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Abstract. The construction by Hall of a fundamental orthodox
semigroup WB from a band B provides an important tool in the
study of orthodox semigroups. Hall’s semigroup WB has the prop-
erty that a semigroup is fundamental and orthodox with band of
idempotents isomorphic to B if and only if it is embeddable as a
full subsemigroup into WB . The aim of this paper is to extend
Hall’s approach to some classes of non-regular semigroups.

From a band B we construct a semigroup UB that plays the role
of WB for a class of weakly B-abundant semigroups having a band
of idempotents B. The semigroups we consider, in particular UB,
must also satisfy a weak idempotent connected condition. We show
that UB has subsemigroup VB where VB satisfies a stronger notion
of idempotent connectedness, and is again the canonical semigroup
of its kind. In turn, VB contains WB as its subsemigroup of regular
elements. Thus we have the following inclusions as subsemigroups:

WB ⊆ VB ⊆ UB,

either of which may be strict, even in the finite case.
The existence of the semigroups UB and VB enable us to prove

a structure theorem for classes of weakly B-abundant semigroups
having band of idempotents B, and satisfying either of our idem-
potent connected conditions, as spined products of UB, or VB , with
a weakly B/D-ample semigroup.
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1. Introduction

One of the significant early approaches to the structure theory of
regular semigroups was via fundamental semigroups, that is, regu-
lar semigroups having no non-trivial idempotent separating congru-
ences. Inspired by Munn’s approach to inverse semigroups [14], Hall
showed that an orthodox semigroup S with band of idempotents B
is fundamental if and only if it is isomorphic to a full subsemigroup
of WB. Further, if S is an orthodox semigroup with band of idem-
potents B, then there exists a homomorphism ϕ : S → WB whose
kernel is µ, the maximum idempotent separating congruence on S
[10] (c.f. [12] Chapter VI). The semigroup WB is a subsemigroup of
OP(B/L)×OP∗(B/R), where for any partially ordered set X, OP(X)
is the monoid of its order preserving selfmaps, with dual OP∗(X). A
pair of maps (α, β) ∈ OP(B/L) × OP∗(B/R) lies in WB if α and β
are connected in a specific way via an isomorphism between principal
ideals of B. The aim of this paper is to build an analogous theory to
Hall’s for classes of non-regular semigroups.

We consider weakly U-abundant semigroups, where U is a subset
of idempotents of a semigroup. Such semigroups, also referred to as
U -semiabundant semigroups, arise independently from a number of
sources. They appear in the work of de Barros [1], in that of Ehresmann
on certain small ordered categories [2] and in the thesis of the first
author [3]. A systematic study of such semigroups was initiated by
Lawson, who establishes in [13] the connection between Ehresmann’s
work and weakly E-abundant semigroups, where E is a semilattice.

A semigroup is weakly U-abundant if every class of the equivalence

relations L̃U and R̃U (defined in Section 2) contains an idempotent of U .

Certainly L ⊆ L∗ ⊆ L̃U and R ⊆ R∗ ⊆ R̃U , with equality if S is regular

and U = E(S). We remark that L̃U (R̃U) need not be right (left)
congruences; if they are we say that S satisfies the congruence condition

(C) (with respect to U). We denote by H̃U the relation L̃U ∩ R̃U and
say that S is U -fundamental if the greatest congruence µU contained in

H̃U is the identity ι; it is easy to see that µU separates the idempotents
of U . We show that for any semigroup S with U ⊆ E(S), S/µU is
U -fundamental where U is the image of U under the natural morphism
associated with µU . Moreover, S is weakly U -abundant (with (C))
if and only if S/µU is weakly U -abundant (with (C)). This is where
the notion of weakly abundant wins over that of being abundant; if
S is abundant then S/µ need not be [3]. If U = E(S) we drop the
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subscript U from L̃U , R̃U , H̃U and µU and refer to weakly abundant
and fundamental semigroups.

In the case of several classes of weakly E-abundant semigroups where
E is a semilattice, a theory analogous to that of Munn has been de-
veloped in [5], [7] and [9]. What then of classes of weakly B-abundant
semigroups where B is a band? To date the furthest progress is a
consideration by the first two authors in [3, 4] of a certain class of

abundant semigroups having a band B of idempotents. Here L∗ = L̃

and R∗ = R̃, so that (C) always holds. To guarantee that S/µ is
abundant, the extra condition of being idempotent connected (IC) is
imposed in [3]. This is a condition of a standard type that gives some
control over the position of idempotents in products of elements of the
semigroup and, in the abundant case, gives rise naturally to isomor-
phisms between principal ideals of B. It is shown in [3, 4] that every
fundamental idempotent connected abundant semigroup with band of
idempotents B is a subsemigroup of WB.

Here we move further away from the regular case and consider a
weakly B-abundant semigroup S with (C), where B is a band. In this
case we know that S/µB is weakly B-abundant with (C). However, to
describe the largest fundamental semigroup in the class - and it is worth
noting that in these theories this is where the difficulty lies - we con-
tent ourselves with imposing an idempotent connectedness condition,
for which there are two natural candidates. One, introduced by the
first author in his thesis, we again call (IC); the imposition of this con-
dition guarantees the existence of order isomorphisms between certain
principal ideals of B ‘connected’ via an element of S. We also develop
the weak idempotent connected condition (WIC), that coincides with
(IC) for abundant semigroups, but not for wider classes. Condition
(WIC) gives us a very loose control over the position of idempotents,
but does not impose artificially the existence of order isomorphisms.

From a band B we construct a weakly abundant subsemigroup of
OP(B/L) ×OP∗(B/R), satisfying (C) and (WIC), calling this semi-
group UB. The semigroup UB is fundamental, and is universal in the
sense that any B-fundamental weakly B-abundant semigroup with (C)
and (WIC) is a subsemigroup of UB. We show that UB contains as a
full subsemigroup a semigroup VB, which is fundamental, weakly abun-
dant with (C) and (IC), and is the canonical semigroup of this type.
Consequently, VB contains WB as a subsemigroup; moreover, WB con-
sists precisely of the regular elements of VB. We give examples to show
that, in general, WB 6= VB and VB 6= UB.
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The structure of the paper is as follows. In Section 2 we give some
necesssary preliminaries on weakly U -abundant semigroups, specialis-
ing in Section 3 to the case where U is a band. Section 4 sets out
the construction of UB from a band B, and contains a discussion of its
properties. In Section 5 we build and investigate the subsemigroup VB

of UB. Section 6 is concerned with examples; we use our techniques to
give examples of semigroups with small finite cardinality that distin-
guish between the classes under consideration.

In our final section we show how the existence of the semigroups UB

and VB enable us to prove a structure theorem for weakly B-abundant
semigroups with (C) and (WIC) (respectively (IC)), as spined products
of UB (repsectively VB) with a weakly B/D-ample semigroup. To find
the latter we make heavy use of the congruence δB (see for example
[8]), which is the analogue for weakly B-abundant semigroups of the
least inverse congruence on an orthodox semigroup.

2. Preliminaries

For ease of reference we gather together in this section some basic
definitions and elementary observations concerning weakly abundant
semigroups. Further details may be found in [3] and [13]. For conve-
nience we make the convention that B will always denote a band.

Let S be a semigroup with subset of idempotents U . The relation

L̃U is defined by the rule that for any a, b ∈ S, a L̃U b if and only if for
all e ∈ U ,

ae = a if and only if be = b.

The relation R̃U is defined dually; clearly L̃U and R̃U are equivalence
relations. We recall from the Introduction that (C) holds (with respect

to U) if L̃U and R̃U are right and left congruences, respectively. It is
easy to see that

L ⊆ L∗ ⊆ L̃U and R ⊆ R∗ ⊆ R̃U .

Moreover for a regular element a such that xa ∈ U (ax ∈ U) for some
x ∈ S, we have that for any e ∈ U ,

e L̃U a if and only if eL a (e R̃U a if and only if eR a).

It follows that for e, f ∈ U ,

e L̃U f if and only if eL f (e R̃U f if and only if eR f)

and if S is regular and U = E(S), then L̃U = L and R̃U = R. Another

useful observation is that if a ∈ S and e ∈ U , then a L̃U e if and only if
ae = a and for any f ∈ U , af = a implies that ef = e.
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The semigroup S is weakly U -abundant if every L̃U -class and every

R̃U -class contain an idempotent. If a is an element of such a semigroup,

then we commonly denote idempotents in the L̃U -class and R̃U -class
of a by a∗ and a+ respectively. Beware however, that there may not be
a unique choice for a∗ or a+. The following lemma is immediate.

Lemma 2.1. Let S be a weakly U-abundant semigroup. Then for any
a, b ∈ S,

(ab)∗≤L b
∗ and (ab)+ ≤R a

+.

A word on notation. In the case when, for a semigroup S, we are
considering U = E(S), we commonly drop the ‘U ’ from notation and

terminology. For example, L̃E(S) and R̃E(S) are denoted more simply

by L̃ and R̃, and we say that S is weakly abundant if it is weakly E(S)-
abundant. Regular semigroups are clearly weakly abundant but the
latter class is much wider. Trivially, a unipotent monoid M (a monoid
with one idempotent) is weakly abundant, as is any Rees matrix semi-
group M0(M ; I,Λ;P ) where each row and column of P contains a unit;
indeed these semigroups satisfy (C) [6]. The Ehresmann semigroups of
[13] are weakly E-abundant with (C) for a semilattice E. Further ex-
amples abound. A number (including some without (C)) are given in
[6]; we present new ones arising from our current work at the end of
this article.

Morphic images of regular and inverse semigroups are regular and
inverse respectively. The same is not true even for abundant semigroups
with semilattice of idempotents [5]. With this in mind we make the
following definition. Let S be a semigroup with subset of idempotents
U and let ϕ : S → T be a morphism. Then ϕ is U -admissible if for any
a, b ∈ S,

a L̃U b implies that aϕ L̃Uϕ bϕ

and

a R̃U b implies that aϕ R̃Uϕ bϕ.

If, in addition, the reverse implications hold we say that ϕ is strongly
U -admissible.

The following lemma is clear.

Lemma 2.2. Let S be a semigroup, let U ⊆ E(S) and let ϕ : S → T be
a U-admissible surjective morphism. If S is weakly U-abundant, then
T is weakly Uϕ-abundant.

Lemma 2.3. Let S be a semigroup with U ⊆ E(S), and let ϕ : S → T
be a surjective morphism. Then ϕ is strongly U-admissible if and only
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if the kernel of ϕ is contained in H̃U . In this case, S is weakly U-
abundant if and only if T is weakly Uϕ-abundant, and S satisfies (C)
with respect to U if and only if T satisfies (C) with respect to Uϕ.

Proof. Suppose that ϕ is strongly U -admissible and aϕ = bϕ. Clearly

aϕ H̃Uϕ bϕ, whence a H̃U b by assumption.

Conversely, suppose that ker ϕ ⊆ H̃U ; let a ∈ S and e ∈ U . If
ae = a then certainly aϕ eϕ = aϕ. On the other hand if aϕ eϕ = aϕ

then ae H̃U a. Now ae · e = ae, so that a · e = a as ae L̃U a. Similarly,
ea = a if and only if eϕaϕ = aϕ. The result now follows easily.

�

We can now justify further assertions of the Introduction.

Proposition 2.4. Let S be a semigroup and let U ⊆ E(S). The natural
morphism νU associated with µU is strongly U-admissible and restricts
to an injection on U . Denoting the image of U under νU by U , we have
that S/µU is U -fundamental.

If S is weakly U-abundant, then S/µU is weakly U-abundant; if S
satisfies (C), then so does S/µU .

Proof. The morphism νU is strongly U -admissible by Lemma 2.3; con-
sequently, by Lemmas 2.2 and 2.3, S/µU is weakly U -abundant if S is
weakly U -abundant, and inherits (C) from S. If two idempotents of

U are related by µU , then they are H̃U -related, and so, from remarks
at the beginning of this section, they are H-related and hence equal.
Thus µU separates idempotents of U .

It remains to show that S/µU is U -fundamental. Suppose that

aµU µU bµU . Since µU is the largest congruence contained in H̃U , we

have that aµU H̃U bµU and for any cµU , dµU ∈ S/µU ,

cµUaµU H̃U cµUbµU , aµUcµU H̃U bµUcµU ,

and
cµUaµUdµU H̃U cµUbµUdµU .

By Lemma 2.3,

a H̃U b, ca H̃U cb, ac H̃U bc and cad H̃U cbd.

From Proposition I.5.13 of [12], a µU b so that aµU = bµU , as required.
�
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Example 2.5.

Let B be a rectangular band and let S be weakly B-abundant. It is
easy to see that for any a, b ∈ S,

a R̃B ab L̃B b,

whence L̃B, R̃B and H̃B are all congruences. Moreover, every H̃B-

class contains an idempotent. Thus S/µB = S/H̃B = B. We deduce
that in this special case the only B-fundamental weakly B-abundant
semigroup is the band B.

In the case of a weakly U -abundant semigroup with (C) the congru-
ence µU has a description neater than the generic one used in Propo-
sition 2.4. The proof of the following is very similar to that in the
abundant case [4], and is therefore omitted.

Lemma 2.6. [3] Let S be weakly U-abundant with (C). Then for any
a, b ∈ S,

a µU b if and only if ea L̃U eb and ae R̃U be

for all e ∈ U .

Let T be a subsemigroup of S and let U be a subset of idempotents
of S. We say that T is U -full if U ⊆ T . The last part of the final lemma
of this section employs the description of µ taken from Lemma 2.6.

Lemma 2.7. Let T be a U-full subsemigroup of S. Then for any
a, b ∈ T ,

a L̃U b in T if and only if a L̃U b in S

and
a R̃U b in T if and only if a R̃U b in S.

Consequently, if S is weakly U-abundant, then so is T ; if S satisfies
(C) with respect to U , then so does T .

If S is U-fundamental weakly U-abundant with (C), then so is T .

3. A band of idempotents

The remainder of this paper concentrates on weakly B-abundant
semigroups with (C), where, by our convention, B is always a band.
In this case we can substantially improve upon Proposition 2.4, as we
show below. The idempotent connected condition is also defined and
discussed in this section.

Let S be a weakly B-abundant semigroup. For any a ∈ S we define

αa : B/L → B/L and βa : B/R → B/R
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by
Lxαa = L(xa)∗ and Rxβa = R(ax)+ .

It follows from Lemma 2.1 that αa and βa are well defined. We note
that for any e ∈ B,

(αe, βe) = (ρe, λe)

where for any x ∈ B,

Lxρe = Lxe, Rxλe = Rex.

The band B admits the quasi-orders ≤L and ≤R associated with L
and R; we consider B/L and B/R as partially ordered sets under the
induced orderings.

Lemma 3.1. Let S be a weakly B-abundant semigroup. For any a ∈ S,
αa ∈ OP(B/L) and βa ∈ OP∗(B/R).

Let
θ : S → OP(B/L) ×OP∗(B/R)

be given by
aθ = (αa, βa).

If condition (C) holds, then θ is a strongly B-admissible morphism
with kernel µB. Moreover, putting B = {(ρe, λe) : e ∈ B}, we have that
θ|B : B → B is an isomorphism.

Proof. To justify the first assertion, notice that if e, f ∈ B and Le ≤ Lf ,
then e≤L f in B and hence in S. Since ≤L is right compatible, ea≤L fa
in S so that as fa(fa)∗ = fa, we also have ea(fa)∗ = ea and hence
(ea)∗(fa)∗ = (ea)∗. Thus (ea)∗ ≤L (fa)∗ in B and so Leαa ≤ Lfαa.
The argument that βa is order preserving is dual.

Suppose now that (C) holds. For any a, b ∈ S, and e ∈ B,

(eab)∗ L̃B eab L̃B(ea)∗b L̃B ((ea)∗b)∗,

so that in B,
L(eab)∗ = L((ea)∗b)∗

and consequently,
Leαab = Leαaαb.

We have shown that αab = αaαb; the dual argument gives that βab =
βbβa, whence it follows easily that θ is a morphism.

To see that the kernel of θ is µB, notice first that if aθ = bθ, then
(αa, βa) = (αb, βb) so that in particular,

La+αa = La+αb and Lb+αa = Lb+αb.

Thus
La∗ = L(a+b)∗ and L(b+a)∗ = Lb∗ .
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It follows from Lemma 2.1 that a L̃B b and dually, a R̃B b. Hence the

kernel of θ is contained in H̃B and therefore also in µB.
Conversely, if a µB b, then for any e ∈ B, Lemma 2.6 gives that

ea L̃B eb and so

Leαa = L(ea)∗ = L(eb)∗ = Leαb.

Thus αa = αb and dually, βa = βb. We deduce that aθ = bθ and
hence the kernel of θ is µB. From Lemma 2.3, θ is therefore strongly
B-admissible.

We remarked above that eθ = (ρe, λe), for any e ∈ B, and hence
θ|B : B → B is a surjective morphism. Now the kernel of θ is µB, and
so θ separates the idempotents of B, giving that θ|B : B → B is an
isomorphism. �

It remains in this section to discuss the idempotent connected condi-
tion. A fuller version of some of the ideas we present here is contained
in [15]. Essentially, all of the idempotent connected and ample (for-
merly, type A) conditions extant give some control over the position
of idempotents in products, usually facilitating results for abundant or
weakly abundant semigroups reminiscent of those in the regular case.

For a band B and element e of B we denote by 〈e〉 the principal
order ideal generated by e; so that

〈e〉 = {x ∈ B : x ≤ e} = {x ∈ B : ex = xe = x}.

Clearly 〈e〉 is a subsemigroup with identity e. Let S be a weakly B-
abundant semigroup where B is a band. We say that S satisfies the
weak idempotent connected condition (WIC) (with respect to B) if for
any a ∈ S and some a∗, a+, if x ∈ 〈a+〉 then there exists y ∈ B with
xa = ay; and dually, if z ∈ 〈a∗〉 then there exists t ∈ B with ta = az.

Some observations concerning this definition are in order. First, it
is easy to see that a regular semigroup satisfies (WIC) with respect to
E(S). Second, we can replace ‘some’ in (WIC) by ‘any’. For suppose
that S has (WIC), a ∈ S, a+ is the chosen idempotent of B in the

R̃B-class of a, and a† is another element of B in the same R̃B-class.
If x ∈ 〈a†〉, we certainly have that xa+ = a+xa+ ∈ 〈a+〉 and so by
(WIC),

xa = (xa+)a = ay

for some y ∈ B. Similarly, we can take z to lie in 〈a◦〉 for any a◦ ∈ B

lying in the L̃B-class of a. Finally, if a ∈ S, and x, y ∈ B with xa = ay,
then for any a∗ we have that xa = a(a∗ya∗). Thus in the definition of
(WIC) we may choose the y to lie in any given 〈a∗〉, and dually, the t
to lie in any given 〈a+〉.
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We now introduce certain relations which will be crucial in later
constructions. Let S be weakly B-abundant, let a ∈ S and choose a+

and a∗. It is easy to see that

Ia+,a∗

= {(x, y) ∈ 〈a+〉 × 〈a∗〉 : xa = ay}

is a subsemigroup of 〈a+〉 × 〈a∗〉. Moreover, S satisfies (WIC) if and

only if every such Ia+,a∗

is a full relation according to the following
definition.

Definition Let A,B be sets and R ⊆ A×B be a relation. Then R is
full if both projection maps are both onto.

If S is abundant, so that B = E(S) and L̃ = L∗, R̃ = R∗, then it is

easy to see that if Ia+,a∗

is full, then it is the graph of an isomorphism.
Thus an abundant semigroup satisfies (WIC) if and only if it satisfies
the idempotent connected condition (IC) introduced by the first author
in [3]. Consequently, an orthodox semigroup always satisfies (IC).

Motivated by the abundant case, El-Qallali in [3] extended the notion
of idempotent connectedness from abundant semigroups to weakly B-
abundant semigroups, again calling his condition (IC). In our notation,
a weakly B-abundant semigroup satisfies (IC) if for each a ∈ S there
exist a+, a∗ such that the relation Ia+,a∗

contains the graph of an order
isomorphism from 〈a+〉 to 〈a∗〉. We expand upon this in Section 5
and show in Section 6 that a weakly B-abundant semigroup can have
(WIC) without (IC).

The following lemma is an easy extension of Lemma 2.7.

Lemma 3.2. Let T be a B-full subsemigroup of a weakly B-abundant
semigroup S. If S satisfies (WIC), then so does T ; if S satisfies (IC),
then so does T .

We end this section by showing that (WIC) and (IC) are respected
by strongly admissible morphisms.

Lemma 3.3. If S is a weakly B-abundant semigroup and θ : S → T
is a strongly admissible morphism from S onto a semigroup T , then S
has (WIC) with respect to B if and only if T has (WIC) with respect
to Bθ; similarly for (IC).

Proof. As in Lemma 2.3 we can show that for any x, y ∈ B and a ∈ S,

xa = ay if and only if xθ aθ = aθ yθ. We have that x R̃B a L̃B y if and

only if xθ R̃Bθ aθ L̃Bθ yθ, and θ induces an isomorphism from B to Bθ.
The result follows.

�
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4. The semigroup UB

Our aim in this section is to construct from B a semigroup UB that
is B-fundamental weakly B-abundant with (C) and (WIC), containing
as a B-full subsemigroup any semigroup with these properties. Conse-
quently, the semigroup WB of [10], that is, the canonical fundamental
orthodox semigroup, is embeddable into UB. In our final section we give
examples to show that this embedding may be proper. Underlying the
construction of WB is the idea of a ‘connecting isomorphism’ between
principal ideals of B; that concept is too strong for our purposes. With
this in mind we introduce certain relations between principal ideals of
B.

Let e, f ∈ B; we commonly denote a relation from 〈e〉 to 〈f〉, that
is, a subset of 〈e〉×〈f〉, by Ie,f . We say that Ie,f is connecting if Ie,f is
a subsemigroup of 〈e〉 × 〈f〉 and for every (x, x′), (y, y′) ∈ Ie,f we have
that

x≤L y implies that x′ ≤L y
′

and
x′ ≤R y

′ implies that x≤R y.

Lemma 4.1. Let Ie,f be connecting. Then for any (x, y), (z, t) ∈ Ie,f ,

x ≤D z if and only if y ≤D t.

Proof. If x ≤D z, then

xzx = x(xzx)x = x

so that xL zx. As Ie,f is a semigroup, (zx, ty) ∈ Ie,f , so that as also
(x, y) ∈ Ie,f , we have that yL ty. Consequently, y ≤D t. The proof of
the remainder of the lemma is dual. �

Connecting relations are of immediate importance to us due to the
following observation. Let S be weakly B-abundant with (C), let a ∈ S,

and let Ia+,a∗

be the relation defined in Section 3.

Lemma 4.2. The relation Ia+,a∗

is connecting.

Proof. First, we have already observed that Ia+,a∗

is a subsemigroup of
〈a+〉×〈a∗〉. Suppose now that (x, x′), (y, y′) ∈ Ia+,a∗

and x≤L y. Then

xa = ax′, ya = ay′

and
x′ = a∗x′ L̃B ax

′ = xa≤L ya = ay′ L̃B a
∗y′ = y′

whence x′y′ = x′ and so x′ ≤L y
′. Dually, Ia+,a∗

preserves the ≤R-order
from right to left, and is therefore connecting.

�
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Clearly a weakly B-abundant semigroup with (C) has (WIC) if and

only if all the connecting relations Ia+,a∗

are full.

Observe that, as a consequence of the definitions, if Ie,f ⊆ 〈e〉 × 〈f〉
is full and connecting, then

(e, x) ∈ Ie,f if and only if x = f

and dually,

(x, f) ∈ Ie,f if and only if x = e.

For we know that there exist (e, u), (v, f) ∈ Ie,f , and so, as Ie,f is a
semigroup,

(ev, uf) = (v, u) ∈ Ie,f .

Since (v, f), (v, u) ∈ Ie,f and certainly v L v, we have that f L u; as
u ≤ f we obtain that f = u. Similarly, v = e.

We denote OP(B/L)×OP∗(B/R) by O(B) and use full connecting
relations to define the elements of a subsemigroup of O(B). Let Ie,f

be full connecting; we begin by defining partial maps Ie,f
ℓ of B/L and

Ie,f
r of B/R by setting

LxI
e,f
ℓ = Ly where (x, y) ∈ Ie,f

and

RyI
e,f
r = Rx for (x, y) ∈ Ie,f .

The fact that Ie,f is full connecting gives immediately that Ie,f
ℓ and Ie,f

r

have domains {Lx : x ≤ e} and {Ry : y ≤ f} respectively, and that
they are well defined and order preserving on these domains. Consider
now the element ρe ∈ O(B/L); the image of ρe is {Lye : y ∈ B}.
Since eyeL ye, we have that the image of ρe is {Lx : x ≤ e}, that is,

the image of ρe is the domain of Ie,f
ℓ . Thus we may compose the order

preserving maps ρe and Ie,f
ℓ to obtain an element of O(B/L). Similarly,

λfI
e,f
r ∈ O∗(B/R). We have shown that

UB = {(ρeI
e,f
ℓ , λfI

e,f
r ) : e, f ∈ B, Ie,f ⊆ 〈e〉 × 〈f〉 is full connecting}

is a subset of O(B). We claim that UB is a subsemigroup of O(B) and
is the canonical B-fundamental weakly B-abundant semigroup with
(C) and (WIC) for which we seek. Indeed rather more than this, for
we show that the idempotents of UB are precisely the elements of a
band isomorphic to B.

Notice that for any e ∈ B,

ιe,e = {(x, x) : x ≤ e}
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is full connecting, and

(ρeι
e,e
ℓ , λeι

e,e
r ) = (ρe, λe),

so that B ⊆ UB. We show below that every idempotent of UB belongs
to B. In the following, for D-related elements e, f of B we use the
notation θf to denote the map from 〈e〉 to 〈f〉 given by xθf = fxf ;
from VI.2.13 of [12], θf is an isomorphism with inverse θe.

Lemma 4.3. The set UB is a subsemigroup of O(B) with E(UB) = B.

Proof. For any f, g ∈ B, fgf D gfg so that

θfgf : 〈gfg〉 → 〈fgf〉 and θgfg : 〈fgf〉 → 〈gfg〉

are mutually inverse isomorphisms. As such, therefore, they preserve
the order of B. Moreover,

xθfgf = (fgf)x(fgf) = fxf

for x ∈ 〈gfg〉 and

yθgfg = (gfg)y(gfg) = gyg

for y ∈ 〈fgf〉.
Suppose now that e, f, g, h ∈ B and Ie,f , Jg,h are full connecting

relations. Since
fgf ≤ f and gfg ≤ g

and Ie,f , Jg,h are full connecting, there exist

(z, fgf) ∈ Ie,f and (gfg, w) ∈ Jg,h.

We claim that Kz,w is full connecting, where

Kz,w = (Ie,fθgfgJ
g,h) ∩ (〈z〉 × 〈w〉),

the composition being composition of relations from B to B.
To show that the projection maps to 〈z〉 and 〈w〉 are onto, let u ∈ B

with u ≤ z; since z ≤ e and Ie,f is full connecting, there exists an
element (u, t) ∈ Ie,f . Now u = zuz and Ie,f is a semigroup, so that

(u, fgftfgf) = (z, fgf)(u, t)(z, fgf) ∈ Ie,f .

Clearly fgftfgf ∈ 〈fgf〉, so that

(fgftfgf, g(fgftfgf)g) ∈ θgfg,

that is,
(fgftfgf, (gfg)gftfg(gfg)) ∈ θgfg.

Now gftfg ∈ 〈g〉; as Jg,h is full connecting, there exists an element
(gftfg, k) ∈ Jg,h. Consequently,

(gfg, w)(gftfg, k)(gfg, w) = ((gfg)gftfg(gfg), wkw) ∈ Jg,h.
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It follows that

(u, wkw) ∈ Kz,w.

Dually, the projection of Kz,w to the second coordinate is onto.
Since each of Ie,f , θgfg, J

g,h is a subsemigroup of B × B, it follows
easily that the same is true of the composition, hence of Kz,w. Finally,
since each of the relations concerned preserves the ≤L-order (≤R-order)
from left to right (right to left), the same is clearly true of the compo-
sition. Thus Kz,w is full connecting.

Consider the elements (ρeI
e,f
ℓ , λfI

e,f
r ), (ρgJ

g,h
ℓ , λhJ

g,h
r ) ∈ UB and let

Kz,w be constructed as above. We claim that

(ρeI
e,f
ℓ , λfI

e,f
r )(ρgJ

g,h
ℓ , λhJ

g,h
r ) = (ρzK

z,w
ℓ , λwK

z,w
r ).

To see this, let x ∈ B. A straightforward calculation gives

LxρeI
e,f
ℓ ρgJ

g,h
ℓ = LexeI

e,f
ℓ ρgJ

g,h
ℓ

= LuρgJ
g,h
ℓ where (exe, u) ∈ Ie,f

= LgugJ
g,h
ℓ

= Lv where (gug, v) ∈ Jg,h.

On the other hand,

LxρzK
z,w
ℓ = LzxzK

z,w
ℓ

and

(zxz, (fgf)u(fgf)) = (z(exe)z, (fgf)u(fgf)) = (z, fgf)(exe, u)(z, fgf) ∈ Ie,f .

Hence

(zxz, (gfg)gug(gfg)) = (zxz, g(fgfufgf)g) ∈ Ie,fθgfg,

since u = fuf . Also,

((gfg)gug(gfg), wvw) = (gfg, w)(gug, v)(gfg, w) ∈ Jg,h

and so we conclude

(zxz, wvw) ∈ Ie,fθgfgJ
g,h

and hence (zxz, wvw) ∈ Kz,w, giving that

LxρzK
z,w
ℓ = Lwvw.

Further,

(gfg)gug(gfg) = (gfg)(fuf)(gfg) = (gf)2u(fg)2 = (gf)u(fg) = gug,

so that as Jg,h is full connecting and (gug, v), (gug, wvw) ∈ Jg,h, we
must have that Lv = Lwvw and it follows that

ρzK
z,w
ℓ = ρeI

e,f
ℓ ρgJ

g,h
ℓ .
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Dually, we obtain that

λwK
z,w
r = λhJ

g,h
r λfI

e,f
r ,

so that

(ρeI
e,f
ℓ , λfI

e,f
r )(ρgJ

g,h
ℓ , λhJ

g,h
r ) = (ρzK

z,w
ℓ , λwK

z,w
r ),

allowing us to deduce that UB is a subsemigroup of OB.
We now identify the idempotents of UB. We have remarked that

B ⊆ UB and B forms a band; it remains to show that every idem-
potent of UB lies in B. To this end, suppose that (ρeI

e,f
ℓ , λfI

e,f
r ) is

idempotent. Notice that the image of ρeI
e,f
ℓ is {Lx : x ≤ f} and as

ρeI
e,f
ℓ is idempotent, we must have that ρeI

e,f is the identity on this
set. Similarly, λfI

e,f
r is the identity on {Ry : y ≤ e}. This gives in

particular that
Lf = LfρeI

e,f
ℓ = LefeI

e,f
ℓ = Lg

where (efe, g) ∈ Ie,f . Since also (e, f) ∈ Ie,f , and f L g, Lemma 4.1
gives that efeD e. Dually, fef D f and we deduce that eD f .

Consequently, for any x ∈ B,

LxρeI
e,f
ℓ = LexeI

e,f
ℓ = LefexefeI

e,f
ℓ = LfexefρeI

e,f
ℓ = Lfexef

since Lfexef is in the image of ρeI
e,f
ℓ . But

Lfexef = L(fex)(xef) = Lxef = Lxρef .

Dually, λfI
e,f
ℓ = λef and so

(ρeI
e,f
ℓ , λfI

e,f
r ) = (ρef , λef) ∈ B

as required.
�

Theorem 4.4. The semigroup UB is fundamental, weakly abundant
with (C) and (WIC).

Proof. We begin by showing that, for any (ρeI
e,f
ℓ , λfI

e,f
r ), we have

(ρf , λf) L̃ (ρeI
e,f
ℓ , λfI

e,f
r ) R̃ (ρe, λe).

First,
(ρeI

e,f
ℓ , λfI

e,f
r )(ρf , λf) = (ρeI

e,f
ℓ ρf , λfλfI

e,f
r ).

Clearly the second coordinate is λfI
e,f
ℓ . Considering the first coordi-

nate, we have that for any x ∈ B,

LxρeI
e,f
ℓ ρf = LexeI

e,f
ℓ ρf = Luρf ,

where (exe, u) ∈ Ie,f . By definition of Ie,f , we have that u ≤ f and so

Luρf = Luf = Lu = LxρeI
e,f
ℓ .
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Thus
(ρeI

e,f
ℓ , λfI

e,f
r )(ρf , λf) = (ρeI

e,f
ℓ , λfI

e,f
r ).

On the other hand, suppose that g ∈ B and

(ρeI
e,f
ℓ , λfI

e,f
r )(ρg, λg) = (ρeI

e,f
ℓ , λfI

e,f
r ).

We then have that
LeρeI

e,f
ℓ ρg = LeρeI

e,f
ℓ

and so, in view of the comments following the definition of full con-
necting relation,

Lfg = Lfρg = Lf .

Hence f ≤L g in B so that (ρf , λf)≤L (ρg, λg) in B. Consequently,

(ρeI
e,f
ℓ , λfI

e,f
r ) L̃ (ρf , λf).

It follows that for (ρeI
e,f
ℓ , λfI

e,f
r ), (ρxM

x,y
ℓ , λyM

x,y
r ) in UB,

(ρeI
e,f
ℓ , λfI

e,f
r ) L̃ (ρxM

x,y
ℓ , λyM

x,y
r ) if and only if f L y in B.

We now show that L̃ is a left congruence. Suppose that (ρeI
e,f
ℓ , λfI

e,f
r )

and (ρxM
x,y
ℓ , λyM

x,y
r ) are L̃-related elements of UB, and that (ρgJ

g,h
ℓ , λhJ

g,h
r )

is a further element of UB. Then

(ρeI
e,f
ℓ , λfI

e,f
r )(ρgJ

g,h
ℓ , λhJ

g,h
r ) = (ρzK

z,w
ℓ , λwK

z,w
r )

and

(ρxM
x,y
ℓ , λyM

x,y
r )(ρgJ

g,h
ℓ , λhJ

g,h
r ) = (ρz′K

′z′,w′

ℓ , λw′K ′z′,w′

r )

where

(z, fgf) ∈ Ie,f , (gfg, w) ∈ Jg,h, (z′, ygy) ∈Mx,y and (gyg, w′) ∈ Jg,h,

the relations and Kz,w and K ′z′,w′

being constructed as in Lemma 4.3.
Since B is a band we have that

gfgL fgL ygL gyg

so that as Jg,h is full connecting, wLw′, giving that

(ρzK
z,w
ℓ , λwK

z,w
r ) L̃ (ρz′K

′z′,w′

ℓ , λw′K ′z′,w′

r )

and L̃ is a right congruence as required.
An argument that is completely dual gives that

(ρeI
e,f
ℓ , λfI

e,f
r ) R̃ (ρe, λe)

for any (ρeI
e,f
ℓ , λfI

e,f
r ) ∈ UB, and that R̃ is a left congruence.

To show that (WIC) holds, let (ρeI
e,f
ℓ , λfI

e,f
r ) ∈ UB and choose

(ρg, λg) with (ρeI
e,f
ℓ , λfI

e,f
r ) R̃ (ρg, λg), so that eR g in B. Suppose
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that x ∈ B and (ρx, λx) ≤ (ρg, λg), so that x ≤ gR e in B. Now
xRxe ≤ e so there exists (xe, t) ∈ Ie,f . We claim that

(ρx, λx)(ρeI
e,f
ℓ , λfI

e,f
r ) = (ρeI

e,f
ℓ , λfI

e,f
r )(ρt, λt),

that is,

(ρxeI
e,f
ℓ , λfI

e,f
r λx) = (ρeI

e,f
ℓ ρt, λtI

e,f
r ).

We have that for any y ∈ B,

LyρxeI
e,f
ℓ = LxeyxeI

e,f
ℓ = Lxe(eye)xeI

e,f
ℓ = Ltut

where (eye, u) ∈ Ie,f . On the other hand,

LyρeI
e,f
ℓ ρt = LeyeI

e,f
ℓ ρt = Luρt = Ltut.

Considering the second coordinate, for any z ∈ B,

RzλfI
e,f
r λx = RfzfI

e,f
r λx = Rvλx = Rxvx

where (v, fzf) ∈ Ie,f . Now

RzλtI
e,f
r = RtztI

e,f
r = RtfzftI

e,f
r = Rxevxe

since (xe, t), (v, fzf) ∈ Ie,f
r . But

xevxeRxev = xvRxvx.

We have established that

(ρx, λx)(ρeI
e,f
ℓ , λfI

e,f
r ) = (ρeI

e,f
ℓ , λfI

e,f
r )(ρt, λt).

The dual argument completes the verification that (WIC) holds.
Finally we must argue that UB is fundamental. To this end suppose

that (ρeI
e,f
ℓ , λfI

e,f
r ), (ρgJ

g,h
ℓ , λhJ

g,h
r ) ∈ UB and

(ρeI
e,f
ℓ , λfI

e,f
r )µB (ρgJ

g,h
ℓ , λhJ

g,h
r ).

Then for any b ∈ B,

(ρb, λb)(ρeI
e,f
ℓ , λfI

e,f
r ) H̃B (ρb, λb)(ρgJ

g,h
ℓ , λhJ

g,h
r ).

Our formula for composition, together with the fact that (ρb, λb) =
(ρbι

b,b, λbι
b,b), gives that

(ρzK
z,w
ℓ , λwK

z,w
r ) H̃B (ρz′M

z′,w′

, λw′Mz′,w′

r )

where

z = beb, (ebe, w) ∈ Ie,f , z′ = bgb and (gbg, w′) ∈ Jg,h

and where Kz,w,Mz′,w′

are full connecting relations. This gives in par-
ticular that wLw′. Now

LbρeI
e,f
ℓ = LebeI

e,f
ℓ = Lw = Lw′ = LgbgJ

g,h
ℓ = LbρgJ

g,h
ℓ .
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Thus ρeI
e,f
ℓ = ρgJ

g,h
ℓ and dually, λfI

e,f
r = λhJ

g,h
r . We conclude that

UB is fundamental.
�

Finally in this section we prove that UB contains a copy of every B-
fundamental, weakly B-abundant semigroup having (C) and (WIC).

Theorem 4.5. Let S be a weakly B-abundant semigroup with (C) and
(WIC). The map θ : S → UB given by

aθ = (αa, βa)

where for all x ∈ B, Lxαa = L(xa)∗ and Rxβa = R(ax)+ , is a strongly

B-admissible morphism with kernel µB. Moreover, θ|B : B → B is an
isomorphism.

Proof. In view of Lemma 3.1, it remains only to show that the image
of θ is contained in UB.

Let a ∈ S and choose a+, a∗ ∈ B with a∗ L̃B a R̃B a
+. From Lemma 4.2

we have that Ia+,a∗

is connecting and is full since S has (WIC). We
claim that

aθ = (αa, βa) = (ρa+Ia+,a∗

ℓ , λa∗Ia+,a∗

r ).

To see this, take any x ∈ B. Then

Lxρa+Ia+,a∗

ℓ = La+xa+Ia+,a∗

ℓ = Ly

where (a+xa+, y) ∈ Ia+,a∗

, that is, y ≤ a∗ and a+xa+a = ay. Now

y = a∗y L̃B ay = a+xa+a L̃B xa
+a = xa L̃B (xa)∗,

giving that

Lxαa = L(xa)∗ = Ly = Lxρa+Ia+,a∗

ℓ

and hence αa = ρa+Ia+,a∗

ℓ . Dually, βa = λa∗Ia+,a∗

r so that aθ ∈ UB as
required.

�

The following corollary is immediate.

Corollary 4.6. If S is a weakly B-abundant semigroup with (C) and

(WIC), then any idempotent of S is H̃B-related to an idempotent of
B. In particular, if S is, in addition, B-fundamental, we have that
B = E(S).
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5. The semigroup VB

The aim of this section is to construct a full subsemigroup VB of UB

that satisfies the stronger version of (WIC), namely the idempotent con-
nected condition (IC) as introduced by El Qallali in [3]. It follows from
Lemmas 2.7 and 3.2 that VB is a fundamental, weakly abundant semi-
group with (C). In addition we show that every B-fundamental weakly
B-abundant semigroup with (C) and (IC) embeds into VB. Many of
the results and techniques of this section appear in their original form
in [3].

We begin by reminding the reader that a weakly B-abundant semi-
group S satisfies (IC) if for all a ∈ S and for some a+, a∗, there is an
order isomorphism α : 〈a+〉 → 〈a∗〉 such that for all x ∈ 〈a+〉,

xa = a(xα).

The graph gr(α) of such an α is clearly contained in Ia+,a∗

, which must

therefore be a full relation. We see in Section 6 that Ia+,a∗

can be full
without containing the graph of an order isomorphism, so that S can
have (WIC) without having (IC).

The order isomorphism α given above is said to be a connecting order
isomorphism. As with the definition of (WIC), we can replace ‘some’
by ‘any’, but now we have to be slightly more careful. If a, a+ and a∗

are chosen as above, and a†, a◦ are idempotents of B with

a R̃B a
+ R̃B a

† and a L̃B a
∗ L̃B a

◦,

then in B we have that a+ R a† and a∗ L a◦. Thus β : 〈a†〉 → 〈a+〉 and
γ : 〈a∗〉 → 〈a◦〉 given by

xβ = a+xa+ = xa+ and yγ = a◦ya◦ = a◦y

are isomorphisms. Thus

βαγ : 〈a†〉 → 〈a◦〉

is an order isomorphism. Moreover, for any x ∈ a†,

xa = xa+a = a(xβα) = a(a◦(xβα)) = a(xβαγ),

so that βαγ is connecting.
The subset VB of O(B) is constructed in a manner analogous to the

Hall semigroup, beginning as follows. For any e, f ∈ B we define Ve,f

to be the set of all order isomorphisms from 〈e〉 to 〈f〉 such that

xα yαL (xy)α and uα−1 vα−1 R (uv)α−1
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for all x, y ∈ 〈e〉 and u, v ∈ 〈f〉. For any α ∈ Ve,f we can define partial
maps of B/L and B/R by

Lxαℓ = Lxα and Ryα
−1
r = Ryα−1 .

That αℓ and αr are well defined and order preserving is a consequence
of the next lemma.

Lemma 5.1. Let e, f ∈ B and let α : 〈e〉 → 〈f〉 be an order isomor-
phism. Then α ∈ Ve,f if and only if the graph gr(α) of α is contained
in a (necessarily full) connecting relation Ie,f . If this is the case, then
in particular, for all x, x′ ∈ 〈e〉 and y, y′ ∈ 〈f〉,

x≤L x
′ implies that xα≤L x

′α,

y≤R y
′ implies that yα−1 ≤R y

′α−1,

αℓ = Ie,f
ℓ and αr = Ie,f

r .

Proof. Suppose that e, f ∈ B and α ∈ Ve,f . Notice that if x, x′ ∈ 〈e〉
and x≤L x

′, then x = xx′ so that

xα = (xx′)αLxα x′α

and consequently, xα≤L x
′α. Dually, if y, y′ ∈ 〈f〉 and y≤R y

′, then
yα−1 ≤R y

′α−1.
Consider the graph gr(α) of α. We have that gr(α) ⊆ 〈e〉 × 〈f〉 is a

full relation such that for any x ∈ 〈e〉 and y ∈ 〈f〉, (x, xα), (yα−1, y) ∈
gr(α).

Let αe,f be the subsemigroup of 〈e〉 × 〈f〉 generated by gr(α); since
gr(α) ⊆ αe,f and gr(α) is full, certainly αe,f is full.

Let

(x1, y1)(x2, y2) . . . (xm, ym), (u1, v1)(u2, v2) . . . (un, vn) ∈ αe,f ,

where (xi, yi) = (xi, xiα), (uj, vj) = (uj, ujα) ∈ gr(α) for 1 ≤ i ≤ m,
1 ≤ j ≤ n, be such that

x1x2 . . . xm ≤L u1u2 . . . un.

Then

y1y2 . . . ym = x1αx2α . . . xmαL (x1x2)αx3α . . . xmαL . . . L (x1x2 . . . xm)α

and similarly,

v1v2 . . . vn L (u1u2 . . . un)α.

From remarks above, since x1 . . . xm ≤L u1 . . . un, we have that

y1 . . . ym L (x1 . . . xm)α≤L (u1 . . . un)αL v1 . . . vn.
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Thus αe,f preserves the ≤L-order from left to right, and dually, it pre-
serves the ≤R-order from right to left. Consequently, αe,f is a connect-
ing relation.

Conversely, suppose that gr(α) ⊆ Ie,f where Ie,f is connecting. Let
x, x′ ∈ 〈e〉. Then as

(x, xα), (x′, x′α) ∈ Ie,f

and the latter is a subsemigroup, we have that (xx′, xαx′α) ∈ Ie,f .
But also (xx′, (xx′)α) ∈ Ie,f and since Ie,f preserves the ≤L-order from
left to right we have that (xx′)αL (xα)(x′α). Together with the dual
argument we have shown that α ∈ Ve,f . The lemma follows. �

We remark that if S is a weakly B-abundant semigroup with (C) and
(IC), a ∈ S and α : 〈a+〉 → 〈a∗〉 is a connecting order isomorphism,

then since the graph gr(α) of α is contained in Ia+,a∗

, we have from
Lemmas 4.2 and 5.1 that α ∈ Va+,a∗ .

From Lemma 5.1 it is clear that

VB = {(ρeαℓ, λfα
−1
r ) : e, f ∈ B,α ∈ Ve,f}

is a subset of UB.

Theorem 5.2. (c.f.[3]) The set VB is a full subsemigroup of UB. Con-
sequently, VB is fundamental weakly abundant with (C) and (WIC).
Further, VB has (IC).

Proof. For any e ∈ B we have that

(ρe, λe) = (ρeι
e
ℓ , λe(ι

e)−1
r )

where ιe is the identity relation on 〈e〉. Clearly ιe ∈ Ve,e so that B ⊆ VB.
To see that VB is a subsemigroup of UB, let e, f, g, h ∈ B, α ∈ Ve,f

and β ∈ Vg,h. According to the proof of Lemma 4.3,

(ρeαℓ, λfα
−1
r )(ρgβℓ, λhβ

−1
r ) = (ρzK

z,w
ℓ , λwK

z,w
r )

where (z, fgf) ∈ αe,f , (gfg, w) ∈ β
g,h

and

Kz,w = (αe,fθgfgβ
g,h

) ∩ (〈z〉 × 〈w〉).

Clearly we can take z = (fgf)α−1 and w = (gfg)β; Kz,w then contains
the graph of the order isomorphism γ = α|〈z〉θgfgβ. Moreover, since
Kz,w is connecting, Lemma 5.1 gives that γ ∈ Vz,w. It follows that

(ρzK
z,w
ℓ , λwK

z,w
r ) = (ρzγℓ, λwγ

−1
r ) ∈ VB,

as required.
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It remains only to show that VB has (IC). To this end, let e, f ∈ B,
α ∈ Ve,f and consider (ρeαℓ, λfα

−1
r ) ∈ VB. From the proof of Theo-

rem 4.4 we have that

(ρe, λe) R̃ (ρeαℓ, λfα
−1
r ) L̃ (ρf , λf).

Further, for any x ∈ B with (ρx, λx) ≤ (ρe, λe) (so that x ≤ e in B)
and any (x, t) ∈ αe,f

(ρx, λx)(ρeαℓ, λfα
−1
r ) = (ρeαℓ, λfα

−1
r )(ρt, λt).

In particular, we can take t = xα. Since α : 〈e〉 → 〈f〉 is an order
isomorphism, we can clearly define an order isomorphism

α : 〈(ρe, λe)〉 → 〈(ρf , λf)〉

by (ρx, λx)α = (ρxα, λxα). It follows that VB has (IC).
�

We now show that VB is the canonical B-fundamental weakly B-
abundant semigroup with (C) and (IC) which we seek.

Theorem 5.3. [3] Let S be a weakly B-abundant semigroup with (C)
and (IC). The map θ : S → VB given by

aθ = (αa, βa)

where for all x ∈ B, Lxαa = L(xa)∗ and Rxβa = R(ax)+ , is a strongly

B-admissible morphism with kernel µB. Moreover, θ|B : B → B is an
isomorphism.

Proof. We need only show that the image of θ is contained in VB.
Let a ∈ S, choose a+, a∗ and let α : 〈a+〉 → 〈a∗〉 be a connecting
isomorphism. We know from Theorem 4.5 that

aθ = (ρa+Ia+,a∗

ℓ , λa∗Ia+,a∗

r ).

From the comments following Lemma 5.1, α ∈ Va+,a∗ and as the graph

of α is a full relation contained in Ia+,a∗

, clearly

aθ = (ρa+αℓ, λa∗α−1
r ) ∈ VB.

�

We end this section by showing that the regular elements of VB form
the Hall semigroup WB. For elements e, f ∈ B, the definition of the
set Ve,f is, of course, close to that of We,f , where We,f is the set of
isomorphisms from 〈e〉 to 〈f〉. To see that not every element of Ve,f

need lie in We,f we give the following example, taken from [3].
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Example 5.4.

Let B be the band with the following D-class structure:

e f

0

x1 x2
y1

y2

It is easy to see that 〈e〉 = {e, x1, x2, 0} and 〈f〉 = {f, y1, y2, 0};
clearly, they are not isomorphic. However, the function α : 〈e〉 → 〈f〉
given by

eα = f, xiα = yi, (i = 1, 2), 0α = 0

is easily seen to be a connecting order isomorphism.

To show that WB is the set of regular elements of VB, we begin with
some observations concerning α ∈ Ve,f .

First, if gR e and f Lh for some e, f, g, h ∈ B, then β ∈ Vg,h

where β = θeαθh. It is not hard to see that, further, (ρgβℓ, λhβ
−1
r ) =

(ρeαℓ, λfα
−1
r ).

Next, if e = f and (ρeαℓ, λeα
−1
r ) = (ρe, λe), then α is the identity in

〈e〉. For if x ∈ 〈e〉, then

Lx = Lxρe = Lxρeαℓ = Lxαℓ = Lxα

so that xLxα; similarly, xRxα−1. It follows that for any y ∈ 〈e〉,
yαR yαα−1 = y. Consequently, for any x ∈ 〈e〉, xH xα, giving that
x = xα as required.

Finally, if α−1 ∈ Vf,e, then α is a semigroup isomorphism. For in
this case, if x, y ∈ 〈e〉, then as α−1 ∈ Vf,e and (α−1)−1 = α,

xα yαR (xy)α.

Certainly xα yαL (xy)α, yielding xα yα = (xy)α as required.

Theorem 5.5. [3] For a band B, the Hall semigroup

WB = {(ρeαℓ, λfα
−1
r ) : e, f ∈ B,α ∈We,f}

is the set of regular elements of VB.
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Proof. From [10], we know that WB is an orthodox subsemigroup of
O(B) which clearly is contained in VB. It remains only to show that
every regular element of VB lies in WB.

To this end, let e, f ∈ B and α ∈ Ve,f with (ρeαℓ, λfα
−1
r ) regular.

We know that

(ρe, λe) R̃ (ρeαℓ, λfα
−1
r ) L̃ (ρf , λf)

so that from comments in Section 2, since (ρeαℓ, λfα
−1
r ) is regular,

(ρe, λe)R (ρeαℓ, λfα
−1
r )L (ρf , λf).

From II.3.5 of [12], there is an inverse (ρgβℓ, λhβ
−1
r ) of (ρeαℓ, λfα

−1
r ) in

VB with

(ρe, λe) = (ρeαℓ, λfα
−1
r )(ρgβℓ, λhβ

−1
r )

and

(ρf , λf) = (ρgβℓ, λhβ
−1
r )(ρeαℓ, λfα

−1
r ).

Notice however that we must have that gR f and hL e, so that from
comments preceding the theorem we can assume that g = f and h = e,
so that β ∈ Vf,e.

For x ≤ e we have that

Lx = Lxρe = Lxρeαℓρfβℓ,

whence xL xαβ. Similarly we can show that xRxαβ and so x = xαβ.
Dually, βα is the identity in 〈f〉, so that β = α−1 ∈ Vf,e. From remarks
above, α ∈ We,f so that (ρeαℓ, λfα

−1
r ) ∈WB. �

6. Examples

We now present a number of examples, allowing us to compare semi-
groups of the form WB, VB and UB.

In what follows we bear in mind that, consequent upon Lemma 4.1,
if Ie,f is a full connecting relation on 〈e〉 × 〈f〉, then Ie,f induces an
order isomorphism between {Dx : x ≤ e} and {Dy : y ≤ f}. Therefore,
if we are determining a full connecting relation Ie,f , we know that Ie,f

is the disjoint union of subsets of sets of the form De
x × Df

y , where

x ≤ e, y ≤ f , De
x = Dx ∩ 〈e〉 and Df

y = Dy ∩ 〈f〉.
We recall also that if α ∈ Ve,f , in particular, if α ∈ We,f , then the

graph of α is contained in a full connecting relation Ie,f . On the other
hand, if we can show that a full connecting relation Ie,f contains the
graph of an order isomorphism α, then from Lemma 5.1, we know that
α ∈ Ve,f and

(ρeαℓ, λfα
−1
r ) = (ρeI

e,f
ℓ , λfI

e,f
r ).
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Example 6.1.

We begin by considering a rectangular band B. If e ∈ B, then 〈e〉 =
{e}, so that for any e, f ∈ B, there is just one full relation from 〈e〉
to 〈f〉, namely {(e, f)}, which is clearly the graph of an isomorphism
ι(e, f). Thus

WB = VB = UB = {(ρeι(e, f)ℓ, λf ι(e, f)−1
r ) : e, f ∈ B}.

But for any x ∈ B,

Lxρeι(e, f)ℓ = Leι(e, f)ℓ = Lf = Lef = Lxρef

and dually, Rxλf ι(e, f)−1
r = Rxλef . This gives that

WB = VB = UB = {(ρe, λe) : e ∈ B} = B,

thus confirming the result of Example 2.

Notice that for any weakly B-abundant semigroup, if S/µB = B/µB,

that is, if S/µB = B, then H̃B = µB is a congruence on S. For if

a, b ∈ S and a H̃B b, then aµB H̃B bµB, giving that aµB = bµB, since

H̃B = H is trivial in the band B.

Proposition 6.2. A band B has the property that every weakly B-
abundant semigroup having (C) and (WIC) must also have (IC), if
and only if UB = VB.

Proof. Suppose that UB = VB and S is a weakly B-abundant semigroup
with (C) and (WIC). By Theorem 4.5, θ : S → UB = VB is a strongly
admissible morphism onto a full subsemigroup, with kernel µB. By
Lemma 3.2 we have that Sθ has (IC), whence S has (IC) by Lemma 3.3.

Conversely, assume that UB has (IC), and let (ρeI
e,f
ℓ , λfI

e,f
r ) ∈ UB.

From Theorem 4.4 we have that

(ρe, λe) R̃ (ρeI
e,f
ℓ , λfI

e,f
r ) L̃ (ρf , λf),

so that by assumption there exists an order isomorphism

θ : 〈(ρe, λe)〉 → 〈(ρf , λf)〉

such that for all (ρz, λz) ∈ 〈(ρe, λe)〉,

(ρz, λz)(ρeI
e,f
ℓ , λfI

e,f
r ) = (ρeI

e,f
ℓ , λfI

e,f
r )(ρz, λz)θ.

Clearly θ induces an order isomorphism θ : 〈e〉 → 〈f〉. Moreover, from
the remarks preceding the statement of Theorem 5.2, θ ∈ V(ρe,λe),(ρf ,λf )

and so also θ ∈ Ve,f . We claim that

(ρeI
e,f
ℓ , λfI

e,f
r ) = (ρeθℓ, λfθr).
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Let x ∈ 〈e〉, and let (x, t) ∈ Ie,f . Then

LeρxρeI
e,f
ℓ = LexeI

e,f
ℓ

= LxI
e,f
ℓ

= Lt

and so as

(ρx, λx)(ρeI
e,f
ℓ , λfI

e,f
r ) = (ρeI

e,f
ℓ , λfI

e,f
r )(ρxθ, λxθ),

we have that
Lt = LeρeI

e,f
ℓ ρxθ

= Lfρxθ

= Lxθ.

Consequently, for any w ∈ B,

Lwρeθℓ = Leweθℓ = L(ewe)θ = LeweI
e,f
ℓ = LwρeI

e,f
ℓ .

Hence ρeI
e,f
ℓ = ρeθℓ and dually, λfI

e,f
r = λfθr, whence (ρeI

e,f
ℓ , λfI

e,f
r ) ∈

VB as required.
�

Where appropriate we denote a map α from a finite set {x1, x2, . . . , xn}
to itself by (

x1 x2 . . . xn

x1α x2α . . . xnα

)

Example 6.3.

Let B be the band of Example 5.4; we have already shown that
Ve,f 6= We,f . We show that WB 6= VB = UB. From the remarks at the
beginning of this section we need only consider full connecting relations
of the form Iu,v, where (u, v) is a pair in the following set:

({e, f} × {e, f}) ∪ ({x1, x2, y1, y2} × {x1, x2, y1, y2}) ∪ {(0, 0)}.

Consider first relations from 〈e〉 to itself. Clearly Ve,e consists of the
identity and the isomorphism

β =

(
e x1 x2 0
e x2 x1 0

)
.

Moreover,
Lx1

ρe = Lx1
6= Lx2

= Lx1
ρeβℓ,

so that (ρe, λe) 6= (ρeβℓ, λeβ
−1
r ). Suppose now that Ie,e is a full connect-

ing relation. From comments above, we must have (e, e), (0, 0) ∈ Ie,e

and the remaining elements form a full subset of {x1, x2}×{x1, x2}. If
(x1, x1) ∈ Ie,e, then we cannot have also that (x1, x2) ∈ Ie,e, since Ie,e

is L-preserving from left to right. But Ie,e is full, so that (x2, x2) ∈ Ie,e
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and consequently, (x2, x1) /∈ Ie,e. We deduce that in this case, Ie,e

is the graph of the identity map; a similar argument gives that if
(x1, x2) ∈ Ie,e, then Ie,e is the graph of β. The dual argument gives
that the only full connecting relations from 〈f〉 to itself are the graphs
of the identity map and a second isomorphism γ. Moreover, these
isomorphisms give rise to distinct elements of WB.

We have already seen in Example 5.4 that We,f is empty, but Ve,f

contains α, where α has graph

{(e, f), (x1, y1), (x2, y2), (0, 0)}.

We know that the graph of α generates a full connecting relation from
〈e〉 to 〈f〉. On the other hand, for any full connecting relation Ie,f , we
must have that (e, f), (0, 0) ∈ Ie,f and that the remaining elements of
Ie,f lie in {x1, x2} × {y1, y2}. However, it is easy to see that for any
such Ie,f ,

ρeI
e,f
ℓ =

(
Le Lx1

Lx2
Lf Ly1

L0

Lf Ly1
Ly1

L0 L0 L0

)
= ρeαℓ

and

λfI
e,f
r =

(
Re Rx1

Rf Ry1
Ry2

R0

R0 R0 Re Rx1
Rx1

R0

)
= λfα

−1
r .

There are no connecting relations from 〈f〉 to 〈e〉. For if If,e were
such a relation, we would have to have (yi, x1), (yj, x2) ∈ If,e for some
i, j ∈ {1, 2}, since If,e is full. But this is impossible since yi L yj but
x1 is not L-related to x2.

For u, v ∈ {x1, x2, y1, y2}, it is clear that 〈u〉 = {u, 0} and 〈v〉 =
{v, 0} and consequently, the only full connecting relations from 〈u〉 to
〈v〉 is the graph {(u, v), (0, 0)} of an isomorphism ι(u, v).

Clearly the only other candidate for a full connecting relation be-
tween principal ideals is {(0, 0)} from 〈0〉 to itself.

We conclude that UB = VB and there are potentially 22 elements in
VB, of which at most one, (ρeαℓ, λfα

−1
r ), does not lie in WB. However,

not all of these elements are distinct. We know from the proof of
Theorem 4.4 that for elements of VB written in standard form,

(ρuδℓ, λvδ
−1
r ) R̃ (ρxηℓ, λyη

−1
r ) if and only if uRx

and dually,

(ρuδℓ, λvδ
−1
r ) L̃ (ρxηℓ, λyη

−1
r ) if and only if vL y.
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This allows us to deduce that (ρeαℓ, λfαr) /∈ WB. Moreover, straight-
forward checks show that for any i, j ∈ {1, 2},

ρxi
ι(xi, yj)ℓ =

(
Le Lx1

Lx2
Lf Ly1

L0

Ly1
Ly1

Ly1
L0 L0 L0

)

and

λyj
ι(xi, yj)

−1
r =

(
Re Rx1

Rf Ry1
Ry2

R0

R0 R0 Rx1
Rx1

Rx1
R0

)
.

Continuing is a similar manner we can argue that VB has 15 distinct
elements, consisting of the seven elements (ρx, λx) ∈ B, together with

(ρeβℓ, λeβ
−1
r ), (ρeαℓ, λfα

−1
r ), (ρfγℓ, λfγ

−1
r ),

(ρx1
ι(x1, y1)ℓ, λy1

ι(x1, y1)
−1
r ), (ρy1

ι(y1, x1)ℓ, λx1
ι(y1, x1)

−1
r ), (ρy1

ι(y1, x2)ℓ, λx2
ι(y1, x2)

−1
r ),

(ρy2
ι(y2, x1)ℓ, λx1

ι(y2, x1)
−1
r ) and (ρy2

ι(y2, x2)ℓ, λx2
ι(y2, x2)

−1
r ).

We remark that VB cannot be abundant; for if it were, then by the
results of [4], it would be embeddable into WB.

Our final example is of a weakly B-abundant semigroup with (C)
and (WIC), but not (IC).

Example 6.4.

Let B = {e, f, x1, x2, u, 0} be the band with the following D-class struc-
ture:

e f

0

x1 x2 u

Arguments very similar to those of Example 6 allow us to show that
WB = VB is a regular semigroup with 10 elements. However, the
relation

Ie,f = {(e, f), (x1, u), (x2, u), (0, 0)}

is full and connecting and gives rise to an element

(ρeI
e,f
ℓ , λfI

e,f
r ) =

( (
Le Lx1

Lx2
Lf Lu L0

Lf Lu Lu L0 L0 L0

)
,

(
Re Rx1

Rf Ru R0

R0 R0 Re Rx1
R0

) )
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which lies in UB but not in VB; in fact, it is the only such. We have
that

(ρe, λe) R̃ (ρeI
e,f
ℓ , λfI

e,f
r ) L̃ (ρf , λf)

but there is no order isomorphism from 〈(ρe, λe)〉 to 〈(ρf , λf)〉. We
deduce that UB is an 11 element weakly abundant semigroup with (C)
and (WIC), but not (IC). From comments in Section 3, UB cannot be
abundant.

7. Structure of weakly B-abundant semigroups

We end the paper by using the existence of the semigroups UB and
VB to determine the structure of weakly B-abundant semigroups with
(C) and (WIC) (or (IC)), as spined products of UB (or VB) with a
weakly B/D-ample semigroup. Our approach is inspired by that of
Yamada [16] and Hall [11] in the orthodox case.

We first remind the reader that if we are given semigroups S, T,H
and morphisms ϕ : S → H,ψ : T → H , then the spined product
S = S(S, T, ϕ, ψ) of S and T with respect to H,ϕ and ψ is

S = {(s, t) ∈ S × T : sϕ = tψ}.

Clearly, if non-empty, S is a subsemigroup of S × T .
Next, we recall some facts about the relation δB, which is the ana-

logue for a weakly B-abundant semigroup S with (C) and (WIC) of
the notion of the least inverse congruence on an orthodox semigroup;
for convenience we cite from [8]. The relation δB is defined on S by the
rule

a δB b if and only if a = ebf, b = gah for some e, f, g, h ∈ B.

It is shown in [8] that δB is a congruence on S, which restricts to D

on B, and is such that the natural morphism δ♮
B : S → S/δB is B-

admissible. Moreover, putting Bδ♮
B = B, we have that S/δB is weakly

B-ample.

Proposition 7.1. Let S be a weakly B-abundant semigroup with (C)
and (WIC) and let T be a weakly E-ample semigroup, where E is a
semilattice isomorphic to B/D. Suppose that there exists an admissible
morphism ψ : T → S/δB such that ψ|E : E → B is an isomorphism.
Let

B′ = {(b, eb) : b ∈ B}

where eb ∈ E is such that ebψ = bδB. Then B′ is a band isomorphic
to B and the spined product S = S(S, T, δ♮

B, ψ) is weakly B′-abundant
semigroup with (C) and (WIC). Moreover, if S has (IC), then so does
S.
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Proof. We begin by remarking that for any b ∈ B,

bδB ∈ B = Eψ,

and there exists a unique eb ∈ E such that ebψ = bδB. Thus B′ ⊆ S.
It is easy to check that for b, c ∈ B,

ebc = ebec = eceb = ecb

and
bD c if and only if bδB = cδB if and only if eb = ec.

Consequently, κ : B → B′ given by bκ = (b, eb) is an isomorphism.

Suppose now that (x, s) ∈ S. As δ♮
B is B-admissible, we have that

for any x+,

ex+ψ = x+δB = (xδB)+ = (sψ)+ = s+ψ,

so that ex+ = s+. Consequently, if (x, s), (y, t) ∈ S, then if x R̃B y we
have that

s+ = ex+ = ey+ = t+,

so that s R̃E t in T .
Next, we show that for any (x, s), (y, t) ∈ S,

(x, s) R̃B′ (y, t) if and only if x R̃B y.

If x R̃B y, then by the above, s R̃E t. It follows easily that for any
(b, eb) ∈ B′,

(b, eb)(x, s) = (x, s) if and only if (b, eb)(y, t) = (y, t),

so that (x, s) R̃B′ (y, t) as required.

Conversely, we suppose that (x, s) R̃B′ (y, t). Choosing x+ ∈ B, we
know that ex+ = s+ and so

(x+, ex+)(x, s) = (x, s),

giving
(x+, ex+)(y, t) = (y, t).

In particular, x+y = y and so x+y+ = y+; dually we can argue that

y+x+ = x+ and so x R̃B y as desired.
We now have that for any (x, s) ∈ S,

(x, s) R̃B′ (x+, s+),

so that S is weakly B′-abundant, and condition (C) holds with respect
to B′.

It remains to show that S has (WIC), (and (IC) if S does). To this

end, suppose that (x, s) ∈ S; choose x+, so that (x, s) R̃B′ (x+, s+) and
suppose that (b, eb) ≤ (x+, s+). Since κ is an isomorphism, b ≤ x+ in
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B and from b = x+bx+ we also deduce that eb ≤ ex+ = s+ in E. Now
S has (WIC), so that bx = xc for some c ∈ B with c ≤ x∗, for some
chosen x∗. Since both δB and ψ are admissible,

(ebs)
∗ψ = (ebs)ψ

∗

= (ebψsψ)∗

= (bδBxδB)∗

= (bx)δ∗B
= (xc)δ∗B
= (xc)∗δB
= (x∗c)δB
= cδB
= ecψ,

whence (ebs)
∗ = ec. Consequently,

(b, eb)(x, s) = (bx, ebs)
= (xc, s(ebs)

∗)
= (xc, sec)
= (x, s)(c, ec),

using the fact that T is weakly E-ample. Thus S has (WIC).
Finally, we suppose that S has (IC). We must show that for any

(x, s) ∈ S and for some (x, s)+, (x, s)∗, there is an order isomorphism
α : 〈(x, s)+〉 → 〈(x, s)∗〉 such that for all (b, eb) ∈ 〈(x, s)+〉,

(b, eb)(x, s) = (x, s)(b, eb)α.

We choose x+ and x∗, and take (x, s)+ = (x+, s+) and (x, s)∗ = (x∗, s∗).
Suppose that (b, eb) ≤ (x+, s+); then as above, b ≤ x+, eb ≤ s+, and
for any c ∈ B with bx = xc, we have (b, eb)(x, s) = (x, s)(c, ec). Since
S has (IC), we know there is an order isomorphism α : 〈x+〉 → 〈x∗〉
such that for any d ∈ 〈x+〉, dx = x(dα). We thus have that

(b, eb)(x, s) = (x, s)(bα, ebα),

and as bα ≤ x∗, (bα, ebα) ≤ (x∗, s∗). Clearly

α : 〈(x+, s+)〉 → 〈(x∗, s∗)〉

given by

(b, eb)α = (bα, ebα)

is a connecting order isomorphism. It follows that S has (IC).
�

Let S be a weakly B-abundant semigroup with (C) and (WIC). We
know from Theorem 4.5 that θ : S → UB is a strongly admissible
morphism, with kernel µB, to the weakly B-abundant semigroup UB,



32 ABDULSALAM EL QALLALI, JOHN FOUNTAIN, AND VICTORIA GOULD

where UB also has (C) and (WIC). Denoting Bδ♮

B
by B∗, the remarks

preceding Proposition 7.1 give that UB/δB is weakly B∗-ample. We
have the following diagram of semigroups and admissible morphisms:

S

S/δB UB/δB

UB
θ

δ♮
B

δ♮

B

Let a, b ∈ S with a δB b, so that a = ebf, b = gah for some elements
e, f, g, h ∈ B. As Bθ = B it is clear that aθ δB bθ in UB and so

aθδ♮

B
= bθδ♮

B
. We can therefore define a map ψ : S/δB → UB/δB by

(sδB)ψ = sθδ♮

B
. Clearly the following diagram commutes

S

S/δB UB/δB

UB
θ

δ♮
B

δ♮

B

ψ

Notice that

B∗ = Bδ♮

B
= Bθδ♮

B
= Bδ♮

Bψ = Bψ.

Lemma 7.2. With notation as above, ψ is a B-admissible morphism
such that ψ|B : B → B∗ is an isomorphism.

Proof. Suppose that aδB R̃B bδB. Since δ♮
B is admissible, we know that

for a+, b+ ∈ B,

a+δB R̃B aδB R̃B bδB R̃B b
+δB.

But B is a semilattice, and so a+δB = b+δB, giving that a+ D b+ in B.
Since θ|B : B → B is an isomorphism, certainly a+θD b+θ in B, so
that by the same remarks, a+θδB = b+θδB. Consequently, since both
θ and δB are admissible

aδBψ = aθδB R̃B∗ (aθδB)+ = a+θδB

= b+θδB = (bθδB)+ R̃B∗ bθδB = bδBψ,
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so that ψ preserves R̃B. Dually, ψ preserves L̃B, so that ψ is B-
admissible.

We have remarked that ψ|B : B → B∗ is onto. Suppose now that
eδBψ = fδBψ, for some e, f ∈ B. Then eθδB = fθδB, giving that
eθD fθ in B. But θ|B is an isomorphism from B onto B, and so eD f
in B. We deduce that eδB = fδB and ψ|B is one to one, finishing the
proof of the lemma.

�

We are now in a position to prove the main result of this section.

Theorem 7.3. Let S be a weakly B-abundant semigroup with (C) and
(WIC). Then there exists a B-admissible morphism ψ : S/δB → UB/δB
such that ψ|B : B → B∗ = Bδ♮

B
is an isomorphism. Moreover, S is

isomorphic to the spined product

S = S(UB , S/δB, δ
♮

B
, ψ).

Conversely, let T be a weakly E-ample semigroup, where E is a semi-
lattice isomorphic to B/D. Suppose that there exists an E-admissible
morphism ψ : T → UB/δB such that ψ|E : E → B∗ is an isomorphism.

Then the spined product S = S(UB , T, δ
♮

B
, ψ) is a weakly B′-abundant

semigroup with (C) and (WIC), for a band B′ isomorphic to B.

Proof. In view of Proposition 7.1, it remains only to show that if S is
weakly B-abundant with (C) and (WIC), then S is isomorphic to

S = S(UB , S/δB, δ
♮

B
, ψ),

where ψ is constructed as for Lemma 7.2. Clearly, ϕ : S → S given by

sϕ = (sθ, sδB)

is a morphism from S to the direct product UB × S/δB. Since sθδ♮

B
=

sδ♮
Bψ for any s ∈ S, we have that the image of ϕ is contained in S. If

sϕ = tϕ, then (s, t) ∈ µB ∩ δB since the kernel of θ is µB. From [8] we

know that H̃B ∩ δB = ι, and so s = t and ϕ is one to one.
It remains only to show that ϕ is onto. Let (X, sδB) ∈ S, so that

XδB = sδBψ = sθδB. From the definition of δB, we must have that

X = eθ sθ fθ,

for some eθ, fθ ∈ B = Bθ, where again using [8] we may take eθ in
E((sθ)+) = E(s+θ) and fθ in E((sθ)∗) = E(s∗θ). But then X =
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(esf)θ, and as θ maps B isomorphically onto Bθ,

(esf)δB = eδB sδB fδB
= s+ δBsδB s

∗δB
= (s+ss∗)δB
= sδB.

We have shown that (esf)ϕ = (X, sδB), so that ϕ is an isomorphism
as required. �

With almost no adjustment we can replace ‘(WIC)’ by ‘(IC)’ and UB

by VB in Theorem 7.3 and obtain our final result.

Theorem 7.4. Let S be a weakly B-abundant semigroup with (C) and
(IC). Then there exists a B-admissible morphism ψ : S/δB → VB/δB
such that ψ|B : B → B∗ = Bδ♮

B
is an isomorphism. Moreover, S is

isomorphic to the spined product

S = S(VB, S/δB, δ
♮

B
, ψ).

Conversely, let T be a weakly E-ample semigroup, where E is a semi-
lattice isomorphic to B/D. Suppose that there exists an E-admissible
morphism ψ : T → VB/δB such that ψ|E : E → B∗ is an isomorphism.

Then the spined product S = S(VB, T, δ
♮

B
, ψ) is a weakly B′-abundant

semigroup with (C) and (WIC), for a band B′ isomorphic to B.
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