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ABSTRACT

The relation R̃ on a monoid S provides a natural generalisation of Green’s relation R.

If every R̃-class of S contains an idempotent, S is left semiabundant; if R̃ is a left con-
gruence then S satisfies (CL). Regular monoids, indeed left abundant monoids, are left
semiabundant and satisfy (CL). However, the class of left semiabundant monoids is much
larger, as we illustrate with a number of examples.

This is the first of three related papers exploring the relationship between unipotent

monoids and left semiabundancy. We consider the situations where the power enlargement

or the Szendrei expansion of a monoid yields a left semiabundant monoid with (CL). Using

the Szendrei expansion and the notion of the least unipotent monoid congruence σ on a
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monoid S, we construct functors (•̃)SR : U → F and F
σ : F → U such that (•̃)SR is a

left adjoint of F
σ. Here U is the category of unipotent monoids and F is a category of

left semiabundant monoids with properties echoing those of F-inverse monoids.

1. Introduction

The relation R̃ is defined on a monoid S by the rule that a R̃ b if and
only if a and b have the same set of idempotent left identities. Green’s

relation R is contained in R̃, indeed R ⊆ R∗ ⊆ R̃ where a R∗ b if
and only if a R b in some oversemigroup of S. When restricted to the

regular elements of S, R∗ and R̃ coincide with R.
A monoid S is left abundant if every R∗-class contains an idempo-

tent and left semiabundant if every R̃-class contains an idempotent.
Thus left abundant and left semiabundant monoids provide successive
generalisations of regular monoids. If S is left (semi)abundant and the
idempotents E(S) of S commute, then S is left (semi)adequate. It is
easy to see that in a left (semi)adequate monoid the idempotent in the

R∗-class (R̃-class) of a ∈ S is unique; in either case we denote this
element by a+. There is little chance of ambiguity here as if S is left

abundant then R∗ = R̃. The relation R∗ is clearly a left congruence;

R̃ need not be (for an example, see [6]). If R̃ is a left congruence, we
say that S satisfies condition (CL).

A left adequate monoid S in which

ae = (ae)+a (AL)

for all a ∈ S and e ∈ E(S) is called left ample (formerly left type A
[4]). If S is left semiadequate and satisfies (CL) and (AL) then S is
weakly left ample.

Any regular monoid is left abundant and any inverse monoid is left
ample. However, the classes of left abundant and left ample monoids
are much larger than the classes of regular and inverse monoids. For
example, any right cancellative monoid T and any Bruck-Reilly semi-
group BR(T, θ) over T is left ample. More surprisingly, papers by a
number of authors have shown that right cancellative monoids play a
role in the general structure of left abundant, left adequate and left
ample monoids analogous to that played by groups in the structure of
regular and inverse monoids, see for example [3],[5].

As R∗ = R̃ on a left abundant monoid S [6], it is clear that every left
abundant (left adequate, left ample) monoid is left semiabundant (left
semiadequate, weakly left ample). For a simple example of a weakly
left ample monoid that is not left ample, take any unipotent monoid
T which is not right cancellative, or indeed any Bruck-Reilly extension



3

of T . Further examples of left semiabundant and left semiadequate
monoids are given in Section 3. These include endomorphism monoids
of certain free algebras. The basic philosophy of this paper and the
two which succeed it [9], [10] is that unipotent monoids play the role
for left semiabundant and left semiadequate monoids with (CL), and
for weakly left ample monoids, that right cancellative monoids fulfill
for left abundant, left adequate and left ample monoids respectively.

As in [11] we define an enlargement to be a functor (•) from the
category of monoids M into some special category of monoids. If in
addition there is a natural transformation η from (•) to the identity
functor, such that ηS is surjective for each monoid S, then in the termi-
nology introduced by Birget and Rhodes [1], (•) is an expansion. Thus

an enlargement (•) is an expansion if for each monoid S there is a sur-
jective morphism ηS : S → S such that if θ : S → T is a morphism,
then θηT = ηSθ; moreover, θ is onto if θ is.

Of course, in order for an enlargement (•) to be of use we require
at least that the structure of S be related in some reasonable way to
that of S. The notion of expansion takes us in this direction; in this
case certainly S is a morphic image of its expansion S. However, there
are enlargements which fail to be expansions, yet which have proved to
be an interesting tool for classifying monoids. The example considered
here is that of the power enlargement. This can, however, be modified
to produce expansions which we call Szendrei expansions.

Power enlargements, related enlargements and Szendrei expansions
have been studied by a number of authors. In [17] Sullivan characterises
those monoids for which the power enlargement P(S) is regular, and
Fountain and Gomes do the same for the Szendrei expansion (•̃)SR

in [5] (in fact they consider the left-right dual (•̃)SL). Monoids for

which P(S) or S̃SR is left abundant are described in [11]. In partic-

ular, T̃ SR is left abundant for any right cancellative monoid T . In
this paper we characterise those monoids S for which P(S) or S̃SR is
left semiabundant or left semiadequate with (CL). It emerges that the
power enlargement yields nothing new, in the sense that P(S) is left
semiabundant with (CL) if and only if P(S) is left abundant. The

expansion (•̃)SR is more interesting; in particular, S̃SR is weakly left
ample if and only if S is a unipotent monoid or the two element chain.

In a subsequent paper [10] we show that if S is a weakly left ample
monoid then the least unipotent monoid congruence σ on S is given by
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the rule that

a σ b if and only if ea = eb for some e ∈ E(S),

that is, σ has the same description as the least right cancellative con-
gruence on a left ample monoid [3] or the least group congruence on
an inverse monoid [14]. If S is weakly left ample then S is partially
ordered by ≤ where a ≤ b if and only if a = eb for some e ∈ E(S);
clearly ≤ restricted to E(S) coincides with the usual partial ordering of
E(S) as a semilattice. In line with the terminology of [5] we say that a
weakly left ample monoid in which the σ-class [a] of any element a ∈ S
contains a maximum element m(a), is weakly left FA if for all a, b ∈ S

m(a)+m(ab)+ = (m(a)m(b))+ (FL).

We denote the category of weakly left FA monoids and appropriate
morphisms by F and the category of unipotent monoids and monoid

morphisms by U. In the latter part of this paper we show that S̃SR

is weakly left FA for a unipotent monoid S and construct functors
(•̃)SR : U → F and F σ : F → U such that (•̃)SR is a left adjoint of F σ.
This works exactly as in the corresponding case for right cancellative
monoids and left FA monoids [5]. The original result for groups and
F-inverse monoids is due to Szendrei [18].

After a section of preliminaries we concentrate in Section 3 on giving
a selection of examples of left semiabundant and left semiadequate
monoids. In Section 4 we consider the power enlargement P(S) of a
monoid S. We show that if P(S) is left semiabundant with (CL) then
S is a group G with at most two elements, or S is an ideal extension
of a royal band B by such a group G, where for all a ∈ G and e ∈ B,
ae = e. It is known that this is equivalent to the left abundancy of
P(S) [11].

In Section 5 we show that the Szendrei expansion S̃SR of a monoid S
is left semiabundant with (CL) if and only if S is a unipotent monoid
or S is an ideal extension of a royal band B by a unipotent monoid

M such that for all m ∈ M and e ∈ B, em = e. We deduce that S̃SR

is weakly left ample if and only if S is a unipotent monoid or the two
element chain.

In the final section we observe that if S is a unipotent monoid then

S̃SR is weakly left FA. Consequently, S̃SR is proper in the sense that

R̃ ∩ σ = ι (see [10]). We then define the functors (•̃)SR and F σ and
indicate that (•̃)SR is a left adjoint of F σ. Much of the detail of the
proof is omitted since it is essentially the same as that given in Section
4 of [5].
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For further results on left semiabundant monoids and monoids sat-
isfying the corresponding two-sided properties, see [2] (where these no-
tions were introduced), [13] and [6].

2. Preliminaries

In this section we gather together some elementary facts and defini-
tions which will be made use of later in the paper.

First we remark that the left-handed definitions given in the intro-
duction may be dualised to obtain their right-handed versions. For

example, the relation L̃ is defined on a monoid S by the rule that a L̃ b
if and only if a and b have the same set of idempotent right identities,
that is,

ae = a if and only if be = b

for all e ∈ E(S). The monoid S is then right semiabundant if every L̃-
class contains an idempotent. If S is both left and right (semi)abundant
then we say that S is (semi)abundant. The definitions of a (semi)adequ-
ate monoid and a (weakly) ample monoid are formed in the same man-
ner from the left- and right-handed versions.

The following easy lemma and its corollary will be used repeatedly.

Lemma 2.1. Let S be a monoid, a ∈ S and e ∈ E(S). Then a R̃ e if
and only if ea = a and for any f ∈ E(S), if fa = a then fe = e .

The lemma is saying that an element a of a monoid S is R̃-related
to an idempotent e if and only if e is minimum under the quasi-order
induced by R on the set Ea of idempotent left identities of a. A trivial
but useful consequence is that if Ea = {1}, then a R̃ 1.

Corollary 2.2. Let S be a monoid and e, f ∈ E(S). Then e R̃ f if
and only if e R f .

Many of the monoids which arise in this paper are ideal extensions
of royal bands. We do not assume that bands are monoids. Recall that
a monoid S is an ideal extension of I if I is an ideal of S; we make
a slight departure from standard terminology by defining S to be an
ideal extension of I by M if I is an ideal of S and M = S \ I. It is clear
that if M 6= ∅ then M must contain the identity of S. A semigroup is
royal if it cannot be generated by any of its proper subsets. Howie and
Giraldes prove in [8] that a band B is royal precisely when its J -order
is a chain, if Je < Jf then e < f for all e, f ∈ B, and each J -class is
a left zero semigroup or a right zero semigroup. It is then easy to see
that a band B is royal if and only if for all e, f ∈ B, ef ∈ {e, f}.

The last lemma of the section is easy to check.
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Lemma 2.3. A monoid is left semiabundant with (CL) if and only
if the monoid obtained by adjoining a zero is left semiabundant with
(CL).

3. Examples

We begin by noting that a unipotent monoid S is weakly ample; S
is then left (right) ample if and only if S is right (left) cancellative.

It is easy to construct left semiabundant and left semiadequate monoids
from a given unipotent monoid S. For example, let I,Λ be non-empty
sets and let P be a Λ × I matrix over S ∪ {0} such that every column
of P contains a unit of S. Then it is straightforward to show that
the Rees matrix semigroup M0(S; I,Λ;P ), with an adjoined identity,
is left semiabundant with (CL). Similarly, the Rees matrix semigroup
M0(S; I, I;Q) with an adjoined identity, where Q is the identity ma-
trix, is semiadequate, indeed weakly ample. Further, for any endomor-
phism θ of S, the Bruck-Reilly semigroup BR(S, θ) over S is weakly
ample. All these monoids fail to be left abundant unless S is right
cancellative.

Other popular constructions yield other relevant examples. For in-
stance, the Schützenberger product M ⋄ N of unipotent monoids M
and N is semiadequate and satisfies (CR) ((CL)) if and only if M is
left cancellative (N is right cancellative) [6]. For M ⋄ N to be right
adequate we need in addition that N be left cancellative [6]. If M is
left cancellative but not a group, then M ⋄N fails to have (AR) [6]. On
the other hand, the following table gives the multiplication in a four
element monoid S = {1, e, a, b} which is commutative, semiadequate,
has (AL) and (AR), but fails to have (CL) and (CR).

. 1 e a b
1 1 e a b
e e e b b
a a b e e
b b b e e

The results of [7] show that the endomorphism monoid of any basis
algebra (for the definition, see [7]) is abundant. Examples of basis
algebras given in [7] are free R-modules on a finite set, where R is a
principal ideal domain, and free S sets on a finite set, where S is a
commutative cancellative principal ideal monoid.

We now consider the endomorphism ring of a free R-module of rank
2 over an integral domain R; in other words we look at the matrix ring
M2(R).
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Theorem 3.1. Let R be an integral domain. Then M2(R) is semiabun-
dant. If R is a unique factorisation domain which is not a principal
ideal domain, then M2(R) is not abundant and (CL) and (CR) do not
hold.

Proof Let Q be the field of quotients of R. Clearly M2(R) is a sub-
ring of the matrix ring M2(Q) over the field Q; matrices in M2(R) thus
have a well defined rank, namely, their rank in the over-ring M2(Q).
Let B ∈ M2(R). If rank B = 2, then B is invertible in M2(Q), hence

cancellable in M2(R), so that certainly B R̃ I2 =

(
1 0
0 1

)
. If rank

B = 1, then either I2 is the only idempotent left identity of B, in

which case B R̃ I2, or B has an idempotent left identity E, where
rank E = 1. In the latter case EB = B 6= 0, where E and B may be
regarded as elements of the completely 0-simple semigroup of matrices
of M2(Q) consisting of those matrices of rank 1 together with the zero

matrix (see [15]). It follows that E R B in M2(Q) and so E R̃ B in
M2(R) (indeed E R∗ B in M2(R)). Thus M2(R) is left semiabundant.

Suppose now that R is a unique factorisation domain which is not a
principal ideal domain. We show that M2(R) is not left abundant.

Let a, b ∈ R be such that aR + bR is not a principal ideal. By
factoring from a and b their highest common factor, we may assume

that a and b are coprime. Let A =

(
a a
b b

)
. We show that I2 is the

only idempotent left identity of A.

Let E =

(
e f
g h

)
be an idempotent such that EA = A. Then

(1) fb = (1 − e)a, ga = (1 − h)b.

As aR + bR is not principal, none of f, 1 − e, g, 1 − h can be units, in
particular, e 6= 0 and h 6= 0.

From E2 = E we have that

(2)
e = e2 + fg, f = ef + fh,
g = ge+ hg, h = gf + h2.

Equation (1) gives that a is a factor of 1 − h, so that 1 − h = ac for
some c ∈ R. If f 6= 0, (2) gives that 1 = e+ h and so 1− e = h. Using
(1) again we have fb = ha and so h = bd for some d ∈ R. Now we have

1 = h+ ac = bd+ ac ∈ aR+ bR,

a contradiction since aR + bR is not equal to R.
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Thus f = 0; then e = 1 by (1) so that by (2), g = 0 or h = 0. But
h 6= 0, giving that g = 0 and again by (2), h = 1. Thus E = I2. As

commented in Section 2, we thus have A R̃ I2.
If M2(R) were left abundant, then we would have R̃ = R∗ [6]. But

A is not R∗-related to I2 since(
−b a
−b a

)
A = 0 = 0A.

This also shows that R̃ is not a left congruence, since I2 R̃ A but(
−b a
−b a

)
I2 =

(
−b a
−b a

)
is not R̃-related to

(
−b a
−b a

)
A = 0. Thus

(CL) does not hold.
Dual arguments give the right-handed results.

In the remainder of this section we consider the endomorphism monoid
M of F, where F is a free right S-set over a unipotent monoid S. We
show that M is right semiabundant with (CR), but need not be left
semiabundant or right abundant.

Let S be a fixed unipotent monoid and let I be a non-empty set.
The free right S-set F on the set I may be described as follows. Let
{xi : i ∈ I} be a set in one-one correspondence with I and let F be the
disjoint union

⋃
i∈I xiS. Then S acts on the right of F in the obvious

way. For each i ∈ I we identify xi1 with xi, so that xi may be regarded
as an element of F. The endomorphism monoid of F consists of those
maps α : F → F such that (ys)α = yαs for all y ∈ F and s ∈ S.
Note that an endomorphism is determined by its effect on the subset
{xi : i ∈ I} of F.

Lemma 3.2. An element α of M = End F is idempotent if and only
if there is a non-empty subset J of I such that Im α =

⋃
i∈J xiS, and

xiα = xi for all i ∈ J .

Proof Since α ∈ M is idempotent if and only if the restriction of
α to Im α is the identity map, it is clear that if Im α =

⋃
i∈J xiS for

some ∅ 6= J ⊆ I and xiα = xi for all i ∈ J , then α2 = α.
Conversely, suppose that α2 = α. Let xit ∈ Im α. Then

xit = yα = yα2 = (xit)α = xiαt

for some y ∈ F. Thus xiα = xis for some s ∈ S. Now

xis = xiα = xiα
2 = (xis)α = xiαs = xis

2

so that s = s2 and as S is unipotent, s = 1. It follows that there is a
non-empty subset J of I such that Im α =

⋃
i∈J xiS and as α is the

identity map on Im α, xiα = xi for all i ∈ J .
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Proposition 3.3. The monoid M is right semiabundant with (CR).

Proof For any α ∈M the non-empty subset Iα of I is defined by

Iα = {i ∈ I : Im α ∩ xiS 6= ∅}.

Let γ ∈M and fix k ∈ Iγ. Define ǫ ∈M by

xiǫ = xi for all i ∈ Iγ
xiǫ = xk for all i ∈ I \ Iγ.

Certainly ǫ2 = ǫ and as Im γ ⊆ Im ǫ, γǫ = γ. Suppose now that
ν ∈M, ν2 = ν and γν = γ. Then Im γ ⊆ Im ν so that by Lemma 3.2,

Im ǫ ⊆ Im ν and ǫν = ǫ. The dual of Lemma 2.1 now gives that γ L̃ ǫ.
Thus M is right semiabundant.

We claim that for α, β ∈M ,

α L̃ β if and only if Iα = Iβ .

If Iα = Iβ, then by the above argument we may find an idempotent

η such that α L̃ η and β L̃ η, so that certainly α L̃ β.

Conversely, suppose that α L̃ β. Again by the above, there are

idempotents τ, κ ∈M such that α L̃ τ, β L̃ κ,

Im τ =
⋃

i∈Iα

xiS and Im κ =
⋃

i∈Iβ

xiS.

Since α L̃ β we have that τ L̃ κ. It follows that τκ = τ and κτ = κ,
which gives that Im τ = Im κ and so Iα = Iβ and the claim is proven.

Suppose now that α, β, γ ∈ M and α L̃ β. Let i ∈ Iαγ . Then
xis = yαγ for some y ∈ F, s ∈ S. Writing yα = xjt we have xis = xjγt
and xjγ ∈ xiS. Also j ∈ Iα so that by the claim, j ∈ Iβ and xju = zβ
for some z ∈ F, u ∈ S. Thus zβγ = xjγu and so i ∈ Iβγ . Together with

the dual argument this gives that Iαγ = Iβγ . By the claim, αγ L̃ βγ so
that condition (CR) holds.

It is easy to see that if S is not right cancellative then M is not
right abundant. For if S is not right cancellative there exist u, a, b ∈ S
with au = bu and a 6= b. Define α, β, γ ∈ M by xiα = xiu, xiβ = xia
and xiγ = xib for all i ∈ I. Then αβ = αγ and from the proof of

Proposition 3.3, α L̃ ι, where ι is the identity of M . But β 6= γ so
that M cannot be right abundant, since in a right abundant monoid

L∗ = L̃.

Proposition 3.4. If S is not left cancellative and |I| ≥ 2, then M is
not left semiabundant.
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Proof We may assume that I = {1, 2} ∪ J where J ∩ {1, 2} = ∅.
Suppose there exist b, u, v ∈ S with bu = bv and u 6= v. Define α ∈ M
by

x1α = x2bu, x2α = x2b, xjα = xj

for all j ∈ J . Let δ, ǫ ∈ M be given by

x1δ = x2u, xiδ = xi = xiǫ, x1ǫ = x2v

for all i 6= 1. Then

x1δα = (x2u)α = x2αu = x2bu = x1α

and similarly, x1ǫα = x1α. Thus δα = α = ǫα and certainly δ2 =

δ, ǫ2 = ǫ. Suppose that µ2 = µ and α R̃ µ. Then δµ = µ = ǫµ so
that µ 6= ι. Since µα = α we have that xjµ = xj for all j ∈ J and
x1µ, x2µ ∈ x1S ∪ x2S. Thus there are two possibilities for µ. One
is that x2µ = x1p and x1µ = x1 for some p ∈ S. The other is that
x1µ = x2q and x2µ = x2 for some q ∈ S.

In the first case we would have

x1 = x1µ = x1δµ = x2µu = x1pu

and also x1 = x1pv, so that pu = pv = 1. Since S is unipotent,
up = vp = 1 and it follows that u = v, a contradiction.

In the second,

x2u = x2µu = (x2u)µ = x1δµ = x1µ

and similarly, x2v = x1µ. Again this yields the contradiction that

u = v. We conclude that α is not R̃-related to any idempotent and M
is not left semiabundant.

Even if S is commutative and cancellative, M need not be left abun-
dant.

Proposition 3.5. Suppose that S is commutative and cancellative, and
there are elements a, b ∈ S with a /∈ bS and b /∈ aS. If |I| ≥ 2, then M
is not left abundant.

Proof We assume that I = {1, 2}; a simple adjustment to the ar-
gument, along the lines of the previous proposition, gives the more
general result.

Define α ∈M by

x1α = x2a, x2α = x2b.

Suppose that ǫ2 = ǫ and ǫα = α. If x1ǫ = x2u, then

x2a = x1α = x1ǫα = (x2u)α = x2αu = x2bu,
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so that a ∈ bS, a contradiction. If x2ǫ = x1v, then

x2b = x2α = x2ǫα = (x1v)α = x1αv = x2av,

giving that b ∈ aS, again a contradiction. We conclude from Lemma
3.2 that α R̃ ι.

Define µ, ν ∈M by

x1µ = x1b, x2µ = x2, x1ν = x2a, x2ν = x2.

Then µ 6= ν but µα = να. Thus α is not R∗-related to ι and so M is
not left abundant.

4. The power enlargement

Consider the functor P : M → M such that for each S ∈ Ob(M),

P(S) = {X : X ⊆ S}

with multiplication given by X · Y = XY , and for each S, T ∈ Ob(M)
and monoid morphism θ : S → T , P(θ) : P(S) → P(T ) is defined by

XP(θ) = {xθ : x ∈ X}

for each X ∈ P(S). The monoid P(S) is called the power monoid of
the monoid S. Related enlargements are the functors P ′,PF ,PF ′ and
PF ′

1 which have the same action on morphisms but for S ∈ Ob(M),
P ′(S), (PF(S),PF ′(S),PF ′

1(S)) is the submonoid of P(S) consisting
of all non-empty subsets of S, (all finite subsets of S, all finite non-
empty subsets of S, all finite subsets of S containing 1). These en-
largements are of course not expansions, since in general S is not a
morphic image of the corresponding enlarged monoid. Nevertheless, P
and P ′ in particular have been widely studied, as have the analogous
enlargements of semigroups (see for example [16], [17]).

This section describes those monoids S for which P(S) is (left) semi-
abundant, or (left) semiadequate, with (CL). We remark that if P(S)
is left semiadequate with (CL) then P(S) is forced to be inverse, hence
certainly is weakly left ample.

Proposition 4.1. Let S be a monoid such that P ′(S) is left semiabun-
dant with (CL). Then S is a group G with at most two elements, or S
is an ideal extension of a royal band B by such a group G, where for
each a ∈ G and e ∈ B, ae = e.

Proof Write E for E(P ′(S)) and note that for Y ∈ P ′(S) and F ∈ E ,

if Y R̃ F and 1 ∈ Y , then F ⊆ Y .
We first show that if x ∈ S then x2 = 1 or x2 = x. If x = 1 then

there is nothing to show. Suppose that x 6= 1 and let X ∈ E be such
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that {1, x} R̃ X; by the remark above, X ⊆ {1, x}. If x ∈ X then
X{1, x} = {1, x} gives x2 ∈ {1, x} as required. We proceed to rule out
the possibility that X = {1}.

Assume that X = {1}. As {1, x} R̃ {1} and P ′(S) has (CL), we

have {1, x}n R̃ {1} for all n ∈ N. If x has finite order m ∈ N then

{1, x}m = {1, x, x2, ..., xm−1} ∈ E

so that from {1, x}m R̃ {1} we obtain {1, x}m = {1} and x = 1, a
contradiction. Thus x has infinite order and for any distinct n,m ∈ N,
xn 6= xm. Putting N = {1, x, x2, ...} and M = N \ {x} we have N ∈ E

and N 6= M . From {1, x} R̃ {1} and (CL) we have M{1, x} R̃ M{1}

so that N R̃ M and NM = M . As 1 ∈ M it follows that N = M , a
contradiction. Thus X = {1} is not possible.

For the remainder of the proof, let G = {x ∈ S : x2 = 1} and
B = S \ G so that B = E(S) \ {1}. It is easy to see that G is the
R-class of 1 so that as R is a left congruence, G is a submonoid. Indeed
G is a subgroup of S and as every element of G has order 1 or 2, G is
commutative.

In fact, G has at most two elements. To see this, let s, t ∈ G \ {1}.

We know that {1, s, t} R̃ F = F 2 for some F ⊆ {1, s, t}. If s ∈ F
then from F{1, s, t} = {1, s, t} we have st ∈ {1, s, t} so that as G is
a group, s = t. Similarly for t ∈ F . The remaining option is that

F = {1}. From {1, s, t} R̃ {1} we then have {1, s, t}2 R̃ {1}; but
{1, s, t}2 is a submonoid so that {1, s, t}2 ∈ E and so {1, s, t}2 = {1}, a
contradiction. Thus s = t and G is either trivial or is the two element
group.

If B = ∅ then we conclude that S = G is a group with at most
two elements. Suppose that B 6= ∅. We show that B is an ideal of
S. Let e ∈ B and a ∈ G. If ea ∈ G then ea R 1 so that e1 = 1, a
contradiction. Thus ea ∈ B and B is a right ideal. As G is in fact the
H-class of 1 the same argument gives that B is a left ideal. Thus B is
a band and an ideal of S.

If G = {1}, clearly ae = a for any a ∈ G and e ∈ B. Consider
the possibility that G = {1, a} where a 6= 1. We show that for any

e ∈ B, ae = e. Let K be an idempotent R̃-related to {1, a, e} so that
K ⊆ {1, a, e}. Suppose that a /∈ K. From K{1, a, e} = {1, a, e} and
the fact that B is an ideal, we must have that 1 ∈ K so thatK = {1} or
K = {1, e}. Since B is a band ideal, it is a routine matter to check that
{1, a, e}3 is a submonoid and we deduce that K = {1} is not possible.

Thus K = {1, e}. Now {1, a, e} R̃ {1, e} gives {1, e}{1, a, e} = {1, a, e}
and so ea = e. It follows that {1, a, e, ae} is a submonoid. Now using
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(CL) we have that

{1, ae, e}{1, a, e} R̃ {1, ae, e}{1, e}

and so {1, a, e, ae} R̃ {1, ae, e}. But {1, a, e, ae} ∈ E so that

{1, a, e, ae}{1, ae, e} = {1, ae, e}.

Hence a ∈ {1, ae, e}, a contradiction. Thus a /∈ K is not possible and
from a ∈ K and K{1, a, e} = {1, a, e} we have ae ∈ {1, a, e} so that
ae = e as required.

It remains to prove that B is a royal band. According to the remark
before Lemma 2.3, it suffices to show that ef ∈ {e, f} for all e, f ∈ B.
If e = f this is clear. Let e, f be distinct elements of B and let L ∈ E
be such that L R̃ {1, e, f}. The possibility that L = {1} is ruled
out by that fact that {1, e, f}3 is a submonoid. So e ∈ L or f ∈ L,
giving ef ∈ {e, f} or fe ∈ {e, f}, respectively. We must prove that
ef ∈ {e, f} whenever e /∈ L and f ∈ L. In this case we must have
L = {1, f} and fe ∈ {e, f}. Then {1, e, f, ef} ∈ E and from

{1, f} R̃ {1, e, f}

and (CL) we have

{1, ef}{1, f} R̃ {1, ef}{1, e, f}

and so {1, f, ef} R̃ {1, e, f, ef}. Then {1, e, f, ef}{1, f, ef} = {1, f, ef}
so that e ∈ {1, f, ef} and e = ef .

Proposition 4.1 and Lemma 2.3 together with Theorem 3.2 of [11]
give the following result.

Theorem 4.2. The following are equivalent for a monoid S:
(i) P(S) is left abundant;
(ii) P(S) is left semiabundant with (CL);
(iii) S is a group G with at most two elements, or an ideal extension
of a royal band B by such a group G, where for each a ∈ G and e ∈ B,
ae = e.

Corollary 4.3. The following are equivalent for a monoid S:
(i) P(S) is abundant;
(ii) P(S) is semiabundant with (CL) and (CR);
(iii) S is a group G with at most two elements, or an ideal extension
of a royal band B by such a group G, where for each a ∈ G and e ∈ B,
ae = e = ea;
(iv) P(S) is regular.
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Proof The equivalence of (i) and (ii) is immediate from Theorem
4.2. The equivalence of (iii) and (iv) is proved by Sullivan in [17].
Theorem 4.2 also gives that (iii) implies (i) and an easy argument as
in Corollary 3.4 of [11] gives the opposite implication.

A simple example given in [11] shows that P(S) can be left but not
right abundant.

Note that in the final result of this section, conditions (iii) and (iv)
are symmetric. Thus conditions (i) and (ii) may be replaced by their
left-right duals or by their two-sided versions.

Corollary 4.4. The following are equivalent for a monoid S:
(i) P(S) is left adequate;
(ii) P(S) is left semiadequate with (CL);
(iii) S is a group G with at most two elements, or S is an ideal exten-
sion of a chain C by such a group G;
(iv) P(S) is inverse.

Proof Theorem 4.2 gives that (i) and (ii) are equivalent. If (iii) holds
then the fact that G is a group acting on C gives that c = ac = ca for
all c ∈ C and a ∈ G. From Corollary 3.5 of [11], conditions (i), (iii)
and (iv) are now equivalent.

5. The Szendrei expansion

Let S be a monoid. Then S̃SR is the monoid with underlying set

S̃SR = {(X, x) : X ∈ PF ′

1(S), x ∈ X}

and multiplication given by

(X, x)(Y, y) = (X ∪ xY, xy);

the identity of S̃SR is ({1}, 1). If θ : S → T is a monoid morphism, then

defining θ̃SR : S̃SR → T̃ SR by (X, x)θ̃SR = (Xθ, xθ) for all (X, x) ∈

S̃SR, it is easy to see that (•̃)SR is an expansion, where for any monoid

S, ηS : S̃SR → S is given by (X, x)ηS = x. The monoid S̃SL is defined

dually. The expansions S̃SR and S̃SL were introduced by Szendrei in
[18], hence as in [5] we call them Szendrei expansions. Szendrei showed

that if G is a group then the expansions G̃SR and G̃SL coincide with

the Birget-Rhodes expansions G̃R and G̃L respectively; it was already

known that G̃R and G̃L are isomorphic [1]. As remarked in [5], the

expansions S̃SR and S̃R are in general not isomorphic. The expansion

S̃SR is of particular use when S is a right cancellative monoid; in this

case S̃SR is a left ample monoid of a special kind called left FA [5].
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In this section we characterise those monoids S for which S̃SR is left
semiabundant, or left semiadequate, with (CL). As in the case for P(S),

if S̃SR is left semiadequate with (CL) then S̃SR is weakly left ample;

however S̃SR is not forced to be inverse or even left adequate.
Observe that for any monoid S,

{(X, 1) : X ∈ PF ′

1(S)}

is a semilattice isomorphic to PF ′

1(S) under union. Denoting the set of

idempotents of S̃SR by E , it is immediate that for any element (X, e) ∈

S̃SR

(X, e) ∈ E if and only if eX ⊆ X and e ∈ E(S).

Theorem 5.1. Let S be a monoid. Then S̃SR is left semiabundant
with (CL) if and only if S is a unipotent monoid or an ideal extension
of a royal band B by a unipotent monoid M such that for all e ∈ B
and m ∈M, em = e.

Proof We begin by assuming that S̃SR is left semiabundant with
(CL). We make use of a series of subsidiary lemmas.

Lemma 5.2. Let (X, x), (Y, y) ∈ S̃SR. Then (X, x) R̃ (Y, y) implies

that x R̃ y.

Proof Suppose that (X, x) R̃ (Y, y). We want to prove that ex = x
if and only if ey = y for all e ∈ E(S). Let e ∈ E(S) with ex = x. Put

Z = eX∪X so that Z ∈ PF ′

1(S) and e ∈ Z so that (Z, 1), (Z, e) ∈ S̃SR.

Also eZ ⊆ Z, giving (Z, e) ∈ E . Since S̃SR satisfies (CL) we have

(Z, 1)(X, x) R̃ (Z, 1)(Y, y)

and so

(Z, x) R̃ (Z ∪ Y, y).

Notice now that (Z, e)(Z, x) = (Z, x) so that also (Z, e)(Z ∪ Y, y) =
(Z ∪ Y, y) and in particular, ey = y. Together with the dual argument

this gives that x R̃ y.

Lemma 5.3. If (X, x) ∈ S̃SR and (X, x) R̃ (U, u) where (U, u) ∈ E ,
then X = U .

Proof Lemma 2.1 gives that (U, u)(X, x) = (X, x) so that certainly
U ⊆ X. On the other hand, (X, 1) ∈ E and (X, 1)(X, x) = (X, x) so
that (X, 1)(U, u) = (U, u). This gives that X ⊆ U and so X = U as
required.
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Let x ∈ S\E(S). As S̃SR is left semiabundant and ({1, x}, x) ∈ S̃SR,

there is some (U, u) ∈ E such that ({1, x}, x) R̃ (U, u). By Lemma 5.3,
U = {1, x} so that as u ∈ U we have u = 1 or u = x. As x ∈ S \E(S)

only u = 1 is possible and Lemma 5.2 then gives that x R̃ 1. It follows

that S is the disjoint union of M and B where M is the R̃-class of 1
and B = E(S) \ {1}. Clearly then S is left semiabundant.

Lemma 5.4. The monoid S satisfies condition (CL).

Proof Let x, y, z ∈ S with x R̃ y.

Suppose first that x R̃ y R̃ 1. We have

({1, x, y}, x) R̃ (U, u)

for some (U, u) ∈ E . By Lemma 5.3, U = {1, x, y} and as u2 = u ∈ U

the only possibility is that u = 1. Thus ({1, x, y}, x) R̃ ({1, x, y}, 1)

and the same argument gives that ({1, x, y}, y) R̃ ({1, x, y}, 1). As

({1, z}, z) ∈ S̃SR and S̃SR has (CL),

({1, z}, z)({1, x, y}, x) R̃ ({1, z}, z)({1, x, y}, y)

which in view of Lemma 5.2 yields zx R̃ zy.
The other possibility is that x, y ∈ B, hence x, y ∈ E(S). By Corol-

lary 2.2 x R̃ y gives that x R y; certainly then zx R zy and as R ⊆ R̃
we have zx R̃ zy as required.

Lemma 5.5. The set M is a unipotent submonoid and if B 6= ∅ then
B is an ideal.

Proof Since M is the R̃-class of 1 and S has (CL), M is a unipotent
submonoid.

Suppose B 6= ∅. Let e ∈ B and x ∈ S. If ex ∈ M then ex R̃ 1 so
that as e(ex) = ex we have that e1 = 1, a contradiction. Thus ex ∈ B
and B is a right ideal.

Considering the element xe, the fact that ex ∈ E(S) gives that
(xe)2 ∈ E(S). If xe is in the monoid M then unipotency gives that
(xe)2 = 1 from which we obtain the contradiction 1e = 1. Thus xe ∈ B
so that B is an ideal.

At this stage we know that either S = M is a unipotent monoid or
S is an ideal extension of a band B by a unipotent monoid M .

Lemma 5.6. The band B is royal.

Proof In view of the remarks concerning royal bands in Section 2,
it is enough to show that for any e, f ∈ B the product ef ∈ {e, f}.
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Let e, f ∈ B; we know from Lemmas 5.2 and 5.3 that there exists
({1, e, f}, x) ∈ E such that

({1, e, f}, e) R̃ ({1, e, f}, x)

where x R̃ e. Since x ∈ {1, e, f} we have x = e or x = f . If x = f then
ef = f ∈ {e, f}. On the other hand, if x = e then idempotency of
({1, e, f}, e) gives e{1, e, f} ⊆ {1, e, f} so that ef ∈ {e, f} as required.

Lemma 5.7. For all e ∈ B and m ∈M , em = e.

Proof With e ∈ B and m ∈ M , Lemmas 5.2 and 5.3 give that

({1, e,m}, e) must be the (only) idempotent in its R̃-class. From
({1, e,m}, e) ∈ E we have that e{1, e,m} ⊆ {1, e,m} so that em = e.

Lemma 5.7 completes the first half of the proof of Theorem 5.1.
For the converse, we suppose that S is a unipotent monoid M , or

an ideal extension of a royal band B by such a monoid, where for
each e ∈ B and m ∈ M, em = e. This structure, together with the

unipotency of M , gives that M is the R̃-class of 1.

Let (X, x) ∈ S̃SR. It is easy to check from the given conditions on
S that if x ∈ B then (X, x) ∈ E . Suppose that x ∈ M . Certainly

(X, 1) ∈ E ; we claim that (X, x) R̃ (X, 1). In view of Lemma 2.1 it
is enough to show that if (Y, y) ∈ E and (Y, y)(X, x) = (X, x), then
(Y, y)(X, 1) = (X, 1).

Let (Y, y) ∈ E with (Y, y)(X, x) = (X, x). Clearly Y ⊆ X and as
yx = x, x ∈M and y ∈ E(S) it follows that y = 1. Thus (Y, y)(X, 1) =
(Y, 1)(X, 1) = (Y ∪X, 1) = (X, 1) as required.

We have shown that S̃SR is left semiabundant; it remains to show
that (CL) holds.

Let (X, x), (Y, y), (Z, z) ∈ S̃SR with (X, x) R̃ (Y, y). If x ∈ B then
as indicated above, (X, x) ∈ E . Then (X, x)(Y, y) = (Y, y) gives that
xy = y so that y ∈ B also and (Y, y) ∈ E . As both (X, x) and (Y, y)
are idempotent we actually have (X, x) R (Y, y) and as R is a left

congruence contained in R̃, we obtain (Z, z)(X, x) R̃ (Z, z)(Y, y).
The other case is where x, y ∈M . We know that

(X, 1) R̃ (X, x) R̃ (Y, y) R̃ (Y, 1)

from which we obtain X = Y . If z ∈M then

(Z, z)(X, x) = (Z ∪ zX, zx) R̃ (Z ∪ zX, 1) =

(Z ∪ zY, 1) R̃ (Z ∪ zY, zy) = (Z, z)(Y, y).

Finally, if z ∈ B then

(Z, z)(X, x) = (Z ∪ zX, zx) = (Z ∪ zX, z)
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= (Z ∪ zY, z) = (Z ∪ zY, zy) = (Z, z)(Y, y).

Hence R̃ is a left congruence, that is, (CL) holds.

In a subsequent paper [10] we show that the graph expansion of (a
monoid presentation of) a monoid S is weakly left ample if and only
if S is unipotent. The same result holds for the Szendrei expansion
(•̃)SR, with one exception.

Corollary 5.8. The following are equivalent for a monoid S:

(i) S̃SR is left semiadequate with (CL);
(ii) S is a unipotent monoid, or the two element chain;

(iii) S̃SR is weakly left ample.

Proof First we prove that (i) implies (ii). By Theorem 5.1, if S̃SR

is left semiadequate with (CL), then S is a unipotent monoid, or an
ideal extension of a royal band B by a unipotent monoid M such that
for all e ∈ B and m ∈ M, em = e. Suppose the latter condition holds.
We use the fact that E = E(S̃SR) is a semilattice to show that S is the
two element chain.

Let e ∈ B andm ∈M , so that em = e. Since ({1, m}, 1), ({1, e}, e) ∈
E we have that

({1, m}, 1)({1, e}, e) = ({1, e}, e)({1, m}, 1)

and so {1, m, e} = {1, e}, forcing m to be 1. Thus M is trivial. Further,
if f ∈ B then ({1, f}, f) ∈ E and

({1, e}, e)({1, f}, f) = ({1, f}, f)({1, e}, e)

so that {1, e, ef} = {1, f, fe} and ef = fe. Since B is a royal band,
ef = fe ∈ {e, f} and this gives that e = f . Thus S = {1, e} is the two
element chain.

To prove that (ii) implies (iii), suppose first that S is a unipotent

monoid. From Theorem 5.1, S̃SR is left semiabundant with (CL). Also

E = {(X, 1) : X ∈ PF ′

1(S)};

so that (as remarked at the beginning of this section) E is a semilattice.

In the proof of Theorem 5.1 we showed that if (X, x) ∈ S̃SR where

x ∈ M , then (X, x) R̃ (X, 1). Thus in the case to hand where M = S

we have that (X, x)+ = (X, 1) for any (X, x) ∈ S̃SR. It is now easy to
check that

((X, x)(Y, 1))+(X, x) = (X, x)(Y, 1)

for all (X, x) ∈ S̃SR and (Y, 1) ∈ E . Hence S̃SR is weakly left ample.
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On the other hand, if S is the two element chain, then as shown

in Corollary 4.6 of [11], S̃SR is the three element chain, which being
inverse is certainly weakly left ample.

To complete the proof notice that (iii) implies (i) is clear.

6. The category F

At the beginning of the previous section we indicated that the functor
(•̃)SR : M → M is an expansion. Moreover, for a unipotent monoid S,

the expansion S̃SR is weakly left ample.
We may regard weakly left ample monoids as algebras of type (2, 1, 0)

with unary operation given by a 7→ a+, where a+ is the unique idem-
potent in the R̃-class of a. The corresponding approach for left ample
monoids is well established [5], [12]. Following the lead given in [2] and
[3] for left ample monoids we consider a partial order ≤ and a congru-
ence σ on a weakly left ample monoid as defined in the Introduction.

Lemma 6.1. [10] Let S be a weakly left ample monoid. Then the
relation σ is the least unipotent monoid congruence on S.

If each σ-class of a weakly left ample monoid S contains a maximum
element under ≤, then we define a second unary operation m on S by
the rule that for any a ∈ S,m(a) is the greatest element in the σ-class
[a] of a. As in the Introduction we say that a weakly left ample monoid

S is proper if R̃ ∩ σ = ι and weakly left FA if every σ-class contains a
maximum element such that for all a, b ∈ S,

m(a)+m(ab)+ = (m(a)m(b))+ (FL).

We remark that an F-inverse monoid or a left FA monoid is weakly left
FA [5]. The reader looking at the reference [5] should be careful not
to confuse the notion of weakly left FA with the left-right dual of the
notion weak right FA as defined in that paper.

Lemma 6.2. Let S be a weakly left ample monoid such that every σ-
class contains a maximum element. Then S is proper. Further, S is
weakly left FA if and only if

m(a)+m(ab) = m(a)m(b)

for all a, b ∈ S.

Proof The proof that S is proper is essentially the dual of that given
in [5] in the right ample case.

If S is weakly left FA then for any a, b ∈ S

m(a)+m(ab) R̃ m(a)+m(ab)+ = (m(a)m(b))+ R̃ m(a)m(b)
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and as m(ab) σ ab σ m(a)m(b) and m(a)+ σ 1 we have also that

m(a)+m(ab) σ m(a)m(b).

We know that S is proper and so m(a)+m(ab) = m(a)m(b) as required.
Conversely, if m(a)+m(ab) = m(a)m(b) for all a, b ∈ S, then the fact

that R̃ is a left congruence yields (FL).

In a subsequent paper [10] we study proper weakly left ample monoids
by means of graph expansions. The graph expansion of a unipotent
monoid is proper weakly left ample but need not be weakly left FA.
However the Szendrei expansion of a unipotent monoid is weakly left
FA. The proof of this result and indeed of the remaining statements
of this paper are omitted, since they are exactly analogous to those of
Section 4 of [5], where Fountain and Gomes consider the left Szendrei
expansion of a left cancellative monoid.

Proposition 6.3. Let S be a unipotent monoid. Then for any (X, x)

and (Y, y) ∈ S̃SR,

(i) (X, x) R̃ (Y, y) if and only if X = Y ;
(ii) (X, x) σ (Y, y) if and only if x = y.

Further, S is weakly left FA and for any (X, x) ∈ S̃SR,

(X, x)+ = (X, 1) and m(X, x) = ({1, x}, x).

Let U denote the category of unipotent monoids and monoid mor-
phisms and let F denote the category of weakly left FA monoids and
morphisms, regarded as algebras of type (2, 1, 1, 0). The two unary op-
erations are + and m( ). Using Proposition 6.3 it is easy to check
that if S and T are unipotent monoids and θ : S → T is a monoid

morphism, then the monoid morphism θ̃SR : S̃SR → T̃ SR, defined in
the previous section, is in fact a (2, 1, 1, 0)-morphism. Consequently,
(•̃)SR : U → F is a functor.

Let F σ : F → U be defined on objects by SF σ = S/σ and on mor-
phisms by θF σ = θσ where if θ ∈ Mor F(S, T ) then θσ ∈ Mor U(S/σ, T/σ)
is given by [s]θσ = [sθ]. The characterisation of σ ensures that θσ is
well defined. It follows that F σ : F → U is a functor. We claim that
(•̃)SR is a left adjoint of F σ.

To see this, first consider a monoid morphism ζ : T → S/σ where
T ∈ Ob(U) and S ∈ Ob(F). For t ∈ T let m(tζ) = m(a) where

tζ = [a]. We then define ζ : T̃ SR → S by

(X, x)ζ = m(x1ζ)
+ . . .m(xkζ)

+m(xζ)

where X = {x1, . . . , xk}. An argument as in [5], making use of Lemma
6.2 above, gives that ζ is a morphism in F.
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Again with T ∈ Ob(U) and S ∈ Ob(F), suppose that ψ : T̃ SR → S
is a morphism in F. Then ψ′ : T → S/σ given by tψ′ = [(X, t)ψ] for

any (X, t) ∈ T̃ SR is well defined and is a monoid morphism.

Lemma 6.4. For any T ∈ Ob(U), S ∈ Ob(F), and morphisms ζ ∈

Mor U(T, S/σ) and ψ ∈ Mor F(T̃ SR, S), then with the notation estab-
lished above,

(ζ)′ = ζ and ψ′ = ψ.

Lemma 6.4 provides us with a bijection

Mor F(T̃ SR, S) → Mor U(T, S/σ)

for any T ∈ Ob(U) and S ∈ Ob(F). This is the hard part of showing
that (•̃)SR is a left adjoint of F σ; the rest of the proof involves checking
that the relevant diagrams commute. We leave this to the reader.

Theorem 6.5. The functor (•̃)SR is a left adjoint of the functor F σ.
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