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Centro de Álgebra
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Abstract

Let A be a strong independence algebra of finite rank with at most

one constant, and let G be the group of automorphisms of A. Let α

be a singular endomorphism of A and αG = 〈{α} ∪ G〉. We describe

the elements of αG and give additional characterisations when A is a

proper independence algebra and G is a periodic group.

Mathematics subject classification: 20M20, 20M10, 08A35.

1 Introduction

Let X be a finite set and let T (X) and Sym(X) be, respectively, the trans-
formation monoid and the symmetric group on X. Let α ∈ T (X) \ Sym(X)
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and consider the semigroup Sα generated by the set {γ−1αγ : γ ∈ Sym(X)}
of all conjugates of α. In [6] Levi and McFadden proved that

Sα = {β ∈ T (X) : Ker(γα) ⊆ Ker(β) for some γ ∈ Sym(X)} = αG.

The aim of this paper is to generalise the second equality from sets to
strong independence algebras of finite rank with at most one constant. In the
final section, using results of the first author [2] about proper independence
algebras which have a periodic group of automorphisms, we obtain the first
equality and some other characterisations of αG.

In the next section we present the basic concepts concerning strong inde-
pendence algebras.

2 Preliminaries

We assume the reader to have a basic knowledge of both the theory of inde-
pendence algebras and the theory of semigroups. For independence algebras
we recommend [3] and [4] as references, and for general semigroup theory we
recommend [5].

The first step in the definition of independence algebras is the introduction
of a notion of independence valid for universal algebras. A subset X of an
algebra is said to be independent if X = ∅ or if for every element x ∈ X, we
have x 6∈ 〈X \ {x}〉; a set is dependent if it is not independent. In general,
the universe of an algebra A is denoted by A. The following result is given
as Exercise 6 on p.50 of [8].

Lemma 1. For an algebra A, the following conditions are equivalent:

(1) For every subset X of A and all elements u, v of A, if the element

u ∈ 〈X ∪ {v}〉 and u 6∈ 〈X〉, then v ∈ 〈X ∪ {u}〉.

(2) For every subset X of A and every element u ∈ A, if X is independent

and u 6∈ 〈X〉, then X ∪ {u} is independent.

(3) For every subset X of A, if Y is a maximal independent subset of X,

then 〈X〉 = 〈Y 〉.

(4) For subsets X, Y of A with Y ⊆ X, if Y is independent, then there is

an independent set Z with Y ⊆ Z ⊆ X and 〈Z〉 = 〈X〉.
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An algebra A is said to have the exchange property or to satisfy [EP] if
it satisfies the equivalent conditions of Lemma 1. A basis for A is a subset
of A which generates A and is independent. It is clear from Lemma 1 that
any algebra with [EP] has a basis. Furthermore, for such an algebra, bases
may be characterised as minimal generating sets or maximal independent
sets, and all bases for A have the same cardinality [4, Proposition 3.3]. This
cardinal is called the rank of A and is written rank(A). If A is an algebra
satisfying [EP] and α is an endomorphism of A, then rank(α) is the rank of
the image of α, that is, rank(α) = rank(im(α)).

We observe that (4) of Lemma 1 tells us that any independent subset of
A can be extended to a basis for A. We also remark that if A satisfies [EP],
then so does any subalgebra of A.

We now define an independence algebra to be an algebra A which satisfies
[EP] and also satisfies:

[F ] For any basis X of A and α : X → A, there is an endomorphism
α of A such that α|X = α.

In any algebra A, the set of constants is denoted by Con. Let A be an
independence algebra and let X, Y be two disjoint and independent subsets
of A. Then A is said to be strong if 〈X〉∩〈Y 〉 = Con implies that X∪Y is an
independent set. Clearly, any subalgebra of a strong independence algebra is
also a strong independence algebra. Particular cases of strong independence
algebras are sets and vector spaces.

We denote the endomorphism monoid of an algebra A by End(A). If
η ∈ End(A), we say that η is nontrivial if im(η) 6= Con. The following
lemma is a slight extension of a result that follows from Section 2 of [3].

Lemma 2. Let B be a subalgebra of a strong independence algebra A, let

η be a nontrivial endomorphism of A and T be a basis for Bη. Then there is

a basis Y for B such that Y η \ Con = T .

Proof. Let Z be a basis for {b ∈ B : bη ∈ Con} and let BT = 〈Z∪(Tη−1∩B)〉.
By Lemma 1, BT has a basis Y = Z ∪ YT where YT ⊆ Tη−1 ∩ B. Clearly,
Y η \ Con = T and so it suffices to prove that BT = B.

Clearly, it is enough to show that B ⊆ BT where B and BT denote the
universes of B and BT respectively. Let b ∈ B; then bη ∈ 〈T 〉 so that either
bη ∈ Con or there are elements t1, . . . , tn ∈ T such that bη ∈ 〈t1, . . . , tn〉 but
bη /∈ 〈t2, . . . , tn〉. In the former case, certainly b ∈ BT . In the latter case,
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for each i = 1, . . . , n, we can write ti = biη for some bi ∈ B since Bη = 〈T 〉.
Hence by the exchange property,

t1 ∈ 〈bη, b2η, . . . , bnη〉 = 〈b, b2, . . . , bn〉η.

Let c ∈ 〈b, b2, . . . , bn〉 be such that cη = t1 and note that c /∈ 〈b2, . . . , bn〉
since t1 = cη is not in 〈b2η, . . . , bnη〉. Hence b ∈ 〈c, b2, . . . , bn〉 and so b ∈ BT

as required.

Of course, we can take the subalgebra B to be the algebra A itself, and
we obtain the following corollary which is implicit in [3].

Corollary 3. Let η be a nontrivial endomorphism of a strong indepen-

dence algebra A. If T is a basis for im η, then there is a basis Y for A such

that Y η \ Con = T .

The following corollary plays a key role in Section 4.

Corollary 4. Let A be a strong independence algebra of finite rank and

let α, β be nontrivial endomorphisms of A with Ker(α) ⊆ Ker(β). Then there

are automorphisms γ, δ of A and a basis X for A such that Ker(αγ)|X ⊆
Ker(βδ)|X.

Proof. By [4, Proposition 4.5(ii)], β 6R α and so there is an endomorphism
η with β = αη. Let T be a basis for im β. Now im β = (im α)η so that by
Lemma 2, there is a basis Y for im α such that Y η\Con = T . By Corollary 3,
there is basis X for A such that Xα \ Con = Y . It is easy to verify that
Xβ \ Con = T .

Since A has finite rank, there are automorphisms γ and δ such that
yγ ∈ X ∩ yα−1 for each y ∈ Y , and tδ ∈ X ∩ tβ−1 for each t ∈ T . Restricting
αγ and βδ to X we obtain transformations of X, and if x1αγ = x2αγ,
then x1α = x2α since γ is an automorphism. As Ker(α) ⊆ Ker(β), we get
x1β = x2β and so x1βδ = x2βδ.

3 The Structure of the Semigroup αG

Throughout this section, A is a strong independence algebra of finite rank,
and G is its automorphism group. Let α ∈ EndA \ G. The semigroup
〈{α} ∪ G〉 \ G is denoted by αG. We show that αG is regular and describe
Green’s relations on it.
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Proposition 5. The semigroup αG is regular.

Proof. Let β ∈ αG. From [3, Section 3], it follows that End(A) is unit regular,
that is, there is an automorphism γ of A such that βγβ = β. Now γβγ ∈ αG

is an inverse of β so that αG is regular.

Proposition 6. Let S = αG and β1, β2 ∈ S. Then

(1) β1Rβ2 if and only if Ker(β1) = Ker(β2);

(2) β1L β2 if and only if im(β1) = im(b2);

(3) β1Dβ2 if and only if rank(β1) = rank(β2);

(4) D = J .

Proof. Parts (1) and (2) follow from [5, Proposition II.4.5] and [4, Corol-
lary 4.6].

We now prove (3). Two D-related elements in S are also D-related in
End(A) and so have the same rank.

On the other hand, since S is regular, if β1, β2 ∈ S, then there are idem-
potents ε1, ε2 in S with βiL εi for i = 1, 2. Hence if β1, β2 have the same
rank, then so do ε1, ε2 and it suffices to prove that ε1Dε2. Since rank(ε1) =
rank(ε2) and A has finite rank, there is an automorphism γ of A which
maps im(ε1) isomorphically onto im(ε2). Now ε1γ ∈ S, Ker(ε1γ) = Ker(ε1)
and im(ε1γ) = im(ε2) so that by (1) and (2), ε1Rε1γL ε2. Thus ε1Dε2 as
required.

Finally, if β1J β2, then β1, β2 are also J -related in End(A) so that by
[4, Proposition 4.5(iii) and (v)], they have the same rank, and hence by (3),
they are D-related in S. Part (4) follows.

The next corollary follows immediately from this lemma.

Corollary 7. Every ideal of αG is a principal ideal and the principal

ideals are the sets

Ir = {β ∈ αG : rank(β) 6 r},

for r = 0, 1, . . . , rank(A) − 1.
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4 A description of the elements of αG

From now on, A always denotes a strong independence algebra of finite rank
with at most one constant. Thus, in the algebras under consideration, Con =
∅ or Con = {0}.

In this section, we describe the semigroup αG by specifying its elements.
For the trivial endomorphism ζ which maps every element to zero, it is clear
that ζG = {ζ}, so we may assume that α is nontrivial. Next we determine
under what conditions ζ is a member of αG.

Lemma 8. Let A be a strong independence algebra of finite rank n
with Con = {0}, and let β be a nontrivial endomorphism of A such that

{0} 6= 0β−1 $ A. Then there is an automorphism γ of A such that 0β−1 $
0(βγβ)−1.

Proof. Clearly, 0β−1 ⊆ 0(βγβ)−1.
If 0β−1 ∩ im β 6= {0}, let y = xβ be a non-zero element of 0β−1 ∩ im β.

Then x /∈ 0β−1, so 0β−1 $ 〈{x} ∪ 0β−1〉 ⊆ 0(β2)−1.
If 0β−1 ∩ im β = {0}, let y and z be non-zero elements of im β and 0β−1

respectively. Then {y, z} is independent, and so there is an automorphism
γ of A with yγ = z. Let y = xβ. Then x ∈ 0(βγβ)−1 \ 0β−1 so that
0β−1 $ 0(βγβ)−1 as required.

Proposition 9. Let A be a strong independence algebra of finite rank

with Con = {0}. If α is a nontrivial endomorphism of A, then

ζ ∈ αG if and only if 0α−1 6= {0}.

Proof. If ζ ∈ αG, then ζ = γ1αγ2 . . . αγn for some automorphisms γ1, . . . , γn.
Clearly, γn can be taken to be the identity, and we can assume that there is
an element x in A such that xγ1αγ2 . . . αγn−1 6= 0. Thus 0α−1 6= {0}.

If 0α−1 6= {0}, then by repeated applications of Lemma 8 we obtain
ζ ∈ αG.

We now consider the nontrivial elements of αG. We introduce the follow-
ing notation:

αG(ζ) =

{

αG if Con = ∅

αG(ζ) = αG ∪ {ζ} if Con = {0}.

Our result is analogous to, and generalises, the description of αG given in [6]
for the case when α is simply a mapping of a finite set to itself.
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Theorem 10. Let A be a strong independence algebra of finite rank with

at most one constant. Let α ∈ End(A) \ Aut(A) be a non-trivial endomor-

phism. Then

αG(ζ) = {β ∈ End(A) : Ker(γα) ⊆ Ker(β) for some γ ∈ G}.

Proof. If Con = {0}, then clearly, ζ is in both sets.
Suppose that β is a nontrivial endomorphism such that Ker(γα) ⊆ Ker(β)

for some γ ∈ G. By Corollary 4, there are automorphisms θ, δ of A and a basis
X for A such that (γαθ)|X, (βδ)|X ∈ T (X) and Ker((γαθ)|X) ⊆ Ker((βδ)|X).
Hence by [6, Proposition 4], we have

(βδ)|X ∈ 〈(γαθ)|X , Sym(X)〉 \ Sym(X).

It follows easily that

β = (βδ)δ−1 ∈ (γαθ)G = αG.

Now suppose that β ∈ αG and β 6= ζ . Then β = γαγ1α . . . γn−1αγn for
some n and some γ, γ1, . . . , γn ∈ G. Clearly, Ker(γα) ⊆ Ker(β) and the proof
is complete.

As an easy consequence we have the following.

Corollary 11. Let A be a strong independence algebra of finite rank with

at most one constant. Let α ∈ End(A) \ Aut(A) be a non-trivial endomor-

phism. Then

αG(ζ) = {β ∈ End(A) : Ker(β) = Ker(ε), ε ∈ E(αG)}.

Proof. Let β ∈ αG. As αG is regular, it follows that β is R-related to some
idempotent, ε ∈ αG, and hence Ker(β) = Ker(ε).

Conversely, if Ker(β) = Ker(ε) for some idempotent ε ∈ αG, then by
Theorem 10, we have β ∈ εG ⊆ αG.

5 Aut(A)-Normal Semigroups

Let S be a monoid with group of units G. We say that T 6 S is G-normal
if g−1Tg ⊆ Y for all g ∈ G.
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To conclude the paper, we consider analogues of the other characterisa-
tions of αG given in [6] when α ∈ T (X) \ Sym(X) and X is a finite set. Let
E(S) denote the set of idempotents of a semigroup S. The results obtained
in [6] can be described as follows: let X be a set, let α ∈ T (X) \ Sym(X)
and let Sα = 〈γ−1αγ : γ ∈ Sym(X)〉; then

Sα = 〈E(Sα)〉
= 〈E(αG)〉
= αG

= {β ∈ T (X) : Ker(γα) ⊆ Ker(β) for some γ ∈ Sym(X)}.

Naturally, we may ask if a corresponding result holds for a strong inde-
pendence algebra A of finite rank with at most one constant. For such a
result we would replace Sym(X) by G = Aut(A), T (X) by End(A), and
adopting and extending the convention of the previous section, αG by αG(ζ)
and Sα by Sα(ζ).

For any strong independence algebra A of finite rank with at most one
constant we have the result corresponding to the last equality by Theorem 10.
However, for the other equalities, we are able to get the corresponding results
only under further restrictions on A. To describe these restrictions we start
by defining an endomorphism α of A to be proper if there is a basis X for
A such that Xα is a basis for im(α). We say that a strong independence
algebra with at most one constant is proper if all its endomorphisms of rank
at least 1 are proper.

We remark that strong independence algebras without constants and vec-
tor spaces over fields are examples of proper independence algebras (see [2]).

In [2, Theorem 3.1], it is proved that if A is a proper independence algebra
of finite rank, then αG = 〈E(αG)〉. Using a technique devised by McAlister
[8], it is also shown in [2, Theorem 4.1] that for such an algebra A, if G is a
periodic group, then

〈E(Sα)〉 = 〈E(αG)〉.

Hence, when G is a periodic group, we have

Sα ⊆ αG = 〈E(αG)〉 = 〈E(Sα)〉 ⊆ Sα.

Putting these results together with Theorem 10 we thus obtain the fol-
lowing theorem.
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Theorem 12. Let A be a proper independence algebra of finite rank such

that G = Aut(A) is a periodic group. Let α ∈ End(A) \ G be nontrivial.

Then

Sα(ζ) = 〈E(Sα(ζ))〉
= 〈E(αG(ζ))〉
= αG(ζ)
= {β ∈ End(A) : Ker(γα) ⊆ Ker(β) for some γ ∈ G}.

We observe that, in view of the complexity of the main proof in [1], the
problem of describing Sα when G is not periodic seems to be rather difficult.
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