
Facilitating Controlled Tests of Website Design
Changes using Aspect-Oriented Software
Development and Software Product Lines

Javier Cámara1 and Alfred Kobsa2

1 Department of Computer Science, University of Málaga
Campus de Teatinos, 29071. Málaga, Spain

jcamara@lcc.uma.es
2 Dept. of Informatics, University of California, Irvine

Bren School of Information and Computer Sciences. Irvine, CA 92697, USA
kobsa@uci.edu

Abstract. Controlled online experiments in which envisaged changes
to a website are first tested live with a small subset of site visitors have
proven to predict the effects of these changes quite accurately. However,
these experiments often require expensive infrastructure and are costly in
terms of development effort. This paper advocates a systematic approach
to the design and implementation of such experiments in order to over-
come the aforementioned drawbacks by making use of Aspect-Oriented
Software Development and Software Product Lines.

1 Introduction

During the past few years, e-commerce on the Internet has experienced a re-
markable growth. For online vendors like Amazon, Expedia and many others,
creating a user interface that maximizes sales is thereby crucially important. Dif-
ferent studies [11,10] revealed that small changes at the user interface can cause
surprisingly large differences in the amount of purchases made, and even minor
difference in sales can make a big difference in the long run. Therefore, interface
modifications must not be taken lightly but should be carefully planned.

Experience has shown that it is very difficult for interface designers and
marketing experts to foresee how users react to small changes in websites. The
behavioral difference that users exhibit at Web pages with minimal differences in
structure or content quite often deviates considerably from all plausible predic-
tions that designers had initially made [22,30,27]. For this reason, several tech-
niques have been developed by industry that use actual user behavior to measure
the benefits of design modifications [17]. These techniques for controlled online
experiments on the Web can help to anticipate users’ reactions without putting
a company’s revenue at risk. This is achieved by implementing and studying the
effects of modifications on a tiny subset of users rather than testing new ideas
directly on the complete user base.

alfred
Text Box
To appear in: LNCS Transactions on Large Scale Data and Knowledge Centered Systems 1(1), 2009

2 Javier Cámara and Alfred Kobsa

Although the theoretical foundations of such experiments have been well
established, and interesting practical lessons compiled in the literature [16], the
infrastructure required to implement such experiments is expensive in most cases
and does not support a systematic approach to experimental variation. Rather,
the support for each test is usually crafted for specific situations.

In this work, we advocate a systematic approach to the design and imple-
mentation of such experiments based on Software Product Lines [7] and Aspect
Oriented Software Development (AOSD) [12]. Section 2 provides an overview of
the different techniques involved in online tests, and Section 3 points out some of
their shortcomings. Section 4 describes our systematic approach to the problem,
giving a brief introduction to software product lines and AOSD. Section 5 intro-
duces a prototype tool that we developed to test the feasibility of our approach.
Section 6 compares our proposal to currently available solutions, and Section 7
presents some conclusions and future work.

Fig. 1. Checkout screen: variants A (original, left) and B (modified, right)1

2 Controlled Online Tests on the Web: an Overview

The underlying idea behind controlled online tests of a Web interface is to create
one or more different versions of it by incorporating new or modified features,
and to test each version by presenting it to a randomly selected subset of users
in order to analyze their reactions. User response is measured along an overall
evaluation criterion (OEC) or fitness function, which indicates the performance
of the different versions or variants. A simple yet common OEC in e-commerce is
1 c© 2007 ACM, Inc. Included by permission.

Facilitating Controlled Tests of Website Design Changes 3

the conversion rate, that is, the percentage of site visits that result in a purchase.
OECs may however also be very elaborate, and consider different factors of user
behavior.

Controlled online experiments can be classified into two major categories,
depending on the number of variables involved:

– A/B, A/B/C, ..., A/../N split testing: These tests compare one or more
variations of a single site element or factor, such as a promotional offer. Site
developers can quickly see which variation of the factor is most persuasive
and yields the highest conversion rates. In the simplest case (A/B test), the
original version of the interface is served to 50% of the users (A or Control
Group), and the modified version is served to the other 50% (B or Treatment
Group2). While A/B tests are simple to conduct, they are often not very
informative. For instance, consider Figure 1, which depicts the original ver-
sion and a variant of a checkout example taken from [11].3 This variant has
been obtained by modifying 9 different factors. While an A/B test tells us
which of two alternatives is better, it does not yield reliable information on
how combinations of the different factors influence the performance of the
variant.

– Multivariate testing: A multivariate test can be viewed as a combination
of many A/B tests, whereby all factors are systematically varied. Multivari-
ate testing extends the effectiveness of online tests by allowing the impact
of interactions between factors to be measured. A multivariate test can, e.g.,
reveal that two interface elements yield an unexpectedly high conversion rate
only when they occur together, or that an element that has a positive effect
on conversion loses this effect in the presence of other elements.

The execution of a test can be logically separated into two steps, namely (a)
the assignment of users to the test, and to one of the subgroups for each of the
interfaces to be tested, and (b) the subsequent selection and presentation of this
interface to the user. The implementation of online tests partly blurs the two
different steps.

The assignment of users to different subgroups is generally randomized, but
different methods exist such as:

– Pseudo-random assignment with caching: consists in the use of a
pseudo-random number generator coupled with some form of caching in or-
der to preserve consistency between sessions (i.e., a user should be assigned
to the same interface variant on successive visits to the site); and

2 In reality, the treatment group will only comprise a tiny fraction of the users of a
website, so as to keep losses low if the conversion rate of the treatment version should
turn out to be poorer than that of the existing version.

3 Eisenberg reports that Interface A resulted in 90% fewer purchases, probably because
potential buyers who had no promotion code were put off by the fact that others
could get lower prices.

4 Javier Cámara and Alfred Kobsa

– Hash and partitioning: assigns a unique user identifier that is either stored
in a database or in a cookie. The entire set of indentifiers is then partitioned,
and each partition is assigned to a variant. This second method is usually
preferred due to scalability problems with the first method.

Three implementation methods are being used for the selection and presentation
of the interface to the user:

– Traffic splitting: In order to generate the different variants, different im-
plementations are created and placed on different physical or virtual servers.
Then, by using a proxy or a load balancer which invokes the randomization
algorithm, a user’s traffic is diverted to the assigned variant.

– Server-side selection: All the logic which invokes the randomization algo-
rithm and produces the different variants for users is embedded in the code
of the site.

– Client-side selection: Assignment and generation of variants is achieved
through dynamic modification of each requested page at the client side using
JavaScript.

3 Problems with Current Online Test Design and
Implementation

The three implementation methods discussed above entail a number of disad-
vantages, which are a function of the choices made at the architectural level and
not of the specific characteristics of an online experiment (such as the chosen
OEC or the interface features being modified):

– Traffic splitting: Although traffic splitting does not require any changes to
the code in order to produce the different user assignments to variants, the
implementation of this approach is relatively expensive. The website and
the code for the measurement of the OEC have to be replicated n times,
where n is the number of tested combinations of different factors (number of
possible variants). In addition to the complexity of creating each variant for
the test manually by modifying the original website’s code (impossible in the
case of multivariate tests involving several factors), there is also a problem
associated to the hardware required for the execution of the test. If physical
servers are used, a fleet of servers will be needed so that each of the variants
tested will be hosted on one of them. Likewise, if virtual servers are being
used, the amount of system resources required to acommodate the workload
will easily exceed the capacity of the physical server, requiring the use of
several servers and complicating the supporting infrastructure.

– Server-side selection: Extensive code modification is required if interface
selection and presentation is performed at the server side. Not only has
randomization and user assignment to be embedded in the code, but also a
branching logic has to be added in order to produce the different interfaces
corresponding to the different combinations of variants. In addition, the code

Facilitating Controlled Tests of Website Design Changes 5

may become unnecessarily complex, particularly if different combinations of
factors are to be considered at the same time when tests are being run
concurrently. However, if these problems are solved, server-side selection is
a powerful alternative which allows deep modifications to the system and is
cheap in terms of supporting infrastructure.

– Client-side selection: Although client-side selection is to some extent eas-
ier to implement than server-side selection, it suffers from the same short-
comings. In addition, the features subject to experimentation are far more
limited (e.g., modifications which go beyond the mere interface are not pos-
sible, JavaScript must be enabled in the client browser, execution is error-
prone, etc.).

Independent of the chosen form of implementation, substantial support for sys-
tematic online experimentation at a framework level is urgently needed. The
framework will need to support the definition of the different factors and their
possible combinations at the test design stage, and their execution at runtime.
Being able to evolve a site safely by keeping track of each of the variants’ per-
formance as well as maintaining a record of the different experiments is very
desirable when contrasted with the execution of isolated tests on an ad-hoc
basis.

4 A Systematic Approach to Online Test Design and
Implementation

To overcome the various limitations described in the previous section, we advo-
cate a systematic approach to the development of online experiments. For this
purpose, we rely on two different foundations: (i) software product lines provide
the means to properly model the variability inherent in the design of the exper-
iments, and (ii) aspect-oriented software development (AOSD) helps to reduce
the effort and cost of implementing the variants of the test by capturing varia-
tion factors on aspects. The use of AOSD will also help in presenting variants to
users, as well as simplifying user assignment and data collection. By combining
these two foundations we aim at supplying developers with the necessary tools to
design tests in a systematic manner, enabling the partial automation of variant
generation and the complete automation of test deployment and execution.

4.1 Test Design Using Software Product Lines

Software Product Line models describe all requirements or features in the poten-
tial variants of a system. In this work, we use a feature-based model similar to
the models employed by FODA [13] or FORM [14]. This model takes the form
of a lattice of parent-child relationships which is typically quite large. Single
systems or variants are then built by selecting a set of features from the model.

Product line models allow the definion of the directly reusable (DR) or
mandatory features which are common to all possible variants, and three types
of discriminants or variation points, namely:

6 Javier Cámara and Alfred Kobsa

F1(MA) The cart component must include a checkout screen.

– F1.1(SA) There must be an additional “Continue Shopping” button present.

• F1.1.1(DR) The button is placed on top of the screen.

• F1.1.2(DR) The button is placed at the bottom of the screen.

– F1.2(O) There must be an “Update” button placed under the quantity box.

– F1.3(SA) There must be a “Total” present.

• F1.3.1(DR) Text and amount of the “Total” appear in different boxes.

• F1.3.2(DR) Text and amount of the “Total” appear in the same box.

– F1.4(O) The screen must provide discount options to the user.

• F1.4.1(DR) There is a “Discount” box present, with amount in a box next
to it on top of the “Total” box.

• F1.4.2(DR) There is an “Enter Coupon Code” input box present on top of
“Shipping Method”.

• F1.4.3(DR) There must be a “Recalculate” button left of “Continue Shop-
ping.”

Fig. 2. Feature model fragment corresponding to the checkout screen depicted
in Figure 1

– Single adaptors (SA): a set of mutually exclusive features from which
only one can be chosen when defining a particular system.

– Multiple adaptors (MA): a list of alternatives which are not mutually
exclusive. At least one must be chosen.

– Options (O): a single optional feature that may or may not be included in
a system definition.

In order to define the different interface variants that are present in an online test,
we specify all common interface features as DR features in a product line model.
Varying elements are modeled using discriminants. Different combinations of
interface features will result in different interface variants. An example for such
a feature model is given in Figure 2, which shows a fragment of a definition
of some of the commonalities and discriminants of the two interface variants
depicted in Figure 1.

Variants can be manually created by the test designer through the selection
of the desired interface features in the feature model, or automatically by gener-
ating all the possible combinations of feature selections. Automatic generation
is especially interesting in the case of multivariate testing. However, it is worth
noting that not all combinations of feature selections need to be valid. For in-
stance, if we intend to generate a variant which includes F1.3.1 in our example,
that same selection cannot include F1.3.2 (single adaptor).

Likewise, if F1.4 is selected, it is mandatory to include F1.4.1-F1.4.3 in the
selection. These restrictions are introduced by the discriminants used in the
product line model. If restrictions are not satisfied, we have generated an invalid

Facilitating Controlled Tests of Website Design Changes 7

variant that should not be presented to users. Therefore, generating all possible
feature combinations for a multivariate test is not enough for our purposes.
Fortunately, the feature model can be easily translated into a logical expression
by using features as atomic propositions and discriminants as logical connectors.

The logical expression of a feature model is the conjunction of the logical
expressions for each of the sub-graphs in the lattice and is achieved using logical
AND. If Gi and Gj are the logical expressions for two different sub-graphs, then
the logical expression for the lattice is:

Gi ∧Gj

Parent-child dependency is expressed using a logical AND as well. If ai is a
parent requirement and aj is a child requirement such that the selection of aj is
dependent on ai then ai ∧ aj . If ai also has other children ak . . . az then:

ai ∧ (ak ∧ . . . ∧ az)

The logical expression for a single adaptor discriminant is exclusive OR. If ai

and aj are features such that ai is mutually exclusive to aj then ai⊕aj . Multiple
adaptor discriminants correspond to logical OR. If ai and aj are features such
that at least one of them must be chosen then ai ∨aj . The logical expression for
an option discriminant is a bi-conditional4. If ai is the parent of another feature
aj then the relationship between the two features is ai ↔ aj .

Feature Model Relation Formal Definition

Sub-graph Gi ∧Gj

Dependency ai ∧ aj

Single adaptor ai ⊕ aj

Multiple adaptor ai ∨ aj

Option ai ↔ aj

Table 1. Feature model relations and equivalent formal definitions

Table 1 summarizes the relationships and logical definitions of the model.
The general expression for a product line model is G1∧G2∧ . . .∧Gn where Gi is
ai R aj R ak R . . . R an and R is one of ∧,∨,⊕, or ↔. The logical expression
for the checkout example feature model shown in Figure 2 is:

F1 ∧ (F1.1 ∧ (F1.1.1⊕ F1.1.2) ∨
F1.2 ∨
F1.3 ∧ (F1.3.1⊕ F1.3.2) ∨
F1.4 ↔ (F1.4.1 ∧ F1.4.2 ∧ F1.4.3))

By instantiating all the feature variables in the expression to true if selected,
and false if unselected, we can generate the set of possible variants and then test

4 ai ↔ aj is true when ai and aj have the same value.

8 Javier Cámara and Alfred Kobsa

(F1) Checkout Screen

(F1.1) Continue Button (F1.2) Update Button (F1.3) Total Display (F1.4) Discount

(F1.1.1) Placed Top (F1.1.2) Placed Bottom

(F1.3.1) Split Box (F1.3.2) Same Box

(F1.4.1) Discount Box (F1.4.3) Recalculate Button

Variant A (Original)

Variant B

(F1.4.2) Coupon Code Box

(F1) Checkout Screen

(F1.1) Continue Button (F1.2) Update Button (F1.3) Total Display (F1.4) Discount

(F1.1.1) Placed Top (F1.1.2) Placed Bottom

(F1.3.1) Split Box (F1.3.2) Same Box

(F1.4.1) Discount Box (F1.4.3) Recalculate Button

(F1.4.2) Coupon Code Box

Fig. 3. Feature selections for the generation of variants A and B from Figure 1

their validity using the algorithm described in [21]. A valid variant is one for
which the logical expression of the complete feature model evaluates to true.

Manual selection can also benefit from this approach since the test adminis-
trator can be guided in the process of feature selection by pointing out inconsis-
tencies in the resulting variant as features are selected or unselected. Figure 3
depicts the feature selections for variants A and B of our checkout example. In the
feature model, mandatory features are represented with black circles, whereas
options are represented with white circles. White triangles express alternative
(single adaptors), and black triangles multiple adaptors.

As regards automatic variant generation, we must bear in mind that full fac-
torial designs (i.e., testing every possible combination of interface features) pro-
vides the greatest amount of information about the individual and joint impacts
of the different factors. However, obtaining a statistically meaningful number
of cases for this type of experiment takes time, and handling a huge number
of variants aggravates this situation. In our approach, the combinatorial explo-
sion in multivariate tests is dealt with by bounding the parts of the hierarchy
which descend from an unselected feature. This avoids the generation of all the
variations derived from that specific part of the product line.

In addition, our approach does not confine the test designer to a particular
selection strategy. It is possible to integrate any optimization method for re-
ducing the complexity of full factorial designs, such as for instance hill climbing
strategies like the Taguchi approach [28].

Facilitating Controlled Tests of Website Design Changes 9

4.2 Case Study: Checkout Screen

Continuing with the checkout screen example described in Section 1, we intro-
duce a simplified implementation of the shopping cart in order to illustrate our
approach.

+addItem()
+removeItem()
-printDiscountBox()
-printTotalBox()
-printCouponCodeBox()
-printShippingMethodBox()
-recalculateButton()
-continueShoppingButton()
+printCheckoutTable()
+doCheckout()

Cart
-shippingmethod
-subtotal
-tax
-total

+printHeader ()
+printBanner ()
+printMenuTop()
+printMenuBottom ()

General

User
-name
-email
-username
-passwordItem

-Id
-name
-price * 1

11

11

Fig. 4. Classes involved in the shopping cart example

We define a class ‘shopping cart’ (Cart) that allows for the addition and
removal of different items (see Figure 4). This class contains a number of meth-
ods that render the different elements in the cart at the interface level, such
as printTotalBox() or printDiscountBox(). These are private class methods
called from within the public method printCheckoutTable(), which is intended
to render the main body of our checkout screen. A user’s checkout is completed
when doCheckout() is invoked. On the other hand, the General class contains
auxiliary functionality, such as representing common elements of the site (e.g.,
headers, footers and menus).

4.3 Implementing Tests with Aspects

Aspect-Oriented Software Development (AOSD) is based on the idea that sys-
tems are better programmed by separately specifying their different concerns
(areas of interest), using aspects and a description of their relations with the
rest of the system. Those specifications are then automatically woven (or com-
posed) into a working system. This weaving process can be performed at differ-
ent stages of the development, ranging from compile-time to run-time (dynamic
weaving) [26]. The dynamic approach (Dynamic AOP or d-AOP) implies that
the virtual machine or interpreter running the code must be aware of aspects
and control the weaving process. This represents a remarkable advantage over
static AOP approaches, considering that aspects can be applied and removed at

10 Javier Cámara and Alfred Kobsa

run-time, modifying application behaviour during the execution of the system
in a transparent way.

With conventional programming techniques, programmers have to explicitly
call methods available in other component interfaces in order to access their
functionality, whereas the AOSD approach offers implicit invocation mechanisms
for behavior in code whose writers were unaware of the additional concerns
(obliviousness). This implicit invocation is achieved by means of join points.
These are regions in the dynamic control flow of an application (method calls
or executions, exception handling, field setting, etc.) which can be intercepted
by an aspect-oriented program by using pointcuts (predicates which allow the
quantification of join points) to match with them. Once a join point has been
matched, the program can run the code corresponding to the new behavior
(advices) typically before, after, instead of, or around (before and after) the
matched join point.

In order to test and illustrate our approach, we use PHP [25], one of the
predominant programming languages in Web-based application development. It
is an easy to learn language specifically designed for the Web, and has excellent
scaling capabilities. Among the variety of AOSD options available for PHP, we
have selected phpAspect [4], which is to our knowledge the most mature im-
plementation so far, providing AspectJ5-like syntax and abstractions. Although
there are other popular languages and platforms available for Web application
development (Java Servlets, JSF, etc.), most of them provide similar abstrac-
tions and mechanisms. In this sense, our proposal is technology-agnostic and
easily adaptable to other platforms.

Aspects are especially suited to overcome many of the issues described in
Section 3. They are used for different purposes in our approach that will be
described below.

Variant implementation. The different alternatives that have been used so
far for variant implementation have important disadvantages, which we discussed
in Section 3. These detriments include the need to produce different versions of
the system code either by replicating and modifying it across several servers, or
using branching logic on the server or client sides.

Using aspects instead of the traditional approaches offers the advantage that
the original source code does not need to be modified, since aspects can be
applied as needed, resulting in different variants. In our approach, each feature
described in the product line is associated to one or more aspects which modify
the original system in a particular way. Hence, when a set of features is selected,
the appropriate variant is obtained by weaving with the base code6 the set of
aspects associated to the selected features in the variant, modifying the original
implementation.

To illustrate how these variations are achieved, consider for instance the
features labeled F1.3.1 and F1.3.2 in Figure 2. These two features are mutually
5 AspectJ [9,15] is the de-facto standard in aspect-oriented programming languages.
6 That is, the code of the original system.

Facilitating Controlled Tests of Website Design Changes 11

exclusive and state that in the total box of the checkout screen, text and amount
should appear in different boxes rather than in the same box, respectively. In
the original implementation (Figure 1.A), text and amount appeared in different
boxes, and hence there is no need to modify the behavior if F1.3.1 is selected.
When F1.3.2 is selected though, we merely have to replace the behavior that
renders the total box (implemented in the method Cart.printTotalBox()).
We achieve this by associating an appropriate aspect to this feature.

Listing 1 Rendering code replacement aspect.
aspect replaceTotalBox{

pointcut render:exec(Cart::printTotalBox(*));

around(): render{

/* Alternative rendering code */

}

}

In Listing 1, by defining a pointcut that intercepts the execution of the total
box rendering method, and applying an around-type advice, we are able to
replace the method through which this particular element is being rendered at
the interface.

This approach to the generation of variants results in better code reusability
(especially in multivariate testing) as well as reduced costs and efforts, since
developers do not have to replicate nor generate complete variant implementa-
tions. In addition, this approach is safer and cleaner since the system logic does
not have to be temporally (nor manually) modified, thus avoiding the resulting
risks in terms of security and reliability.

Finally, not only interface modifications such as the ones depicted in Figure 1,
but also backend modifications are easier to perform, since aspect technology al-
lows a behavior to be changed even if it is scattered throughout the system code.
The practical implications of using AOP for this purpose can be easily seen in
an example. Consider for instance Amazon’s recommendation algorithm, which
is invoked in many places throughout the website such as its general catalog
pages, its shopping cart, etc. Assume that Amazon’s development team wonders
whether an alternative algorithm that they developed would perform better than
the original. With traditional approaches they could modify the source code only
by (i) replicating the code on a different server and replacing all the calls7 made
to the recommendation algorithm, or (ii) including a condition contingent on
the variant that is being executed in each call to the algorithm. Using aspects
instead enables us to write a simple statement (pointcut) to intercept every call

7 In the simplest case, only the algorithm’s implementation would be replaced. How-
ever, modifications on each of the calls may also be required, e.g., due to differences
in the signature with respect to the original algorithm’s implementation,.

12 Javier Cámara and Alfred Kobsa

to the recommendation algorithm throughout the site, and replace it with the
call to the new algorithm.

Experimenting with variants may require going beyond mere behavior re-
placement though. This means that any given variant may require for its im-
plementation the modification of data structures or method additions to some
classes. Consider for instance a test in which developers want to monitor how
customers react to discounts on products in a catalog. Assume that discounts
can be different for each product and that the site has not initially been de-
signed to include any information on discounts, i.e., this information needs to be
introduced somewhere in the code. To solve this problem we can use inter-type
declarations. Aspects can declare members (fields, methods, and constructors)
that are owned by other classes. These are called inter-type members. As can
be observed in Listing 2, we introduce an additional discount field in our item
class, and also a getDiscountedPrice() method which will be used whenever
the discounted price of an item is to be retrieved. Note that we need to intro-
duce a new method, because it should still be possible to retrieve the original,
non-discounted price.

Listing 2 Item discount inter-type declarations.
aspect itemDiscount{

private Item::$discount;

public function Item::getDiscountedPrice(){

return ($this->price - $this->discount);

}

}

Data Collection and User Interaction. The code in charge of measuring
and collecting data for the experiment can also be written as aspects in a concise
manner. Consider a new experiment with our checkout example in which we want
to calculate how much customers spend on average when they visit our site. To
this end, we need to add up the amount of money spent on each purchase. One
way to implement this functionality is again inter-type declarations.

When the aspect in Listing 3 intercepts the method that completes a purchase
(Cart.doCheckout()), the associated advice inserts the sales amount into a
database that collects the results from the experiment (but only if the execution
of the intercepted method succeeds, which is represented by proceed() in the
advice). It is worth noting that while the database reference belongs to the
aspect, the method used to insert the data belongs to the Cart class.

Aspects permit the easy and consistent modification of the methods that
collect, measure, and synthesize the OEC from the gathered data to be presented
to the test administrator in order to be analyzed. Moreover, data collection

Facilitating Controlled Tests of Website Design Changes 13

Listing 3 Data collection aspect.
aspect accountPurchase{

private $dbtest;

pointcut commitTrans:exec(Cart::doCheckout(*));

function Cart::accountPurchase(DBManager $db){

$db->insert($this->getUserName(),

$this->total);

}

around($this): commitTrans{

if (proceed()){

$this->accountPurchase($thisAspect->dbtest);

}

}

}

procedures do not need to be replicated across the different variants, since the
system will weave this functionality across all of them.

User Assignment. Rather than implementing user assignment in a proxy or
load balancer that routes requests to different servers, or including it in the im-
plementation of the base system, we experimented with two different alternatives
of aspect-based server-side selection:

– Dynamic aspect weaving: A user routing module acts as an entry point
to the base system. This module assigns the user to a particular variant by
looking up what aspects have to be woven to produce the particular variant
to which the current user had been assigned. The module then incorporates
these aspects dynamically upon each request received by the server, flexibly
producing variants in accordance with the user’s assignment. Although this
approach is elegant and minimizes storage requirements, it does not scale
well. Having to weave a set of aspects (even if they are only a few) on the base
system upon each request to the server is very demanding in computational
terms, and prone to errors in the process.

– Static aspect weaving: The different variants are computed offline, and
each of them is uploaded to the server. In this case the routing module
just forwards the user to the corresponding variant stored on the server
(the base system is treated just like another variant for the purpose of the
experiment). This method does not slow down the operation of the server
and is a much more robust approach to the problem. The only downside of
this alternative is that the code corresponding to the different variants has to
be stored temporarily on the server (although this is a minor inconvenience
since usually the amount of space required is negligible compared to the
average server storage capacity). Furthermore, this alternative is cheaper
than traffic splitting, since it does not require the use of a fleet of servers

14 Javier Cámara and Alfred Kobsa

nor the modification of the system’s logic. This approach still allows one to
spread the different variants across several servers in case of high traffic load.

5 Tool Support

The approach for online experiments on websites that we presented in this ar-
ticle has been implemented in a prototype tool, called WebLoom. It includes a
graphical user interface, to build and visualize feature models that can be used
as the structure upon which controlled experiments on a website can be defined.
In addition, the user can write aspect code which can be attached to the dif-
ferent features. Once the feature model and associated code have been built,
the tool supports both automatic and manual variant generation, and is able to
deploy aspect code which lays out all the necessary infrastructure to perform
the designed test on a particular website. The prototype has been implemented
in Python, using the wxWidgets toolkit technology for the development of the
user interface. It both imports and exports simple feature models described in
an XML format specific to the tool.

Fig. 5. WebLoom displaying the product line model depicted in Figure 2

Facilitating Controlled Tests of Website Design Changes 15

The prototype tool’s graphical user interface is divided into three main work-
ing areas:

– Feature model. This is the main working area where the feature model
can be specified (see Figure 5). It includes a toolbar for the creation and
modification of discriminants and a code editor for associated modifications.
This area also allows the selection of features in order to generate variants.

– Variant management. Variants generated on the site model area can be
added or removed from the current test, renamed or inspected. A compila-
tion of the description of all features contained in a variant is automatically
presented to the user based on feature selections when the variant is selected
(Figure 6, bottom).

Fig. 6. Variant management screen in WebLoom

– Overall Estimation Criteria. One or more OEC to measure on the ex-
periments can be defined in this section. Each of the OEC are labeled in
order to be identified later on, and the associated code for gathering and
processing data is directly defined by the test administrator.

In Figure 7, we can observe the interaction with our prototype tool. The user
enters a description of the potential modifications to be performed on the web-

16 Javier Cámara and Alfred Kobsa

System Logic

Aspect Code for Variants 1..n

Designer

1.a. Specify Feature Model

WebLoom

1.b. Add Feature Code

1.c Define Variants 1..n
(by Selecting Features)

2. Aspect Code Generation 3. Aspect Weaving

1.d Define OECs

1. Design

Data Collection Aspect Code

Weaver

Test
Implementation

Fig. 7. Operation of WebLoom

site, in order to produce the different variants under WebLoom’s guidance. This
results in a basic feature model structure, which is then enriched with code as-
sociated to the aforementioned modifications (aspects). Once the feature model
is complete, the user can freely select a number of features using the interface,
and take snapshots of the current selections in order to generate variants. These
variants are automatically checked for validity before being incorporated into
the variant collection. Alternatively, the user can ask the tool to generate all the
valid variants for the current feature model and then remove the ones which are
not interesting for the experiment.

Once all necessary input has been received, the tool gathers the code for each
particular variant to be tested in the experiment, by collecting all the aspects
associated with the features that were selected for the variant. It then invokes
the weaver to produce the actual variant code for the designed test by weaving
the original system code with the collection of aspects produced by the tool.

6 Related Work

Software product lines and feature-oriented design and programming have al-
ready been successfully applied in the development of Web applications, to sig-
nificantly boost productivity by exploiting commonalities and reusing as many
assets (including code) as possible. For instance, Trujillo et al. [29] present a case
study of Feature Oriented Model Driven Design (FOMDD) on a product line of
portlets (Web portal components). In this work, the authors expressed varia-
tions in portlet functionality as features, and synthesized portlet specifications
by composing them conveniently. Likewise, Petersson and Jarzabek [24] present
an industrial case study in which their reuse technique XVCL was incrementally
applied to generate a Web architecture from the initial code base of a Web por-
tal. The authors describe the process that led to the development of the Web
Portal product line.

Likewise, aspect-oriented software development has been previously applied
to the development of Web applications. Valderas et al. present in [31] an ap-
proach for dealing with crosscutting concerns in Web applications from require-
ments to design. Their approach aims at decoupling requirements that belong

Facilitating Controlled Tests of Website Design Changes 17

to different concerns. These are separately modeled and specified using the task-
based notation, and later integrated into a unified requirements model that is
the source of a model-to-model and model-to-code generation process yielding
Web application prototypes that are built from task descriptions.

Although the aforementioned approaches meet their purpose of boosting pro-
ductivity by taking advantage of commonalities, and of easing maintenance by
properly encapsulating crosscutting concerns, they do not jointly exploit the ad-
vantages of both approaches. Moreover, although they are situated in the context
of Web application development, they are not well suited to the specific charac-
teristics of online test design and implementation which have been described in
previous sections.

The idea of combining software product lines and aspect-oriented software de-
velopment techniques does already have some tradition in software engineering.
In fact, Lee et al. [18] present some guidelines on how feature-oriented analy-
sis and aspects can be combined. Likewise, Loughran and Rashid [19] propose
framed aspects as a technique and methodology that combines AOSD, frame
technology, and feature-oriented domain analysis in order to provide a frame-
work for implementing fine-grained variability. In [20], they extend this work
to support product line evolution using this technique. Other approaches such
as [32] aim at implementing variability, and the management and tracing of re-
quirements for implementation by integrating model-driven and aspect-oriented
software development. The AMPLE project [1] takes this approach one step fur-
ther along the software lifecycle and maintenance, aiming at traceability during
product line evolution. In the particular context of Web applications, Alférez and
Suesaowaluk [8] introduce an aspect-oriented product line framework to support
the development of software product lines of Web applications. This framework
is similarly aimed at identifying, specifying, and managing variability from re-
quirements to implementation.

Although both the aforementioned approaches and our own proposal employ
software product lines and aspects, there is a key difference in the way these
elements are used. First, the earlier approaches are concerned with the general
process of system construction by identifying and reusing aspect-oriented com-
ponents, whereas our approach deals with the specific problem of online test
design and implementation, where different versions of a Web application with a
limited lifespan are generated to test user behavioral response. Hence, our frame-
work is intended to generate lightweight aspects which are used as a convenient
means for the transient modification of parts of the system. In this sense, it is
worth noting that system and test designs and implementations are completely
independent of each other, and that aspects are only involved as a means to
generate system variants, but not necessarily present in the original system de-
sign. In addition, our approach provides automatic support for the generation of
all valid variants within the product line, and does not require the modification
of the underlying system which stays online throughout the whole online test
process.

18 Javier Cámara and Alfred Kobsa

To the extent of our knowledge, no research has so far been reported on
treating online test design and implementation in a systematic manner. A num-
ber of consulting firms already specialized on analyzing companies’ Web pres-
ence [2,6,3]. These firms offer ad-hoc studies of Web retail sites with the goal
of achieving higher conversion rates. Some of them use proprietary technology
that is usually focused on the statistical aspects of the experiments, requiring
significant code refactoring for test implementation8.

Finally, SiteSpect [5] is a software package which takes a proxy-based ap-
proach to online testing. When a Web client makes a request to the Web server,
it is first received by the software and then forwarded to the server (this is
used to track user behavior). Likewise, responses with content are also routed
through the software, which injects the HTML code modifications and forwards
the modified responses to the client. Although the manufacturers claim that it
does not matter whether content is generated dynamically or statically by the
server since modifications are performed by replacing pieces of the generated
HTML code, we find this approach adequate for trivial changes to a site only,
and not very suitable for user data collection and measurement. Moreover, no
modifications can be applied to the logic of the application. These shortcomings
severely impair this method which is not able to go beyond simple visual changes
to the site.

7 Concluding Remarks

In this paper, we presented a novel and systematic approach to the development
of controlled online tests for the effects of webpage variants on users, based
on software product lines and aspect oriented software development. We also
described how the drawbacks of traditional approaches, such as high costs and
development effort, can be overcome with our approach. We believe that its ben-
efits are especially valuable for the specific problem domain that we address. On
one hand, testing is performed on a regular basis for websites in order to continu-
ously improve their conversion rates. On the other hand, a very high percentage
of the tested modifications are usually discarded since they do not improve the
site performance. As a consequence, a lot of effort is lost in the process. We
believe that WebLoom will save Web developers time and effort by reducing the
amount of work they have to put into the design and implementation of online
tests.

Although there is a wide range of choices available for the implementation of
Web systems, our approach is technology-agnostic and most likely deployable to
different platforms and languages. However, we observed that in order to fully
exploit the benefits of this approach, a website should first be tested whether
its implementation meets the modularity principle. This is of special interest at
the presentation layer, where user interface component placement, user interface

8 It is however not easy to thoroughly compare these techniques from an implemen-
tation point of view, since firms tend to be quite secretive about them.

Facilitating Controlled Tests of Website Design Changes 19

style elements, event declarations and application logic traditionally tend to be
mixed up [23].

Regarding future work, a first perspective aims at enhancing our basic pro-
totype with additional WYSIWYG extensions for its graphical user interface.
Specifically, developers should be enabled to immediately see the effects that
code modifications and feature selections will have on the appearance of their
website. This is intended to help them deal with variant generation in a more
effective and intuitive manner. A second perspective is refining the variant vali-
dation process so that variation points in feature models that are likely to cause
significant design variations can be identified, thus reducing the variability.

References

1. Ample project. http://www.ample-project.net/.
2. Offermatica. http://www.offermatica.com/.
3. Optimost. http://www.optimost.com/.
4. phpAspect: Aspect oriented programming for PHP. http://phpaspect.org/.
5. Sitespect. http://www.sitespect.com.
6. Vertster. http://www.vertster.com/.
7. Software product lines: practices and patterns. Addison-Wesley Longman Publish-

ing Co, Boston, MA, USA, 2001.
8. G.H. Alférez and Poonphon Suesaowaluk. An aspect-oriented product line frame-

work to support the development of software product lines of web applications. In
SEARCC ’07: Proceedings of the 2nd South East Asia Regional Computer Confer-
ence, 2007.

9. Adrian Colyer, Andy Clement, George Harley, and Matthew Webster. Eclipse
AspectJ: Aspect-Oriented Programming with AspectJ and the Eclipse AspectJ De-
velopment Tools. Pearson Education, Upper Saddle River, NJ, 2005.

10. Bryan Eisenberg. How to decrease sales by 90 percent. Available at:
http://www.clickz.com/1588161.

11. Bryan Eisenberg. How to increase conversion rate 1,000 percent. Available at:
http://www.clickz.com/showPage.html?page=1756031.

12. Robert E. Filman, Tzilla Elrad, Siobhan Clarke, and Mehmet Aksit, editors.
Aspect-Oriented Software Development. Adisson-Wesley, 2004.

13. K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature-oriented domain
analysis (FODA) feasibility study. Technical Report CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University, November 1990.

14. Kyo Chul Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, and Moon-
hang Huh. FORM: A feature-oriented reuse method with domain-specific reference
architectures. Ann. Software Eng, 5:143–168, 1998.

15. Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An Overview of AspectJ. In Jørgen Lindskov Knudsen, ed-
itor, ECOOP 2001 Object-Oriented Programming, volume 2072 of Lecture Notes
in Computer Science, pages 327–353, 2001.

16. Ron Kohavi, Randal M. Henne, and Dan Sommerfield. Practical Guide to Con-
trolled Experiments on the Web: Listen to your Customers not to the HIPPO.
In Pavel Berkhin, Rich Caruana, and Xindong Wu, editors, Proceedings of the
13th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, San Jose, California, USA, 2007, pages 959–967. ACM, 2007.

20 Javier Cámara and Alfred Kobsa

17. Ron Kohavi and Matt Round. Front Line Internet Analytics at Amazon.com, 2004.
Available at: http://ai.stanford.edu/ ronnyk/emetricsAmazon.pdf.

18. Kwanwoo Lee, Kyo C. Kang, Minseong Kim, and Sooyong Park. Combining
feature-oriented analysis and aspect-oriented programming for product line asset
development. In SPLC ’06: Proceedings of the 10th International on Software Prod-
uct Line Conference, pages 103–112, Washington, DC, USA, 2006. IEEE Computer
Society.

19. Neil Loughran and Awais Rashid. Framed aspects: Supporting variability and
configurability for AOP. In Jan Bosch and Charles Krueger, editors, Software
Reuse: Methods, Techniques and Tools. 8th International Conference, ICSR 2004,
Madrid, Spain, volume 3107 of Lecture Notes in Computer Science, pages 127–140.
Springer, 2004.

20. Neil Loughran, Awais Rashid, Weishan Zhang, and Stan Jarzabek. Supporting
product line evolution with framed aspects. In David H. Lorenz and Yvonne Coady,
editors, ACP4IS: Aspects, Components, and Patterns for Infrastructure Software,
pages 22–26, March.

21. Mike Mannion and Javier Cámara. Theorem proving for product line model verifi-
cation. In Frank van der Linden, editor, Software Product-Family Engineering: 5th
International Workshop, PFE 2003, Siena, Italy, volume 3014 of Lecture Notes in
Computer Science, pages 211–224, Siena, Italy, 2003. Springer.

22. Flint McGlaughlin, Brian Alt, and Nick Usborne. The power of small changes
tested, 2006. Available at: http://www.marketingexperiments.com/improving-
website-conversion/power-small-change.html.

23. Tommi Mikkonen and Antero Taivalsaari. Web applications – spaghetti code for
the 21st century. In Walter Dosch, Roger Y. Lee, Petr Tuma, and Thierry Cou-
paye, editors, Proceedings of the 6th ACIS International Conference on Software
Engineering Research, Management and Applications, SERA 2008, Prague, Czech
Republic, pages 319–328. IEEE Computer Society, 2008.

24. Ulf Pettersson and Stan Jarzabek. Industrial experience with building a web por-
tal product line using a lightweight, reactive approach. In Michel Wermelinger
and Harald Gall, editors, Proceedings of the 10th European Software Engineer-
ing Conference held jointly with 13th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, Lisbon, Portugal, 2005, pages 326–335.
ACM, 2005.

25. PHP: Hypertext preprocessor. http://www.php.net/.
26. Andrei Popovici, Andreas Frei, and Gustavo Alonso. A Proactive Middleware

Platform for Mobile Computing. In Markus Endler and Douglas Schmidt, editors,
Middleware 2003: ACM/IFIP/USENIX International Middleware Conference Rio
de Janeiro, Brazil, Lecture Notes in Computer Science. Springer, 2003.

27. Sumantra Roy. 10 Factors to Test that Could Increase the Conversion Rate of your
Landing Pages, 2007. Available at: http://www.wilsonweb.com/conversion/suman-
tra-landing-pages.htm.

28. Genichi Taguchi. The role of quality engineering (Taguchi Methods) in develop-
ing automatic flexible manufacturing systems. In Proceedings of the Japan/USA
Flexible Automation Symposium, Kyoto, Japan, July 9-13, pages 883–86, 1990.

29. Salvador Trujillo, Don S. Batory, and Oscar Dı́az. Feature oriented model driven
development: A case study for portlets. In Proceedings of the 30th International
Conference on Software Engineering (ICSE’07), Leipzig, Germany, pages 44–53.
IEEE Computer Society, 2007.

30. Nick Usborne. Design choices can cripple a website, 2005. Available at:
http://alistapart.com/articles/designcancripple.

Facilitating Controlled Tests of Website Design Changes 21

31. Pedro Valderas, Vicente Pelechano, Gustavo Rossi, and Silvia E. Gordillo. From
crosscutting concerns to web systems models. In Boualem Benatallah, Fabio Casati,
Dimitrios Georgakopoulos, Claudio Bartolini, Wasim Sadiq, and Claude Godart,
editors, Proceedings of Web Information Systems Engineering - WISE 2007, 8th In-
ternational Conference on Web Information Systems Engineering, Nancy, France,
volume 4831 of Lecture Notes in Computer Science, pages 573–582. Springer, 2007.

32. Markus Voelter and Iris Groher. Product line implementation using aspect-oriented
and model-driven software development. In SPLC ’07: Proceedings of the 11th
International Software Product Line Conference, pages 233–242, Washington, DC,
USA, 2007. IEEE Computer Society.

