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Abstract. If A is a stable basis algebra of rank n, then the set Sn−1 of endomorphisms of
rank at most n−1 is a subsemigroup of the endomorphism monoid of A. This paper gives
a number of necessary and sufficient conditions for Sn−1 to be generated by idempotents.
These conditions are satisfied by finitely generated free modules over Euclidean domains
and by free left T -sets of finite rank where T is cancellative monoid in which every finitely
generated left ideal is principal.

Introduction

One of the most natural ways in which semigroups arise is as the semigroup of endo-
morphisms End A of a given (universal) algebra A. For certain A the structure of End A is
well known. Our motivating examples are the cases where A is a finite set (an algebra with
no operations), or a finite dimensional vector space. In each case End A is the union of a
finite chain of ideals and the Rees quotients of successive ideals are completely 0-simple.

In the abstract theory of semigroups, idempotents play a major role in structural inves-
tigations. It is therefore natural to attempt to describe the subsemigroup 〈E〉 generated by
the idempotents E. In particular, what is 〈E〉 where E is the set of idempotents of End A
for some algebra A? To make results easier to state we exclude the identity map from E
(hence from 〈E〉). Howie [14] showed that if A is a finite set then 〈E〉 is the semigroup of
non-bijective mappings; the analogous statement for finite dimensional vector spaces over
a field was proved by Erdös [5]. An alternative proof of the latter was given by Dawlings[4],
and the result was generalised to finite dimensional vector spaces over division rings by
Laffey [16].
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More recently, Fountain and Lewin [10] showed that the results of Howie, Erdös, Dawl-
ings and Laffey are special cases of a more general theorem for independence algebras.
Independence algebras (also known as v∗-algebras) are defined by two conditions; the first
says that the closure operator 〈 〉 satisfies the exchange property, the second requires that
independent sets be free generators. Sets and vector spaces are examples of independence
algebras. Any subset and, in particular, any subalgebra of an independence algebra A has
a well defined rank, namely, the cardinal of any maximal independent subset it contains.
We define the rank of α ∈ End A to be the rank of Im α. If A has finite rank n then A is
the union of a finite chain of ideals with completely 0-simple Rees quotients [11], and 〈E〉
consists of all endomorphisms of rank strictly less than n [10].

The endomorphism monoid of an independence algebra is regular. But perhaps sur-
prisingly, regularity of End A is not necessary for the above results concerning 〈E〉. For
example, Laffey [16] showed that if A is a free module of finite rank n over a Euclidean
domain, then 〈E〉 is the subsemigroup of endomorphisms of rank strictly less than n.

Basis algebras provide a class of algebras in which we attempt to put the results of Laffey,
and later work of Fountain [7] and Ruitenberg [18], into a more general setting. In a basis
algebra the closure operator PC (pure closure) satisfies the exchange property and directly
independent subsets (that is, subsets independent with respect to PC) are free generators.
Finitely generated free left modules over Bezout domains and and free left T -sets over
cancellative left Ore monoids are examples of basis algebras. Corresponding to the case of
independence algebras, rank is well defined for subsets, subalgebras and endomorphisms
of basis algebras, where now the rank of a subset is the cardinality of a maximal directly
independent set that it contains. In an earlier paper [9] we showed that if A is a basis
algebra of finite rank of a special kind we call stable, then End A is the union of a finite
chain of ideals with Rees quotients that are primitive abundant semigroups in which all
the non-zero idempotents are D-related. The latter have a structure analogous to that
of completely 0-simple semigroups, being isomorphic to a Rees matrix semigroup over a
cancellative monoid [6]. This structure allows us to give a number of equivalent sufficient
conditions for 〈E〉 to consist of all endomorphisms of rank strictly less than n. We conclude
the paper with a number of examples of basis algebras satisfying these conditions.

The structure of the paper is as follows. In Section 1 we give a brief resumé of the
concepts and definitions behind basis algebras. Section 2 gives some facts concerning
endomorphisms of basis algebras together with technical results needed for our result on
products of idempotents. Section 3 is devoted to proving the latter. In Section 4 we
illustrate the result with a number of examples.

Further details of the results we quote in Sections 1 and 2 may be found in the two
predecessors of this article [8, 9].

1. Basis algebras

By an algebra A we mean an algebra in the sense of universal algebra. For basic ideas
of universal algebra we refer the reader to [2], [12] or [17]. For convenience the symbols m
and n are always reserved for natural numbers.

2



A constant in an algebra A is the image of a basic nullary operation. If A has any
constants, then 〈∅〉 denotes the subalgebra generated by them, and 〈∅〉 consists of those
elements a for which there is a unary term operation with unique value a (see, for example,
[12, p.40, Corollary 3]). If an algebra has no constants, then we make the convention that
∅ is a subalgebra so that in this case, 〈∅〉 = ∅. We say that an algebra A is constant if
A = 〈∅〉. All the algebras studied in this paper have the property that if the algebra has no
constants and more than one element, then none of the unary term operations are constant
functions.

We are concerned with algebras having two closure operators. One is the standard
subalgebra closure operator 〈 〉, the other is the operator PC.

For an element a of an algebra A and a subset X of A, we write a ≺ X if

a ∈ 〈∅〉 or 〈a〉 ∩ 〈X〉 6= 〈∅〉
and we put

PC(X) = {a ∈ A : a ≺ X}.
The operator PC need not be a closure operator. Where it is, it is algebraic and the

closed subsets are subalgebras. We say that A is a weak exchange algebra if PC is a closure
operator satisfying the exchange property. The latter ensures that subsets of A have well
defined rank, where the rank of X is the cardinality of any maximum PC-independent
subset of X. We refer to PC-independent subsets as directly independent. Clearly, rank is
monotonic. We require the following result from [8], most of which is classical and can be
taken from [2].

Lemma 1.1. [8] Let X be a subset of a weak exchange algebra A. Then

(1) rank〈X〉 = rankX = rank PC(X) 6 |X| ;
(2) if X is finite and rank〈X〉 = |X|, then X is directly independent.

A subset X of an algebra A is A-free if every function from X to A can be extended to
a morphism from 〈X〉 to A. An A-free subset X of A is a basis of A if X ∩ 〈∅〉 = ∅ and
X generates A. A weak independence algebra A is a weak exchange algebra in which every
directly independent set is A-free.

We say that an algebra A is torsion-free if each unary term operation t such that Im t
is not contained in the constant subalgebra, is injective. Notice that any constant algebra
is therefore torsion-free. It follows from the results of [8] that a basis of a torsion-free
weak independence algebra is exactly the same thing as a generating set that is directly
independent.

In a weak independence algebra A a pure subalgebra is a subalgebra that is PC-closed.
We remark that from Lemma 4.2 of [8], any subalgebra of A is a weak independence algebra.
From Corollary 1.12 of [8], if B and C are subalgebras with B ⊆ C, B pure in C and C
pure in A, then B is pure in A.

We are interested in weak independence algebras in which pure subalgebras have bases
which can be extended to bases of the parent algebra.

Lemma 1.2. [8] Let A be a torsion free weak independence algebra. If X is a basis for A
and Y ⊆ X, then 〈Y 〉 is pure.
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A basis algebra A is a torsion free weak independence algebra which satisfies the following
condition:

(PEP) if P, Q are pure subalgebras in A with P ⊆ Q, and X is a basis for P , then there
is a basis Y for Q with X ⊆ Y .

It follows from this definition that every pure subalgebra of a basis algebra has a basis,
and in particular, every basis algebra has a basis. Moreover, from Proposition 7.2 of [8],
every pure subalgebra of a basis algebra is itself a basis algebra.

Suppose now that A is a basis algebra, rankA = n and B is a pure subalgebra of A
with rankB = n. Since any basis of B can be extended to a basis of A, we must have that
A = B.

Finally we say that a basis algebra A is stable if every subalgebra of A having a generating
set of cardinality at most rank A has a basis.

The following result is a consequence of the monotonicity of rank.

Lemma 1.3. Let A be a stable basis algebra and let B be a pure subalgebra of A. Then B
is a stable basis algebra.

Independence algebras are stable basis algebras. If R is a Bezout domain (that is, a
domain in which every finitely generated one sided ideal is principal), then a free left R-
module of finite rank is a stable basis algebra [8]. Our third canonical example of a stable
basis algebra is a free left T -act over a cancellative principal left ideal monoid T . Further
details of these examples may be found in [8] and in the final section of this paper.

2. Endomorphisms of basis algebras

This section gives some necessary background material on the monoid of endomorphisms
of a stable basis algebra. We assume the reader to be familiar with elementary semigroup
theory, including Green’s relations R, L , H and D .

On a semigroup S, the relation R∗ is defined by the rule that for any a, b ∈ S, a R∗ b
if and only if a R b in some oversemigroup of S. Equivalently, a R∗ b if and only if for all
x, y ∈ S1,

xa = ya if and only if xb = yb.

It is easy to see that if a, b are regular elements, then a R b if and only if a R∗ b. In general,
however, the relation R is strictly contained in R∗. The relation L ∗ is defined dually; we
put H ∗ = L ∗ ∩ R∗ and D∗ = L ∗ ∨ R∗.

Lemma 2.1. Let x, y be elements of a semigroup S such that xy is regular. If xy R∗ x,
then x is regular. Dually, if xy L ∗ y, then y is regular.

Proof. Since xy is regular, xy = (xy)t(xy) for some t ∈ S. Suppose now that xy R∗ x.
Then, since 1 xy = (xyt)xy, we have 1 x = (xyt)x so that x is regular. �

For the convenience of the reader we now give a number of results from [9].

Lemma 2.2. [9, Corollary 4.2] Let A be a basis algebra. Then for any α, β ∈ End A,

α R
∗ β if and only if Ker α = Ker β.
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Lemma 2.3. [9, Corollary 4.6] Let A be a basis algebra. Then for any α, β ∈ End A,

α L
∗ β if and only if PC(Im α) = PC(Im β).

Lemma 2.4. [9, Lemma 4.7] Let α ∈ End A where A is a basis algebra. Then α is regular
if and only if Im α = PC(Im α).

Lemma 2.5. [9, Theorem 4.9] Let A be a stable basis algebra. Then every H ∗-class of
End A contains a regular element. Consequently, D∗ = R∗ ◦ L ∗ = L ∗ ◦ R∗.

We briefly consider certain ideals in End A where A is a stable basis algebra. First, for
α ∈ End A, we define rank α = rank Im α. From [9], we have the following easy but crucial
result.

Lemma 2.6. [9, Lemma 6.1] If α, β are endomorphisms of a stable basis algebra A, then
rank αβ 6 min{rankα, rank β}.

Now for a non-negative integer m with m 6 rank A we define

Sm = {α ∈ End A : rank α 6 m}.
It follows from Lemma 2.6 that Sm is an ideal of End A.

Lemma 2.7. [9, Lemma 7.2] Let A be a basis algebra. Then S0 6= ∅ if and only if 〈∅〉 6= ∅.
When S0 6= ∅, it is a left zero semigroup.

Lemma 2.8. [9, Proposition 7.3] For a positive integer m with m 6 rank A, the Rees
quotient semigroup Sm/Sm−1 is a primitive abundant semigroup in which all the non-
zero idempotents are D-related. Consequently, Sm/Sm−1 is isomorphic to a Rees matrix
semigroup M0(S; I, Λ; P ) where S is a cancellative monoid, and each row and column of
P contains a unit of S.

In the above result, the set I indexes the R∗-classes of M0 and the set Λ the L ∗-classes.
Together with Lemma 2.5 of [9] we deduce the following.

Corollary 2.9. Let A be a stable basis algebra. Then for any α, β ∈ End A, if

rank α = rankβ = rankαβ = n

we have
α R

∗ αβ L
∗ β.

By an endomorphism pair of a stable basis algebra A, we mean a pair (ρ, B) where B is
a pure subalgebra of A and ρ is a congruence on A such that A/ρ is isomorphic to B. For
such an endomorphism pair, we put

H∗

(ρ,B) = {α ∈ End A : Kerα = ρ and PC(Im α) = B}.
The following is a consequence of Lemmas 2.2 and 2.3 above.

Proposition 2.10. [9, Lemma 4.10] Let A be a stable basis algebra. Then the H ∗-classes
of End A are precisely the subsets of the form H∗

(ρ,B) where (ρ, B) is an endomorphism pair.
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For an algebra A and a subset H of A × A we denote by 〈〈H〉〉 the smallest congruence
on A containing H . If A is a stable basis algebra, we say that an endomorphism pair is
idempotent if the corresponding H ∗-class contains an idempotent.

Proposition 2.11. Let A be a stable basis algebra of rank n where n > 2. Suppose that
{x1, . . . , xr, y1, . . . , yn−r} is a basis for A where 1 6 r 6 n − 1. Then

(ρ, B) = (〈〈(x1, y1), . . . , (x1, yn−r)〉〉, 〈x1, . . . , xr〉)
is an idempotent endomorphism pair.

Proof. Define α ∈ End A by

xiα = xi 1 6 i 6 r
yj = x1 1 6 j 6 n − r.

Clearly α = α2 and Im α = 〈x1, . . . , xr〉.
Certainly ρ ⊆ Kerα. To show the opposite inclusion, suppose that s, t are terms and

s(x1, . . . , xr, y1, . . . , yn−r)α = t(x1, . . . , xr, y1, . . . , yn−r)α

so that
s(x1, . . . , xr, x1, . . . , x1) = t(x1, . . . , xr, x1, . . . , x1).

We have
s(x1, . . . , xr, y1, . . . , yn−r) ρ s(x1, . . . , xr, x1, . . . , x1) =

t(x1, . . . , xr, x1 . . . , x1) ρ t(x1, . . . , xr, y1, . . . , yn−r)

so that Ker α ⊆ ρ as required. The result now follows from Lemma 2.4 and Proposition 2.10.
�

For a basis algebra A, any subset has a well defined rank. Not every subalgebra need
have a basis, that is, a maximal directly independent generating set. However, for stable
basis algebras, every image of a morphism has a basis. This is part of the content of the
following technical result.

Lemma 2.12. Let A be a stable basis algebra of finite rank n and let α ∈ End A with
rank α = m. Then there is a basis {x1, . . . , xn} of A such that Im α has basis {x1α, . . . , xmα}.
Proof. That Im α has a basis is Lemma 4.8 of [9]. Suppose that {z1α, . . . zmα} is a ba-
sis of Im α. By Proposition 4.2 of [8], Z = {z1, . . . , zm} is directly independent. Now
rank〈Z〉 = rank PC(Z) = m, so that PC(Z) = 〈x1, . . . , xm〉 for some directly independent
set {x1, . . . , xm} where {x1, . . . , xn} is a basis for A. We have

Im α = 〈z1α, . . . , zmα〉 = 〈Z〉α ⊆ PC(Z)α

= 〈x1, . . . , xm〉α = 〈x1α, . . . , xmα〉 ⊆ Im α

so that Im α = 〈x1α, . . . , xmα〉. By Lemma 1.1, {x1α, . . . , xmα} is directly independent
and so it is a basis of Im α. �

We end this section with a proposition essentially taken from [6], which appears explicitly
in [7]. This result is crucial in simplifying our arguments in the next section.
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Proposition 2.13. [6] Let S be a semigroup in which every H ∗-class contains a regular
element. Let e be an idempotent of S and let a be an element of the D∗-class of e. Let c, d
be regular elements in the H ∗-classes L∗

e∩R∗

a and R∗

e∩L∗

a. Then the function θ : H∗

e → H∗

a

given by bθ = cbd is a bijection.

3. The criteria

An immediate consequence of Lemma 2.4 is that for any idempotent ε ∈ End A, where A
is a stable basis algebra, we have that Im ε = PC(Im ε). It follows that if rank ε = rankA
is finite, then ε = IA. With this in mind, and to fit in with established terminology, for a
stable basis algebra A of finite rank n we put

EA = {ε = ε2 ∈ End A : rank ε < n},
and for 1 6 r 6 n − 1

EA
n−r = {ε = ε2 ∈ End A : rank ε = r}.

The aim of this section is to give a number of sufficient conditions on a stable basis algebra
A of rank n for the non-identity idempotents to generate Sn−1, that is, for 〈EA〉 = Sn−1.
Notice that by Lemma 2.8, 〈EA〉 is a subsemigroup of Sn−1. If rank A = 0, then End A is
trivial. If rankA = 1, then by Lemma 2.7, S0 is either empty or is a left zero semigroup,
in which case EA = S0 and certainly 〈EA〉 = S0. We concentrate therefore on the case
where n > 2. The conditions we give on A are hereditary conditions, that is, they must
be satisfied by all pure subalgebras of A of rank at least 2. Recall that if B is a pure
subalgebra of A, then rankB 6 rank A and that if rankB = rankA, then A = B. Several
algebras are involved in the ensuing discussion, and so, for clarity, we write SB

r for the
ideal of endomorphisms of rank no greater than r in End B.

Theorem 3.1. Let A be a stable basis algebra of rank n. Then the following conditions
are equivalent:

(1) 〈EB〉 = SB
m−1 for all integers m with 2 6 m 6 n and all pure subalgebras B of A

with rank B = m ;
(2) 〈EB

1 〉 = SB
m−1 for all integers m with 2 6 m 6 n and all pure subalgebras B of A

with rank B = m ;
(3) 〈EB

m−r〉 = SB
r for 1 6 r 6 m − 1 for all integers m with 2 6 m 6 n and all pure

subalgebras B of A with rank B = m ;
(4) for all integers m with 2 6 m 6 n and every pure subalgebra B of A with rank B =

m, every H ∗-class of End B contained in D∗

m−1 contains a regular element that is
a product of idempotents (of rank m − 1) ;

(5) for every pure subalgebra B of A with rank B > 2 and for any endomorphism
pair (ρ, C) of B, where rank C = rankB − 1, there are a finite number of pure
subalgebras C1, . . . , Ck of B and a finite number of congruences ρ1, . . . , ρk on B
such that C = C1, ρ = ρk and for all i, j with 1 6 i 6 k; 1 6 j 6 k− 1, (ρi, Ci) and
(ρj, Cj+1) are idempotent endomorphism pairs.
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Proof. Let B be any pure subalgebra of A. Since A is stable, it follows from by Lemma 1.3
that B is a stable basis algebra and we can therefore call upon the results of Section 2 for
End B.

That (3) implies (2) is clear; that (2) implies (1) is a consequence of SB
m−1 being an ideal

of End B. That (1) implies (2) is an easy consequence of the next lemma.

Lemma 3.2. Let B be a stable basis algebra of rank m with m > 2 and let α ∈ End B
with 0 6 rank α = r 6 m− 2. Then there exist β, γ ∈ End B with rank β = rank γ = r + 1
such that α = βγ and γ is idempotent.

Proof. If rank α = 0 so that Im α = 〈∅〉, let {x1, . . . , xm} be a basis for B and define
β, γ ∈ End B by

xiβ =

{

xm if i = m

xiα otherwise
and xiγ =

{

x1 if i = 1

xiα otherwise.

Since 2 6 m, it is clear that α = βγ, that β, γ have rank 1 and in this case, both β and γ
are idempotent.

If rank α = r > 0, then by Lemma 2.12, there is a basis {x1, . . . , xm} for B such
{x1α, . . . , xrα} is a basis for Im α. Let {y1, . . . , yr} be a basis for PC(Im α) where {y1, . . . , ym}
is a basis for B. Define β ∈ End B by

xiβ =

{

xiα if 1 6 i 6 r

yr+1 if i = r + 1.

Then

Im β = 〈x1α, . . . , xrα, yr+1, xr+2α, . . . , xnα〉 = 〈x1α, . . . , xrα, yr+1〉
so that by Lemma 1.1, rankβ 6 r + 1. But Im α ⊆ Im β so that PC(Im α) ⊆ PC(Im β).
Hence

{y1, . . . , yr, yr+1} ⊆ PC(Im β)

so that

r + 1 6 rank PC(Im β) = rank(Im β) = rankβ,

giving rankβ = r + 1.
We now define γ ∈ End B by putting

yiγ =











yi if 1 6 i 6 r

xr+1α if i = r + 1

yr+2 if r + 2 6 i 6 m.

Then

Im γ = 〈y1, . . . , yr, xr+1α, yr+2〉 = 〈y1, . . . , yr, yr+2〉
so that rank γ = r + 1.

We have

xr+1βγ = yr+1γ = xr+1α
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and for i 6= r + 1,

xiβγ = xiαγ = xiα,

since aγ = a for all a ∈ PC(Im α). Thus α = βγ. Since Im γ = 〈y1, . . . , yr, yr+2〉, we see
that γ is idempotent. �

Now let α be any endomorphism of B of rank r with r < m. It follows from the lemma
that α can be written as a product of endomorphisms (of B) of rank m− 1. If we assume
condition (1), then each factor in this product can be written as a product of idempotent
endomorphisms. But by Lemma 2.6, each of these idempotents must have rank m−1, and
hence α ∈ 〈EB

1 〉. Thus (2) holds.
Our next aim is to show the equivalence of conditions (4) and (5).

Lemma 3.3. Let A be a stable basis algebra and let ε1, . . . , εk be idempotents of finite rank
r in End A. If εkεk−1 . . . ε1 is regular of rank r, then for i ∈ {1, . . . , k − 1} both εk . . . εi

and εi+1εi are regular of rank r.

Proof. From Lemma 2.8 we know that εk . . . εi and εi+1εi have rank r. From Corollary 2.9
we have that

εk . . . ε1 R
∗ εk R

∗ εk . . . εi

so that by Lemma 2.1 we have that εk . . . εi is regular. Again using Corollary 2.9 we have
that

εk . . . εi L
∗ εi L

∗ εi+1εi

and now Lemma 2.1 gives that εi+1εi is regular. �

Lemma 3.4. Let A be a stable basis algebra and let α1, . . . , αk ∈ End A be regular of finite
rank r such that the product αk . . . α1 is also regular of rank r. Then

Ker αk . . . α1 = Kerαk

and

Im αk . . . α1 = Im α1.

Proof. From Corollary 2.9 we know that

αk R
∗ αk . . . α1 L

∗ α1

so that by Lemmas 2.2 and 2.3 we have that

Ker αk = Ker αk . . . α1 and PC(Im αk . . . α1) = PC(Im α1).

But αk . . . α1 and α1 are regular, so that by Lemma 2.4 we have

Im αk . . . α1 = Im α1.

�

We are now in a position to prove that (4) implies (5).
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Lemma 3.5. Let B be a stable basis algebra and let (ρ, C) be an endomorphism pair with
C of finite rank r. If H∗

(ρ,C) contains a regular element which is a product of k idempotents
of rank r, then there are pure subalgebras C1, . . . , Ck of B and congruences ρ1, . . . , ρk on
B with C = C1, ρ = ρk and such that for all i, j with 1 6 i 6 k and 1 6 j 6 k − 1, (ρi, Ci)
and (ρj , Cj+1) are idempotent endomorphism pairs.

Proof. Let α ∈ H∗

(ρ,C) be regular such that α = εk . . . ε1 is a product of k idempotents of

rank r. For 1 6 i 6 k put Ci = Im εi and ρi = Ker εi, so that (ρi, Ci) is an idempotent
endomorphism pair. By Lemma 3.4 we have that

C = PC(Im α) = Im α = Im εk . . . ε1 = Im ε1 = C1

and

ρk = Ker εk = Ker εk . . . ε1 = Kerα = ρ.

From Lemma 3.3, εj+1εj is regular of rank r, for 1 6 j 6 k − 1. Since

εj+1 R
∗ εj+1εj L

∗ εj

and εj+1, εj+1εj and εj are regular, the comments at the beginning of Section 2 give that

εj+1 R εj+1εj L εj.

By a classical result of semigroup theory (see, for example, [15, Proposition 2.3.7]), we
have that Rεj

∩Lεj+1
contains an idempotent ηj . Certainly then ηj ∈ R∗

εj
∩L∗

εj+1
. We have

Ker ηj = Ker εj = ρj ,

and as εj+1 is regular,

PC(Im ηj) = PC(Im εj+1) = Im εj+1 = Cj+1

so that H∗

ηj
= H∗

(ρj ,Cj+1) and (ρj , Cj+1) is an idempotent endomorphism pair. �

As a consequence of the following lemma we have that (5) implies (4).

Lemma 3.6. Let B be an stable basis algebra of rank m. Suppose that for any endomor-
phism pair (ρ, C) with rank C = m − 1 there are pure subalgebras C1, . . . , Ck of B and
congruences ρ1, . . . , ρk with C = C1, ρ = ρk and such that for all i, j with 1 6 i 6 k and
1 6 j 6 k − 1, (ρi, Ci) and (ρj , Cj+1) are idempotent endomorphism pairs. Then every
H ∗-class contained in D∗

m−1 contains a regular element which is a product of idempotents.

Proof. Let (ρ, C) be an endomorphism pair with rankC = m − 1. Let C1, . . . , Ck and
ρ1, . . . , ρk be chosen as in the statement of the lemma. For each i ∈ {1, . . . , k} let εi =
ε2

i ∈ H∗

(ρi,Ci)
and for each j ∈ {1, . . . , k − 1} let ηj = η2

j ∈ H∗

(ρj ,Cj+1). Consider the product
εk . . . ε1.

Since

Ker η1 = ρ1 = Ker ε1

and

Im η1 = C2 = Im ε2
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we have that
ε2 L η1 R ε1.

By Proposition 2.3.7 of [15],
ε2 R ε2ε1 L ε1.

Suppose we have shown inductively that

εj R εj . . . ε1 L ε1

for j ∈ {1, . . . , k − 1}. By a now familiar argument we have

εj+1 L ηj R εj . . . ε1

so that again by Proposition 2.3.7 of [15],

εj+1 R εj+1 . . . ε1 L εj . . . ε1 L ε1.

By finite induction we have
εk R εk . . . ε1 L ε1.

In particular, α = εk . . . ε1 is regular,

Im α = Im ε1 = C1 = C

and
Ker α = Ker εk = ρk = ρ

so that α ∈ H∗

(ρ,B). The result now follows from Proposition 2.10. �

Our next goal is to show that the first two conditions are linked to the last two by
showing that conditions (2) and (4) are equivalent. One implication is easy, for if (2)
holds and B is a pure subalgebra of A with rankB > 2, then since B is an stable basis
algebra, Lemma 2.5 gives that every H ∗-class of End B contains a regular element. Hence
condition (4) holds.

We now proceed to show the reverse implication, which requires some care. The crux of
the proof is in the following two lemmas.

Lemma 3.7. Let A be a stable basis algebra with basis {x1, x2} and define

(ρ, C) = (〈〈(x1, x2)〉〉, 〈x2〉).
Then (ρ, C) is an idempotent endomorphism pair and every element of H∗

(ρ,C) is a product
of idempotents.

Proof. That (ρ, C) is an idempotent endomorphism pair follows from Lemma 2.11.
Suppose that α ∈ H∗

(ρ,C). Then

Im α = 〈x1α, x2α〉 = 〈x2α〉
and

Im α ⊆ PC(Im α) = 〈x2〉.
Define ε1, ε2 ∈ End A by

x1ε1 = x2ε2 = x1

11



and

x1ε2 = x2α, x2ε2 = x2.

Clearly, ε2
1 = ε1 and x2ε2 = x2ε

2
2. Now x2α = t(x2) for some term t, which gives that

x1ε
2
2 = (x2α)ε2 = t(x2)ε2 = t(x2ε2) = t(x2) = x2α = x1ε2

so that ε2
2 = ε2. Further,

x1ε1ε2 = x1ε2 = x2α = x1α

and

x2ε1ε2 = x1ε2 = x2α

so that α = ε1ε2. �

Lemma 3.8. Let B be a stable basis algebra with basis {x1, . . . , xm} where 2 6 m and
define

(ρ, C) = (〈〈(x1, x2)〉〉, 〈x2, . . . , xm〉).
Then (ρ, C) is an idempotent endomorphism pair and, if B satisfies condition (4), then
every element of H∗

(ρ,C) is a product of idempotents.

Proof. By Lemma 2.11, (ρ, C) is certainly an idempotent endomorphism pair.
If m = 2, the result is Lemma 3.7. Assume that 3 6 m and that the lemma holds for all

stable basis algebras of rank m − 1.
By Lemmas 1.2 and 1.3, C is a pure subalgebra of B, and is a stable basis algebra.

Moreover, any pure subalgebra of C is a pure subalgebra of B and thus C satisfies con-
dition (4). Clearly, C has rank m − 1 and so the induction hypothesis applies. Hence
there is an H ∗-class H∗ of End C in D∗

m−2 containing an idempotent and such that every
element of H∗ is a product of idempotents. Now, applying Proposition 2.13 to End C we
have that every element of D∗

m−2 can be written in the form γβδ for some β ∈ H∗ and
regular elements γ, δ in D∗

m−2. Now β is a product of idempotents, and by condition (4), γ
and δ can be chosen to be products of idempotents. Thus every element of D∗

m−2 in End C
is a product of idempotents.

Let α ∈ H∗

(ρ,C) so that

Im α = 〈x2α, . . . , xmα〉,
and as rankα = m − 1, {x2α, . . . , xmα} is a basis for Im α. Now

Im α ⊆ PC(Im α) = 〈x2, . . . , xm〉.
Let β ∈ End C be defined by

x2β = x3α
xiβ = xiα 3 6 i 6 m.

Then

Im β = 〈x3α, . . . , xmα〉
so that rankβ = m − 2, that is, β ∈ D∗

m−2. Hence there are idempotents ε1, . . . , εk in
End C such that β = ε1 . . . εk.

12



Define ε′i ∈ End B by

x1ε
′

i = x1

xjε
′

i = xjεi 2 6 j 6 m.

To see that each ε′i is idempotent, notice that for j ∈ {2, . . . , m} we have xjεi = tj(x2, . . . , xm)
for some term tj . Then

xjε
′

iε
′

i = (xjεi)ε
′

i = tj(x2, . . . , xm)ε′i = tj(x2ε
′

i, . . . , xmε′i) =

tj(x2εi, . . . , xmεi) = tj(x2, . . . , xm)εi = xjεiεi = xjεi = xjε
′

i.

We define two further idempotents in End B, ϕ and η by putting

x1ϕ = x2ϕ = x1

xiϕ = xi 3 6 i 6 m
x1η = x1α
xiη = xi 2 6 i 6 m.

Clearly ϕ is idempotent and since Im η ⊆ C and η is the identity on C, η is also idempotent.
For i ∈ {1, 2} we have

xiϕε′1 . . . ε′kη = x1η = xiα.

Let j ∈ {3, . . . , m}. Then

xjϕε′1 . . . ε′kη = xjε
′

1 . . . ε′kη

But xj ∈ C and each ε′i maps C into C; moreover, the restriction of ε′i to C is εi, and it
follows that

xjϕε′1 . . . ε′kη = xjε1 . . . εkη = xjβη = xjαη = xjα

since η is the identity on C. Hence α = ϕε′1 . . . ε′kη as required.
�

If B is a stable basis algebra of finite rank m > 2 which satisfies condition (4), then it
follows from Lemma 3.8 and Proposition 2.13 (as in the above proof) that every element
of D∗

m−1 is a product of idempotents (of rank m − 1). It now follows from Lemma 3.2
that 〈EB

1 〉 = SB
m−1. We can now conclude that if A is a stable basis algebra which satisfies

condition (4), then condition (2) holds for A.

Finally we show that (3) is a consequence of the remaining conditions. Suppose that
condition (2) holds, let B be a pure subalgebra of A with rank m > 2 and consider an
H ∗-class H∗ of End B consisting of endomorphisms of rank r, where 1 6 r 6 m − 1.
By Lemma 2.5, H∗ contains a regular element, say α. By condition (2), we know that
α = ε1 . . . εk for some idempotents εi of rank m − 1. We now call upon Lemma 1 of [13]
to write α as a product ν1 . . . νk of idempotents D-related to α. But D ⊆ D∗ so that the
idempotents νi have rank r and are thus in EB

m−r.
In view of Proposition 2.13, to complete the proof that (3) holds it is enough to show

that every element of H∗

(ρ,C) is a product of idempotents of rank r, where

(ρ, C) = (〈〈(x1, y1), . . . , (x1, ym−r)〉〉, 〈x1, . . . , xr〉)
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and {x1, . . . , xr, y1, . . . , ym−r} is a basis for B. By Lemma 2.11 we know that (ρ, C) is an
idempotent endomorphism pair for B. Let β ∈ H∗

(ρ,C). Then

Im β = 〈x1β, . . . , xrβ, y1β, . . . , ym−rβ〉 = 〈x1β, . . . , xrβ〉.
Put D = 〈x1, . . . , xr, y1〉. Then Im β ⊆ D and D is a pure subalgebra of A. Let γ be the
restriction of β to D, so that γ ∈ End D. Now Im γ = Im β so that rank γ = r. We know
rank D = r + 1 so by (2) there are idempotents εi ∈ End D such that γ = ε1 . . . εk and
rank εi = r, for i ∈ {1, . . . , k}. Extend each εi to an endomorphism ε′i of B by putting

xjε
′

i = xjεi for 1 6 j 6 r
yjε

′

i = y1εi for 1 6 j 6 m − r.

Now for any i ∈ {1, . . . , k}, Im ε′i = Im εi and as εi is the restriction of ε′i to D, it follows
that each ε′i is idempotent and rank ε′i = rank εi = r. Further, for j ∈ {1, . . . , r} we have

xjε
′

1 . . . ε′k = xjε1 . . . εk = xjγ = xjβ

and for ℓ ∈ {1, . . . , m − r} we have

yℓε
′

1 . . . ε′k = y1ε1ε
′

2 . . . ε′k = y1ε1ε2 . . . εk = y1γ = y1β = yℓβ.

It follows that β = ε′1 . . . ε′k and consequently, (3) holds. �

4. Examples

In this section, we illustrate Theorem 3.1 and relate it to known results by considering
some specific examples of stable basis algebras.

4.1. Independence algebras. An independence algebra A of finite rank n is certainly a
stable basis algebra. It is known [10] (see also [1]) that every endomorphism of A of rank
strictly less than n is a product of idempotent endomorphisms. We can also obtain this
result by using Theorem 3.1 and a preliminary result of [10]. First, we recall that in this
case End A is regular, so that H ∗ = H , etc. Now, by Corollary 2.4 of [10], every H -class
contained in Dn−1 contains an element which is a product of (at most 3) idempotents.
Since this is true for all n, it follows that condition (4) of Theorem 3.1 holds.

4.2. Modules. As remarked in the introduction, finitely generated free modules over Be-
zout domains are stable basis algebras, and so we can specialise Theorem 3.1 to this case.
For an endomorphism of a module, the kernel is a submodule, and specialising the notion
of endomorphism pair leads to that of a weakly complementary pair of finitely generated
pure submodules. Recall that a submodule N of a torsion-free R-module over an inte-
gral domain R is pure if whenever rm ∈ N for some r ∈ R, r 6= 0, m ∈ M we have
m ∈ N . Let R be a Bezout domain and F be a finitely generated free module over R.
Let A, B be finitely generated pure submodules of F . The pair (A, B) is complementary
if F = A + B and A ∩ B = 0 (this corresponds to an idempotent endomorphism pair);
it is weakly complementary if for some positive integer k there are finitely generated pure
submodules C1, . . . , Ck, D1, . . . , Dk with A = C1, B = Dk and such that the pairs (Ci, Di)
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and (Cj+1, Dj) are complementary for i = 1, . . . , k and j = 1, . . . , k − 1. Then the spe-
cialisation of Theorem 3.1 gives part of the main theorem of [18] which also provides two
further conditions equivalent to the others:

(6) every invertible 2 × 2 matrix over R is a product of elementary matrices;
(7) every invertible matrix over R is a product of elementary matrices.

In general, integral domains which satisfy (6) are called GE2-rings in [3], and those
which satisfy (7) are called GE-rings. Here, GE stands for generalised Euclidean, and
as Ruitenberg [18] points out, it is well known that a matrix over a Euclidean domain
can be reduced to a diagonal matrix by elementary row and column operations so that
condition (7) holds for such a domain. Euclidean domains are certainly Bezout domains,
and so, for all n > 2, every n× n matrix over a Euclidean domain of rank at most n− 1 is
a product of idempotent matrices. This result was also proved by Laffey [16] who reduced
the problem to the case of 2×2 matrices. Using this reduction (or Ruitenberg’s result), an
alternative approach would be to verify condition (5) of Theorem 3.1 for n = 2 as described
below.

Let R be a (commutative) principal ideal domain. Clearly, the submodule 〈(a, b)〉 of
R2 is pure if and only if a, b are coprime, and in this case we say that the pair (a, b)
is pure. Also, it is not difficult to see that the pure submodules 〈(a, b)〉, 〈(c, d)〉 form a
complementary pair if and only if the matrix

(

a c
b d

)

is invertible. Let (a1, b1), (a2, b2) be pure pairs in R2. We say that there is a link from
(a1, b1) to (a2, b2) if, for some positive integer k, there are pairs (ci, di), (ei, fi) for i =
1, . . . , k such that (a1, b1) = (c1, d1), (a2, b2) = (ek, fk) and the matrices

(

ci ei

di fi

)

and

(

cj+1 ej

dj+1 fj

)

are invertible for i = 1, . . . , k and j = 1, . . . , k − 1.
We note that condition (5) for R2 becomes:

(5′) For any two pure pairs (a1, b1), (a2, b2) in R2, there is a link from (a1, b1) to (a2, b2).

Suppose that there is a link as described above from (a1, b1) to (a2, b2). Then by reversing
the sequence of matrices and interchanging the columns in each matrix we see that there
is a link from (a2, b2) to (a1, b1).

Now suppose that there is a link from (a1, b1) to (a2, b2) and a link from (a2, b2) to
(a3, b3). Say the pairs (ci, di) and (ei, fi) for i = 1, . . . , k give a link from (a1, b1) to (a2, b2),
and the pairs (rj, sj) and (tj , uj) for j = 1, . . . , h give a link from (a2, b2) to (a3, b3). Then
the matrix

(

ck ek

dk fk

)

is invertible and so there are elements x, y in R such that

xck + ydk = 1 = xek + yfk.
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It is now easy to see that the sequences of pairs

(c1, d1), . . . , (ck, dk), (y,−x), (r1, s1), . . . , (rh, sh) and

(e1, f1), . . . , (ek, fk), (ck, dk), (t1, u1), . . . , (th, uh)

give a link from (a1, b1) to (a3, b3).
Finally, observe that if the pairs (ci, di) and (ei, fi) for i = 1, . . . , k give a link from

(a1, b1) to (u, 0) where u is a unit, then replacing (u, 0) (that is, (ek, fk)) by (1, 0) gives a
link from (a1, b1) to (1, 0).

These observations together show that condition (5′) is equivalent to

(5′′) For any pure pair (a, b) in R2, there is a link from (a, b) to (u, 0) for some unit u.

Now suppose that R is a Euclidean domain with valuation δ, and let (a, b) be a pure
pair in R2. If a = 0, then b must be a unit, and so taking (e1, f1) = (1, 0) gives a link from
(a, b) to (1, 0). If a is a unit, then taking (e1, f1) = (0, 1) gives a link from (a, b) to (0, 1),
and hence this can be extended to give a link to (1, 0).

Now let a be a nonzero non-unit so that δ(a) > δ(1) and suppose inductively that for
all pure (c, d) with δ(c) < δ(a), there is a link from (c, d) to (u, 0) for some unit u. It now
suffices to show that there are elements c, d, e, f in R with c = 0 or δ(c) < δ(a) such that
the matrices

(

a e
b f

)

and

(

c e
d f

)

are invertible. Since a, b are coprime there are elements x, y in R with ax + by = 1. Since
a is not a unit, it cannot be a factor of y and so y = qa + r for some q, r with δ(r) < δ(a).
Put e = −r and f = x + bq so that af − be = 1. If e is a unit, put c = 0, d = 1.
Otherwise, the same argument gives that ed − fc = 1 for some d, c ∈ R with c 6= 0 and
δ(c) < δ(r) = δ(e) < δ(a).

Thus the required elements exist.

Laffey [16] also raised the question of whether for all n, every n×n matrix of rank at most
n−1 over an arbitrary principal ideal domain R can be written as a product of idempotents.
The answer is no: in view of Ruitenberg’s result that (6) and (7) are equivalent to this
property, the question is equivalent to asking if all principal ideal domains are GE2-rings.
In [3], Cohn shows that, among other examples, the ring of integers in Q(

√
−19) is not a

GE2-ring.

4.3. Acts. Our third canonical example of a basis algebra is a free left T -set over a can-
cellative left Ore domain. We remark that if T is a monoid in which every finitely generated
left ideal is principal, then T is certainly left Ore. For if s, t ∈ T , then Ts∪Tt is principal,
whence Ts ∪ Tt = Tt or Ts ∪ Tt = Ts. It follows that s = rt or t = rs for some r ∈ T .

Lemma 4.1. Let A be a free left T -act on a set X with |X| = n, where T is a cancellative
monoid in which every finitely generated left ideal is principal. Then A is an stable basis
algebra.

16



Proof. We call upon the results of [8]. Since every finitely generated left ideal of T is
principal, it follows that T is left Ore. Certainly A is faithful as a left T -act, whence in the
notation of [8], T ∼= T ∗

1 = T1. From Corollary 5.6 and Lemma 7.1 of [8], together with the
fact A is relatively free with basis X, we have that A is a basis algebra. Now Proposition
7.5 of [8] gives that A is stable.

It is easy to see that the pure subalgebras of A all have the form

B =
⋃

y∈Y

Ty

where Y ⊆ X and any basis of B is of the form

{uyy : y ∈ Y }
where each uy is a unit of T .

�

Theorem 4.2. Let A be a free left T -act on a set X with |X| = n > 2, where T is a
cancellative monoid in which every finitely generated left ideal is principal. Then every
endomorphism of A of rank less than n is a product of idempotent endomorphisms.

Proof. Let B be a free T -act on a set Y where 2 6 |Y | = m. We show that every regular
element of End B of rank m − 1 is a product of idempotents. The required result then
follows from Proposition 2.5 and Theorem 3.1.

Let α ∈ D∗

m−1 be regular. Then

Im α = PC(Im α) = C,

where rank C = m − 1. Put Y = {y1, . . . , ym} and without loss of generality suppose that

C = Ty2 ∪ . . . ∪ Tym.

Now
Im α = 〈y1α, . . . , ymα〉 = 〈y2, . . . , ym〉

and it follows that for some i < j we must have

〈yiα, yjα〉 = 〈ya(i)〉
and for k ∈ {1, . . . , m} \ {i, j},

〈ykα〉 = 〈ya(k)〉
where

a : {1, . . . , m} \ {i, j} → {2, . . . , m} \ {a(i)}
is a bijection.

Again without loss of generality we may assume that

yiα = rya(i), yjα = sya(i) and s = tr

for some r, s, t ∈ T . Thus
yjα = sya(i) = trya(i) = tyiα

and further,
〈yiα〉 = 〈ya(i)〉.
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From the proof of Lemma 4.1 we deduce that r ∈ G, where G is the group of units of T ,
and for k ∈ {1, . . . , n} \ {i, j},

ykα = ukya(k)

where each uk ∈ G.
Define β ∈ End B by

yℓβ =

{

sr−1yi if ℓ = j

yℓ otherwise

so that β = β2.
Now consider the G-set D = Gy1∪. . . Gym. From [11] we have that D is an independence

algebra. Define γ ∈ End D by

ykγ =











rya(i) if k = i

ya(i) if k = j

ukya(k) otherwise.

Clearly rank γ = m − 1. From Theorem 2.1 of [10] we know that End D has our desired
property, namely, γ = ε1 . . . εp for some idempotents εi ∈ End D. For each i ∈ {1, . . . , p}
we define ε′i ∈ End B by

yε′i = yεi for all y ∈ Y.

Since ε′i extends εi, it is clear that ε′i is idempotent for all i ∈ {1, . . . , p}. We claim that
α = βε′1 . . . ε′p.

Using the fact that each εi maps D to D, and is the restriction to D of ε′i, we have for
k ∈ {1, . . . , m} \ {i, j},

ykβε′1 . . . ε′p = ykε
′

1 . . . ε′p = ykε1 . . . εp = ykγ = ukya(k) = ykα

and similarly,

yiβε′1 . . . ε′p = yiε
′

1 . . . ε′p = yiγ = rya(i) = yiα.

Finally,

yjβε′1 . . . ε′p = (sr−1yi)ε
′

1 . . . ε′p = (sr−1)(yiε
′

1 . . . ε′p) = (sr−1)(yiγ) = (sr−1)(rya(i)) = sya(i) = yjα.

It follows that α = βε′1 . . . ε′p, completing the proof as required. �
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