∗, and S is IC abundant.

An ideal I of a semigroup S is a ∗-ideal if it is a union of R∗-classes and of L ∗-classes.

Lemma 3.4. Let T be a ∗-ideal of an abundant semigroup S. If a ∈ S and b ∈ T with
a 6R∗ b in S, then a ∈ T .

Proof. We know bR∗e ∈ E(S); thus e ∈ E(T ) since T is closed under R∗. Now ea = a by
Lemma 3.1 so that a ∈ T since T is an ideal. �

The following technical lemma will be needed in Section 6.

Lemma 3.5. Let T be a ∗-ideal of an abundant semigroup S. Then for any a, b ∈ T ,

a 6R∗ b in T if and only if a 6R∗ b in S

and dually,
a 6L ∗ b in T if and only if a 6L ∗ b in S.

Consequently, T is abundant. Moreover, if every H ∗-class of S contains a regular element,
then so does every H ∗-class of T .

Let U be a ∗-ideal of S with U ⊆ T . Then for any non-zero elements a, b in the Rees
quotient T/U ,

a 6R∗ b in T/U if and only if a 6R∗ b in T

and
a 6L ∗ b in T/U if and only if a 6R∗ b in T.
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Consequently, T/U is abundant and if every H ∗-class of T contains a regular element,
then so does every H ∗-class of T/U .

Proof. From Lemma 3.2, if a, b ∈ T and a 6R∗ b in S, certainly a 6R∗ b in T .
Suppose now that a, b ∈ T and a 6R∗ b in T . Let x, y ∈ S1 and suppose that xb = yb.

Since S is abundant and T is a ∗-ideal, we have bR∗e in S for some e ∈ E(T ). Thus eb = b
so that ea = a also. Now

(xe)b = x(eb) = xb = yb = y(eb) = (ye)b

and xe, ye ∈ T so that

xa = x(ea) = (xe)a = (ye)a = y(ea) = ya

and a 6R∗ b in S. The dual result holds for 6L ∗ .
If every H ∗-class of S contains a regular element, then if a ∈ T , aH ∗b for some b ∈ S

with b = bcb for some c ∈ S. Now T is a ∗-ideal, so that b ∈ T and aH ∗b in T . Also,
b = b(cbc)b and cbc ∈ T , so that b is regular in T .

Let U be as given. Let a, b be non-zero elements of the Rees quotient T/U and suppose
that a 6R∗ b in S. Let x, y ∈ (T/U)1 and suppose that xb = yb. If xb = yb = 0 in T/U ,
then either x = 0, in which case xa = 0, or x 6= 0 and xb ∈ U . Now since 6R∗ is left
compatible, xa 6R∗ xb in S gives xa ∈ U by Lemma 3.4. Thus in either case, xa = 0 in
T/U and similarly, ya = 0 in T/U .

Suppose now that xb = yb 6= 0 in T/U . We must then have x, y ∈ (T \ U) ∪ {1} and
xb = yb in S. But then xa = ya in S, so that certainly xa = ya in T/U .

Conversely, suppose that a, b are non-zero elements of T/U and a 6R∗ b in T/U . Let
e, f ∈ E(S) with eR∗a and fR∗b in S. Since T, U are ∗-ideals, e, f are non-zero elements
of T/U and from the above,

eR∗a 6R∗ bR∗f

in T/U . Thus fe = e and e 6R f in S; thus a 6R∗ b in S. The dual argument works for
6L ∗ .

Finally, suppose that every H ∗-class of T contains a regular element. The only element
in the H ∗-class of 0 in T/U is 0, which is regular. The non-zero H ∗-classes of T/U are,
by the above, H ∗-classes of S and of T . Thus if H∗

a ⊆ T \ U , there is an element b ∈ H∗
a

with b regular in T . Now b = bcb for some c ∈ T and as U is an ideal, we must have
c ∈ T \ U . �

4. Endomorphisms

We recall from Section 2 that a basis algebra is a stable basis algebra if every subalgebra
which can be generated by at most rankA elements has a basis, and so is itself a basis
algebra. Hereditary basis algebras are stable, and semihereditary basis algebras of finite
rank are stable; thus the examples cited at the end of Section 2, namely: free modules of
finite rank over a Bezout domain; free T -acts on a finite set where T is cancellative and
every finitely generated left ideal is principal; and independence algebras are all stable.
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In this section we show that the endomorphism monoid of a stable basis algebra is an
abundant monoid with pleasant properties. We start by characterising the relations 6R∗

and 6L ∗ , and the corresponding equivalences. We recall from the Introduction that for
any algebra A, we denote the monoid of endomorphisms by EndA.

Lemma 4.1. Let A be a relatively free algebra and let α, β ∈ EndA. Then

α 6R∗ β if and only if Ker β ⊆ Kerα.

Proof. If A = 〈∅〉, then EndA = {IA} and the result is trivial. Now let X be a non-empty
set of free generators for A.

If Ker β ⊆ Kerα, then it is well known that α 6R β in T (A), and hence, by Lemma 3.2,
α 6R∗ β in EndA.

For the converse, suppose that α 6R∗ β and let (u, v) ∈ Kerβ. Since A is relatively free
on X, there are endomorphisms γ, δ of A with xγ = u and xδ = v for all x ∈ X. If a ∈ A,
then a = t(x1, . . . , xn) for some term operation t and x1, . . . , xn ∈ X, and so

aγβ = t(x1, . . . , xn)γβ = t(x1γβ, . . . , xnγβ) = t(uβ, . . . , uβ)

= t(vβ, . . . , vβ) = t(x1δβ, . . . , xnδβ) = t(x1, . . . , xn)δβ

= aδβ.

Thus γβ = δβ and so γα = δα since α 6R∗ β. Now, if x ∈ X, then we have

uα = xγα = xδα = vα

so that (u, v) ∈ Kerα. Hence Ker β ⊆ Kerα. �

Corollary 4.2. Let A be a relatively free algebra and let α, β ∈ EndA. Then

αR
∗β if and only if Kerα = Ker β.

We use the pure closure of the image of an endomorphism to characterise L ∗. To do
this we need the following result [10, Lemma 6.1].

Lemma 4.3. If α, β are endomorphisms of a torsion-free weak independence algebra A,
then

Sα,β = {a ∈ A : aα = aβ}

is a pure subalgebra of A.

It is worth recording the following corollary.

Corollary 4.4. If α is an idempotent endomorphism of a torsion-free weak independence
algebra A, then Imα is pure in A.

Lemma 4.5. Let A be a basis algebra and let α, β ∈ EndA. Then

α 6L ∗ β if and only if PC(Imα) ⊆ PC(Im β).
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Proof. Suppose that PC(Imα) ⊆ PC(Im β) and that βγ = βδ for some endomorphisms γ, δ
of A. Then Im β ⊆ Sγ,δ so that PC(Imα) ⊆ PC(Im β) ⊆ PC(Sγ,δ) = Sγ,δ, by Lemma 4.3,
so that Imα ⊆ Sγ,δ. Hence, for all a ∈ A, we have aαγ = aαδ so that αγ = αδ. It follows
that α 6L ∗ β.

Now suppose that α 6L ∗ β. Since A is a basis algebra, PC(Im β) has a basis X which
can be extended to a basis X ∪Y for A where X ∩Y = ∅. Since a basis is a free generating
set, there is an endomorphism γ of A with xγ = x for all x ∈ X and yγ ∈ Im β for all
y ∈ Y . Note that Im γ = 〈X〉 = PC(Im β) and that the restriction of γ to PC(Im β) is the
identity map. Hence βγ = β and so αγ = α since α 6L ∗ β. Thus

Imα = Imαγ ⊆ Im γ = PC(Im β),

and it follows that PC(Imα) ⊆ PC(Im β). �

Corollary 4.6. Let A be a basis algebra and let α, β ∈ EndA. Then

αL
∗β if and only if PC(Imα) = PC(Im β).

Next, we determine the regular elements of EndA.

Lemma 4.7. Let α be an endomorphism of a basis algebra A. Then α is regular if and
only if Imα = PC(Imα).

Proof. If α is regular, then α = αβα for some endomorphism β. Now βα is idempotent,
so that, by Corollary 4.4,

Imα = Im βα = PC(Im βα) = PC(Imα).

Conversely, suppose that Imα = PC(Imα), that is, Imα is pure. Then, since A is a
basis algebra, Imα has a basis X which can be extended to a basis X ∪ Y for A where
X ∩ Y = ∅. For each x ∈ X, choose ax ∈ A with axα = x. Since X ∪ Y is A-free, there is
an endomorphism β of A with xβ = ax for all x ∈ X. Then xβα = axα = x for all x ∈ X,
and it follows that the restriction of βα to Imα is the identity map. Hence αβα = α and
α is regular. �

It is easy to see that if A is a basis algebra, every member of EndA is L ∗-related to
an idempotent, for, if α is an endomorphism, then PC(Imα) is a pure subalgebra, and so
PC(Imα) has a basis X which may be extended to a basis Z for A. Since A is a weak
independence algebra, there is an endomorphism ε of A with xε = x for all x ∈ X and
zε ∈ 〈X〉 for all z ∈ Z. Clearly, ε is idempotent, and PC(Im ε) = Im ε = PC(Imα), so
that, by Lemma 4.6, αL ∗ε. Thus EndA is abundant if and only if every R∗-class contains
an idempotent. To ensure this we need an extra condition, as we see in the next theorem.
First, we note the following lemma.

Lemma 4.8. Let α be an endomorphism of a stable basis algebra A. Then the subalgebra
Imα is relatively free.

Proof. This is immediate because A has a basis X and Imα is generated by Xα. �
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Theorem 4.9. Let A be a basis algebra. Then EndA is abundant if and only if A is stable.
Moreover, when this is the case, every H ∗-class of EndA contains a regular element, EndA
is IC abundant and L ∗ ◦ R∗ = R∗ ◦ L ∗.

Proof. Let A have rank κ and suppose that EndA is abundant. Let B be a subalgebra
generated by λ elements where 0 < λ 6 κ. Then, since A is relatively free, there is an
endomorphism α of A with Imα = B. Since EndA is abundant, αR∗ε for some idempotent
endomorphism ε. By Lemma 4.2, Kerα = Ker ε and so α is one-one on Im ε. Now, by
Corollary 4.4, Im ε is pure, and so it has a basis, X say. By Proposition 2.14, Xα is directly
independent, and since εα = α, we also have

〈Xα〉 = 〈X〉α = (Im ε)α = Im εα = Imα = B.

Thus Xα is a basis for B, that is, B is relatively free. Hence A is stable.
Conversely, suppose that A is stable, and let α ∈ EndA. Then, by Lemma 4.8, Imα is

relatively free. By Lemma 2.18, there is an isomorphism θ from Imα to PC(Imα). Let
β = αθ; then β is an endomorphism of A with image PC(Imα). By Lemma 4.7, β is regular
since PC(Imα) is pure. Also, Ker β = Kerα since θ is an isomorphism, so that βR∗α, by
Lemma 4.2. Since Im β is pure, PC(Im β) = Im β = PC(Imα), so that, by Lemma 4.6,
βL ∗α. Thus every H ∗-class of EndA contains a regular element, and so, by Lemma 3.3,
EndA is IC abundant and L ∗ commutes with R∗. �

For the rest of the paper, we restrict our attention to stable basis algebras.
By an endomorphism pair of a stable basis algebra A, we mean a pair (ρ,B) where B is

a pure subalgebra of A, and ρ is a congruence on A such that A/ρ is isomorphic B.
For such an endomorphism pair, we put

H∗

(ρ,B) = {α ∈ EndA : Kerα = ρ and PC(Imα) = B}.

We now characterise the H ∗-classes of EndA.

Lemma 4.10. Let A be a stable basis algebra. Then

(1) for an endomorphism pair (ρ,B) of A, the set H∗

(ρ,B) is an H ∗-class of EndA;

(2) if α ∈ EndA, then (Kerα,PC(Imα)) is an endomorphism pair;
(3) if H∗ is an H ∗-class of EndA, then H∗ = H∗

(ρ,B) for some endomorphism pair

(ρ,B), and the pair (ρ,B) can be taken to be (Kerα,PC(Imα)) for any α in H∗.

Proof. (1) Given the endomorphism pair (ρ,B), let ν :A → A/ρ be the natural map, and
θ :A/ρ→ B be an isomorphism. Then νθ :: A→ B is an endomorphism of A with image B.
Moreover, since θ is an isomorphism it is clear that Ker νθ = ρ. Hence, by Corollaries 4.2
and 4.6,

H∗

νθ = {α ∈ EndA : Kerα = Ker νθ and PC(Imα) = PC(Im νθ)}

= {α ∈ EndA : Kerα = ρ and PC(Imα) = B}

= H∗

(ρ,B)

so that H∗

(ρ,B) is an H ∗-class of EndA.
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(2) If α is an endomorphism of A, then A/Kerα ∼= Imα. Since A is stable, Imα is
relatively free by Lemma 4.8. By Lemma 2.18, Imα and PC(Imα) are isomorphic, and so
A/Kerα ∼= PC(Imα). Thus (Kerα,PC(Imα)) is an endomorphism pair.
(3) Let α be a member of H∗. Then (Kerα,PC(Imα)) is an endomorphism pair, and by
Corollaries 4.2 and 4.6,

H∗

α = {β ∈ EndA : Kerβ = Kerα and PC(Im β) = PC(Imα)} = H∗

(Ker α,PC(Im α)).

�

For an endomorphism α of a stable basis algebra A, we define the rank of α, written
rankα, to be the rank of Imα. We are now in a position to characterise the D∗-classes of
EndA.

Lemma 4.11. Let A be a stable basis algebra. For α, β ∈ EndA,

αD
∗β if and only if rankα = rankβ.

Proof. If αD∗β, then, in view of Theorem 4.9, there is an endomorphism γ with αR∗γL ∗β.
Hence, by Corollaries 4.2 and 4.6, Kerα = Ker γ and PC(Im γ) = PC(Im β). But

Imα ∼= A/Kerα = A/Ker γ ∼= Im γ,

so that rankα = rank γ. By Lemma 2.18, Im γ ∼= Im β so that rankα = rankβ as required.
Conversely, suppose that rankα = rankβ. Let X and Y be bases of Imα and Im β re-

spectively, and let Z be a basis for PC(Imα). Since rank Im β = rank Imα = rankPC(Imα),
the sets X, Y and Z have the same cardinality; let θ :Y → Z be a bijection and put zy = yθ.

For each y ∈ Y , choose uy ∈ A such that uyβ = y and put U = {uy : y ∈ Y }. By
Proposition 2.14, U is directly independent.

Since A is a weak independence algebra, Z is A-free, and hence there is a morphism
γ :PC(Imα) → 〈U〉 with zyγ = uy, and since the restriction of γ to Z is one-one, γ is itself
one-one by Lemma 2.12. Hence γ maps X bijectively onto Xγ.

Similarly, since β maps U bijectively onto Y , the restriction of β to 〈U〉 is one-one,
and, in particular, β is one-one on 〈Xγ〉. Hence, letting δ be the self-map of A defined by
aδ = ((aα)γ)β, we have δ ∈ EndA, and, by Proposition 2.14,Xγβ is a directly independent
subset of Im δ, and hence of Im β.

We claim that Xγβ is a maximal directly independent subset of Im β. Now X is a
maximal directly independent subset of Imα so that, by Lemma 2.2, PC(X) = PC(Imα),
and hence Z ≺ X. Also γ is one-one, and the restriction of β to 〈U〉 is one-one, so
by Lemma 2.16, Zγ ≺ Xγ and Zγβ ≺ Xγβ, that is, Y ≺ Xγβ. Since Y is maximal
directly independent in Im β, it follows from condition (T) that PC(Imβ) = PC(Y ) ⊆
PC(Xγβ) ⊆ PC(Im β), so that PC(Xγβ) = PC(Im β). But Xγβ ⊆ Im δ ⊆ Im β, and so
PC(Im δ) = PC(Im β) since PC is a closure operator. Therefore, by Corollary 4.6, δL ∗β.

Clearly, Kerα ⊆ Ker δ. Suppose that a, b ∈ A and aδ = bδ. Since β is one-one on 〈U〉
and aαγ, bαγ ∈ 〈U〉, we have aαγ = bαγ. Hence aα = bα since γ is an isomorphism. Thus
(a, b) ∈ Kerα so that Kerα = Ker δ, and, by Corollary 4.2, αR∗δ.

Thus αD∗β as required. �
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We conclude this section by locating the idempotents of EndA.

Lemma 4.12. Let (ρ,B) be an endomorphism pair of a stable basis algebra A. Then
the H ∗-class H∗

(ρ,B) contains an idempotent if and only if every ρ-class contains a unique
element of B.

Proof. Suppose that ε = ε2 ∈ H∗

(ρ,B). Then Ker ε = ρ, and since, by Corollary 4.4, Im ε

is pure in A, we have Im ε = B. For any a ∈ A, we have aε ∈ B and aε2 = aε so that
aε ∈ aρ, and every ρ-class contains an element of B.

If u, v ∈ B and uρv, then u = uε = vε = v, and so there is only one element of B in
each ρ-class.

For the converse, define µ :A→ A by aµ = ba where aρba and ba ∈ B. Certainly, µ is well
defined. If t is an n-ary basic operation of A, and a1, . . . , an ∈ A, then t(ba1

, . . . , ban
) ∈ B

and, since ρ is a congruence, t(a1, . . . , an)ρt(ba1
, . . . , ban

). Hence

t(a1, . . . , an)µ = t(ba1
, . . . , ban

) = t(a1µ . . . , anµ),

and µ is an endomorphism. Clearly Imµ = B, and the restriction of µ to B is the identity,
so µ is idempotent. Clearly, also Kerµ = ρ so that µ ∈ H∗

(ρ,B). �

5. Left Orders

In this section we give the background on the theory of left orders necessary for the
remainder of the paper. For any element q of a semigroup Q, q♯ denotes the inverse of q in
a subgroup of Q. Use of the notation q♯ implies that q lies in a subgroup of Q; q♯ is then
uniquely determined as the (group) inverse of q in the subgroup Hq of Q. The union of
subgroups of Q is denoted by H(Q).

An element a of a semigroup S is square cancellable if aH ∗a2. If a lies in a subgroup of
an oversemigroup of S, then a and a2 are H -related in the oversemigroup (see [18]), and
hence a is square cancellable (in S). In view of Lemma 3.2, being square cancellable is a
strong necessary condition for an element of S to lie in a subgroup of an oversemigroup.
We denote by S(S) the set of square cancellable elements of S.

We say that a subsemigroup S of a semigroup Q is a left order in Q if every element
of Q can be written as a♯b for some a, b ∈ S and if, in addition, every square cancellable
element of S lies in a subgroup of Q.

It is easy to see that if S is a left order in Q, then any element of Q may be written as
a♯b where a, b ∈ S, b 6R a in Q and a♯bL b in Q. Thus S intersects every L -class of Q.
If moreover S intersects every H -class of Q, then S inherits more of the structure of Q.
One way of ensuring this is by using the concept of straightness.

Let S be a left order in Q. We say that S is straight in Q if every element of Q can
be written as a♯b where a, b ∈ S and aR b in Q. For such elements a and b it is easy to
see that a♯bH b in Q, so that S intersects every H -class of Q. Note also that Q must be
regular.

The main result of [15] is a complete characterisation of those semigroups that are
straight left orders. This is specialised in [16] to abundant straight left orders. The
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approach of [15] is via embeddable *-pairs, which are pairs of preorders whose properties
reflect those of 6L and 6R on a regular semigroup.

An ordered pair P = (6l,6r) of preorders on a semigroup S is a ∗-pair if 6l is right
compatible with multiplication, 6r is left compatible, 6l ⊆6L ∗ and 6r ⊆6R∗ . Clearly
P∗ = (6L ∗ ,6R∗) is a ∗-pair for any semigroup S. As a consequence of Lemma 3.2 we have
the following.

Corollary 5.1. Let S be a subsemigroup of Q. Then

(6LQ ∩ (S × S),6RQ ∩ (S × S))

is a ∗-pair for S.

The ∗-pair of the corollary is called the ∗-pair for S induced by Q. In particular, the
corollary applies when S is a left order in Q. In this case, if Q induces P∗ we say that S
is fully stratified in Q.

We caution the reader that the labelling of the conditions in the following result differs
from that used in [15] and [16]. Recall that a subset H of a semigroup S satisfies the left
Ore condition if for any a, b ∈ H there exist c, d ∈ H with ca = db.

Theorem 5.2. [16, Proposition 4.1] Let S be an IC abundant semigroup. Then S is a
fully stratified straight left order in a semigroup Q inducing P∗ if and only if S satisfies
the following conditions and the left-right dual of (2):

(1) L ∗ ◦ R∗ = R∗ ◦ L ∗;
(2) for all a ∈ S(S) and b, c ∈ S, if b, c 6R∗ a and ab = ac, then b = c;
(3) for all a ∈ S(S) and b, c ∈ S, if b, c 6R∗ a and abR∗ ac, then bR∗ c;
(4) for all a ∈ S(S), H∗

a satisfies the left Ore condition.

Moreover, with the notation of the theorem, we have the following result by Corollary 4.3
of [13].

Corollary 5.3. The semigroup Q is uniquely determined by S.

6. Left Orders and Endomorphisms

In this section, we examine further the H ∗-classes of the endomorphism monoid of
a stable basis algebra A. Our aim is to show that the subsemigroup Endf A of EndA
consisting of all endomorphisms of finite rank is a fully stratified straight left order in
a regular semigroup. That Endf A is a subsemigroup (indeed, an ideal) of EndA is a
consequence of the following lemma.

Lemma 6.1. If α, β are endomorphisms of a stable basis algebra A, then rankαβ 6

min{rankα, rankβ}.

Proof. Since Imαβ ⊆ Im β, we have rankαβ 6 rankβ. By Corollary 4.8, Imα has a basis
X, so that Imα = 〈X〉 and

Imαβ = (Imα)β = 〈X〉β = 〈Xβ〉.
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Hence by Proposition 2.6,

rankαβ = rank Imαβ = rank〈Xβ〉 6 |Xβ| 6 |X| = rankα.

�

For a cardinal µ and a stable basis algebra A, it follows from Lemmas 4.11 and 6.1 that

Tµ = {α ∈ EndA : rankα < µ}

is a ∗-ideal of EndA. We denote Tℵ0
by Endf A.

Corollary 6.2. Let A be a stable basis algebra. Then Endf A is a ∗-ideal of EndA.

To describe the relations 6R∗ and 6L ∗ on Endf A we employ Lemma 3.5 together with
the results of Section 4.

Corollary 6.3. Let A be a stable basis algebra. Then for any α, β ∈ Endf A,

α 6R∗ β in Endf A if and only if Ker β ⊆ Kerα

and

α 6L ∗ β in Endf A if and only if PC(Imα) ⊆ PC(Im β).

In Endf A, D∗ = L ∗ ◦ R∗ = R∗ ◦ L ∗, every H ∗-class contains a regular element and
Endf A is IC abundant.

In particular, we note that Endf A satisfies condition (1) of Theorem 5.2. We now
consider the square cancellable elements in EndA.

Lemma 6.4. Let A be a stable basis algebra. If α is a square cancellable endomorphism
of A, then the restriction of α to PC(Imα) is one-one.

Proof. By Corollaries 4.6 and 4.2, we have PC(Imα) = PC(Imα2) and Kerα = Kerα2.
Thus α is one-one on Imα.

Let x, y ∈ PC(Imα) and suppose that xα = yα. If x ∈ 〈∅〉, then x ∈ Imα so that either
x = y or y /∈ Imα. In the latter case, there is a term operation t such that t(y) ∈ Imα�〈∅〉,
and thus

t(y)α = t(yα) = t(xα) = t(x)α

so that t(y) = t(x) ∈ 〈∅〉, a contradiction.
Therefore, we can assume that x, y are not in the constant subalgebra, so that there

is a term operation u with u(y) ∈ Imα�〈∅〉. Then u(x)α = u(y)α and so u(x) /∈ 〈∅〉.
Since u(x) ≺ {x} ≺ Imα, condition (T) of Lemma 2.5 gives that u(x) ≺ Imα, so there
is a term operation s such that s(u(x)) ∈ Imα�〈∅〉. Certainly, s(u(y)) ∈ Imα and since
(su(x))α = (su(y))α we have su(x) = su(y). By torsion-freeness, x = y as required. �

We specialise now to elements of Endf A.

Lemma 6.5. Let A be a stable basis algebra. If α is square cancellable element of Endf A,
then every element of H∗

α is square cancellable.
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Proof. Let γ ∈ EndA with γH ∗α. Then, since L ∗ is a right congruence, we have γαL ∗α2

so that γαL ∗α. By Corollary 4.6, we have PC(Imα) = PC(Im γ), and, by Lemma 6.4, α is
one-one on PC(Imα). Hence, if a, b ∈ A are such that (a, b) ∈ Ker γα, then aγα = bγα so
that aγ = bγ, that is, (a, b) ∈ Ker γ, and we have Ker γα ⊆ Ker γ. The opposite inclusion
is obvious, and so, by Corollary 4.2, γαR∗γ. Thus γα ∈ H∗

α.
Now Ker γ = Kerα and α is one-one on PC(Imα), so that γ is one-one on PC(Imα).

Let X be a basis of Imα. Then, since X is finite and

|X| = |Xγ| = rank Im γ,

we have PC(Xγ) = PC(Im γ), so that

PC(Imαγ) ⊇ PC(Xγ) = PC(Im γ) = PC(Imα).

Since Imαγ ⊆ Im γ ⊆ PC(Imα) we have PC(Imαγ) = PC(Imα), so that, by Corollary 4.6,
αγL ∗α. Now αγR∗α follows from γR∗α and αR∗α2 since R∗ is a left congruence, and
so αγ ∈ H∗

α.
Now, from γL ∗α we have γ2L ∗αγL ∗γ, and similarly, γ2R∗γ, so that γ is square

cancellable. �

Corollary 6.6. Let A be a stable basis algebra. If α is square cancellable element of
Endf A, then H∗

α is a right cancellative subsemigroup of Endf A.

Proof. Let β, γ ∈ H∗
α. Then, by Lemma 6.5, β2, γ2 ∈ H∗

α. From βL ∗γ we get β2L ∗γβ,
and from βR∗γ we get γβR∗γ2. It follows that γβ ∈ H∗

α so that H∗
α is a subsemigroup of

Endf A.
To see that it is right cancellative, let β, γ, δ ∈ H∗

α be such that βδ = γδ. Then, for any
a ∈ A, we have aβδ = aγδ. Now PC(Im β) = PC(Im γ) = PC(Im δ) by Lemma 4.6, so
that aβ, aγ ∈ PC(Im δ). Also, δ is square cancellable by Lemma 6.5, and so δ is one-one
on PC(Im δ) by Lemma 6.4. Hence, aβ = aγ so that β = γ. �

The next lemma shows that Endf A satisfies condition (4) of Theorem 5.2.

Lemma 6.7. Let A be a stable basis algebra and let H∗ be an H ∗-class of a square
cancellable element of Endf A. Then the subsemigroup H∗ is left Ore.

Proof. Let α, β ∈ H∗ with rankα = n. By Corollary 4.6,

PC(Imα2) = PC(Imα) = PC(Im β) = PC(Im β2),

so that by Corollary 2.9,

PC(Imα2 ∩ Im β2) = PC(Imα).

Let U be a maximal directly independent subset of Imα2 ∩ Im β2. Then U is also maximal
in PC(Imα).

Since U ⊆ Imα2 we can choose, for each u ∈ U , an element au ∈ Imα such that
auα = u. Put X = {au : u ∈ U}. By Proposition 2.14, X is directly independent and as
|X| = rankα, X is a maximal directly independent subset of Imα.

Let ε be an idempotent endomorphism with εR∗α. By Corollary 4.4, Im ε is a pure
subalgebra, so that as A is a basis algebra, Im ε has basis Z with |Z| = n by Lemma 4.11
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since εD∗α. Let τ : U → Z be a bijection and put zu = uτ . From Lemma 2.8 there is an
isomorphism γ : 〈Z〉 = Im ε→ 〈X〉 such that zuγ = au. Note that εγ ∈ EndA and as γ is
one-one, Ker εγ = Ker ε so that by Corollary 4.2,

εγR∗εR∗α.

We also have

X ⊆ Im εγ = 〈Z〉γ = 〈Zγ〉 = 〈{au : u ∈ U}〉 ⊆ Imα

and as PC(X) = PC(Imα), we have PC(Imα) = PC(Im εγ) so that αL ∗εγ. Hence
εγ ∈ H∗.

Note that zuεγα = zuγα = auα = u.
Similarly, there is an endomorphism εδ in H∗ such that zuεδβ = u. Thus εγα and εδβ

agree on Z, and hence on Im ε. It follows that εγα = εδβ, and so H∗ is left Ore, as
required. �

Corollary 6.8. Let ε be an idempotent endomorphism of finite rank of a stable basis algebra
A. Then H∗

ε is a cancellative left Ore subsemigroup of Endf A with identity ε.

Proof. By Lemma 1.12 of [6], such an H ∗-class is a cancellative monoid (under composi-
tion). As ε is square cancellable, the left Ore condition follows from Lemma 6.7. �

We now prove that the left-right dual of condition (2) of Theorem 5.2 holds.

Lemma 6.9. Let α, β, γ be endomorphisms of a stable basis algebra A with α square can-
cellable and β, γ 6L ∗ α. If βα = γα, then β = γ.

Proof. Let a ∈ A. Then aβα = aγα. Since β, γ 6L ∗ α we have PC(Im β) ⊆ PC(Imα) and
PC(Im γ) ⊆ PC(Imα) by Lemma 4.5. Now α is one-one on PC(Imα) by Lemma 6.4, and
so aβ = aγ giving β = γ. �

To show that Endf A is a fully stratified straight left order we have to verify the remaining
criteria of Theorem 5.2, namely, conditions (2) and (3). We start with condition (2).

Lemma 6.10. Let A be a stable basis algebra and let α, β, γ ∈ Endf A be such that α is
square cancellable, β, γ 6R∗ α and αβ = αγ. Then β = γ.

Proof. First, we show that if ε is an idempotent endomorphism with εR∗α, then αεL ∗ε.
By Corollary 4.2, Ker ε = Kerα and, since α is square cancellable, Kerα = Kerα2. Hence
α is one-one on Imα, and so ε is also one-one on Imα. Let X be a basis of Imα. Then,
|X| = |Xε|, and, by Lemma 2.14, Xε is directly independent. Now rankα = rank ε
since α and ε are D∗-related, and so, since ε has finite rank, |Xε| = rank ε and Xε
must be a maximal directly independent subset of Im ε. Hence Im ε = PC(Xε). Now
Xε ⊆ Imαε ⊆ Im ε so that PC(Imαε) = Im ε. Thus αεL ∗ε.

Now β, γ 6R∗ ε so that εβ = β and εγ = γ. Now we have

(αε)β = α(εβ) = αβ = αγ = α(εγ) = (αε)γ.

But αεL ∗ε, and so εβ = εγ, that is, β = γ. �
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Finally, we show that condition (3) holds.

Lemma 6.11. Let A be a stable basis algebra and let α, β, γ ∈ Endf A be such that α is
square cancellable, β, γ 6R∗ α and αβR∗αγ. Then βR∗γ.

Proof. As αβR∗αγ, we have Kerαβ = Kerαγ by Corollary 4.2.
As in the proof of Lemma 6.10, if ε is an idempotent in the R∗-class of α, then εβ =

β, εγ = γ and αεL ∗ε. From the latter, we have PC(Imαε) = PC(Im ε) = Im ε by
Corollaries 4.6 and 4.4.

Let x, y ∈ Im ε and suppose that xβ = yβ. If x, y ∈ 〈∅〉, then x = xβ = yβ = y so that
xγ = yγ.

If x ∈ 〈∅〉 but y /∈ 〈∅〉, then xβ = x = xα = xγ and t(y) ∈ Imαε�〈∅〉 for some unary
term operation t. Let t(y) = aαε. Then

t(x)αβ = t(xαβ) = t(xβ) = t(yβ) = t(y)β = aαεβ = aαβ,

and consequently,

t(x) = t(x)αγ = aαγ = aαεγ = t(y)γ = t(yγ).

Hence, since A is torsion-free, yγ = x = xγ.
Finally, suppose that neither x nor y is a constant. As above, t(y) ∈ Imαε�〈∅〉 for some

unary term operation t. By Proposition 2.10, t(x) /∈ 〈∅〉 and so, as in Lemma 6.4, there is
a unary term operation u such that ut(x) ∈ Imαε�〈∅〉. It follows that ut(y) ∈ Imαε�〈∅〉.
Let ut(x) = aαε and ut(y) = bαε. Then

aαβ = aαεβ = ut(x)β = ut(xβ) = ut(yβ) = ut(y)β = bαεβ = bαβ,

so that aαγ = bαγ and hence

ut(xγ) = ut(x)γ = aαεγ = aαγ = bαγ = bαεγ = ut(y)γ = ut(yγ).

Thus, again by torsion-freeness, xγ = yγ.
It follows that Ker εβ ⊆ Ker εγ, and, similarly, we have the opposite inclusion. But

εβ = β and εγ = γ so that Ker β = Ker γ , and βR∗γ by Corollary 4.2. �

Now, in view of the preceding results, we can apply Theorem 5.2 to obtain the following
theorem.

Theorem 6.12. Let A be a stable basis algebra. Then Endf A is a fully stratified straight
left order in a regular semigroup.

We conjecture that in many cases, the regular semigroup in our theorem above is the
monoid of endomorphisms of finite rank of an independence algebra. As evidence for this,
consider a free (left) module F of finite rank n over a Bezout domain R. Then R is
left and right Ore, and so it has a division ring D of (left and right) quotients. Also,
V = D ⊗ F is a left vector space over D, and F embeds in V . Now EndR(F ) ∼= Mn(R)
and EndD(V ) ∼= Mn(D), and it is well known that the matrix ring Mn(D) is a ring of (left
and right) quotients of Mn(R). By Corollary 3.6 and Lemma 5.1 of [8] and Corollary 3.11
of [9], Mn(R) is a fully stratified straight order in Mn(D) (in the semigroup sense). Hence,
by uniqueness, the regular semigroup of the theorem is Mn(D).
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7. ∗-Ideals

For a cardinal µ and a stable basis algebra A we have already remarked that

Tµ = {α ∈ EndA : rankα < µ}

is a ∗-ideal of EndA. Lemma 3.5 together with Lemmas 4.1 and 4.5 describe the relations
6R∗ and 6L ∗ on Tµ. Similarly, from Theorem 4.9, we also have that Tµ is IC abundant
and R∗ ◦ L ∗ = L ∗ ◦ R∗ in Tµ. If µ+ is the successor of µ, notice that

Tµ+ \ Tµ = {α ∈ EndA : rankα = µ}

which is a D∗-class of EndA by Lemma 4.11. Again by Lemma 3.5, the relations 6R∗ and
6L ∗ on Tµ+/Tµ have a description corresponding to that for EndA. Moreover, Tµ+/Tµ is
IC abundant, every H ∗-class contains a regular element, R∗ ◦ L ∗ = L ∗ ◦ R∗ and the
non-zero elements form a D∗-class.

Before studying these Rees quotients for finite κ in greater detail, we point out that the
Tκ are the only ∗-ideals of EndA.

Proposition 7.1. Let A be a stable basis algebra. If I is a ∗-ideal of EndA, then I = Tµ

for some cardinal µ.

Proof. Let α ∈ I and let β ∈ EndA be such that rankβ 6 rankα. If rankβ = rankα,
then by Lemma 4.11, βD∗α, and since I is a ∗-ideal, it follows that β ∈ I.

If rankβ < rankα, let Z be a basis for A, let X be a subset of Z with cardinality rankα
and let Y be a subset of X of cardinality rankβ. Choose an element y0 of 〈Y 〉. Since A is
a basis algebra, there are idempotent endomorphisms ε, η such that, for z ∈ Z,

zε =

{

z if z ∈ X

y0 otherwise
and zη =

{

z if z ∈ Y

y0 otherwise.

It is clear that rank ε = |X|, rank η = |Y | and ηε = η. Since rank ε = rankα, we have
ε ∈ I, and so, since I is an ideal, η ∈ I. Then β ∈ I because rankβ = rank η.

It follows that if I 6= EndA and µ is the least cardinal such that there is an endomorphism
of rank µ which is not in I, then I = Tµ. �

For aesthetic reasons, we denote the ∗-ideal Tn+1 by Sn for all n ∈ N ∪ {0}.
We briefly consider the set S0 of endomorphisms of rank 0, that is, those with image

〈∅〉. Of course, if 〈∅〉 = ∅, then S0 = ∅. On the other hand, if c ∈ 〈∅〉 and X is a basis for
A, then there is an endomorphism α with Xα = c so that Imα = 〈∅〉 and α ∈ S0. Thus
we have the first part of the following lemma.

Lemma 7.2. Let A be a basis algebra. Then S0 6= ∅ if and only if 〈∅〉 6= ∅. When S0 6= ∅,
it is a left zero semigroup.

Proof. Suppose that 〈∅〉 6= ∅. Let B be any subalgebra with rank 0. Then PC(B) = PC(∅)
so that for any b ∈ B, x ≺ ∅. From the comments following the definition of the relation
≺, we have x ∈ 〈∅〉. Thus B = 〈∅〉. Now for any α, β ∈ S0, Imα = 〈∅〉 and cβ = c for all
c ∈ 〈∅〉, so αβ = α and S0 is a left zero semigroup. �
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We now examine more closely the Rees quotients Sn/Sn−1 for n ∈ N.

Proposition 7.3. Let n ∈ N and let A be a stable basis algebra of rank at least n. Then
Sn/Sn−1 is a primitive abundant semigroup in which all the non-zero idempotents are D-
related.

Proof. We already know that Sn/Sn−1 is abundant, has only one non-zero D∗-class and
that every H ∗-class contains a regular element. Let ε, η be non-zero idempotents. Since
they are D∗-related and D∗ = R∗ ◦L ∗, there is an endomorphism α such that εR∗αL ∗η.
Now every H ∗-class contains a regular element, and so we may assume that α is regular.
Then we have εRαL η, that is, εDη.

Now let ǫ, η be non-zero idempotents of Sn/Sn−1 with ǫη = η = ηǫ. Then Im η = Im ηǫ ⊆
Im ǫ and by Corollary 4.4, Im η and Im ǫ are pure, so that Im η has a basis X with can be
extended to a basis Y of Im ǫ. But |X| = |Y | so that X = Y and Im ǫ = Im η. Thus by
Corollary 4.6, ǫL ∗η so that η = ǫη = ǫ. Thus the non-zero idempotents are primitive. �

It follows from Proposition 7.3 together with Proposition 4.8 and Theorem 4.9 of [6] that
Sn/Sn−1 is isomorphic to a Rees matrix semigroup M 0(S; I,Λ;P ) where S is a cancellative
monoid, and each row and each column of the sandwich matrix P contains a unit of S.
Our next goal is to find appropriate S, I, Λ and P , and to give an explicit isomorphism.

Let n ∈ N and A be a stable basis algebra of rank at least n. We index the set of kernels
of endomorphisms of A of rank n by I, and the set of pure subalgebras of A of rank n by Λ,
so that we can write the kernels as ρi for i ∈ I and the pure subalgebras as Bλ for λ ∈ Λ.
In view of Lemmas 4.2 and 4.6, we have, in effect, indexed the R∗-classes of Sn/Sn−1 by I
and the L ∗-classes of Sn/Sn−1 by Λ. We write H∗

iλ for the H ∗-class R∗
i ∩ L

∗
λ.

Choose a particular element λ0 of Λ and put B = Bλ0
. Then B is a stable basis algebra

of rank n. Let S be the H ∗-class of the identity of EndB, so that S consists of the one-one
endomorphisms of B of rank n. We know by Lemma 1.12 of [6] that S is a cancellative
submonoid of EndB.

Let ε be an idempotent of EndA with Im ε = B; then H∗
ε = H∗

i0λ0
for some element i0 of

I. Also, H∗
ε consists of those endomorphisms α of A with PC(Imα) = B and Kerα = Ker ε.

Hence if α ∈ H∗
ε , then α is one-one on B. Also, since εα = α, we have

rank(α|B) = rank((Im ε)α) = rank(Im εα) = rankα = n.

Thus α|B ∈ S, and so we can define θ :H∗
ε → S by αθ = α|B. Clearly, θ is a morphism,

and if αθ = βθ, then α and β agree on Im ε, so that α = εα = εβ = β, and θ is one-one.
If δ ∈ S, then εδ ∈ EndA and (εδ)θ = δ so that θ is an isomorphism.

We now turn our attention to the sandwich matrix. Put H∗ = H∗
ε = H∗

i0λ0
. For

each i ∈ I, we choose a regular element ri in H∗
iλ0

, and, for each λ ∈ Λ, we choose a
regular element qλ in H∗

i0λ. Such choices are possible, in view of Theorem 4.9. Moreover,
by Proposition 1.13 of [6], the mapping x 7→ rix is a bijection from H∗ onto H∗

iλ0
, and

y 7→ yqλ is a bijection from H∗
iλ0

onto H∗
iλ. Thus, once we have chosen the ri and the qλ,

we have a unique expression riaqλ for each element of H∗
iλ where a ∈ H∗, i ∈ I and λ ∈ Λ.
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We now define P to be the Λ × I matrix (pλi) where pλi = qλri for (i, λ) ∈ I × Λ. Then
either pλi = 0 or, by [6, Lemma 3.3], pλi ∈ H∗. Furthermore, as in the proof of Theorem 3.8
of [6], we find that, for our case, each row and column contains a unit of H∗.

We can now construct a Rees matrix semigroup M 0 = M 0(H∗; I,Λ;P ), and, from the
proof of [6, Theorem 3.8], we have that the map ϕ :M 0 → EndA, defined by 0ϕ = 0 and
(i, a, λ)ϕ = riaqλ, is an isomorphism.

Now, for each (i, λ) ∈ I ×Λ, where pλi ∈ H∗, let qλi = pλiθ, that is, qλi is the restriction
of pλi to B, and qλi ∈ S, and put qλi = 0 if pλi = 0. Hence we can form the Rees matrix
semigroup M 0

1 = M 0(S; I,Λ;Q) where Q is the Λ × I matrix (qλi). It is straightforward
to verify that the mapping ψ :M 0 → M 0

1 given by 0ψ = 0 and (i, a, λ)ψ = (i, aθ, λ), is an
isomorphism. Thus we have now proved the following result.

Theorem 7.4. Let n ∈ N and let A be a stable basis algebra of rank at least n. Let B
be a pure subalgebra of A with rankB = n, and let S be the H ∗-class of the identity of
EndB. Then there are sets I,Λ and a Λ × I matrix Q over S ∪ {0} such that Sn/Sn−1 is
isomorphic to the Rees matrix semigroup M 0(S; I,Λ;Q).

We remark that it follows from Theorem 6.12 that each Sn/Sn−1 is a left order in
a completely 0-simple semigroup. Since Sn/Sn−1 is abundant, this completely 0-simple
semigroup of left quotients is unique, and it follows from Theorem 7.4 that it is isomorphic
to M 0(G; I,Λ;Q) where G is the group of left quotients of S.
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