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The Origins of Independence Algebras

In this paper we describe how independence algebras could have been discovered
and how v

∗-algebras probably were discovered. We also provide a set of equivalent
definitions for independence algebras (and hence for v

∗-algebras) and mention some
of the uses of these algebras in semigroup theory.

Mathematics subject classification: 20M20.

1. A Heuristic Approach to Independence Algebras

Let S be a monoid (that is, a semigroup with identity). We say that two

elements a, b ∈ S are J -related if SaS = SbS. It is well known (see [26])

that J is an equivalence relation and that we can introduce a partial order

in the set S/J of J -classes as follows: for all x, y ∈ S,

Jx 6J Jy ⇔ x ∈ SyS.

Now suppose that we have proved an interesting theorem about semi-

groups in which (S/J , 6J ) is a well ordered chain. Clearly our next aim

would be to provide natural examples of semigroups with this property.

When S = T (X), the transformation monoid on a set X , then

(∀x,y∈S) x ∈ SyS ⇔ | im(x)| 6 | im(y)|.

Similarly, when S = End(V ), the endomorphism monoid of a vector

space V , we have

(∀x,y∈S) x ∈ SyS ⇔ rank(x) 6 rank(y),

where rank(x) is the dimension of im(x).

For both S = T (X) and S = End(V ) one of Jx 6J Jy or Jy 6J Jx

holds for all x, y ∈ S. Thus these are two examples of monoids in which

(S/J , 6J ) is a well ordered chain.

Following this path, one may observe, considering the two examples

above, that V is a universal algebra and End(V ) is the monoid of all map-

pings f : V → V which preserve the operations of the algebra V . In the

same way, the set X is a universal algebra (with no operations) and T (X) is
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the monoid of all mappings f : X → X that preserve the operations of the

algebra X . Thus a natural monoid to be considered is End(A), where A is

a universal algebra. This is not only a natural example of a monoid, but, in

fact, every monoid is isomorphic to End(A), for some algebra A. (See, for

example, [20] or [22].) Clearly then, we need to impose some conditions on

our algebra if its endomorphism monoid is to have the property we desire.

For an element a ∈ End(A), we denote the image of a by im(a). Now let

a, b ∈ S = End(A), and suppose, by analogy with the two examples above,

that we could prove that a ∈ SbS if and only the dimension of the image of

a (in short, dim(im(a))) is less than or equal to the dimension of the image

of b, that is, suppose we were able to prove something of the form

a ∈ SbS ⇔ dim(im(a)) 6 dim(im(b)). (1)

If such a proposition were true, then S would be an example of a monoid

in which (S/J , 6J ) is a chain. The problem here is that dim(im(a)) might

not be defined. Next we consider how we might obtain a well defined notion

of dimension.

We say that B is a basis for im(a) if B is a minimal generating set for

im(a), that is,

(1) B ⊆ im(a);

(2) 〈B〉 = im(a);

(3) (∀b∈B) 〈B \ b〉 $ im(a).

A finite algebra always has a basis. However, two bases of an algebra might

have different cardinalities and hence for that algebra we cannot define the

dimension (i.e., the number of elements of any basis).

Thus, in order to be able to speak about dimension of an algebra, we

must restrict our study to those algebras which have a basis and in which

all the bases have the same cardinality. It is well known (in matroid theory)

that any algebra satisfying the exchange property has bases and all the bases

have the same cardinality. Thus the obvious thing to do now, in order to

be able to speak about the dimension of an algebra, is to restrict our study

to those algebras which satisfy the exchange property.

Matroids are usually taken to be finite, but for considering the notion of

independence, finiteness is irrelevant. Infinite matroids are treated by Oxley

in [33]; the following definition, which is equivalent to his, is taken from [11].

A matroid is a pair (X, 〈·〉) where X is a set and 〈·〉 : P (X) → P (X) is a

mapping defined on P (X), the power set of X , and satisfying the following
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conditions [C], [EP] and [Fin]:

[C] The mapping 〈·〉 : P (X) → P (X) is a closure operator, that is,

(C1) Y ⊆ 〈Y 〉, for all Y ∈ P (X);

(C2) Z ⊆ Y ⇒ 〈Z〉 ⊆ 〈Y 〉, for all Y, Z ∈ P (X);

(C3) 〈Y 〉 = 〈〈Y 〉〉, for all Y ∈ P (X);

[EP] for all x, y ∈ X and Y ∈ P (X),

if x ∈ 〈Y ∪ {y}〉 and x 6∈ 〈Y 〉, then y ∈ 〈Y ∪ {x}〉;

[Fin] for all Y ∈ P (X), if x ∈ 〈Y 〉, then x ∈ 〈Y ′〉 for some finite Y ′ ⊆ Y.

A closure operator which satisfies [Fin] is called an algebraic closure oper-

ator. The general techniques of matroid theory guarantee, as mentioned

above, that every matroid has a basis (i.e., a minimal generating set) and

all the bases have the same cardinality.

Let A be an algebra with universe A. Given a subset X of A, we

denote by 〈X〉 the subalgebra of A generated by X . It is obvious that 〈·〉

is an algebraic closure operator in any algebra. We say that A is a weak

independence algebra if (A, 〈·〉) is a matroid, that is, 〈·〉 satisfies [EP] (we

also say that A satisfies [EP]). Thus we can define the rank or dimension

of a weak independence algebra to be the cardinality of any basis for the

algebra.

We remark that any subalgebra of a weak independence algebra is

clearly also a weak independence algebra, and hence we can also speak

of the rank or dimension of a subalgebra. In particular, if A is a weak

independence algebra and a ∈ End(A), then the dimension of im(a) is well

defined. We refer to this cardinal as the rank of a, and denote it by rank(a).

Recall that our aim is to find a class of weak independence algebras such

that for any algebra A in the class and any endomorphisms a, b of A, we

have

a ∈ SbS ⇔ rank(a) 6 rank(b) (2)

where S = End(A). Whether or not (2) holds for a particular A, at least

rank(a) now has a meaning, in contrast to the situation for general algebras

in (1). Thus we are going to look for conditions under which (2) holds.

To do this we need to investigate bases of subalgebras, that is, subsets

of an algebra which are minimal generating sets for the subalgebras which

they generate. There are several conditions involving such subsets which

are equivalent to [EP] and which are very useful when applying [EP].
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Before stating these conditions we mention the following easy lemma.

Lemma 1.1. Let Y be a subset of an algebra A. Then the following are

equivalent:

(1) Y is a basis for the subalgebra it generates;

(2) for every y in Y , we have y /∈ 〈Y \ {y}〉.

A subset of an algebra A satisfying the equivalent conditions of

Lemma 1.1 is said to be independent. From Exercise 6 on page 50 of [30]

we have the following lemma.

Lemma 1.2. For an algebra A, the following conditions are equivalent:

(1) A satisfies [EP].

(2) For every subset X of A and every element u ∈ A, if X is indepen-

dent and u 6∈ 〈X〉, then X ∪ {u} is independent.

(3) For every subset X of A, if Y is a maximal independent subset of

X, then 〈X〉 = 〈Y 〉.

(4) For subsets X, Y of A with Y ⊆ X, if Y is independent, then there

is an independent set Z with Y ⊆ Z ⊆ X and 〈Z〉 = 〈X〉.

A straightforward consequence of Lemma 1.2 is that, in a weak indepen-

dence algebra, a subset is a basis if and only if it is a maximal independent

subset.

We now consider equation (2) again. Let A be a weak independence

algebra and a, b ∈ S = End(A). Using Lemma 1.2, it is straightforward

to show that, for a, b ∈ S, if a ∈ SbS, then rank(a) 6 rank(b). For the

converse, we want to prove that if rank(a) 6 rank(b), then there exist

u, v ∈ S such that a = ubv. It is easy to show that for some mappings

u′, v′ ∈ T (A), we have a = u′bv′. However we have no guarantee that these

mappings belong to S, that is, we do not know if we can choose these two

mappings to be endomorphisms of A.

To ensure that we can choose u′, v′ to be endomorphisms, we use the

following existence condition.

[F ] For any basis X of A and a function α : X → A, there is an endo-

morphism α of A such that α|X = α.

An algebra satisfying [EP ] and [F ] is called an independence algebra.

Now, again using Lemma 1.2, it is possible to prove that for an indepen-

dence algebra A and S = End(A) we have

a ∈ SbS ⇔ rank(a) 6 rank(b), for all a, b ∈ S.
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The crucial observation is that because of (4) of Lemma 1.2, condition

[F] implies that any function from an independent subset of A can be

extended to an endomorphism of A. The details of the argument can be

found in the original paper of Gould [18] where independence algebras are

introduced.

We remark that there are some weak independence algebras other than

independence algebras which satisfy equation (2). For example, any chain

C regarded as a semigroup with multiplication given by xy = min{x, y} is

a weak independence algebra and it is known that equation (2) holds for

C. However, if C has more than one element, it is not an independence

algebra.

Finally we should observe that when Gould defined independence alge-

bras, a lot was already known about them. In contrast to the path described

in this section which is based on properties of the endomorphism monoid of

the algebra, the original discovery of independence algebras came through

an investigation of notions of independence, as we will see in the next sec-

tion. In order to avoid confusion we will use the term C-independence

(because it is linked to a Closure Operator) for the notion of independence

defined above.

2. Thoughts of Independence in Poland

In [28] Marczewski introduced a notion of independence (for universal al-

gebras) and proved that many different notions of independence from nu-

merous branches of mathematics are, in fact, particular cases of his notion.

Let A = (A, F ) be a universal algebra (A is its universe and F is the

set of fundamental operations). Marczewski denoted by A(n) the set of all

n-ary algebraic operations (or, following [6], the set of all n-ary terms).

Now we say that a set N ⊆ A is independent if and only if it satisfies the

following condition:

[M1] every map f : N → A can be extended to a morphism φ : 〈N〉 → A.

(Recall that 〈N〉 denotes the subalgebra generated by N). We shall call

this notion of independence M -independence (for Marczewski) in order to

distinguish it from the C-independence defined in the previous section. We

say that a set is M -dependent (C-dependent) if it is not M -independent

(C-independent). Investigating the interplay between these two concepts

of independence led Marczewski and his colleagues to the idea of v∗-algebras

[31] several decades before the advent of independence algebras [18], but in

fact, the two types of algebras are precisely the same.
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After introducing M -independence, Marczewski provides two more char-

acterizations of it. One is the following. A set N ⊆ A is M -independent if

it satisfies

[M2] for each sequence of different elements a1, . . . , an ∈ N and

for each pair of g, h ∈ A(n), if g(a1, . . . , an) = h(a1, . . . , an),

then g and h are identical in A.

Then Marczewski closes this introductory section saying the following: If

N is a set of independent elements, then no a ∈ N belongs to the subalgebra

generated by the set N \ {a}. The converse implication is not true. With

our definitions this means that in any universal algebra M -independence

implies C-independence, but not conversely. Therefore we can ask what

is needed so that the algebra satisfies the converse? In a vector space

M -independence coincides with C-independence. Thus we can check what

makes this work in a vector space to see what properties we should require a

universal algebra to satisfy in order to have the two notions of independence

coinciding.

Suppose that a finite set of vectors N = {x1, . . . , xn} is M -dependent.

Then, by [M2], there exist two linear combinations s(x1, . . . , xn) =
∑

sixi

and t(x1, . . . , xn) =
∑

tixi, such that s(x1, . . . , xn) = t(x1, . . . , xn), but

s 6= t. Moreover, it is well known that s 6= t if and only if there exists an in-

dex i ∈ {1, . . . , n} such that si 6= ti. (Since + is commutative we can assume

without loss of generality that s1 6= t1). Therefore
∑

sixi =
∑

tixi is equiv-

alent to x1 = (s1− t1)−1
∑n

i=2(ti−si)xi. Thus x1 ∈ 〈x2, . . . , xn〉 and hence

N is C-dependent. In general M -independence implies C-independence and

now we know what is used to prove the converse in a vector space. Schemat-

ically, in a vector space, M -dependence implies C-dependence because of

the following:

if s(x1, . . . , xn) =
∑

sixi =
∑

tixi = t(x1, . . . , xn) and s 6= t, then

(1) there exists at least one index (say i = 1) such that s1 6= t1, and

(2) there exists an (n−1)-term h such that s(x1, . . . , xn) = t(x1, . . . , xn)

is equivalent to x1 = h(x2, . . . , xn).

Clearly the hypothesis and the second conclusion can be formulated for

any universal algebra (using terms). However, the first conclusion cannot

be directly expressed in a general setting. Therefore we need an equivalent

way of expressing it. In fact, it is easy to see that, in a vector space V , if

we have s(x1, . . . , xn) =
∑

sixi and t(x1, . . . , xn) =
∑

tixi, then s1 6= t1 if
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and only if there exist a′
1, a1, . . . , an ∈ V such that

s(a1, a2, . . . , an) = t(a1, a2, . . . , an) but s(a′
1, a2, . . . , an) 6= t(a′

1, a2, . . . , an).

This fact leads to the following definition. Let A = (A, F ) be a universal

algebra and let s, t be two n-ary terms. We say that s and t are distin-

guishable by the first variable if there exist a′
1, a1, . . . , an ∈ A such that

s(a1, . . . , an) = t(a1, . . . , an), but s(a′
1, a2, . . . , an) 6= t(a′

1, a2, . . . , an). It is

clear how one defines distinguishable by the ith variable

We mention that in [36], instead of saying that two terms are distin-

guishable by the ith variable, Urbanik says that the terms depend on the

ith variable.

After defining distinguishable terms (which corresponds in our scheme

above to conclusion (1)), Marczewski goes on to define what he calls v-

algebras. We say that an algebra A = (A, F ) is a v-algebra, when for every

pair of terms s, t ∈ A(n) (n = 1, . . .) distinguishable by the first variable

there exists a term h ∈ A(n−1) such that s(x1, . . . , xn) = t(x1, . . . , xn) is

equivalent to x1 = h(x2, . . . , xn).

It is now very easy to prove that, in v-algebras, M -independence coin-

cides with C-independence. After introducing v-algebras and proving some

direct consequences of the definition, Marczewski proves the following two

(easy) results.

Lemma 2.1. Let A be a v-algebra. Then a singleton subset of A whose

sole element is not a constant is M -independent.

Lemma 2.2. If {a1, . . . , an+1} ⊆ A is M -dependent, but {a1, . . . , an}

is M -independent, then there exists an n-ary term h such that an+1 =

h(a1, . . . an).

After these two lemmas Marczewski proves three more auxiliary lemmas

and then proves the main results of the paper. In these theorems, attention

is restricted to algebras that contain some elements which are not constants.

Theorem 2.1. In a v-algebra A the following are equivalent:

(1) B is a basis (i.e., an M -independent set of generators) of A;

(2) B is a minimal set of generators;

(3) B is a maximal M -independent set.

Observe that in any algebra every M -independent set of generators is also

a minimal set of generators and a maximal M -independent set.
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Theorem 2.2. If A is a v-algebra, then A admits a basis.

Theorem 2.3. If A is a v-algebra, then any two bases have the same

number of elements.

In all the results proved after Lemma 2.2, Marczewski uses only general

facts about universal algebras and Lemmas 2.1 and 2.2. Therefore it is nat-

ural to think that Marczewski was aware of this and so knew that Theorems

2.1, 2.2 and 2.3 are true for any universal algebra which satisfies Lemmas

2.1 and 2.2. Eventually in [31] Narkiewicz introduced v∗-algebras (saying

that the investigation of v∗-algebras was suggested to me by Professor E.

Marczewski) using the following definition.

An algebra A is a v∗-algebra if it satisfies the following conditions:

(I) If a ∈ A is not a constant, then the set {a} is M -independent;

(II) If {a1, . . . , an} is an M -independent subset of A, but {a1, . . . , an+1}

is not M -independent, then an+1 ∈ 〈a1, . . . , an〉.

Since (I) and (II) come from Lemma 2.1 and Lemma 2.2, it follows that v-

algebras are v∗-algebras (but not conversely). Then Narkiewicz provides an

equivalent definition for v∗-algebras (suggested to him by Świerezkowski)

by proving the following result.

Proposition 2.1. An algebra A is a v∗-algebra if and only if it satisfies

the following conditions:

(III) in A, M -independence coincides with C-independence;

(IV) in every subalgebra with a finite basis (i.e., M -independent gener-

ating set) consisting of k elements, every M -independent set of k

elements forms a basis for the subalgebra.

In [32] Narkiewicz provided yet another set of defining conditions for

v∗-algebras as recorded in the next result.

Proposition 2.2. An algebra is a v∗-algebra if and only if it satisfies (III)

of Proposition 2.1 and [EP].

It is very easy to prove that (III) and [EP] are equivalent to [F] and

[EP]. Thus the class of v∗-algebras coincides with the class of independence

algebras.

It is worth observing that the research carried out in Poland during the

sixties led to many other classes of algebras (v∗-algebras, v∗∗-algebras, v′-

algebras, separable variables algebras, etc.) and to more general notions of
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independence. A comprehensive survey paper (containing more than eight

hundred references) was written by G lazek [16].

3. The Description of Independence Algebras

As with any algebraic structure, the question arises of whether indepen-

dence algebras can be classified in some way. Marczewski’s paper [29]

about v-algebras is followed in the same issue of the same journal by an an-

nouncement of Urbanik [36] in which he describes all v-algebras (the proofs

appeared in [37]). The characterisation is up to term equivalence where,

we recall, that two algebras on the same underlying set are term equivalent

if their sets of n-ary term operations are the same for each positive integer

n.

Characterising the v∗-algebras turned out to be much more complicated

but it was eventually accomplished. For a survey paper (and proof of the

final cases) see [38] to which we refer the reader for a description of all

independence algebras.

It was more than 30 years before any new results about independence al-

gebras (from the perspective of universal algebra) appeared. In [7] Cameron

and Szabó prove the following result.

Theorem 3.1. The subalgebra lattice of an independence algebra of finite

dimension is a Boolean lattice or a projective or affine geometry.

They also reproved the description of finite independence algebras, pro-

viding for this case an extraordinarily short proof.

4. Independence Algebras and Semigroups

The monoids T (X) and End(V ) (where X is a set and V is a vector space)

have much more in common than the fact that their principal ideals form

a well ordered chain. For example, if Tf (X) denotes the set of all members

of T (X) with finite image, and Endf (V ) denotes the set of all endomor-

phisms of V of finite rank, then Tf (X) and Endf (V ) are both completely

semisimple semigroups, that is, they are regular and all their principal fac-

tors are completely 0-simple or completely simple. The search for algebras

whose endomorphism monoids enjoy properties similar to those of T (X)

and End(V ) led Gould [18] to rediscover independence algebras. In [18],

she described the structure of the endomorphism monoid of an indepen-

dence algebra, characterising Green’s relations, and showing that the set

of endomorphisms of finite rank is a completely semisimple subsemigroup.
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The original motivation for studying these endomorphism monoids was the

hope of finding semigroup analogues of her work with Petrich [19] on rings

of quotients. This aim has not yet been realised, but in a recent paper [13]

a small step in this direction has been made.

However, since the early 1990s, endomorphism monoids of independence

algebras, and related semigroups, have been extensively studied and the

topic continues to receive a great deal of attention. It is not our purpose

to give a comprehensive survey of this rapidly growing body of work, but

it seems appropriate to give an account of some of the early results which

influenced the development of the topic.

In 1966 Howie described the subsemigroup E(X) of T (X) generated by

all the non-identity idempotents [23]. The corresponding result for End(V )

where V is a finite dimensional vector space quickly followed [10], but it

was nearly twenty years later before Reynolds and Sullivan [34] found the

appropriate analogue in the infinite dimensional case. Their work also

uncovered a significant difference between the semigroups E(X) and E(V )

where X is an infinite set, V is an infinite dimensional vector space, and

where for any algebra A we denote the subsemigroup of End(A) generated

by the non-identity idempotents by E(A). Sullivan surveyed the parallels

and distinctions between T (X) and End(V ) in an influential conference talk

in 1990 which was published in [35].

Fountain and Lewin, having seen a preliminary version of Gould’s paper

[18], realised that independence algebras provided a suitable conceptual

framework for unifying those results on products of idempotents which hold

for both T (X) and End(V ). They described E(A) for an independence

algebra of finite rank in [14], proving the following result. (For a direct

proof see [1].)

Theorem 4.1. If A is an independence algebra of finite rank n, then

E(A) = 〈E1〉 = End(A) \ Aut(A)

where E1 is the set of idempotents of rank n − 1 in End(A).

The results of Howie [23] for finite sets and Erdos [10] are simply special

cases.

Let S be a semigroup generated by its set of idempotents E. The depth

of S is the smallest integer k such that Ek = S. Using this notion, Howie

[24] refined the result about idempotent generation of E(X) when X is

finite by showing that E(X) has depth [32 (n − 1)]. In contrast, Ballantine

[5], Dawlings [9] and Laffey [27] independently obtained results showing
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that, for a vector space V of finite dimension n, the semigroup E(V ) has

depth n. Ballantine’s results were extended to a special class of finite rank

independence algebras in [17].

In the infinite rank case attention was restricted to strong independence

algebras. An independence algebra A is strong when for any independent

subsets X and Y of A, if 〈X〉 ∩ 〈Y 〉 = 〈∅〉, then X ∪ Y is independent. For

such an algebra A, a characterisation of E(A) generalising the results of

[23] and [34] was given in [15]. To describe this result we need the notions

of shift, defect and collapse for an endomorphism of a strong independence

algebra. First, we remark that the exchange property allows us to define

the co-rank of a subalgebra B of an independence algebra A as follows. Let

X be a basis for B and extend X to obtain a basis X ∪ Y for A. Then the

co-rank of B (in A) is defined to be the cardinal |Y |.

We also observe that if α is an endomorphism of an independence alge-

bra A, then im(α) and fix(α) are subalgebras where

fix(α) = {a ∈ A : aα = a}.

We can now define the defect, d(α), and the shift, s(α) as follows:

d(α) = co-rank im(α),

s(α) = co-rank fix(α).

It is a little more complicated to define the collapse of α; we start by putting

K = 〈∅〉α−1, the inverse image under α of the subalgebra of constants. Now

let T be any subset of A such that Tα is a basis for im α and α restricted

to T is one-one. Let M = 〈K ∪ T 〉 and define the collapse, c(α), of α by

c(α) = rank K + co-rank M.

This definition is independent of the choice of T , so we do have a well

defined notion.

Now let A be a strong independence algebra of infinite rank. Define

subsets F and Q of End(A) as follows:

F = {α ∈ EndA : 0 < d(α), s(α) < ℵ0},

Q = {α ∈ EndA : d(α) = s(α) = c(α) > ℵ0}.

In fact, it can be shown that

F = {α ∈ EndA : 0 < c(α) = d(α) 6 s(α) < ℵ0}.

Recall that an element s of a monoid S is unit regular if sus = s for some

unit u of S, and let U be the set of unit regular members of End(A). Then
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U is a submonoid of End(A) and

Q = {α ∈ U : d(α) = s(α)}.

We can now characterise the subsemigroup E(A) generated by the non-

identity idempotents of End(A).

Theorem 4.2. If A is a strong independence algebra of infinite rank, then

F and Q are regular idempotent generated subsemigroups of End(A) and

E(A) = F ∪ Q.

If α is an endomorphism of a vector space, then it is not difficult to see

that the collapse of α is the nullity of α, and this observation shows that the

result of Reynolds and Sullivan [34] describing the idempotent generated

subsemigroup of End(V ) where V is an infinite dimensional vector space

is a consequence of Theorem 4.2. When specialised to sets, the notion of

collapse we have defined is not exactly the same as the original definition

in [23]. However, the two notions give the same value in the case of infinite

collapse, and so the characterisation of E(X) for an infinite set X given in

[23] also follows from Theorem 4.2.

The members of Q are called balanced endomorphisms, and it is here

that there is a difference betwen the set case and the vector space case.

In the case of an infinite set, it was shown in [25] that the semigroup of

balanced endomorphisms has depth 4 whereas in the case of an infinite di-

mensional vector space Reynolds and Sullivan [34] show that the depth is 3.

In [12] Fountain determined a property of some strong independence alge-

bras which distinguishes between those for which the semigroup of balanced

endomorphisms has depth 4 and those for which it has depth 3.

We conclude by emphasising that independence algebras have proved

to be very useful in providing unified proofs for analogous results for T (X)

and End(V ); in explaining differences between T (X) and End(V ); and also

in exporting results from semigroups to linear algebra and to some other

universal algebras. (See, for example, [4], [2] and [3]).

Acknowledgements: The first author acknowledges with thanks the support

of FCT, POCTI/32440/MAT/2000, and Fundação Calouste Gulbenkian.

References
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