FESCA 2010

Semi-Automatic Specification of Behavioural Service
Adaptation Contracts

Javier Gmard, Jo® Antonio Martn®, Gwen Saléart,
Carlos Cand| Ernesto Piment®l

2INRIA Grenoble - Rhone-Alpes, France
Email: Javier.Camara-Moreno@inrialpes. fr

b Department of Computer Science, University of Malaga,iSpa
Email: {jamartin, canal,ernesto}@lcc.uma.es

¢ Grenoble INP- INRIA Grenoble - LIG, France
Email: Gwen.Salaun@inrialpes. fr

Abstract

An adaptation contract describes composition constraintsadaptation requirements among several services whaoh w
not initially built to interoperate with each other. The mahwriting of this specification by a designer is #idult and error-
prone task, especially when services are reused takinglteavioural descriptions into account. In this paper, vesent

a semi-automatic approach to build adaptation contracthi$ purpose, we propose an adaptation contract desigegso
supported by an interactive environment based on a grdphitation, and an engine capable of automatically gemeyati
contracts without any human intervention. We also presemxaerimental study that we carried out using the tool stippo
that we implemented in order to evaluate our approach.

Keywords: Service, Composition, Adaptation, Behavioural Interfa€entract, CASE

1 Introduction

Building software systems as a combination of interactintties aims at improving pro-
ductivity since it enables the reuse of third-party, prestixg software components or ser-
vices which are selected and assembled to build a new syktewever, one cannot expect
any given service to perfectly match the needs of the nevesysir composition at hand,
thereby its integration may require some adaptations iera@ solve potential mismatch
situations with the rest of the serviceoftware adaptatiofi20,9] is a hot topic in Software
Engineering since it is the only way to compose non-inteigiblack-box components or
services with mismatching interfaces by automaticallyagating mediating@daptorcom-
ponents. These are automatically built from an abstracatifpegtion of how mismatches
can be solvedif., anadaptation contragt

Mismatches may appear afidirent interoperability levels that are usually distinbeid
in interface description languageS]:[signature level (operation hames and types), be-
havioural level (interaction protocols), quality of sewilevel (non-functional properties

This paper is electronically published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

CAMARA ET AL.

Service/ Behavioural Models (STS) Adaptor

Component @
Interface »)
Descriptions Behavioural Model EELOEREL
Extraction
;(); ~—
(e .)
WSDL+BPEL | WSDL+
Windows
Workflow (WF)
~——
WSDL+ : i
i)
Windows e Ir(\ztere:ctlvte Aéjtortnatltc
Workflow (W ontrac ontrac
;(F)/ Specification Specification Java Classes
) .
Designer | | \
Annotated Java
Interfaces l
—
. Adaptation @ @
.
Contract | =———Pp »
. Adaptor Protocol Adaptor
Generation Implementation
\/—\ Adaptor Protocol _/—\

Model (STS)

Fig. 1. Adaptation Process Overview

such as security orfleciency), and semantic or conceptual level (functional Bjpation
of what the service actually does). Recently, many acadamproaches and industrial
platforms have integrated behavioural descriptions iarfate models and programming
languages such as BPEL][or Windows Workflow FoundationslP] (NET 3.0) in the
context of Web services. Indeed, the behavioural inteedpkty level is essentiall7], be-
cause even if services match from a signature point of viegir composition can lead to
erroneous behaviours or deadlock situations if the design®t aware of their execution
flows, and does not take them into account while building a system.

The kinds of mismatch cover in this work ar@: mismatches in the name of the opera-
tions; (ii) nto mcorrespondences, where some messages in one interfacbemusatched
against a dferent number of messages in another interface; (anddata mismatches,
where there are incompatibilities in the number/andype of arguments being sent or re-
ceived. In order to solve these incompatibilities, adamtatontracts include a mapping
between the operations (and their arguments) of the sertacadapt.

The manual writing of an adaptation contract is fidilt and error-prone task. In-
correct correspondences between operations in servedaogs, or syntactic mistakes are
common, especially when the contract has to be specifiedj esimbersome textual no-
tations. Moreover, a contract is just an abstract spedificaif how the diferent services
should interact and does not explicitly describe all thiedént execution scenarios of a
system, which may not be easily envisioned by the designerall{ writing a contract
requires a good knowledge of the services involved, and mgtataing all the details of
service protocols is quite complicated for non-experts.

In this paper, we focus on the behavioural interoperabléiel, and present a semi-
automatic approach to the specification of adaptation aot#r Specifically, we make use
of an automatic contract generation engine, and an infeeacbntract specification envi-
ronment to support the user through the adaptation contiesiggn process. In order to
achieve our goal, we propose a combined use of both elem&h&sautomatic approach
is able to generate deadlock-free contracts but it lackséngantic information about the
problem, therefore it suggests several contracts to tleeaative environment, where the
user is able to choose and customize the result. Our soligticompletely tool-supported.

2

CAMARA ET AL.

We applied our approach and tools to many examples for ev@atugurposes, and we
present our experimental results in this paper. Fidug&es an overview of the adaptation
process and shows the stage where contract specificaties pédce. Let us note that the
generation of adaptor protocols and code from the adaptatiotract is out of scope here,
and the reader interested in more details about that maytmef@,15].

The rest of this paper is structured as follows: Secfgoresents our service model
and contract specification language, as well as a case stoidy will be used to illustrate
the diferent issues introduced throughout the remaining sect®astion3 first describes
the automatic contract generation algorithm that we useirapproach, and then presents
how it is extended with an interactive environment for semiematic contract specifica-
tion. Sectiond presents some experimental results that we used to asedsaifits of our
approach. Finally, Sectioh reviews related work, and Secti@draws up some conclu-
sions.

2 Interface Model and Contract Specification Language

2.1 Interface Model

We assume that service interfaces are equipped both witinatsire (set of required and
provided operations) and a protocol represented 8yrabolic Transition Syste(8TS)?.
Communication between services is represented wsisgtsrelative to the emission and
reception of messages corresponding to operation callent&vmay come with a set of
data terms whose types respect the operation signaturesur Imodel, aabel is either
the internal actiorr or a tuple M, D, PL) whereM is the message namB, stands for the
direction of communication! for emissions an@ for receptions), an@L is either a list of
data terms if the message corresponds to an emission, oroéVigriables if the message
is a reception.

Definition 2.1 [STS] A Symbolic Transition System or STSisatuple g, |, F, T) where:
Ais an alphabet which corresponds to the set of labels assddiatransitionssS is a set
of states] € S is the initial stateF C S are final states, antl C S x A x S is a transition
relation.

This formal model has been chosen because it is simple, igedpland it can be easily
derived from existing implementation languages (see fstaimce 13,18,12] where such
abstractions for Web services were used for verificatiompasition or adaptation pur-
poses). For space reasons, in the rest of the paper, we willide service interfaces only
with their STSs. Signatures will be left implicit, yet thegirtbe inferred from the typing of
arguments (made explicit here) in STS labels.

Example. We describe a simple example which consists of a client angbplier service.

As it can be observed in Figu& the client first sends a request for an item to be purchased
(getItem!), and receives its pricggétItem?). Then, the client can either decidetay !

the item and receives @nfirmation?, or cancel! the transaction. On the other side,
the supplier waits for a product categogetCategory?) and a particulai temRequest?,

and replies with the price of the requested item. After ttheg transaction can either abort,

1 In this p;;\per, STSs are Labelled Transition Systems (LT&gnded with value passing (data parameters coming with
messages).

3

CAMARA ET AL.

((
CLIENT ¥ SUPPLIER

sO
setCategory?type:strin
getltemlitem:string, type:string I YA ¢

(getltem?price:int setCategory?type:string
m 56
done!
s7
buylitem:string cancel! 5
@cs
invoice Inumber:int

confirmation? s4

itemRequest?item:string

s2
itemRequest!price:int
abort?

s3

purchase?item:string

g J g J

Fig. 2. Client and supplier behavioural interfaces

or receive the actualurchase? order, returning afterwards its correspondiingroice!
and notifying the correct completion of the purchadeng!). Finally, execution can either
finish @bort?), or continue with a new transaction.

Web service composition is subject téfdrent mismatch situationg) name mismatch
occurs if a service expects a particular message, and esceive with a dferent name
(e.g, the client sendduy!, whereas the supplier is expectipgrchase?). (i) ntom
correspondence is given if a message on a particular ineedarresponds to several ones
in its counterpart’s interface (or similarly, a message hascorrespondence at all).
Figure2 it can be observed that while the client intends to make an reguest by only
sendinggetItem!, the supplier on the other endpoint expesisCategory?, followed by
itemRequest?. (iii) Data mismatch may occur when the number/antype of arguments
either being sent or received do not match between the ewvertise diferent interfaces.
This can be observed in the supplier protocol whemoice! sends an invoice identifier
but no argument is expected in its client counterpashfirmation?).

2.2 Contract Specification Language

In this section, we present our adaptation language thaesnammunication among ser-
vices explicit, and specifies how to work out mismatch situret. To make communication
explicit, we rely onvectors(inspired from synchronization vectorg]], which denote com-
munication between several services, where each evena@pgén one vector is executed
by one service and the overall result corresponds to araictien between all the involved
services. A vector may involve any number of services an@ dogrequire interactions to
occur on the same names of events. Vectors express cordespas between messages,
like bindings between ports, or connectors in architettdescriptions. We consider a
binary communication model, therefore vectors are alwagsiced to one event (when a
service evolves independently) or two (when services conicate). Furthermore, vari-
ables are used as placeholders in message parameters.nidgaséable name appearing
in different labels (possibly in fierent vectors) enables the relation of sent and received
arguments of messages.

Definition 2.2 [Vector] A vectorfor a set of servic& TS = (A, S;, Ii, Fi, Ti),i € {1,..,n}
4

CAMARA ET AL.

V ={veat = (c:getitem!l, T;s:setCategory?T), (VLTS A
Vieqg = (S:itemRequest?), V\ {Vap2, Vbuy}
Vies = (C:getltem?P; s:itemRequest!P),
Vamr = {C:cancel!; s:abort?),
Vaz = (S:abort?),
Vdone = (s:done!y, Vouy
Vbuy = (C:buy!l; s:purchase?), VGQ
Viny = (C:confirmation?;s:invoice!N)} L)

Fig. 3. Adaptation contract for our running example: vest@eft) and VLTS (right)

is an element ofA; U (A} x Ay with j,k € {1,...,n},j # k. Such a vector is noted
(sj:), or(sj:l, s:1I"y wheres;, 5 are service identifiers, and’ are labels on the alphabets
of servicesAj, A,, where message parameters are substituted by placehodtitisg the
arguments.

In addition, the contract notation includes an LTS with wegton transitions (vector
LTS or VLTS). The purpose of VLTSs is to guide the applicatarder of the interactions
expressed by vectors. VLTSs go beyond port and parametdinggis) and express more
advanced adaptation properties (such as imposing a sexjoevectors or a choice between
some of them). If the application order of vectors does ndtenahe vector LTS contains
a single state and all transitions looping on it.

Definition 2.3 [Adaptation Contract] An adaptation contract for a set oveesSTS,
i €{1,.,n},isacoupldV,VLTS) whereV is a set of vectors for servic&T S, andVLTS
is a vector LTS.

An adaptor protocol can be automatically generated fromdaptation contract using
state-of-the-art techniques presented9i1%]. Once the adaptor protocol is generated,
it can be implemented using BPEL or Windows Workflow Fouratatiising techniques
presented in15,10].

Example. In order to illustrate how the ffierent kinds of mismatch situations described in
our example can be worked out, we focus on the initial parhefdient and the supplier,
where the item request is mad@) name mismatch can be solved by writing the vector
(c:getItem!I,T; s:setCategory?T); (ii) the correspondence established in the previ-
ous vector leavestemRequest? on the supplier without counterpart. Thus, we can write
another vectofs:itemRequest?I)in order to make the supplier service evolve indepen-
dently; (iii) data correspondences are established through nem&s P andN, which are
used as placeholders by the designer in order to relatesséluemissions) with variables
(in receptions).

Regarding the use of the vector LTS, igure 2we can observe that at statg, the
client STS can either cancel the purchase or buy an item,esbexs3, the supplier either
waits for a purchase, or the cancellation of the operatbor{?). Up to the current state of
the execution, Vectongas, Vreq, andvies have been fired. Now, vectovgy, Vawe, andvyyy
could be fired. An evolution of the system througly; would be correct, since the client
and the supplier would reach their final statésands7, respectively. In contrast, firing
Vane at this stage would insert a deadlock in the system, sincelittre would be eventually
blocked: the supplier would reach its final stai but the client would be stuck ic2 (no

5

CAMARA ET AL.

more vectors available to be fired). On the right-hand sidegiire 3 we can observe how
the execution of/r is prevented by the VLTS in the contract unil,y is executed, hence
avoiding the potential deadlock of the system at ste®es3). Due to page limitation, we
present the full description of the adaptor protocol geteerfor the contract in Figurgon
AppendixA.

3 Semi-automatic Contract Specification

This section first presents our automatic generation psofsadaptation contracts. Al-
though this process is capable of generating correct aatfeom the behavioural point
of view, it cannot control the semantic constraints presenservice interfaces. Hence, in
the second part of this section we present a semi-automgpi@ach to contract specifi-
cation as a solution to this problem. Rather than pursuingla dutomated approach by
making use of semantic technologies (which may not be entagifier complete interface

operation semantics and their relations), our solutiorasedd on extending our automatic
generation process with an interactive contract spedific@nvironment that helps in cus-
tomizing and constraining automatically generated sohsti

3.1 Automatic Contract Generation

Our engine for automatic contract specification (Algorithnperforms an incremental pro-
cess where an initially empty contract is refined while traivey the service behaviours un-
til a complete deadlock-free contract is generated. Ouragm consists of a combination
of an expert system and an informed-search algorithm.

Algorithm 1 gencontracts

Returns a set of adaptation contracts for a couple of behamicservice interfaces.
inputs Service interfaceS TS = (A, Si, li, Fi, Ti),i € {1, 2} and an initial set of vectorgy, empty by default.
output Set of adaptation contrad®

1: C,c,val=0,¢,0

2: ¢g = (Vo, createlooping VLT S(Vo))

3: valp = valuatecontrac%co)

4: queue= enqueuecontrac{emptyqueud), valy, Co, I1, [2)

g: for val, c, s, s = explorecontrac{queug and—-is_.completéc) do

7
8
9

{Generate all possible successor contracts for the givetnaobo.}
for i =1to 2do
forall (s,a,9) € Tdo
¢’ =refineccontrac(c, a,i)

10: val' = valuatecontrac{c’)

11: if i = 1then

12: gueue= enqueuecontrac{queueval’, ¢/, s,)
13: else

14: gueue= enqueuecontrac{queueval’, ¢/, s, S)
15: end if

16: end for

17: end for

18: end for

19: if c # ethen

20: {Find in the queue other complete contracts with the samedtieuralue}
21: C = {c} U find_completecontractgqueueval)

22: end if

23: return C

Expert system. From a given partial contract (empty, by default) and a curstate in
every service behaviour (beginning with their initial s&tthe expert system generates
new partial contracts by including every outgoing traositfrom those states in the given
contract fefine.contrac). These partial contracts compose a directed and acydishgr
whose initial node is the empty contract and, in every ame siliccessor contract contains
one labeimessage more than its predecessor (either included in arvempied from the

6

CAMARA ET AL.

parent contract or in a new vector with that single term). &kert system also contains
rules {s_.completéthat recognize which contracts are complée,(those which allow ser-
vices to always reach a final state) and rules which evalwate eontract using a heuristic
function {valuatecontrac). Different scenarios and contexts requirfadent adaptation
policies, therefore the heuristic function and contraciggation process are easily extended
or customized by means of expert system rules. These rutegroae partial contracts in
the graph depending on their vectors and the executionsti@tmved by those contracts.
The heuristic function (sedlf]] for more details) is based on the direction of the oper-
ations and the matching between their arguments. It repi®saemeasure of the suitability
of the contract for service adaptation since it ranks fireséhcontracts which synchro-
nize compatible operations and avoid incompatible brascfithe service behaviour. This
function imposes a total order among the contracts and tvbgeh assume the minimum
number of mismatchegg., contracts where every operation corresponds to anotlaealan
the parameters match, are placed first.
Informed-search algorithm (A*). This algorithm accepts as input the graph of partial con-
tracts generated by the expert system and it selects theadidl contract which has the
lowest heuristic valuegxplorecontrac). This selected partial contract is returned to the
expert system to continue with the process until Afealgorithm selects a complete con-
tract (or several, if there are many with the same heuristlice; find_completecontractg.
In this way, the contract generation process is equivateatdearch, guided by the heuris-
tic function, in the graph of partial contracts until a coetplone is found. However, even
though guiding the process with the heuristic functionvédiies the state-explosion prob-
lem, the number of possible partial contracts increasesrexgially with the size of the
problem, therefore our automatic approach was originalsighed to work with only two
services at a timeA* is an exhaustive search algorithm, therefore it always fandslu-
tion. In the worst case, if the services are completely ingatible, atrivial contract will
be generated where all emissions are ignored and all recspdire fulfilled with made-up
arguments without any synchronization between the sesvice

3.2 Extending Automatic Generation with Interactive Siieation

Service interfaces are not enough to automatically infedce functionality €.g, whether
we are dealing with a booking or a weather service), nor ttenated goal of their compo-
sition. When no additional requirements are given, deadfaedom is the only property
preserved by the automatic approach. Therefore, confieatisring undesirable behaviour
(a service which always aborts the client’'s session, faamse) can be obtained in cases
where such requirements are missing.

To solve this problem, we propose to extend automatic coingeneration with an inter-
active specification environment that enables the custtioiz of automatically generated
solutions, incorporating the following elements:

Graphical notation. Based on the model described in Sect®rihis notation is used in
order to: (i) Visualize service interfaces. As it can be observed in Eduthe graphical
notation for a service interface includes a representatfats protocol (STS) and a col-
lection of ports. Each label on the STS correspondsporain the graphical description.
Ports include alata portfor each parameter contained in the parameter list of thel.lab
(i) Define port bindings. Correspondences between tlierdnt service interfaces (vec-

7

CAMARA ET AL.

tors) are represented pert anddata port bindinggsolid and dashed lines, respectively).
Starting from the graphical representation of the intex$athe designer builds a contract
by successively connecting ports and data ports. ThisteeButhe creation of bindings
which specify how the interactions should be carried ouis #lso possible to add @ort
cap(vector with a single label) on a port in order to indicatet ihdoes not have to be con-
nected anywhere. Port caps are represented bYy@n’the corresponding port. Moreover,
our graphical notation supports the incremental spediicaif the adaptation through the
encapsulation of service hierarchies insaenposite servicesrThis is particularly useful
in cases where the number of services involved in the cortiposs high.

SABrNUs vav SEHAR D)

Rl d © 0 X upl o

35 Contract (Contract) ~) L oe I Simulation B

= <> Vectors - nurber oL
e e ctor

etCategory?(cientg E= [)ﬂ o Set Catogory? Applcable Vectors
tigetttem!(durnmy_0 clie
1

confi rmation D—C)’ Sirdtads
sl [—stors i iten
rn |
= Q)
fteh tenpoauest
item

i temPecuest

price

getitem

ol

item

4 type

cancel | getltem] setoategory

suppler:setCateqory <-> setCategory
Ttem <-

t
6 price > getttem

type

| entget LsECiype

ion?

Ttem <-> getltem

i

Id be linked to other data item.

Fig. 4. Interactive contract specification and simulationdur case study

Verification and validation techniques In order to help the designer to understand if
the behaviour of the system complies with/h&r design intentions, we provide fully au-
tomated techniques(i) Simulation. Our environment implements an algorithm able t
determine how the ¢lierent behavioural interfaces evolve step-by-step fésrdint vectors

in the contract are executed; afiigl Trace-checking. Potential system execution traces are
first generated, and then traversed to detect those leaalishgaidlock situations or infinite
loops.

This interactive environment can provide additional craiats (expressed as vectors)
as input to the automatic approach which must be respectadgdilne automatic gener-
ation process. Furthermore, the designer can take adwaofagutomatically generated
vectors using the interactive environment in two waystaking them as suggestions when
designing the contract from scratch. This is particulamtgiiesting in scenarios that present
behavioural interfaces with large protocols and only a fegompatibilities, where the de-
signer must connect all ports one by one even if they obwousitch with each other; or as
(i) complementing an already existing partial specificatioxabding incremental contract
specification.

Specifically, we propose an iterative process for contreftbement that integrates our
automatic generation process (AlgoritiZpinto the interactive contract design environ-
ment. Initially, we may optionally impose some vectors asstints (Lined) which may
be directly related with the intended goal. Then, we invdiedutomatic generation pro-
cess gencontractsin Line 8) with the given initial vectors as input and we select thitoug

8

CAMARA ET AL.

Algorithm 2 contractspecification

Builds an adaptation contract for a set of behaV|ouraI seevinterfaces.
inputs Service interfaceS TS = (A, Si, i, Fi, Ti),i € {1, ..., n}
output Adaptation contract = (V, VLTS = (V SviTs, IVLTS Fvits, Tvits))

1: s= newstatd)
2:V=0
3 VLTS= (v s {s},0)
4: c=(V,)
5: while —|en\Lva||d(c) do
6: Viest = €nvinputvectorg)
7 (STS,STS) =enuselectSTSESTS,. .., STS)
8: Vgen = env.selecfgencontract§S TS, ST S, V U Viest)
9: for all vy € Vgendo
10: if —env.valid(vg) then
11: Vgen = Vgen\{Vg}
12: end if
13: end for

14: Vadd = envinputvectorg)
15: VA = Vadd U Vgen
16: for all vs € V5 do

17: V =V U {vs}
18: TyLts = TvLts U {s Vs, s}
19: end for

20: VLTS s) = envedit VLTS(VLTYS)
21: V= enveditvectorgV)

22: c=(VLVLTS)

23: end while

24: return ¢

V ={vear = (c:getitem!l, T; s:setCategory?T), KF

Vieg = (S:itemRequest?),
Vies = (C:getltem?P; s:itemRequest!P), v
Vap1 = (C:cancel!; s:abort?), /g
Vbad = (C:buy!; s:abort?),
Veonf = (C:confirmation?)}

Fig. 5. Incorrect deadlock-free contract for our case study

the interactive environment one of the returned contraéiier validating the resulting
contract using the verification mechanisms provided by theractive environment, we
determine if the current state of the contract is satisfsioine 5). If that is the case, the
specification process ends. Otherwise, we may alterngtiel remove the parts of the
contract causing problems (Lin8s13); or (ii) customize the parts of the contract causing
problems using the interactive environment (Lidds21).

We now informally define the functions used by our algorithtims worth noticing that
all functions with names starting bgnv correspond to functionality implemented in the
interactive environment which requires user input. Funmctiew statecreates a new state
identifier for the VLTS enwvvalid returns whether the user considers the given vector valid
or not. envinput.vectorsreturns a set of vectors composed by the userselectSTS s
returns a pair of STSsenvselectreturns a set of vectors selected from a set of con-
tracts.gencontracts(detailed in Algorithml) receives a pair of service STSs and a partial
contract that will be used as restrictions (may be empty, r@turns diferent contracts
connecting the interfacesnvedit VLT Sreceives the current VLTS, and returns an edited
version, and the new active VLTS state selected by the asgedit vectorsreceives a set
of vectors, and returns its edited version.

Example. The automatic approach generates two contracts with the $euristic
value for our running example. The first contraéigure 3 is the one defined as an exam-
ple inSubsection 2.2However, the second contra&tigure 5 is not desirable becausg,g
matches the clientbuy! request with thebort? branch in the supplier,e., the supplier

9

CAMARA ET AL.

will abort the session no matter what the client decidess $acond contract avoids the ar-
gument mismatch occurring in the first contract wigh (to receive and discard the invoice
number received from the supplier) because the heuristictifon considers this mismatch
as bad as ignoring the argument received from the cliényd in vpaq, therefore it aborts
the purchase. However, if we impose veaigy, in Figure 3as a compositional constraint,
the automatic approach restricts the generation processntoacts containing that vector
and is able to fulfill the rest of the contract correctly.

4 Tool Support and Experimental Results

Our approach has been fully implemented and includediii&GA [8] (Integrated Toolbox
for the Automatic Composition and Adaptation of Web Sers)celTACA is a toolbox
implemented at the University of Malaga that fully coveng tadaptation process which
goes from behavioural model extraction from existing sarnterface descriptions, to the
final adaptor implementation.

In order to assess the benefits of our approach to contracifispgon in terms of de-
velopment &ort and contract accuracy, we conducted an experimeni@y stith the help
of a group of volunteers who were divided in three categof@egert, average, novice)
according to their expertise and familiarity with behavalunterfaces and software com-
position. The tests consisted in handing over to the vokistadaptation problems which
included the graphical description of the behaviouralrfatzes to be reused in the compo-
sition and a short specification in natural language of wtes the intended functionality
of the system. Since we measure user productivity in ourraxeats, the automatic ap-
proach as an independent tool is left out of our study. Theetliiferent approaches for
contract specification included in the experiments wédemanual contract specification
(M), where the user had to write down the contract withouthferr assistanceii) interac-
tive contract specification (1), where volunteers made dssuo interactive environment;
and(iii) Semi-automatic contract specification«k, where the user specified the contract
using the approach presented in this paper.

Time (s) Errors
Problem Interf. Ports | States | Trans. M | A+l M | A+l
ftp-002 2 9 11 11 338 222 130 1.77 1.5 0
client-sup-002 2 12 15 16 480 248 183 0.33 0.5 0
which-004 2 17 16 19 486 146 126 295 | 0.75 0
online-med-003 3 15 16 17 531 189 122 5 0 2
easyrest-005 4 17 22 24 689 310 203 3 1.66 1.5
pda-001 6 46 37 48 2160 | 1152 | 1087 27.6 | 10.66 | 13.33

Table 1
Problem size and experimental results for the three appesac

For our experiments we usedfdrent case studies that were obtained from our own
archive of adaptation problems, which includes exampleging from small synthetic
ones to real-world case studies. Tablkummarizes the problems used for our study, which
are organized according to increasing size and compléAigyalso include the number of
services involved and ports to connect, as well as the dvara of the protocols (total
number of states and transitions). The table also showsxperimental results (time
required to solve the problem and number of errors in theispécontract) for each of the
case studies and tested approaches.

10

CAMARA ET AL.

Time spent. Figure 6 shows the results of our experiments. If we take a look toefte |
hand side of the figure, we can observe that there is a renlarldiierence in the amount
of time required to solve the flerent problems between manual specification and the in-
teractive approach (an average improvement of 53% usimgaictive specification). In
addition, it is worth considering that users spent a redslenamount of time simulating
and validating contracts with the interactive environm&hereas they did not when man-
ually designing the same contracts.

Comparing interactive specification and the semi-aut@regtiproach, there is an ad-
ditional reduction in the amount of time required when thmisautomatic approach is
used (12% on average). However, as the number of servicesntpase in the problem
increases, this ffierence between the semi-automatic and interactive agpeeas notice-
ably reduced (from 27.2% in the simplest case stitph002, to 3% in the most complex
onepda-001). This is due to the fact that the automatic approach is oply & consider
two interfaces at a time and, as the number of interfacegases, the user has to select
more pairs of interfaces to generate bindings between thdding an additional complex-
ity to the task.

Effort and accuracy. Regarding the accuracy during the adaptation process, \asured
as errors the number of bindings created between ports wiech either wrong or useless
for the resulting contract. In addition, we also consideteinumber of mistakes remain-
ing in the resulting contracts. In the case of manual spatific we also took into account
syntactic errors (tool-supported approaches avoid thi$ &f mistakes). In Figuré (right),

it can be noticed that the number of errors in problem sahstiends to be smaller in tool-
supported approaches compared to manual contract spggifi¢an average improvement
of 59% and 77% over manual specification with interactive semi-automatic specifica-
tion, respectively). This improvement increases with themplexity of the problem.

10000 30

s h
AN L
—— 4

Time (s)
Errors

A+l

100 T T T T T T T
ftp-002 client-sup- which-004 ~online- easyrest- pda-001 ftp-002 client-sup- which-004 online- easyrest- pda-001
002 med-003 005 002 med-003 005

Fig. 6. Experimental results: Time elapsed (left) and aacy(right)

If we focus on the comparison between the tool-supportedoagpes, the semi-
automatic approach minimizes the number of errors in problevhich contain only two
interfaces. This happens because the automatic approaehates the majority of the
bindings required to solve the problem, and the user dogshave to customize the so-

11

CAMARA ET AL.

lution if it is required, focusing on the remaining detail&s it happened in the case of
time, in problems where multiple small services have to keptati, this improvement is
lost since the user must modify or create additional binglittgintegrate all the pairwise
bindings returned by the automatic approach.

It is worth observing that in the case ofline-med-003, the general trend between
the interactive and the semi-automatic approach is regesisee users always solved the
problem correctly in the first attempt using the interacapgproach but, in the case of the
semi-automatic approach, they need to modify two bindingshe contract returned by
the automatic approach to integrate the third service ofettemple. Ineasyrest-005,
the semi-automatic approach hardly improves (5.3%) thatreEinteractive specification
since the problem contains two main interfaces which carelzed using the automatic
approach, leaving details to the user.

5 Related Work

Model-based behavioural adaptation approaches are déssifeed in two families: (i) au-
tomatic approaches that are fully automated and try to soteeoperability issues by prun-
ing the behaviours that may lead to mismatch, and (ii) geiverapproaches that are able
to accommodate protocols, for instance by reordering ngessand their parameters, or
by supporting the specification of advanced adaptationas In this section, we com-
pare our solution with existing automatic approaches, amgative ones especially those
supporting the designer in the contract specification.

Automatic contract specification. The authors of7] outlined a methodology for the au-
tomatic generation of adaptors capable of solving behazicuismatches between BPEL
processes. In their adaptation methodology they use YAWanasitermediate workflow
language. Once the adaptor workflow is generated, they we&ealoalysis techniques to
check if a full adaptor has been generated or only a partel(some interaction scenarios
cannot be resolved). They solve protocol incompatibditieit their approach does not ad-
dress signature mismatch since they assume same operaii@s fand arguments) among
the services. In4], the authors address the enforcement of certain behalipuperties
(namely liveness and safety properties expressed as LTiefies) out of a set of already
implemented components. Starting from the specificatiach MSCs of the components
to be assembled and of the properties that the resultingmaysthiould verify, they automat-
ically derive deadlock-free adaptor glue code for the setomfiponents in order to obtain
a property-satisfying system. However, although this apgin enables a precise specifica-
tion of the desirable behaviour of the system, it works byhprg branches of the behaviour
which are incompatible or do not satisfy the specified priogper Hence, the range of situ-
ations where mismatch can be reconciled is limited comptrether approaches.
Interactive contract specification. Brogi et al. [6] present a methodology for genera-
tive behavioural adaptation where component behavioersecified with a subset of the
n-calculus and composition specifications with name comedpnces. An adaptor gener-
ation algorithm is used to refine the given specification etooncrete adaptor which is
able to accommodate both message name and protocol mismdtaoie recently, 9,15]
proposed state-of-the-art adaptation approaches thgeaerative and support adaptation
policies and system properties described by means of nregyteessions or LTSs of vec-
tors. However, in these works, no support is proposed to tiepdesigner during the

12

CAMARA ET AL.

contract specification task, which is therefore achievedually. Dumaset al. [11] in-
troduce an approach to service interface adaptation usingual language based on an
algebra over behavioural interfaces. A graphical editkintaas input pairs of behavioural
interfaces allows to link them through interface transfation expressions. The output of
this tool can be used as input for a service mediation engimehninterprets the infor-
mation in order to perform composition. Although this a@mio provides the means to
define interface transformation expressions graphiciltypes not support the incremen-
tal specification of adaptation since it only considersgafrprovided-required interfaces.
Moreover, our approach provides systematic contract gatifin mechanisms.
Automatic-interactive approach. To the best of our knowledgel§] is the only work
mixing both automatic and interactive aspects while bodgdadaptation contracts. a6,
some techniques are presented to automatically match theLVégnature of two Web
services. The matching is performed by a combination of arLX@hema matching tool
calledCOMA++ [3] and some protocol analysis. They are able to generate aatthriree
that gathers all protocol mismatches, and ask the desigrmgve a mapping function in or-
der to solve these mismatches if they are not automaticdyptable. However, no support
is provided to help the designer to specify this mappingtionovhereas we propose a full
environment to guide him in this task.

6 Conclusions

Manual specification of adaptation contracts is a cumbegsand error-prone task. In this
paper, we proposed a novel solution to ease the task of corjpacification. The pro-

posed approach is semi-automatic, and relies on an interaatvironment and automatic
generation techniques to support the designer. Our soltés been fully implemented in
tools, which have been applied to many case studies. Fortrer we have shown that our
approach remarkably reduces the time spent to build theainas well as the number of
errors made during the process. More concretely:

e The time required to specify adaptation contracts usingapproach has been reduced
to 35% of the overall time required to manually specify thatcact.

e Our approach yields an accuracy improvement of 77% rel&iveanual contract spec-
ification.

e Our proposal worked especially well in cases where funatignis not scattered across
multiple small interfaces.

As regards future work, we aim at extending our approach twider goal-oriented
adaptation, using as input to the adaptation process aléigh-property written using
temporal logic, that will be used to guide the contract camtsion.

Acknowledgements. This work has been partially supported by the project TINR0O
05932 funded by the Spanish Ministry of Innovation and Sme(MICINN).

References

[1] Andrews, T. et al., “Business Process Execution Langutny Web Services (WSBPEL),” BEA Systems, IBM,
Microsoft, SAP AG, and Siebel Systems (2005).

[2] Arnold, A., “Finite Transition Systems,” Internation&eries in Computer Science, Prentice-Hall, 1994.

13

CAMARA ET AL.

[3] Aumueller, D., H. H. Do, S. Massmann and E. Ratichema and Ontology Matching with COMA in: Proc. of
SIGMOD’05(2005), pp. 906-908.

[4] Autili, M., P. Inverardi, A. Navarra and M. TivoliSYNTHESIS: A Tool for Automatically Assembling Correct and
Distributed Component-based SystemsProc. of ICSE'07(2007), pp. 784—-787.

[5] Becker, S., A. Brogi, I. Gorton, S. Overhage, A. Romarkyvand M. Tivoli, Towards an Engineering Approach to
Component Adaptatiqnn: Archltectlng Systems with Trustworthy Compon,elnN(:S3938(2006) pp. 193-21

[6] Bracciali, A., A. Brog| and C. Canalh Formal Approach to Component Adaptatidtournal of Systems and Software
74(2005), pp. 45-54

[7] Brogi, A. and R. PopesciAutomated Generation of BPEL Adapteirs Proc. of ICSOC’06 LNCS 4294 (2006), pp.

[8] Camara, J., J. A. Martin, G. Salaiin, J. Cubo, M. Oueidét. Canal and E. PimentdlTACA: An Integrated Toolbox
for the Automatic Composition and Adaptation of Web Sesyieeoc. of ICSE’'09 (2009), pp. 627-630.

[9] Canal, C., P. Poizat and G. SalalMlodel-Based Adaptation of Behavioural Mismatching Conepts IEEE
Transactions on Software Engineeridg(2008), pp. 546-563.

[10] Cubo, J., G. Salaun, C. Canal, E. Pimentel and P. Rdizktodel-Based Approach to the Verification and Adaptation
of WF.NET Componentsn: Proc. of FACS'07ENTCS215(2007), pp. 39-55.

[11] Dumas, M., M. Spork and K. Wandéydapt or Perish: Algebra and Visual Notation for Serviceehfihce Adaptationin:
In Proc. of BPM’'06 LNCS4102(2006), pp. 65-80.

[12] Foster, H., S. Uchitel and J. Kram&TSA-WS: A Tool for Model-based Verification of Web Servima@sitions and
Choreographyin: Proc. of ICSE'06(2006), pp. 771-774.

[13] Fu, X., T. Bultan and J. Synalysis of Interacting BPEL Web Services Proc. of WWW’042004), pp. 621-630.

[14] Martin, J. A. and E. PimenteRutomatic Generation of Adaptation Contracits: Proc. of FOCLASA'08ENTCS229
(2009), pp. 115-131.

[15] Mateescu, R., P. Poizat and G. Salafidaptation of Service Protocols using Process Algebra andi@-Fly Reduction
Techniquesin: Proc. of ICSOC’08LNCS5364(2008), pp. 84—99.

[16] Motahari Nezhad, H. R., B. Benatallah, A. Martens, Frifema and F. Casatsemi-Automated Adaptation of Service
Interactions in: Proc. of WWW’'072007), pp. 993-1002.

[17] Plasil, F. and S. Visnovsk@Behavior Protocols for Software ComponenEE Transactions on Software Engineering
28(2002), pp. 1056-1076.

[18] Salaiin, G., L. Bordeaux and M. Schaebgscribing and Reasoning on Web Services using Processralge
International Journal of Business Process Integrationaaagement (2006), pp. 116-128.

[19] Scribner, K., “Microsoft Windows Workflow FoundatioStep by Step,” Microsoft Press, 2007.

[20] Yellin, D. M. and R. E. StromProtocol Specifications and Components AdaptaM Transactions on Programming
Languages and Systerh8 (1997), pp. 292—-333.

14

CAMARA ET AL.

A Adaptor Protocol

FigureA.1 displays the adaptor protocol generated using the adaptedintract described
in Subsection 2.2For illustration purposes, our example is rather simpk iarthis case,
the adaptor protocol contains only 18 states and 19 transit{although they tend to be
typically quite large). Interaction starts by receiving ttategory and the item to purchase
from the client. Next, the adaptor (state 5) can alternBtivg) receivebuy and perform
the purchase; or (i) receiveancel from the client and issugbort to the supplier before
finishing (state 11). It is worth observing thretiort cannot be executed without the client’s
cancellation at this point, and it can only occur on its owterathe purchase is made,
according to the constraints expressed in the VLHI§Wre 3. The part of the adaptor after
state 10 corresponds to the confirmation of the purchasehanehid of the transaction.

SUPPLIER:ITEMREQUEST !l

SUPPLIER:ITEMREQUEST ?P

CLIENT:GETITEM !P

SUPPLIER:ABORT !

SUPPLIER:ABORT ! CLIENT:CONFIRMATION !

FINAL

Fig. A.1. Adaptor protocol generated for our running exampl

15

	Introduction
	Interface Model and Contract Specification Language
	Interface Model
	Contract Specification Language

	Semi-automatic Contract Specification
	Automatic Contract Generation
	Extending Automatic Generation with Interactive Specification

	Tool Support and Experimental Results
	Related Work
	Conclusions
	References
	Adaptor Protocol

